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QUANTUM INFORMATION IN THE PROTEIN CODES,

3-MANIFOLDS AND THE KUMMER SURFACE

MICHEL PLANAT†, RAYMOND ASCHHEIM‡,
MARCELO M. AMARAL‡, FANG FANG‡ AND KLEE IRWIN‡

Abstract. Every protein consists of a linear sequence over an alphabet
of 20 letters/amino acids. The sequence unfolds in the 3-dimensional
space through secondary (local foldings), tertiary (bonds) and qua-
ternary (disjoint multiple) structures. The mere existence of the ge-
netic code for the 20 letters of the linear chain could be predicted with
the (informationally complete) irreducible characters of the finite group
Gn := Zn⋊2O (with n = 5 or 7 and 2O the binary octahedral group) in
our previous two papers. It turns out that some quaternary structures of
protein complexes display n-fold symmetries. We propose an approach
of secondary structures based on free group theory. Our results are com-
pared to other approaches of predicting secondary structures of proteins
in terms of α helices, β sheets and coils, or more refined techniques. It is
shown that the secondary structure of proteins shows similarities to the
structure of some hyperbolic 3-manifolds. The hyperbolic 3-manifold
of smallest volume –Gieseking manifold–, some other 3 manifolds and
Grothendieck’s cartographic group are singled out as tentative models
of such secondary structures. For the quaternary structure, there are
links to the Kummer surface.
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1. Introduction

Proteins are long polymeric linear chains encoded with 20 amino acid
residues arranged in a biologically functional way. Today the protein data
base (or PDB) contain about 1.8 × 105 entries [1]. Proteins may perform a
large variety of fonctions in living cells and organisms including molecular
recognition, catalysing metabolic reactions, DNA replication and structural
support for molecules. The sequence of aminoacids results in many different
three-dimensional foldings that happen to be more conserved during evolu-
tion than the sequences themselves. The structure of proteins determines
their biological function [2].

A coarse-grained representation of the backbone structure of the linear
chain in a protein results into three main elements that are α helices and β
pleated sheets, due to the interactions between atoms and backbones, and
random coils that indicate an absence of a regular structure. The ordered
structures are held in shape by hydrogen bonds, which form between the
carbonyl of one amino acid and the amino of another. In an α helix, there is
a pattern of bonds that puts the polypeptide chain into a helical structure
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with each turn of the helix containing 3.6 amino acids [3]. In a β pleated
sheet, two or more segments of a polypeptide chain line up next to each
other, forming a sheet-like structure held together by hydrogen bonds [4].
The three main elements of a protein linear chain are usually denoted H
(if the segments form an α helix), E (if the segments form a β pleated
sheet) and C (if the segments form a coil) and constitute what is called the
secondary structure of the protein.

In this paper, we are interested in the universality of the two- or three-
letter (secondary) code found in proteins. The letters are segments of the
protein that correspond to an α helixH, a β pleated sheet E or a random coil
C. Our view of the connection of proteins as words with two letters (or three
letters) and free group theory is as follows. One defines the two-letter group
G = 〈H,C|rel(H,C)〉 or the three-letter group G := 〈H,E,C|rel(H,E,C)〉,
where rel(H,C) or rel(H,E,C) is the model of the protein secondary struc-
ture. E.g. , a hypothetical secondary code such as HHCCC would corre-
spond to the group G :=

〈

H,C|H2C3
〉

which is called the modular group.
Sometimes the group G corresponds (or is close in its structure) to the fun-
damental group of a three-dimension manifold M so that we take M as a
candidate manifold of the protein foldings. For the aforementioned example,
the candidate manifold would be the trefoil knot complement.

In previous papers, we could describe the (primary) genetic code by using
the characters of an appropriate finite group [5, 6]. Now we find, from
several protein examples belonging to highly symmetric complexes, that the
secondary code has to obey some structural algebraic constraints relying to
free group theory. Our generic algebraic building blocks are the hyperbolic
(unoriented) 3-manifold of smallest volume known as the Gieseking manifold
[7] -when the secondary code only consists of two letters H and C– and
the (unoriented) cartographic group C2 [8, 9] (alias the two-generator free
group)–when the secondary code needs the three letters H, E and C. The
consistency of the (primary) genetic code and the secondary code is studied
under the light of the Kummer surface that we already assumed to play a
role in the quaternary structure of protein complexes [6].

In Sect. 2, we provide a few elements about free group theory, finitely
generated subgroups of a free group and the fundamental group of a 3-
manifold. We single out the mathematical objects that will be useful for our
approach of the secondary structures of proteins.

In Sect. 3, we feature a protein example – the histone H3 of drosophila
melanogaster– with a short sequence of 136 aminoacids (136 aa) only com-
prising H and C segments in the secondary pattern. We compare the results
obtained from four different models/softwares and how well they fit the car-
dinality sequence of subgroups of a few candidate 3-manifolds. The Giesek-
ing manifold m000 happens to be a good candidate not only in terms of the
cardinality sequence but also in terms of the structure of the corresponding
subgroups.

In Sect. 4, we pass to more examples of proteins comprising H, E and C
patterns. In Sect 4.1, we look at the secondary pattern of myelin P2 in homo
sapiens with 133 aa. In Sect. 4.2, we look at the case of the gamma-carbonic
anhydrase (247 aa long) within its 3-fold symmetric complex. Then, in
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Sect. 4.3, we study the Hfq protein with 74 aa in each arm of the Hfq 6-fold
symmetric complex. In both cases, the best theory for modelling the pattern
happens to be the cartographic group C2. In the latter case, the subgroup
sequence of C2 perfectly fits the secondary pattern of Hfq protein predicted
by one particular model. In Sect. 4.4, we study the secondary patterns
obtained for proteins belonging to 5-fold and 7-fold symmetric complexes. In
particular, we provide the comparison of models for the H2A-H2B complex
in nucleoplasmin and the acetylcholine receptor (with n = 5) and the Lsm1-7
complex (with n = 7).

In Sect. 5, we investigate the nucleosome complex which is 8-fold sym-
metric. Following our previous work in [5, 6], we find that the nucleosome
complex allows to define another model of the genetic code preserving quan-
tum information. In addition, one can map the DNA double helix scaffold
of the nucleosome complex to the 16 singular points of a Kummer surface.

In Sect. 6, we briefly mention the absolute Galois group over the rationals
G = Gal(Q̄/Q) as an object worthwhile to be used in the context of protein
sequences.

2. Algebraic grometrical models of secondary structures

Let G = 〈x1, x2, · · · xl〉 be the free group on l generators. By definition,
elements in the group are words u, that are products of elements of G and
their inverses modulo a single defining relation uu−1 = e, with e the identity
element. The index n := |G : Gs| of a subgroup Gs in G counts the number
of cosets/copies of Gs that fill up G. A right coset with respect to an
element g ∈ G is defined as Gsg = {gsg : gs ∈ Gs} so that the set of right
cosets partitions G. In other words, every g ∈ G belongs to just one right
coset. Similar statements holds for left cosets. A transversal is an indexed
set of (right) coset representatives for Gs in G, and the coset table is a
way to express the action of generators xi and their inverses on them. The
algorithm performing this task is the Coxeter-Todd algorithm [10].

Now we pass to finitely presented groups. It is known that every group
is a quotient of some free group. One constructs a finitely presented group
fp as the quotient of a free group G by the normal subgroup defined by a
set of relations rels between the generators xl

fp := 〈x1, x2, · · · xl|rels(x1, x2, · · · xl)〉 .
One also needs to define subgroups of finite index in a fp group. A sub-

group Gs of the finitely presented group fp is generated by the words speci-
fied by a generator list Lr = L1 · · ·Lr that may contain words or subgroups.
In the following, we are interested by the cardinality sequence ηd(fp) that
counts the number of subgroups of a finite index d up to some maximal
index. This sequence allows us to identify a group fp (potentially as the
fundamental group of a 3-manifold).

Then, to a pair (fp,Gs) corresponds the permutation group P that or-
ganizes the cosets. With the Todd-Coxeter procedure, one can obtain a
permutation representation P of the pair from the action of fp on the coset
space. In many cases, the finite group P has a geometrical meaning in the
sense that it corresponds to a finite geometry [11].
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Finally, the group theoretical approach may be related to the theory of
3-manifolds. According to the Poincaré conjecture (now a theorem) every
simply connected closed 3-manifold is homeomorphic to the 3-sphere S3,
alias the house of qubits [12]. But one can dress S3 as a 3-manifold M
that looses the homeomorphism to S3 following the work of W. Thurston
[13]. For instance, the three-dimensional space surrounding the tubular
neighborhood of a knot – the knot complement S3 \ K – is a 3-manifold.
Among the invariants characterizing a 3-manifold, there is the fundamental
group π1(M) which accounts for the first homotopy of M. Finding a 3-
manifold M whose π1 is the current fp is a way to identify the nature of
the object under study.

Below we introduce two algebraic geometric objects playing a role in our
description of protein secondary structures. Both objects lack an orienta-
tion. The first object is the hyperbolic 3-manifold of the smallest volume
[7, 14]. The second one is Grothendieck’s cartographic group [8].

2.1. The Gieseking manifold m000. This 3-manifold was described by
Gieseking in his 1912 thesis. One takes an ideal regular tetrahedron in
the 3-dimensional hyperbolic space, that is a tetrahedron with all four ver-
tices on the sphere at infinity and all dihedral angles equal to π/3. Then
one identifies adjacent faces so that the orientation on the edges match [7,
Fig. 1]. The resulting hyperbolic manifold has minimal volume among
non-compact hyperbolic manifolds. This volume is Gieseking’s constant
∫ 2π/3
0 ln(2 cos(x/2))dx = 1.01494160 · · · . Remarkably, this constant also
equals ζ

Q(i
√
3)(2), which is the Dedekind zeta function at 2 for the field

Q(i
√
3) [14, 15].

The fundamental group for the Gieseking manifold is denoted m000 in
SnapPy software [17]. The fundamental group is

π1(m000) :=
〈

x, y|x2y2 = yx
〉

.

The cardinality sequence ηd(π1(m000)) of subgroups of index d < 15 of
π1(m000) is given in Table 2. The permutation groups organizing the cosets
of subgroups of π1(m000) up to index 10 are in Table 1. The identification
of submanifolds follows from SnapPy.

In the next section, we find that a model of the secondary structure in
histone H3 (PDB 6PWE 1) (obtained with the software PORTER) is the
group

G :=
〈

C,H|C44H12C4H3C3H12C8H28C7H10C5
〉

.

It is shown in Tables 1 and 2 that this model fits perfectly the Gieseking
fundamental group at the first 7 places and approximately at the subsequent
3 places. Up to index 7 the permutation groups P are the same. At index 8,
all P ’s related to subgroups of π1(m000) are also those related to subgroups
of G, but A8 and S8 which are related to subgroups of G are not in subgroups
related to π1(m000). There are also a few differences between subgroups of
π1(m000) and G at index 9 and 10.
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Table 1. The d-coverings (d = 1..10) of the Gieseking man-
ifold m000. The corresponding 3-manifolds (3-man) are identi-
fied thanks to SnapPy. The finite group P organizing the cosets
of the index d fundamental group is given. It is shared by al-
most all subgroups (see lacking P ) of the free group associated to
the PORTER model of secondary structures of histone H3 (PDB;
6PWE 1). Some extra groups appear in the PORTER model (see
extra P ).

index 1 2 3 4 5

3-man m000 K4a1, ooct02 00001 ntet03 00000 m206, otet04 00002 m407, ntet05 00007
m204, ntet04 00000 m405, ncube01 00001

P (1,1) (2,1) (3,1) (4,1) (5,1)
(12,3) (20,3)

index 6 7 8 9 10

3-man s961, otet06 00003 y886, ntet07 00000 t12839, otet06 00007

x252, ntet06 00004 t12840, otet08 00002
ntet06 00005 ntet08 00002

P (6,2) (7,1) (8,1) (9,1) (10,2)
(12,3) (24,3) ×2
(24,13) (24,13)

(96,70), (192,201) (9,1), (648,705) (10,2), (20,3), G14400

lacking P (72,39) (320,1635)
extra P A8, S8 (216,53), A9, S9 S10, G7200

2.2. The cartographic group C2. The cartographic group is defined as

C2 :=
〈

x, y, z|x2 = y2 = z2 = (xz)2
〉

.

The terminology comes from Grothendieck’s Esquisse d’un programme
[8, 9]. It was motivated by the fact that conjugacy classes of transitive
subgroups of the oriented subgroup C+

2 of index 2 of the unoriented group C2
can be identified to topological maps on connected, oriented surfaces without
boundary, while more generally, conjugacy classes of C2 can be identified with
maps on connected surfaces which may or may not be orientable or have a
boundary.

The group C+
2 was investigated by the first author in relation to quantum

contextuality in quantum information [11].
In the section below, the group defined from the PORTER model of the

secondary structure in protein Hfq (PDB 1HK9) is as follows

G :=
〈

C,H,E|C8H11C4E6C2E10CE7C3E13C9
〉

.

It is shown in Table 3 that this group perfectly fits the cartographic group
C2 in terms of the cardinality of subgroups up to the higher index 7 that
could be calculated. In addition, the corresponding permutation groups
organizing the cosets of subgroups in both the cases of C2 and G fit as well.

2.3. Fundamental groups of 3-manifolds. Hyperbolic 3-manifolds that
can be decomposed into regular ideal tetrahedra (up to 25 for the orientable
case and up to 21 for the non-orientable case) have been investigated in
[16]. Details can be found in SnapPy [17]. In Tables 2 and 3, we collected
a few 3-manifolds whose number of subgroups ηd(π(M)) of index d of their
fundamental group π1(M) is close to that of the group arising from the
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secondary structure of the protein in question. For example, the figure-of-
eight knot K0 = K4a1 = 41, which is the subgroup of index 2 in π1(m000),
corresponds to the manifold ooct 00001 in SnapPy (see Tables 1 and 2) and
ΣY = K0(0, 1) is the 0-surgery on K0 [18].

3. Secondary structure with α helices: Drosophila
melanogaster histone H3 (PDB 6PWE 1)

Now we show how the theory of the former section may be applied to
concrete secondary structures of proteins. One starts with a simple example
with two generators (α helices H and coils C). At the next section, we will
study a simple example with three generators (α helices H, β sheets E and
coils C). Both examples are generic and provide a good credit to our mod-
els based on the unoriented hyperbolic manifold m000 and the unoriented
cartographic group C2.

A review of the state of the art in the modelling of secondary structure is
given in [2]. It is admitted that there is a limit imposed on the secondary
structure prediction due the somewhat arbitrary definition of three states
H, E and C. It is true that there exist other fine structures in the secondary
protein pattern such as a 310 helix, a π helix and other structures belonging
to DSSP (the Dictionary of Protein Secondary Structures). As a result, the
assignment inconsistency would limit the highest accuracy based on three
states to about 90%. In practice, the best softwares achieve a precision
about 80%.

We used the softwares PSIPRED 4.0 [19], PORTER 4.0 [20], PHYRE2
[21] and RAPTORX [22]. We do not enter into the details about the theory
of these softwares. Below, we we find that PORTER 4.0 is often well adapted
to our goal of identifying an algebraic secondary structure. PORTER 4.0
uses two cascaded bidirectional recurrent neural networks: one for prediction
and one for filtering. The method has been trained and benchmarked by
cross-validation on a set of many non redundant proteins.

3.1. The primary (linear) structure. The mRNA sequence for histone
H3 of drosophila melanogaster may be found in [23] with the reference
NM 001032216.2. It contains 529 base pairings (529 bp). A convenient
way to pass from the NCBI format (with line feeds, numbers and blank
spaces) to the bare linear sequence is to make use of a software such as
Massager [24]. Then, a reading frame such as Expasy [25] allows to extract
the candidate proteins.

The 5′3′ Frame 1 for sequence NM 001032216.2 is as follows

IVFSNVK–T-TLVKPKSE
MARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRP
GTVALREIRRYQKSTELLIRKLPFQRLVREIAQDFKTDLRFQSSAVM
ALQEASEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA

-ADTALTCR-SASVLYNRSFS

The partial sequence (in bold) beginning at the start codon M and ending
at the stop codon ‘-’ is the histone protein H3 with the NCBI reference
NP 001027387.1. It can also be found at the protein data base PDB [1]
with reference 6PWE 1. The sequence consists of 136 aminoacids (136 aa).
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3.2. The secondary structure. According to most models, the secondary
structure of histone protein H3 only consists of subsections with an α helix
H or a coil C.

Figure 1. A picture of the secondary structure of histone
H3 as predicted from PHYRE2.

The predicted secondary structures obtained from the three softwares for
the histone H3 protein are as follows

CCCCCCCCCCCCCCCCCHHHHCHHHHCCCCCCCCCCCCCCCCCCCCHHHHHHHCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHCCC
CCCCCCCCCCCCCCCCCCCCHHHHHCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHCC

HHHHHCCCCHHHHHHHHHHHCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHCHHHH
CCHHHCCCHHHHHHHHHHHHCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHC
HHHHHHHHHHHHHHHHHHHHHCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHC

HHHHHHHHHHHHHHHHHHCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHC

CCCCCCHHHHHHHHHHCCCCC
CCCCCCHHHHHHHHHHCCCCC
CCCCCCHHHHHHHHHHCCCCC
CCCCCCHHHHHHHHHHHCCCC

The first line is from PSIPRED, the second one is from PORTER, the
third one is from PHYRE2 and the last one is from RAPTORX. One can
visually check how close are the predictions.

In table 2, it is found that the best model happens to come from the
fundamental group π1(m000) of the Gieseking manifold m000 described in
subsection 2.1.

4. Secondary structures with α helices and β sheets: myelin
P2, carbonic anhydrase and the Lsm 1-7 complex

4.1. Myelin P2 for homo sapiens (PDB 2WUT). The sequence of
myelin P2 in homo sapiens comprises 133 aminoacids as follows. As before,
the corresponding four rows for the secondary structures are from PSIPRED,
PORTER, PHYRE2 and RAPTORX respectively. One can visually check
how close are the predictions.
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Table 2. The models of the secondary structure for protein H3
of drosophila melanogaster and the cardinality list of d-coverings
(alias conjugacy classes of subgroups) of the associated fundamen-
tal group. T1 is the trefoil knot, K0 is the figure-of-eight knot, the
0-surgery on K0 is the Akbulut manifold ΣY , Ẽ8 is the singular
fiber of type II* and m000 is the Gieseking manifold. One restricts
to two-generator groups since histone H3 only consists of sections
with α helices and coils. Observe that the series of cardinalities
for the secondary structure of H3 fits the series of the Gieseking
manifolds up to the first 7 indices. Bold characters are for partial
sequences matching the cardinality sequence of Gieseking manifold

m000.

protein model ηd(T )

H3 (6PWE 1) PSIPRED [1,1,1,1,2, 2,1,3,5,5 .,.,.,.,.]
H3 PHYRE2 [1,1,1,1,3, 4,1,5,10,10 .,.,.,.,.]
H3 PORTER [ 1,1,1,2,2, 3,1,12,6,5 .,.,.,.,.]
H3 RAPTORX [1,1,1,1,2, 1,1,2,3,3 .,.,.,.,.]

m000 Gieseking [1,1,1,2,2, 3,1,4,3,5, 4,14,1,5,10]
T1 trefoil [1,1,2,3,2, 8,7,10,18,28, 27,88,134,171,354]
K0 figure-of-eight [1,1,1,2,4, 11,9,10,11,38, 26,62,39,89,228]

K0(0,1) ΣY [1,1,1,2,2 ,5,1,2,2,4, 3,17,1,1,2]

Ẽ8 singular fiber II* [1,1,2,2,1 ,5,3,2,4,1, 1,12,3,3,4]

Figure 2. A picture of the secondary structure of myelin
P2 in homo sapiens (PDB 2WUT) as predicted from
PHYRE2.

GMSNKFLGTWKLVSSENFDDYMKALGVGLATRKLGNLAKPTVIISKKGDIITIRTESTFKN
CCCHHCCEEEEEEEECCHHHHHHHCCCCHHHHHHHHHCCCEEEEEEECCEEEEEEECCCC
CCCHHCCEEEEEECCCCHHHHHHHCCCCHHHHHHHHHCCCEEEEEEECCEEEEEEECCCC
CCCCCCEEEEEEEEECCHHHHHHHHCCCHHHHHHHHCCCCEEEEEEECCEEEEEEECCCC
CCCCCCEEEEEEEEECCHHHHHHHCCCCHHHHHHHHCCCCEEEEEEECCEEEEEEECCCC

TEISFKLGQEFEETTADNRKTKSIVTLQRGSLNQVQRWDGKETTIKRKLVNGKMVAECKM
CCCHHCCEEEEEEEECCHHHHHHHCCCCHHHHHHHHHCCCEEEEEEECCEEEEEEECCCC
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EEEEEEEECCEEEEECCCCCEEEEEEEEECCEEEEEEECCCCEEEEEEEEECCEEEEEEEE
EEEEEEECCCEEEEECCCCCEEEEEEEEECCEEEEEEECCCCCEEEEEEEECCEEEEEEEE
EEEEEEECCCEEEEECCCCCEEEEEEEEECCEEEEEEECCCCCEEEEEEEECCEEEEEEEE

KGVVCTRIYEKV
CCEEEEEEEEEC
CCEEEEEEEEEC
CCEEEEEEEEEC
CCEEEEEEEEEC

Using Table 3, one observes that the cardinality sequence of subgroups in
the PHYRE2 and PORTER models of the secondary structure of myelin P2
corresponds to that of the cartographic group C2 up to index 4. Up to this
index, one can also show that the permutation groups P for the structure
of cosets in PHYRE2 and PORTER models correspond to that of C2.

4.2. The 3-fold symmetric complex for gamma-carbonic anhydrase
(PDB 1QRE). In the protein data bank the gamma-carbonic anhydrase
for methanosarcina thermophila (PDB 1QRE 1) is a sequence with 247 aa.
As for myelin P2, using Table 3, one observes that the cardinality sequence of
subgroups in the PHYRE2 and PORTER models of the secondary structure
of 1QRE 1 corresponds to that of the cartographic group C2 up to index 4.
The complex is 3-fold symmetric as shown in Fig. 3a.

Figure 3. (a) A picture of the structure of carbonic anhy-
drase (PDB 1QRE), (b) A picture of the structure of Hfq
protein complex of Escherichia coli (PDB 1HK9) .

4.3. The Hfq protein complex of Escherichia coli (PDB 1HK9).
The sequence of Hfq protein of Escherichia coli (PDB 1HK9 1) comprises 74
aminoacids. As before, the corresponding four rows for the secondary struc-
tures are from PSIPRED, PORTER, PHYRE2 and RAPTORX respectively.
One can visually check how close are the predictions.

GAMAKGQSLQDPFLNALRRERVPVSIYLVNGIKLQGQIESFDQFVILLKNTVSQMVYKHAISTVVPSRPVSHHS
CCCCCCCCCHHHHHHHHHHCCCCEEEEEECCCEEEEEEEECCCEEEEEECCCEEEEEEEEEEEEEECCCCCCCC
CCCCCCCCHHHHHHHHHHHCCCCEEEEEECCEEEEEEEEEECEEEEEEECCCEEEEEEEEEEEEECCCCCCCCC
CCCCCCCCCHHHHHHHHHHCCCEEEEEEECCEEEEEEEEEECCEEEEEECCCCEEEEEEEEEEEEECCEEEECC
CCCCCCCCCCHHHHHHHHHCCCCEEEEECCCCEEEEEEEEECCCEEEEEECCCEEEEEEEEEEEEECCCCCCCC
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The PORTER model for this protein happens to coincide with that of the
cartographic group C2 described in the subsection 2.2.

As shown in Fig. 3b, the Hfq complex consists of a quaternary structure
with 6-fold symmetry where each arm contains the protein Hfq. This object
was studied in our recent paper [6, Sect. 2.2] as leading to a Kummer surface
related to the character table of the finite group G6 = (288, 69) ≡ Z6⋊(2O).

4.4. Other n-fold symmetric complexes.

The 5-fold symmetric H2A-H2B complex in nucleoplasmin (PDB 2XQL).
Molecular chaperones are proteins that help the folding or unfolding and the
disassembly of other molecular structures. Nucleoplasmin, the first identi-
fied molecular chaperone, promotes the in vitro assembly of nucleosomes.
The latter are the topic of our next section. There is a histone octamer
comprising two H2A-H2B dimers and an H3-H4 tetramer. The H2A-H2B
histone complex is investigated in [26]. It has a pentameric structure as
shown in Fig. 4a and is referred as 2XQL in the protein data bank.

We performed an investigation of the secondary structure of the 2XQL 1
protein that one finds in each of the 5 arms of the complex. PSIPRED
and PORTER models predict a secondary structure with α helices and coils
only that we could not compare to a known group theoretical sequence.
The PHYRE2 and RAPTORX models, as well as our approach based on
the mapping of aminoacids to the characters of group G7 and G8 (explained
below), predict a cardinality sequence which fits that of the cartographic
group C2, as shown in Table 3.

The 5-fold symmetric acetylcholine receptor (PDB 2BG9). The acetylcholine
receptor is an integral membrane protein that responds to the binding of
the acetylcholine neurotransmitter. This receptor is also sensitive to nico-
tine and muscarine. It has a pentameric structure shown in Fig. 4b and is
refereed as 2BG9 in the protein data bank.

We performed an investigation of the secondary structure of the 2BG9 1
protein that one finds in the 5 arms of the complex. As shown in Table 3, all
models predict a secondary structure with α helices, β sheets and coils. One
does not observe a good fit to a group theoretical structure shared by all
models. The best fit is between the RAPTORX model and the fundamental
group of the 3-manifold ooct 00001 where the cardinality (and the structure)
of subgroups coincide up to 4 places.

The 7-fold symmetric Lsm 1-7 complex in the spliceosome (PDB 4M75). In
molecular biology, there exists an ubiquitous family of RNA-binding proteins
called LSM proteins whose function is to serve as scaffolds for RNA oligonu-
cleotides, assisting the RNA to maintain the proper three-dimensional struc-
ture. Such proteins organize as rings of six or seven subunits. The Hfq pro-
tein complex was discovered in 1968 as an Escherichia coli host factor that
was essential for replication of the bacteriophage Qβ [27], it displays an hex-
americ ring shape shown in Fig. 3b of the previous subsection. As already
mentioned it is remarkable that the secondary structure of Hfq protein is so
close to the cartographic group model.
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Table 3. A few proteins, the model of their secondary structure
and the cardinality list of d-coverings (alias conjugacy classes of
subgroups of index d) of the associated fundamental group. One
takes proteins that contain sections with α helices, β sheets and
coils. The groups obtained by mapping the appropriate characters
of G7 = (336, 118) and G8 = (384, 5589) to amino acids are also
considered. Bold characters are for partial sequences matching the
sequence of the cartographic group C2.

protein aa model ηd(T )

myelin P2 (2WUT) 133 PSIPRED [1,3,13,84,336, 4216]
2WUT PHYRE2 [1,3,7,26,164, 10669]
2WUT PORTER [1,3,7,26,135, 871]
2WUT RAPTORX [1,3,10,59,348, 2899]

. (336,118) [1,3,7,30,122, 991]

. (384,5589) [1,3,7,34,130, 999]

carbonic anhydrase (1QRE 1) 247 PSIPRED [1,3,10,43,135, 1071]
1QRE 1 PHYRE2 [1,3,7,26,149, 1085]
1QRE 1 PORTER [1,3,7,26,415, 4382]
1QRE 1 RAPTORX [1,3,10,35,106, 804]

. (336,118) [1,3,7,30,150, 883]

. (384,5589) [1,3,10,47,148, 1015]

protein Hfq (1HK9 1) 74 PSIPRED [1,7,17,114,1145 14275]
1HK9 1 PHYRE2 [1,7,14,149,1458, 21756]
1HK9 1 PORTER [1,3,7,26,97, 624,4163,34470]
1HK9 1 RAPTORX [1,3,10,51,162, 1434]

. (336,118) [1,3,7,26,134, 912]

. (384,5589) [1,3,7,34,146 894]

H2A-H2B (2XQL 1) 91 PHYRE2 [1,3,7,26,103, 688]
2XQL 1 RAPTORX [1,3,7,26,165, 2272]

. (336,118) [1,3,7,26,130, 943]

. (384,5589) [1,3,7,26,136, 967]

acetylcholin receptor (2BG9 1) 370 PSIPRED [1,3,10,35,151, 1023]
2BG9 1 PHYRE2 [1,7,11,92,288, 2087]
2BG9 1 PORTER [1,7,11,92,239, 2058]
2BG9 1 RAPTORX [1,3,7,34,169, 1432]

. (336, 118) [1,3,10,47,124, 1026]

. (384, 5589) [1,3,7,30,140, 931]

Lsm 1-7 complex (4M75 1) 144 PSIPRED [1,3,16,81,184, 1800]
4M75 1 PHYRE2 [1,7,14,201,705, 8850]
4M75 1 PORTER [1,3,7,26,139, 1118]
4M75 1 RAPTORX [1,3,7,26,125, 747]

. (336, 118) [1,3,7,34,145, 948]

. (384, 5589) [1,3,10,35,135, 975]

C2 na cartographic group [1,3,7,26,97, 624, 4163, 34470]
ooct02 00017 3-manifold [1,3,7,26,40, 231]
ooct02 00006 3-manifold [1,3,10,43,112, 802]
noct02 00024 3-manifold [1,3,10,43,117, 804]
ooct02 00009 3-manifold [1,3,7,30,105, 649]
ooct04 00001 3-manifold [1,3,7,34,43,240, 254]

L7a1 3-manifold link [1,3,7,34,75,377, 807]
ooct03 00019 3-manifold [1,7,11,85,95,240, 492]

It is known that, in the process of transcription of DNA to proteins
through messenger RNA sequences (mRNAs), there is an important step
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Figure 4. (a) the nucleoplasmin H2A-H2B: 2XQL in the
protein data bank, (b) the acetylcholine receptor: 2BG9 in
the protein data bank, (c) the Lsm 1-7 complex in the spliceo-
some: 4M75 in the protein data bank

performed in the spliceosome [28]. It includes removing the non-coding in-
tron sequences for obtaining the exons that code for the proteinogenic amino
acids. A ribonucleoprotein (RNP) –a complex of ribonucleic acid and RNA-
binding protein– plays a vital role in a number of biological functions that
include transcription, translation, the regulation of gene expression and the
metabolism of RNA. Individual LSm proteins assemble into a six or seven
member doughnut ring which usually binds to a small RNA molecule to
form a ribonucleoprotein complex.

In our previous paper [6], it was shown that 7-fold symmetry may be
mirrored in the finite group G7 = Z7 × 2O (with 2O the binary octahedral
group) whose characters may be mapped to the amino acids of the genetic
code. Such a mapping is reproduced in Table 4. It is important to mention
that the characters of G7 are informationally complete except for the trivial
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character that is not used in the mapping to aminoacids and the character
mapped to the starting amino acid M.

It was also determined an algebraic object called a Kummer surface play-
ing a role in the mapping of characters to aminoacids.

(336,118) dimension 1 1 1 2 2 2 2 2 2 2
Z7 ⋊ (Z2.S4) d-dit, d=29 29 785 d2 d2 d2 d2 d2 d2 d2 d2

∼= Z7 ⋊ 2O amino acid . M W C F Y . . H Q

order 1 2 3 4 4 6 7 7 7 8
char Cte Cte Cte z1 z1 z1 z4 z4 z1,5 z1,5
polar req. . 5.3 5.2 4.8 5.0 5.4 . . 8.4 8.6

(336,118) dimension 2 2 2 2 3 3 4 4 4 4
d-dit, d=29 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

amino acid N K E D I Stop . . . .

order 14 14 14 21 21 21 21 21 21 21
char z1,5 z1,5 z1,5 z1,5 Cte Cte Cte z1,2 z1,2 z1,2
polar req. 10.0 10.1 12.5 13.0 10 15 . . . .

(336,118) dimension 4 4 4 f 4 4 4 6 6 6
d-dit, d=29 d2 d2 d2 d2 d2 d2 d2 d2 d2

amino acid V P T A G . L S R

order 28 28 28 42 42 42 42 42 42
char z2,5 z2,5 z2,5 z2,5 z2,5 z2,5 z1,3 z1,3 z1,3
polar req. 5.6 6.6 6.6 7.0 7.9 . 4.9 7.5 9.1

Table 4. For the group G7 := (336, 118) ∼= Z7 ⋊ 2O, the ta-
ble provides the dimension of the representation, the rank of the
Grammatrix obtained under the action of the 29-dimensional Pauli
group, the order of a group element in the class, the angles involved
in the character and a good assignment to an amino acid according
to its polar requirement value. All characters are informationally
complete except for the trivial character and the one assigned to
M. The entries involved in the characters are z1 = 2 cos(2π/7),

z2 = 2z1, z3 = −6 cos(π/7), z4 =
√
2 and z5 = 2 cos(2π/21) fea-

turing the angles 2π/8 (in z4), 2π/7 and 2π/21.

Encoding a protein with the characters of the finite field G7. Since the group
G7 is successful for encoding the genetic code and that, at the same time,
it provides an assignment to the 20 amino acids through the corresponding
characters, one can ask ourselves ifG7 may also be used to define a secondary
structure in a protein. Indeed we can get a secondary structure from the
character table in the following way.

Observe that, to a character in Table 4, corresponds an entry denoted z1,
z4, z1,2, z1,3, z1,5 or z2,5 which expresses which zi appears in the slot/character.
This entry mainly reflects the character field associated to the character. For
example, there are 11 slots (and 11 amino acids) containing z5 and from these
characters one can also define the aforementioned Kummer surface. Let us
choose to assign to these slots a secondary structure H0 and to assign a
secondary structure C0 to the remaining slots encoding an amino acid. This
method allows to encode the protein under examination with pseudo-helices
H0 and pseudo-coils C0.

We can refine the technique by introducing more structure in the pseudo
coil segments. Some of the slots/amino acids correspond to a character with
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constant entries and we choose to encode them as C0 as before and the
remaining slots/amino acids which correspond to a non constant entry (z1
or z1,3) are encoded with E0, that we consider as a pseudo-sheet.

Then we can define the group
G0 := 〈H0, E0, C0|rel(H0, E0, C0)〉, where rel(H0, E0, C0) is the new model

of the protein secondary structure obtained by our definition of pseudo-
helices H0, pseudo-sheets E0 and pseudo-coils C0. In table 3, the cardinality
structure of group G0 is compared to that of the other models PSIPRED,
PHYRE2, PORTER and RAPTORX. One finds that the cardinality se-
quence either fits, at the first few places, the cartographic group C2 or that
of a 3-manifold. It leaves open the question whether one of the standard
models or our own model is the most efficient.

5. The 8-fold symmetric histone complex of the nucleosome:
3WKJ in the protein data bank

Strong DNA packaging is found in the nucleosome of eukaryotes. The nu-
cleosome complex consists of a double helix wrapped around a set of eight
histone proteins comprising two copies of H2A, H2B, H3 and H4. The nu-
cleosome is the fundamental subunit of chromatin. Eukaryotic chromatin
is further compacted by being folded into more complex structures eventu-
ally forming a chromosome. Nucleosomes are considered to be the support
of epigenetic information. The nucleosome core particle contains approxi-
mately 146 base pairs (bp) of DNA wrapped in 1.67 left-handed superhelical
turns around the histone octamer as shown in Fig. 5a.

We already met histone H3 of a different specie (drosophila melanogaster)
in Sect. 3 as the preliminary example of a protein only containing α helices
and random coils. In the histone complex 3WKJ of the nucleosome, the
secondary structure of histone H3 is also found to be made of segments with
α helices and coils but with a different organization according to our group
theoretical approach. This is also true for the other histones H4, H2A and
H2B of the histone octamer.

In this section, we do not enter into the secondary structure of histones.
We rather focus on the 8-fold symmetry of the core particle in the histone
complex. What interests us about the double helix is the fact that their
projection is a set of 16 double points as shown by the arrows in Fig. 5a.
The reader may be familiar with our previous paper [6] in which 16 double
points occur in a beautiful algebraic object called a Kummer surface. Such
a Kummer surface was constructed from the character table of the group
G7 = (336, 118) ∼= Z7 ⋊ 2O in the context of the spliceosome complex that
we investigated in Sect. 4.4. Below, we pursue in the same line of ideas
and build another model of the genetic code based on the group G8 =
(384, 5589) ∼= Z8 ⋊ 2O and a corresponding Kummer surface.

The character table for the group G8 is in Table 5. As before for the group
G7, Table 5 contains a good assignment to the 20 amino acids and some de-
tails about the character fields through the entries zi. For dimensions 2 and
4, the assignments correspond to characters that are informationally com-
plete. But it is not the case for the assigments of amino acids in dimensions
1, 3 and 6.
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(384,5589) dimension 1 1 1 1 2 2 2 2 2 2
Z8 ⋊ (48, 28) d-dit, d=37 37 1333 1333 1333 1361 d2 d2 1367 d2 d2.
∼= Z8 ⋊ 2O amino acid . . M W . . . . . .

char Cte Cte Cte Cte Cte Cte Cte z1 z1 z1

(384,5589) dimension 2 2 2 2 2 2 2 2 2 3
d-dit, d=37 d2 d2 d2 d2 d2 d2 d2 d2 d2 1367
amino acid C F Y H Q N K E D .

char z1 z1 z1 z4 z4 z1,4,5 z1,4,5 z1,4,5 z1,4,5 Cte

(384,5589) dimension 3 3 3 4 4 4 4 4 4 4
d-dit, d=37 d2 1367 1367 d2 1367 1367 d2 d2 d2 d2

amino acid I Stop . . . . . . . V

char Cte Cte Cte Cte Cte Cte z1,2 z1,2 z4 z4

(384,5589) dimension 4 4 4 4 6 6 6
d-dit, d=37 d2 d2 d2 d2 701 1365 1365
amino acid P T A G L S R

char z2,4,5 z2,4,5 z2,4,5 z2,4,5 Cte z1,3 z1,3

Table 5. For the group G = (384, 5589) ∼= Z8 ⋊ 2O, the ta-
ble provides the dimension of the representation, the rank of the
Gram matrix obtained under the action of the 37-dimensional
Pauli group and the entries involved in the characters. The no-
tation is z1 = −

√
2, z2 = 2

√
2, z3 = 3

√
2, z4 = −

√
3 and

z5 = −2 cos(5π/12). All characters having z4 and z5 in their entries
are informationally complete and are at the origin of the Kummer
surface. All characters having entries with z2 or z4 are also infor-
mationally complete. A good matching to the aminoacids (ordered
according to their polar requirement and simultaneously to the or-
der of a group element) is given.

All 8 characters having z4 =
√
3 and z5 = −2 cos(5π/12) in their entries

are informationally complete and are at the origin of the Kummer surface.
We now show an important characteristics of such characters. As an exam-
ple, let us write the character number 16 as obtained from Magma [10]

κ16 = [2,−2,−2, 2,−1, 0, 0, 2,−2, 0, 0, 0, 1,−1, 1, z1 ,−z1, z1,−z1, z1,−z1

0, 0, 0, 0, z4 ,−z4,−z4, z4, z5, z5, z5#5, z5#5,−z5,−z5#5,−z5 − z5#5]

where # denotes the algebraic conjugation, that is #k indicates replacing
the root of unity w by wk.

One defines a genus 2 hyperelliptic curve C8 : y2 = f(x) defined over the
group G8 from the equation

y2 = f(x) = (x+ k)(x− k)(x+ l)(x− l)(x+m)(x−m),

with k =
√
3, l = 2cos(5π/12) and m = 2cos(π/12). Explicitely,

C8 : y2 = x6 − 7x4 + 13x2 − 3,

leading to the polynomial definition of the Kummer surface S(x1, x2, x3, x4)
as
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Figure 5. (a) The structure of a nucleosome consists of
a DNA double helix wound around eight histone proteins.
There are eight periods (as shown in the picture) so that the
two helices meet at 16 points . They map to the 16 double
points of the Kummer surface. (b) A section at constant x4
of the Kummer surface for the group G8.

S(x1, x2, x3, x4) = 156x41 + 12x31x4 − 84x21x
2
2 + 376x21x

2
3 − 52x21x3x4

24x1x
2
2x3 + 28x1x

2
3x4 − 4x1x3x

2
4 + 12x42 − 52x22x

2
3 + x22x

2
4 + 28x43 − 4x33x4.

The desingularisation of the Kummer surface is obtained in a simple way
by restricting the product f(x) to the five first factors.

As usual for elliptic and hyperelliptic curves of genus g, C8 is embedded
in a weighted projective plane, with weights 1, g+1, and 1, respectively on
coordinates x, y and z. Therefore, point triples are such that (x : y : z) =
(µx : µy : µz), µ in the field of definition, and the points at infinity take the
form (1 : y : 0). Below, the software Magma is used for the calculation of
points of C8 [10]. For the points of C8, there is a parameter called ‘bound’
that loosely follows the heights of the x-coordinates found by the search
algorithm.

It is found that the corresponding Jacobian of C8 has 16 = 6 + 10 points
as follows

* the 6 points bounded by the modulus 1:
Id := (1, 0, 0), K±1 := (x ± k, 0, 1), L±1 := (x ± l, 0, 1) and M = (x −

m, 0, 1).
* the 10 points of modulus > 1:
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a1 := K1 + K−1, a2 := K1 + M , a3 := K1 + K−1 + L1, a4 := K1 + L1,
a5 := K−1 +M , a6 := K1 +K−1 + L−1, a7 := K−1 + L1, a8 := K−1 + L−1,
a9 := K1 +K−1 +M and a10 := K1 + L−1.

The 16 points organize as a commutative group isomorphic to the maxi-
mally abelian group Z4

2 as shown in the following Jacobian addition table

A B C D
B A D C
C D A B
D C B A

Table 6. The structure of the addition table for the 16 sin-
gular Jacobian points of the hyperelliptic curves C8.

where the blocks are given explicitely as

A :









Id K1 K−1 a1
K1 Id a1 K−1

K−1 a1 Id K1

a1 K−1 K1 Id









, B :









M a2 a5 a9
a2 M a9 a5
a5 a9 M a2
a9 a5 a2 M









,

C :









L1 a4 a7 a3
a4 L1 a3 a7
a7 a3 L1 a4
a3 a7 a4 L1









, D :









a6 a8 a10 L−1

a8 a6 L−1 a10
a10 L−1 a6 a8
L−1 a10 a8 a6









.

To conclude this section, we can define a model of the secondary
structure of nucleosome complex based on the character table of G8 as
we did for the spliceosome complex with the character table of G7. The
amino acids that are mapped to characters containing z5 should belong
to a pseudo-helix H0 of the secondary structure. The other amino acids
either correspond to a constant entry in the character table and belong
to a pseudo-coil C0 or to a non-constant entry (which is either z1, z4
or z1,3) and belong to a pseudo-sheet E0. In table 3, the cardinality
structure of group G0 obtained with this model is compared to that
of the other models PSIPRED, PHYRE2, PORTER and RAPTORX.
One again observes that the cardinality sequence either fits, at the first
few places, the cartographic group C2 or that of a 3-manifold.

6. Discussion

The (primary) genetic code maps the 4-base words of DNA to the
20 proteinogenic amino acids, a feature that we could model by us-
ing concepts of quantum information theory associated to finite group
representations. The (mostly informationally complete) characters of
finite groups Gn of signature Zn⋊2O (2O the binary octahedral group)
are able to account for the degeneracies and many properties of the code
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(see [5] when n = 5, [6] when n = 6 and Sect. 5 of this paper when
n = 7).

The secondary ‘genetic code’ lacks the universality of the primary
code. In the standard models of the secondary structure of proteins,
the mapping from the 20 amino acids to segments of α helices H , β
sheet strands E and coils C is not pointwise. The present generation
of softwares is defined by the evolutionary information derived from
alignment of multiple homologous sequences and the highest reported
accuracy uses neural networks for the optimal comparison of the se-
quences [2].

We could identify algebraic structures in the secondary code by em-
ploying the theory of infinite groups with generators H , E and C and
the protein relation induced by the chosen model. It was unexpected
that the cartographic group C2 seems to play a major role in the sec-
ondary structure. Why are we interested by this feature?

We are interested in geometric physical codes or languages in action
[29] and their connection to the concept of emergence. Group represen-
tations arise here as a formal way to describe those geometrical codes.
Back to the cartographic group, we already mentioned in the intro-
duction that maps on surfaces which may be non-orientable or with
boundary correspond to C2. Another important aspect is that C2 is re-
lated to the so called absolute Galois group G = Gal(Q̄/Q), the group
of field-automorphisms of the field extension Q̄ of the rational field Q.
In the Esquisse d’un programme [8, 9, 30], Grothendieck emphasizes
the interest of looking at the action of G on topological, geometric and
even combinatorial structures. The highest level is the so-called ‘Te-
ichmüller tower’. The simplest level concerns bipartite (hyper)maps
called ‘dessins d’enfants’. To any dessin D corresponds a (so-called)
Belyi function f(x), where f(x) is a rational function of the complex
variable x whose structure reflects the critical points and the topology
of D. The remarkable result is that G acts faithfully on D, that is, each
non-identity element of G sends two non-isomorphic dessins to two in-
equivalent Belyi functions f(x), so that none of the structure of G is
lost by proceeding in this way. In passing, it is good to mention that
the theory of ‘dessins d’enfants’ can be used to account for geometry
contextuality, the counterpart of quantum contextuality [11, 31].

Let us go back to the secondary structure of protein Hfq in Sect.
4.3 that builds one of the 7 arms of the Lsm1-7 complex in Fig. 3b.
According to our theory, there is a group structure of the protein that
intimately reflects that of C2. Every subgroup of index d of C2 can be
seen as permutation group on d elements, it can be drawn as a dessin D
and there is a faithful action of G on all dessins/permutation groups.
In other words, the protein Hfq contains in its structure the topology
and algebra of G. The biological meaning of this algebraic geometric
structure needs further work. We leave it open at this stage. It may
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be that the constraint of approximating the secondary structure with
three letter segments H , E and C implies that every protein has to
obey the G rules. We believe that this rule may be seen as a support
of the connection of biology to quantum gravity. In [33], it is shown how
a theory of quantum gravity may connect to G. We already proposed
a connection of our approach of the genetic code (see [6] and Sect. 5
of this paper) to the Kummer surfaces that are K3 surfaces and play a
role in some models of quantum gravity [32].
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