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Abstract: Rare earth emitters are promising in integrated optics but require complex integration
on silicon. In this work, we have fabricated an Y2O3:Eu3+ micro-emitter on SiO2 on Si
substrate without etching. Since pulsed laser deposition produces a high quality layer at room
temperature, material can be locally deposited on top of substrates by lift-off processing. After
annealing, microstructures exhibit good crystallographic quality with controlled dimensions
for light confinement and narrow emission. This works allows envisioning rare-earth doped
micro-photonic structures directly integrated on silicon without etching, which opens the way to
integration of new functional materials on silicon platform.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Rare earth emitters have been studied for a while in integrated optics as laser source [1] and
waveguide amplifier with glasses [2,3] or polymer [4]. Recently, they have been integrated in
Complementary Metal Oxide Semiconductor (CMOS) driven or compatible Si photonics chip
as active devices like laser sources [5], amplifiers [6,7] as well as modulators [8,9]. Rare earth
emitters offer thus many possibilities for developing new active functions in integrated optics
initially focused on group IV [10] or III-V materials [11,12]. However, complex processing
is needed for their efficient incorporation on silicon platform such as bonding [13], masked
deposition [5,14], additional layer [15], or etching [16,17] which can be costly and detrimental
for practical applications. This is especially the case for Y2O3 and Al2O3 matrix which require
inductively coupled plasma optimized etching [18–20].

In this work, we propose an innovative design of rare-earth doped layer micro-emitters without
etching using lift-off processing combined with Pulsed Laser Deposition (PLD). While the
classical structuring via etching is performed with the partial erosion of a full-surface coating of
the substrate through a mask (e. g. photoresist), in the lift-off procedure, the material is cleared
away with the structured resist together with the material deposited thereon. Such method is
easier than etching and avoids potential damage along the etched sidewall. Lift-off processing is
conventional in microelectronics for thin layer patterning (e.g metal) or thicker layer with low
temperature deposition like sputtering [21], atomic layer [22], or glass deposition [23]. Although
very attractive, one of the main drawbacks of the lift-off procedure is the substrate temperature
during deposition. Indeed, if the substrate temperature is higher than 200°C (i.e the hard bake
temperature of the photoresist), lift-off processing cannot be successful. PLD allows overcoming
such limitation. PLD is a high quality growth technique commonly used for many applications in
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photonics [24] which can provide for instance low loss waveguide grown at room temperature
[25]. One of the main advantages of PLD lies on the fact that the atoms/molecules reaching the
surface during deposition have a kinetic energy which exceeds the thermal energy by several
orders of magnitude [26]. Such phenomenon leads to the possibility to grow films on substrates in
a range of temperatures much lower than otherwise required with other technics (Molecular Beam
Epitaxy, Chemical Vapor Deposition. . . ). Therefore, the possibility to merge both technologies
(i.e lift-off and PLD) is of great interest for the direct integration of structures for photonics
applications.

In this paper, we focus on the fabrication and the study of micro-structured Y2O3:Eu3+ layers
to demonstrate light confinement and emission without etching. We first have investigated planar
Y2O3:Eu3+ layers. X-Ray Diffraction (XRD) and Photoluminescence (PL) measurements were
performed directly after room temperature deposition and compared with samples annealed at
650°C. We have then fabricated Y2O3:Eu3+ microstructures on SiO2 buffer layers deposited
on Si substrate. As a function of the waveguide width, we have observed different confined
modes compared with modeling. Finally, we have performed PL measurements showing a strong
emission of the micro-emitters.

2. Pulsed laser deposited Y2O3:Eu3+ planar layers

Y2O3:Eu3+ is a material of choice for integrated optics. The Eu3+ ion is well known for its intense
red emission under UV excitation and for its quantum yield close to 100% [27] which could be
very interesting for visible integrated optic [28]. Moreover, Y2O3 host presents many advantages.
Yttrium Oxide has a large band gap which ensures optical transparency for a wide range of
wavelengths and it is chemically stable. Furthermore the atomic radius of Yttrium and Europium
are in the same range which allows an efficient rare earth incorporation [29]. Y2O3:Eu3+ 300 nm
planar layers were first deposited on SiO2 (2 µm)/Si substrate. A KrF excimer laser (λ=248 nm,
t=17 ns, Coherent Compex Pro) operating at 5 Hz was used for the ablation of the target under 73
mJ, focused over 2mm2. Substrate rotation was used to obtain homogeneous layer thickness at
the growth speed of 3.5 nm/min, at room temperature in an oxygen-gas atmosphere (10−3 mbar).
The distance between the sample and the Y2O3:Eu3+ target was set to 6 cm. After the growth,
samples were annealed 24 hours at 650°C with a 0.5°C/min ramp under ambient air. Figure 1
presents XRD and PL measurements before and after annealing. X-ray diffraction (XRD) patterns
were collected using a D2-phaser Bruker instrument with Cu- Kα radiation (λ= 0.1540598 nm)

Fig. 1. Y2O3:Eu3+ layer before and after annealing compared by a) X-ray diffraction and a)
photoluminescence measurement with the excitation spectra presented in the inset
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using a graphite monochromator in the 2θ range from 25 to 55° [Fig. 1(a)]. Before annealing, no
pics are detected which evidence the amorphous character of the Y2O3 thin film. After annealing,
the XRD pattern shows that all diffraction peaks can be indexed to the Y2O3 cubic phase (JCPDS
00-041-1105) and no signal from another phase (Y2O3 monoclinic) or impurities is observed,
indicating that the product is single-phase [30,31]. PL measurements were performed with an
Oriel Cornerstone CS260 monochromator and a Hamamatsu R1477 visible photo-multiplier.
Roithner LED UVR270SC3P pump source was focused over few mm2 with a centered wavelength
around 270 nm. The excitation spectrum is highlighted on the inset of Fig. 1(b). This excitation
wavelength corresponds to the excitation of the Eu-O charge band [32,33]. Light emission is then
collected from ∼mm2 surface aligned with the pumped region. Without annealing, Y2O3:Eu3+

emission spectrum is broad with low intensity, due to the amorphous Y2O3 matrix [34]. Note that
rare earth emission is nevertheless detected with such low temperature deposition which could be
interesting for CMOS compatible applications. After annealing, we clearly see that narrow and
higher intensity emission bands are detected, corresponding to the well-known Eu3+ energy level
in a crystalline Y2O3 host [32,35]. Therefore, our growth conditions allow depositing Y2O3:Eu3+

layers with enhanced emission properties after annealing, as expected [34].
Layer thickness and refractive index were measured before and after annealing using a Dektak

profilometer and a J.A Woollan Ellipsometer. A good correlation was found between both
measurements. Before annealing, the layer thickness was estimated to be 0.30 µm and 0.28 µm
after annealing. Furthermore, the refractive index increases from 1.80 to 1.87 at 610 nm
wavelength (see Supplement 1). Such measurements indicate that the layer density increases
during the annealing step, as previously reported in the literature [36–38].

3. Processing for micro-structuration

Figure 2(a) reports the process flow for the Y2O3:Eu3+ micro-structuration. AZ5214 negative
photoresist ]PR in the Fig. 2(a)] was used on top of a 2 µm thermal SiO2 buffer on Si substrate.
UV lithography was achieved with a standard EVG mask aligner and standard Cr lithography
photomask. 1.8 µm height photoresist strip with 2, 4 and 8 µm width were defined along the
<110> Si crystalline axis. Afterward, samples were directly placed under vacuum to prevent

Fig. 2. a) Process flow for the rare-earth based micro-emitters starting by UV lithography,
followed by Y2O3 deposition, lift-off and 650°C annealing; b) Tilted SEM imaging of
micro-structured Eu3+ doped Y2O3 layers showing different waveguide width and c) zoom
in the cross-section

https://doi.org/10.6084/m9.figshare.14034953
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photoresist drying. PLD was then carried out under the same experimental conditions as
described in the previous section for 0.3 and 0.6 µm layer thicknesses. Subsequently, samples
were immersed in acetone and placed into an ultrasonic bath. During this process step, since the
material is only deposited on the SiO2 surface at specific locations which are not protected by a
resist mask, the subsequent lift-off clears away the resist structures together with the material
deposited thereon, while the material directly deposited on the substrate through the openings
of the resist mask remains there, as desired. Finally, samples were annealed in air for 24 hours
at 650°C with a 0.5°/min ramp. Figures 2(b) and 2(c) present Scanning Electron Microscopy
(SEM) images of samples cleaved along the <-110> Si crystalline axis and tilted at 45°. For
these observations, samples were metalized with 5 nm thick Pt/Pd layer to circumvent charging
effects. In Fig. 2(b), the black region corresponds to the Si substrate, the grey to SiO2, and the
white strips to the Y2O3:Eu3+. In Fig. 2(c), the darker grey region corresponds to the SiO2 buffer
and the brighter region is the Y2O3:Eu3+, as indicated in the Figures. We clearly see that the
waveguide width can be controlled by the lithography step [Fig. 2(b)] with a nice cross-section
after annealing [Fig. 2(c)]. Note that, sidewall roughness could be improved by optimizing the
lithography and deposition steps.

4. Optical characterizations

In order to measure light confinement in such waveguide, mode profile intensity was measured
for different waveguide widths. For that purpose, a 635 nm wavelength fiber-coupled laser light
(Roithner Laser Technik) is coupled/decoupled to the film waveguide with x20 microscope
objectives (numerical aperture 0.4). Since Y2O3 is cubic polycrystalline, high losses (>dB/mm)
were detected in the structured waveguides as well as in planar layers (i.e unstructured layers).
Therefore, 2 mm length waveguides were studied to have enough intensity to measure the mode
profile at the output with a CCD camera (Stingray F201B). Note that such materials losses
could be improved by optimizing Y2O3 temperature growth [39] or by using Al2O3 host [40,41].
Figure 3(a) presents examples of 3 modes profile captured for a 0.6 µm-thick waveguide with 2, 4
or 8 µm widths. We clearly see that different propagated modes can be observed as a function of
the waveguide width. In this measurement, we have chosen to evidence the multimode behavior
in the largest waveguide by adjusting the input light at the waveguide entrance. For comparison,
modeling by SIIO mode solver [42] was computed with a refractive index of 1.45 for SiO2 [43]
and 1.87 for Y2O3 according to ellipsometric measurement (see Supplement 1). According to

Fig. 3. Optical characterization of a 0.6 µm-thick micro-structured Y2O3:Eu3+ layer
for mode profile at 610 nm wavelength: a) measured and b) simulated intensity. c)
Photoluminescence of micro-structured Y2O3:Eu3+ layer compared to planar layers

https://doi.org/10.6084/m9.figshare.14034953
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modeling, multimode propagation is confirmed [Fig. 3(b)]. Therefore, we highlight here that the
electromagnetic field is well confined in the microstructure alloying to control light propagation.

Finally, PL measurements were performed on micro-structured samples compared to un-
structured layers with the same measurement setup presented previously. Figure 3(c) presents the
emission spectra. We find a PL intensity reduction factor of around 10, which is close to the
Y2O3:Eu3+ surface ratio between the structured and the unstructured samples. Furthermore, the
PL spectra shape is similar between single layers and which confirms that the micro-structuration
does not affect significantly the layer quality.

5. Conclusion

In this work, we have demonstrated the possibility to fabricate Y2O3:Eu3+ micro-emitters without
etching allowing light emission and confinement. We have first studied the photoluminescence of
Y2O3:Eu3+ planar layers showing good crystalline quality and strong emission after annealing. We
have then fabricated micro-structured Y2O3:Eu3+ strip on SiO2 layers on Si showing multimode
light confinement. Finally, we have performed photoluminescence measurements which exhibit
intense emission of the micro-structured layers. This work opens a way to the fast integration of
rare-earth micro-emitters directly in photonics chip without etching processing, and thus for the
integration of new functional materials on silicon platforms.
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