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Abstract1

In a companion paper [Davis et al., JQSRT 216, 6–16 (2018)], we used a2

numerical 1D radiative transfer (RT) model and the statistical formalism of op-3

timal estimation to quantify cloud information content in the O2 A- and B-band4

channels of the Earth Polychromatic Imaging Camera (EPIC) on the Deep Space5

Climate ObserVatoRy (DSCOVR) platform that images the Earth’s sunlit hemi-6

sphere from the vantage of the Lagrange-1 point. These two pairs of “in-band”7

and nearby “reference” radiances are combined into differential optical absorption8

spectroscopic (DOAS) ratios for both A- and B-bands, from which one can derive,9

in principle, both cloud top height (CTH) and cloud geometric thickness (CGT).10

However, Davis et al. show that under most circumstances, there is much redun-11

dancy between the two DOAS ratios and, in practice, only CTH can be reliably12

and accurately retrieved. Here, we derive a simplified analytical 1D RT model13

for the DOAS ratios to gain physical insights as well as quantify both the CTH14

retrieval bias from neglecting in-cloud absorption and the impact of measurement15

error on CTH and CGT retrievals. Using this alternative approach, we again show16

that only CTH can be inferred reliably when unavoidable measurement error is17

factored in. Finally, our new theoretical developments are related to a recently18

uncovered invariance property of the mean path cumulated by light in arbitrarily-19

shaped optical media of arbitrary opacity with arbitrary scattering properties, as20

long as it is conservative.21

Keywords: Multiple scattering; Oxygen A-band; Oxygen B-band; Radiative trans-22

fer; Remote sensing; Cloud top height; Geometrical cloud thickness; DSCOVR; EPIC;23

Retrieval uncertainty quantification24

Key Points:25

• We investigate cloud information content in EPIC’s differential optical absorption26

spectroscopy measurements for O2 A- and B-bands with an analytical radiative27

transfer model for these signals that is based on a pragmatic merger of asymptotic28

and diffusion theoretical results.29

• We quantify the impacts on the retrieved cloud top height of random measurement30

error and of systematic forward modeling error when in-cloud light penetration is31

ignored.32

• We confirm with a different approach a previous computational assessment of33

EPIC cloud profiling capability, concluding that only the cloud’s top height can34

be retrieved with acceptable uncertainty under most circumstances, but not its35

geometrical thickness; nonetheless, finite cloud thickness must be accounted for to36

avoid bias in height retrievals.37

• We verify that diffusive light propagation in plane-parallel slabs has the remarkable38

invariance property of the mean path length demonstrated recently for uniform39

non-absorbing media with arbitrary shapes, opacities, and scattering phase func-40

tions.41
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1 Introduction & Overview1

Clouds are still a poorly understood element of the Earth’s climate system and, conse-2

quently, they are poorly parameterized in global climate models (GCMs)—so much so3

that a large part of the uncertainty about predicting future climate can be traced to4

this gap [1]. This fact, as troublesome as well-documented, has motivated the National5

Academies to list clouds as top-priority for continued and enhanced observation from6

space in the recently released 2017 Decadal Survey [2].7

The Deep Space Climate ObserVatoRy (DSCOVR) mission [3, 4] has pushed Earth8

observation from space literally to new heights by locating the platform near the Sun–9

Earth “Lagrange-1” (L1) point, at c. 1,500,000 km from our planet in direction of the10

Sun—figuratively, as well. Indeed, the Earth Polychromatic Imaging Camera (EPIC) [5]11

is one of the two Earth-oboserving sensors on DSCOVR. EPIC images the Earth every12

60 to 100 minutes [6] with a 2,048×2,048 pixel camera (≈8 km pixels at the center of the13

disc) boosting 10 narrow spectral channels sampling the UV–VIS range. Among these,14

the four of interest here are at the longest wavelengths: 680, 688, 764, and 780 nm.15

They are dedicated in particular to forming two in-band/out-of-band radiance ratios16

for di-oxygen’s A- and B-bands. This is primarily for the purpose of determining the17

altitude at which the highest cloud layer occurs in every cloudy pixel.18

The present investigation, described both here and in a companion paper [7], builds19

on a preliminary study by Yang et al. [8] who proposed an elegant method for deriving20

both cloud top height (CTHs) and cloud geometrical thickness (CGT). For single-layer21

cloud cover, this is a rudimentary way of profiling the cloudy atmosphere. Such in-22

formation would be very helpful to cloud scientists working on GCM cloud schemes.23

Following Yang et al.’s theoretical study, we start with the assumption that EPIC has24

access to both pieces of cloud profile information.25

In the companion paper [7], Davis et al. used a more realistic representation of26

the EPIC sensor. In particular, they included measurement noise, which was neglected27

in [8], and applied the formal information content analysis methodology of Merlin et28

al. [9], itself inspired by Rodgers’ [10] theory of optimal estimation (OE). In spite of29

good signal-to-noise ratios (SNRs) in the four channels, and of the reduced noise level30

achieved by forming the in-band/continuum radiance ratios, Davis et al. conclude that31

there is too much alignment of the A- and B-band responses to both cloud properties32

to separate them in presence of the anticipated noise. Consequently, only the dominant33

property (CTH) can be derived with good precision. In the jargon of OE, CGT has to34

be moved from an unknown element of the atmospheric “state vector” argument of the35

forward model to the set of atmospheric properties whose values need to be determined36

otherwise, within known uncertainty.37

In the present study, we use a closed-form analytical model for the in-band/continuum38

radiance ratios instead of the computational 1D radiative transfer (RT) model used in39

the companion paper as a proverbial “black box.” Here, we derive the simpler but40

analytically tractable model from the first principles of 1D RT theory, gaining insights41

about A- and B-band cloud observations along the way. Coming from this physics-based42

approach, we arrive at the same conclusions as in [7] about the retrievability of CTH,43

and not CGT, where a statistics-based approach was adopted in the sense of OE for-44

malism. Moreover, the analytical model is used to quantify the bias in retrieved CTH45
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if the impact of CGT on the signal is neglected, hence the need to make some plausible1

assumption about GCT to ensure not only precise but accurate retrievals of CTH.2

In the next Section, we describe the 1D RT modeling framework used in this inves-3

tigation, leading to our analytical approximation and shedding new light on the uncer-4

tainty budget for cloud property retrievals, with the more technical aspects described5

in Appendix A. The systematic (forward modeling) error incurred when neglecting in-6

cloud O2 absorption is quantified in Section 3. In Section 4, we turn to the impact of7

random (measurement) error on retrievals, leading to a physics-based cloud informa-8

tion content analysis for EPIC’s O2 A- and B-band channels with CTH and CGT as9

remote sensing targets. We summarize our findings in §5 and discuss potentially far-10

reaching connections with laboratory studies of mean pathlengths that are elucidated11

in Appendix B.12

2 Radiative Transfer Framework13

2.1 Atmospheric optical properties14

As in the companion paper, we represent the atmosphere a priori with three layers15

(above, inside, and below the cloud layer); see Fig. 1 in [7]. We denote the O2 absorption16

coefficient, dependent on the ambient temperature Tz and pressure Pz, as kO2(λ;Pz, Tz)17

at altitude z. The optical depth for absorption by di-oxygen between altitude z and the18

top-of-atmosphere (TOA, symbolically, z =∞) along the vertical is19

τO2(λ; z) =

∞∫
z

kO2(λ;Pz, Tz)dz. (1)

Following [7], we make these assumptions:20

• In the O2 lines, above- and below-cloud layers are considered purely absorbing21

(σc ≡ 0) with transmission factors dependent only on solar/viewing geometry22

and the amount of oxygen above cloud top and between cloud base and surface,23

respectively: τO2(λ; ztop) where ztop is CTH, and [τO2(λ; z)]0ztop−H = τO2(λ; 0) −24

τO2(λ; ztop −H) with H denoting CGT.25

• In the A- and B-bands as well as in the continuum, the cloud layer is therefore26

the only region with a non-vanishing scattering coefficient, hence single-scattering27

albedo (SSA).28

– Rayleigh scattering optical depths of the atmosphere, roughly 0.03 and 0.04,29

respectively for A- and B-band regions (reference and in-band channels), are30

negligible compared to all other optical depths, that is, for scattering by cloud31

droplets, and all the more so in the presence of absorption by O2. Following32

[8], we neglect Rayleigh scattering.33

– Aerosols will generally have optical depths that are larger than for Rayleigh34

scattering in these spectral regions, but still nowhere near the COT values35

considered here. We neglect them too in order to keep our atmospheric model36
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as close as possible to the one used by Yang et al. [8], as we will be comparing1

results quantitatively further on.2

SSA in the cloud layer is therefore determined only by the value of the cloud3

droplet scattering coefficient σc that, again following [8], is assumed constant, and4

the gaseous absorption coefficient introduced in (1). It can therefore be estimated5

as needed from COT τc, H and the values of kO2(λ;Pz, Tz) for ztop−H < z < ztop.6

Internal variations of the SSA matter only when H becomes commensurate with7

the pressure scale-height (≈8 km).8

• Finally, the surface is assumed here to be black, meaning that we limit this study9

to clouds above water. Yang et al. [8] assigned to the surface albedo a small but10

finite value for water of 0.05. In the companion paper [7], both black and highly11

reflective lower boundaries were examined.12

In the absence of molecular and aerosol scattering distributed across the whole atmo-13

sphere, the last simplification reduces to just two the number of atmospheric layers to14

consider: transparent or absorbing above-cloud layer; scattering cloud layer, with or15

without absorption.16

2.2 Spectral considerations17

Figure 1 shows the EPIC in-band filter functions fin(λ) for A- and B-bands in arbitrary18

units along with τO2(λ; 0) from (1) on a log-scale, with more spectral detail than in19

Fig. 2 of [7] and more focus on the EPIC in-band channels.20

Figure 1: In-band EPIC filter functions (in arbitrary units), with full-column O2 absorp-
tion optical depth for the standard mid-latitude summer atmosphere in the “line-by-line”
limit (wavenumber increment δν = 0.01 cm−1): Left: B-band (δλ ≈ 0.5 pm). Right:
A-band (δλ ≈ 0.6 pm).

Now let f ?in(λ) denote the normalized filter function, i.e., fin(λ)/
∫

∆λ
fin(λ)dλ in21

nm−1. In the companion paper, we used a standard correlated-k technique [11–15] to22
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account for the spectral variability, as modulated by f ?in(λ). Here, we switch to a simpler1

band-average approach [e.g., 13, 16]. A- and B-band average quantities of interest are:2

• the mean absorption optical thicknesses,
∫

∆λ
τO2(λ; 0)f ?in(λ)dλ, yielding 1.08 for B-3

band and 9.56 for A-band, which seems like a good contrast in absorption strength,4

hence a potential for differentiating shorter and longer paths, which is precisely5

what is needed to sense both cloud top (with shortest paths) and cloud base (with6

longest paths);7

• an airmass-dependent effective absorption optical thicknesses defined as8

τ
(∆λ)
O2

(M) = − 1

M
log

(∫
∆λ

exp[−MτO2(λ; 0)]f ?in(λ)dλ

)
, (2)

where the so-called “airmass” factor9

M =
1

cos θ0

+
1

cos θ
=

1

µ0

+
1

µ
, (3)

with θ0 and θ denoting solar (SZA) and viewing (VZA) zenith angles, respectively.10

For EPIC, we have θ ≈ θ0, and a typical value of M is 3, which would result11

from θ0 ≈ cos−1(2/3) = 48.2◦. The nonlinear average in (2) then yields effective12

absorption optical thickness of τ
(B)
O2

(3) = 0.17 for the B-band and τ
(A)
O2

(3) = 0.4113

for the A-band. Figure 2 shows the relatively weak dependence of these effective14

O2 absorption optical depths on M (when θ = θ0, over a range where sphericity15

effects can be safely neglected).16

The latter nonlinear averaging over the orders of magnitude in spectral variability of17

τO2(λ; 0) inside the EPIC A- and B-band filters is recommended when seeking a single18

absorption optical depth in the simple monochromatic representations of the EPIC19

signals used, as needed, further on. However, the contrast between the A- and B-bands20

has gone from a factor of ≈10 to a factor of ≈2, which is moreover between two relatively21

small optical depths characteristic of the wings of the otherwise very deep lines.22

Band-average transmission models have been developed over the last decades, most23

famously by Elsasser, Goody, and Malkmus; see, e.g., [17, Ch. 10], and references24

therein. Indeed this continues to be an area of active research [e.g., 18–20]. The simple25

scheme that uses exp(−τ (∆λ)
O2

(M)) from (2) may not be the best, even for our present26

purposes. Nonetheless, the band-average representation of O2 absorption in (2) and27

Fig. 2 will be used, for simplicity, for numerical estimations in Fig. 3 and in §4; until28

then, much of the reasoning remains monochromatic. The impact of this choice will29

be discussed where appropriate, and we differ to a future publication the quantitative30

comparison of (2) with more sophisticated statistical transmission models. We only need31

to bear in mind here that most of the radiation that matters for the sensor response is32

transmitted through the optically thin parts of the filter’s band-pass, i.e., the wings of33

the spectral lines.34

We now have all the required information to compute radiances observed by EPIC35

at all the wavelengths of interest in A- and B-band studies. However, to understand36

these observations, it is important to bear in mind that it is fundamentally all about37

the amount of absorption by O2 cumulated along all possible paths that sunlight can38
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Figure 2: Plots of τ
(∆λ)
O2

(M) in (2)–(3) for A- and B-bands, with a reminder of the far
more different filter-averaged τO2(λ), and correspondence between M and θ0 for EPIC.

follow between injection and escape at TOA. This approach will lead us to approximate-1

but-analytical expressions for the EPIC signals of interest that are good enough for the2

present uncertainty quantification exercise, but far from satisfactory in a full physics-3

based retrieval algorithm.4

2.3 Monochromatic Formulation5

Let ITOA(λ,Ω) be radiance at wavelength λ leaving the TOA in direction Ω, in this6

study, toward EPIC/DSCOVR at L1. We will use it non-dimensional “BRF” form7

RTOA(λ,Ω) = πITOA(λ,Ω)/µ0F0(λ), which is the bi-directional reflection factor (BRF)8

of the surface-atmosphere system. The BRF is defined as the effective planar albedo9

were the system Lambertian, i.e., independent of Ω0 (Ω0z = µ0), Ω (|Ωz| = µ), for10

the incoming (solar) and outgoing (view) directions, respectively, and of the relative11

azimuth.12

In the upper (above-cloud) non-scattering region, all we need to know is solar and13

observational geometry. Therefore, neglecting surface reflection of light transmitted14

through the cloud in both directions, radiance observed from space BRF form is15

RTOA(λ,Ω) ≈ exp[−(1/µ0 + 1/µ)τO2(λ; ztop)]Rλ(Ω; Ω0, τc), (4)

where we have already referred to (1/µ0+1/µ) as the airmass factor M in (3). The cloud16

layer’s BRF, Rλ(Ω; Ω0, τc), depends primarily on τc, also the scattering phase function17

pc(θs), but only weakly in most (i.e., non-rainbow) directions, past its asymmetry factor18

g =

∫ π

0

cos(θs)pc(θs) sin(θs)dθs, (5)

8



which is ≈0.85 for the liquid-water clouds considered in [7, 8] and the present study.1

These cloud droplet properties vary little with λ between the A- and B-bands, let alone2

inside them.3

Spectral dependence of Rλ(· · · ) in (4) comes entirely from the absorbing gas inside4

the cloud, that is, [τO2(λ; z)]ztop−Hztop
. However, estimation of cumulative path inside the5

cloud is a nontrivial question best framed in the time domain. See [21, and references6

therein] for investigations of cumulative path length in the framework of multiple scat-7

tering lidar, with active cloud remote sensing in mind at VNIR wavelengths. Just as for8

EPIC, a monostatic lidar system is in very nearly backscattering observation geometry,9

but the incidence is invariably quasi-normal to the cloud’s upper boundary.10

Imagine a short “pulse” of sunlight impinging on cloud top at time/path ct = 0.11

What is the distribution in time/path ct of the light emerging from the cloud? Let12

R(ct,Ω; Ω0, τc) be that impulse response expressed in km−1. Then, assuming uniform13

gaseous absorption coefficient kλ in the cloud, one can compute the steady-state absorp-14

tion spectrum Rλ(Ω; Ω0, τc) from the so-called equivalence theorem [22, among others]:15

Rλ(Ω; Ω0, τc) ≡ R̂(kλ,Ω; Ω0, τc) =

∞∫
0

exp(−kλ ct)R(ct,Ω; Ω0, τc) dct, (6)

which is simply the Laplace transform of R(ct,Ω; Ω0, τc) with kλ being the Laplace con-16

jugate variable of path length ct. Normalized by R̂(0,Ω; Ω0, τc) =
∫∞

0
R(ct,Ω; Ω0, τc)dct,17

R(ct,Ω; Ω0, τc) becomes the probability density function (PDF) of the random variable18

ct. This path length distribution has a mean, variance, and so on. Higher moments19

are out-of-scope for the present study, but it is important to know the mean in-cloud20

cumulative path, i.e.,21

〈ct〉(Ω; Ω0, τc) =

∫∞
0
ctR(ct,Ω; Ω0, τc) dct∫∞

0
R(ct,Ω; Ω0, τc) dct

=
−1

R̂(0,Ω; Ω0, τc)

∂R̂

∂kλ

∣∣∣∣∣
kλ=0

, (7)

where the denominator R̂(0,Ω; Ω0, τc) is the steady-state radiance in the continuum,22

i.e., near but outside the absorption band. A priori, 〈ct〉(Ω; Ω0, τc) is also a function of23

other basic cloud properties, such as physical thickness H, the SSA for cloud particles24

(assumed unity here), and the droplet scattering phase function pc(θs).25

Starting with some version of (7), 〈ct〉(Ω; Ω0, τc) has been derived in closed form for26

standard approximations in 1D RT in plane-parallel clouds:27

• Asymptotic theory views opaque scattering plane-parallel media as a perturbation28

of a semi-infinite medium (τc →∞); it leads to [23, p. 591]29

〈ct〉(Ω; Ω0, τc) ≈ (µ+ µ0)H, (8)

for τc � 1, when the SSA is unity (non-absorbing media) and pc(θs) = 1/4π30

(isotropic scattering).1 Originally, this expression was derived for the mean opti-31

cal path length Λ = σcct: 〈Λ〉 ≈ (µ + µ0)τc, which is equal to the mean number32

1Although van de Hulst [23] provides neither proof nor speculation, we confidently surmise that (8)
holds for any phase function in the limit τc � 1/(1 − g). This assertion is based on the fact that, in
the diffusion approximation, g only appears in the pre-asymptotic correction term in (10).

9



of scatterings for radiance reflected from a uniform media [23, p. 584]. Multiply-1

ing both sides by the continuum mean-free-path (MFP), which is the inverse of2

extinction σ−1
c = H/τc, yields (8).3

• In the diffusion approximation, focus is exclusively on the 0th and 1st spherical4

harmonics of the radiance field and of the scattering phase function, hence it5

will predict reflected flux, i.e., radiance escaping at TOA weighted by |Ωz| and6

averaged over Ω in the upwelling hemisphere:7

FTOA(Ω0, τc) =

∫
Ωz<0

ITOA(Ω; Ω0, τc)|Ωz|dΩ. (9)

For conservative (SSA = 1) scattering, this model leads to [21, 24]8

〈ct〉F (Ω0, τc) =

∫
Ωz<0
〈ct〉(Ω; Ω0, τc)ITOA(Ω; Ω0, τc)|Ωz|dΩ

FTOA(Ω0, τc)

≈
(

2

3
+ µ0

)
H × [1 + C(τc, g, µ0)] , (10)

where C(τc, g, µ0) is a pre-asymptotic correction term that decays as 1/τc at large9

values. Now, Ref. [24] provides only a partial derivation of (10) in its Appendix D,10

and [21] only provides C(τc, g, 1), albeit with excellent Monte Carlo validation,11

in view of the multiple-scattering lidar focus. We therefore provide here, in Ap-12

pendix A, the explicit expression for C(τc, g, µ0) and describe the main steps of13

its derivation.14

Either way, we see that 〈ct〉(Ω,Ω0, τc) is, to leading order, proportional to physical cloud15

thickness H, irrespective of scattering details, and the proportionality factor depends16

only on illumination and viewing geometry.17

If 〈ct〉(Ω,Ω0, τc) is all we know about R(ct,Ω; Ω0, τc), then our logical estimate of18

steady-state spectral radiance Rλ(Ω; Ω0, τc) is obtained by setting19

R(ct,Ω; Ω0, τc) = R̂(0,Ω; Ω0, τc) δ [ct− 〈ct〉(Ω; Ω0, τc)] , (11)

hence, from (6),20

Rλ(Ω; Ω0, τc) = R̂(0,Ω; Ω0, τc) exp[−kλ〈ct〉(Ω; Ω0, τc)], (12)

where we can use the mean absorption coefficient in the cloud:21

kλ ≈ [τO2(λ; z)]ztop−Hztop
/H. (13)

We now ask: under what conditions is the above hypothesis that “all we know about22

the path length distribution is its mean” is likely to be good enough? It boils down to one23

or both of the following requirements. First, the width (e.g., standard deviation) of the24

PDF for ct could be relatively small with respect to its mean 〈ct〉. Second, the combined25

value of kλct may remain small enough over said width of the PDF of ct that one can26

invoke the 1st-order linear approximation for exp(−kλct) ≈ 1− kλct in (6). In the case27

of optically thick clouds, the first condition is not expected to be verified; it has indeed28

10



been shown that, at least for reflected light, the variance of ct increases with COT,1

while 〈ct〉 does not, as COT increases without bound [e.g., 24, and references therein].2

Best therefore to look into the second option where, because of the spectral integration3

discussed in the previous and following subsections, we should consider both ct and kλ4

as random variables. Having just dismissed the PDF of ct as inherently broad for high-5

COT clouds, we are relieved that the variability of kλ is overwhelmingly dominated6

by small values in both O2 absorption bands (where, at the prevailing pressures and7

temperatures, the wings occupy more of the spectrum than the cores of absorption8

lines). Although it is out of the scope of the present study, a thorough examination of9

the assumption of a degenerate (i.e., Dirac-δ) PDF for ct is in order with O2 absorption10

in mind, and additional reasons for this are articulated further on. At present, we will11

be content with the fact that, in spite of all the simplifying assumptions, the analytical12

forward model developed herein leads to identical conclusions about EPIC’s A- and13

B-band information content for vertical cloud profiling as in the companion paper [7]14

where accurate spectral integration and 1D RT modeling was used—as a “black box”—15

to support a sophisticated statistical estimation approach.16

We can now form the observed differential optical absorption spectroscopy (DOAS)17

ratio: applying (4), we have18

rλ(Ω; Ω0, τc) =
RTOA(λ ∈ ∆λ)

RTOA(λ /∈ ∆λ)
≈ e−(1/µ0+1/µ)τO2

(λ;ztop) Rλ(Ω; Ω0, τc)

R̂(0,Ω; Ω0, τc)

= e
−
[(

1
µ0

+ 1
µ

)
τO2

(λ;ztop)+kλ〈ct〉(Ω;Ω0,τc)
]
, (14)

where “λ ∈ ∆λ” is shorthand for any wavelength inside the absorption band of interest,19

and conversely for “λ /∈ ∆λ” (although outside, it should be as near to the absorption20

band as possible so that scattering properties are almost identical for both wavelengths).21

For 〈ct〉(Ω; Ω0, τc) in (14), we take the best of both predictive models in (8) and22

(10):23

〈ct〉(Ω; Ω0, τc) ≈ (µ+ µ0)H × [1 + C(τc, g, µ0)] . (15)

Indeed, asymptotic theory provides the desirable angular reciprocity upfront in the24

prefactor of (8) while diffusion theory in (10) restores the anticipated weak dependence25

on COT and g at the cost of a minor violation of reciprocity confined to the pre-26

asymptotic correction term.27

Invoking (12)–(13), the negative natural logarithm of the DOAS ratio in (14)–(15)28

is29

− log rλ(Ω; Ω0, τc) ≈ (1/µ0 + 1/µ)τO2(λ; ztop)

+ (µ+ µ0) [τO2(λ; z)]
ztop
ztop−H × (1 + C(τc, g, µ0)) , (16)

which is a simplified monochromatic forward model for DOAS ratios. To get the required30

O2 optical depths at or between arbitrary altitudes, we assume a simple exponential31

profile in atmospheric pressure, hence of O2. Therefore, a first-order approximation for32

τO2(λ; z) is τO2(λ; 0) times e−z/Hmol , where we can set the pressure scale height Hmol to33

≈8 km.34
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2.4 Absorption-Band Integration1

We recall from Fig. 1 that the EPIC sensor is performing weighted spectral integrations2

over the A- and B-bands. For that, we introduce a new notation for (12):3

R∆λ(Ω; Ω0, τc) = R̂(0,Ω; Ω0, τc)

∫
∆λ

exp[−kλ〈ct〉(Ω; Ω0, τc)]f
?
in(λ)dλ, (17)

where the broad spectral variability stems from (13). In view of (6), that means that4

there is actually a double integration going on, both in the spectral domain and over5

path lengths. The above “all-we-know-is-the-mean-path-length” assumption will be6

more accurate if the PDF of the random variable ct is skewed toward short paths where7

Beer’s exponential transmission law is nearly linear in path length, at least for the smaller8

values of kλ representative of the wings of the O2 spectral lines. For light reflected by9

optically thick clouds, numerical simulations show that this is indeed the case, e.g., [24].10

Similarly, the DOAS ratio observed by EPIC is a ratio of spectral integrals over11

(14). However, because scattering properties vary little in the continuum (λ /∈ ∆λ),12

one can formulate r∆λ(Ω; Ω0, τc) simply as the in-band integration of rλ(Ω; Ω0, τc) from13

(14). From there, taking logs, log r∆λ(Ω; Ω0, τc) will look like (16) but using the effective14

optical depth from (2) for both A- and B-bands.15

To get the effective O2 optical depths at or between arbitrary altitudes based on its16

sea-level value in (2), we can assume the same exponential profile as for τO2(λ; z). Hence17

τ
(∆λ)
O2

(z) = τ
(∆λ)
O2

(M) exp(−z/Hmol).18

Figure 3 shows the B- and A-band DOAS ratios r∆λ(Ω0; Ω0, τc) from (16) for EPIC19

as functions of ztop and H in [km] when µ = µ0 = 2/3, hence an intermediate airmass of20

3, and (τc, g) = (30,0.85), scaled to (15,0.7), as explained in Appendix A, for improved21

accuracy of the diffusion approximation. We note the sensitivity in both bands to22

both cloud properties. Apparently, however, only the range of DOAS values seems to23

change, not the pattern of dependence on cloud parameters. Further on, we discuss the24

ramifications of this similarity—but not identity, due to the nonlinear dependence on25

τ
(∆λ)
O2

from (2).26

To summarize our stance on spectral integration, by considering only the effective27

absorption optical thickness in (2), we have implicitly ignored the impacts of spectral28

correlations. Because transmission laws that account for spectral correlations tend to29

raise the value of transmission for a given path length, making it less exponential and30

more linear, we expect this future improvement will reinforce not only the robustness of31

the spectral integral but also the validity of our other key assumption in (11), namely,32

that all we know is the first moment of the path length within clouds.33

3 Forward Model Bias Estimation34

Following [25], we can divide (16) by the known airmass factor (1/µ0 + 1/µ) in (3), and35

thus define implicitly the “apparent” or “centroid” cloud-top altitude z
(app)
top in36

τO2(λ; z
(app)
top ) =

{
− log r

(obs)
λ /(1/µ0 + 1/µ) (observed)

τO2(λ; ztop) + µµ0 [τO2(λ; z)]
ztop
ztop−H × (1 + C(τc, g, µ0)) (modeled)

(18)

12



Figure 3: DOAS ratios for EPIC’s B- (left) and A-band (right) as functions of the two
cloud properties of interest: CTH ztop and CGT H, both in [km]. Other parameters are
provided in main text.

as the inverse zλ(τO2) = τ−1
O2

(λ; τO2) of the (monochromatic) map defined in (1) where the1

right-hand side is either modeled by setting ztop and H or obtained from a measurement2

r
(obs)
λ of the DOAS ratio. This estimate of ztop is obviously going to be biased low as3

soon as H > 0 by the second term that captures geometry-dependent in-cloud path4

length cumulation.5

To see this, we invoke the exponential profile in O2 optical depth with scale height6

Hmol. Then the lower equation for z
(app)
top in (18) simplifies to7

z
(app)
top ≈ ztop −Hmol log

[
1 + µ0µ

(
eH/Hmol − 1

)
× (1 + C(τc, g, µ0))

]
, (19)

irrespective of λ or ∆λ, i.e., whether using the A- or B-band (in this approximation). If,8

moreover, the cloud is geometrically thin in the sense that H � Hmol, then a 1st-order9

Taylor expansion leads to z
(app)
top ≈ ztop − µ0µH × (1 + C(τc, g, µ0)), now irrespective of10

Hmol as well.11

For EPIC, we have Ω ≈ −Ω0, hence µ ≈ µ0. We then see in (19) that the expected12

negative bias is clearly at its greatest, for given H, at sub-solar observation geometry13

(µ = µ0 = 1): z
(app)
top ≈ ztop −H × (1 + C(τc, g, µ0)). See Fig. 2 in [25] and Fig. 6 in [8]14

for qualitative confirmation on observational and computational grounds, respectively.15

In reality and in exact 1D RT, the maximum bias of predicted in (19) is a slight over-16

estimation. Our Fig. 4 shows ztop − z(app)
top normalized to H from (19) with µ = µ0 and17

Hmol = 8 km. We see that for oblique solar/view geometry, the bias is between 0 (at18

grazing sun/views) and H.19

It is somewhat disconcerting that, in its final form (19), our simplified model has20

no explicit spectral dependence and, therefore, cannot be used to distinguish A- and21

B-band cloud information contents, irrespective of how the spectral band integration is22

modeled. We would normally expect that access to two wavelengths/bands would lead23

to a way of extracting both ztop and H, the parameters used here to define the cloud24

profile. Instead, they combine invariably into z
(app)
top in (19).25

13



Figure 4: Normalized CTH bias
(
ztop − z(app)

top

)
/H from (19) for EPIC’s solar/viewing

geometry (µ0 = µ), and Hmol = 8 km.

Several approximations were made along the way, and the one where spectral de-1

pendence was all but lost is not immediately apparent. Careful scrutiny however leads2

back to the early step in (11) where only the mean path length was assumed known for3

the sunlight that entered the cloud and was eventually reflected back to space. This4

lead to a simple exponential dependence on both above-cloud and in-cloud absorption5

by O2. If only two path length moments were known, e.g., mean and variance, then6

the in-cloud term Rλ(Ω; Ω0, τc) obtained from (6) would not be an exponential [26].7

Consequently, the dependence on τO2(λ; 0) would not cancel out after the later—and8

quite reasonable—approximation that τO2(λ; z) has the same exponential profile in z for9

all λ.10

The insight gained here is that a diversity of path lengths in the scattering medium11

is crucial to the access to more than one cloud parameter. One straightforward way12

of diversifying in-cloud path length, even with a single O2 channel, is by varying view13

angle, i.e., µ in expression (19) for z
(app)
top . This is the option that was exercised by the14

POLDER/PARASOL mission, as previously mentioned in connection with [25, 27], but15

it is not available for EPIC. The alternative, this one available for EPIC, is to have more16

than one spectral channel. However, the forward model needs more sophistication than17

used here, where the goals are only (i) to estimate CTH retrieval bias when in-cloud18

scattering is neglected, and (ii) to demonstrate that instrument error needs to be small19

enough to distinguish the spectral signals. Just how small in EPIC’s A- and B-band20

case is the topic we now broach.21
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4 Impact of Measurement Error1

The simplified DOAS ratio model in (16) can also be used to translate measurement2

error on r∆λ(· · · ) into uncertainty in the inferred z
(app)
top , which is obtained by inverting3

said model without the second (in-cloud path length) term, cf. (18)–(19). Taking4

differentials on both sides of (16), and using (1), we obtain5

δrλ
rλ

≈
[(

1

µ0

+
1

µ

)
kλ(ztop) + (µ+ µ0)

(
kλ(ztop −H)− kλ(ztop)

)]
δz

(app)
top

≈ (µ0 + µ)

[(
1

µ0µ
− 1

)
kλ(ztop) + kλ(ztop −H)

]
δz

(app)
top , (20)

where, for simplicity, we have neglected the pre-asymptotic correction term that multi-6

plies the term in (µ0 + µ) in the upper expression. Invoking the approximately expo-7

nential profile of8

kλ(z) = −d

dz
τO2(λ, z) ≈

τO2(λ, 0)

Hmol

exp(−z/Hmol), (21)

the band-effective O2 absorption optical depth at sea level in (2), hence symbolically λ9

becomes ∆λ, and EPIC’s viewing geometry (µ = µ0), we have10

δr∆λ

r∆λ

≈
τ

(∆λ)
O2

(2/µ0)

Hmol

2µ0

[
1

µ2
0

+ eH/Hmol − 1

]
exp (−ztop/Hmol) δz

(app)
top . (22)

As discussed in [7], a common assumption for the relative error in DOAS ratio,11

∆rλ/rλ, is 1 to 1.5%. This contrasts with the ≈3% error assumed for absolute radiome-12

try, but some of that error (e.g., calibration drift) cancels in the ratio. Thus, setting the13

right-hand side of (22) to 0.015 (1.5%), and solving for δz
(app)
top , we obtain the following14

estimate of retrieval error:15

∆z
(app)
top ≈ 0.015Hmol

τ
(∆λ)
O2

× eztop/Hmol

2µ0

(
µ−2

0 + eH/Hmol − 1
) , (23)

where Hmol = 8 km. For specificity, we take an airmass factor of 5: µ0 = 0.4, θ0 ≈ 66◦,16

which is approaching the upper limit of 6 in Fig. 2, past which sphericity effects start17

to matter. With that assumption, hence τ
(∆λ)
O2
≈ 0.33 and 0.14 for A-band and B-band,18

respectively. This yields ∆z
(app)
top ≈ 0.14 and 0.32 km respectively for A- and B-band19

estimates for a low cloud layer, (ztop, H) = (2.5,2) [km]. For the same cloud at a height20

of ≈8 km, we will have roughly e ≈ 2.7 times larger uncertainties. At smaller (larger)21

airmasses, we will have somewhat larger (smaller) uncertainties, due to the decreased22

(increased) amounts of O2 absorption. In the 1–4 km range, H has a minor role in (23)23

since eH/8 − 1 has to compete with 1/µ2
0.24

The joint (ztop, H) retrieval method proposed by Yang et al. [8] uses two-entry look-25

up tables (LUTs) for those cloud parameters as a function of two observable quantities26

denoted hsum and hdiff, which are in essence the sum and difference of the estimates of27

z
(app)
top for the A- and B-bands. These LUTs are displayed in Fig. 9 of [8] (reproduced28

as Fig. 6 in the companion paper [7]) for θ0 = 40◦ and three different choices of τc.29

15



The ranges of hsum go from ≈2 km to 20 km or more. In contrast, the full ranges of1

hdiff are only 0.18, 0.20, and 0.55 km, respectively for τc = 30, 10, and 5. In the joint2

retrieval, we would want to be able to locate the observation coordinate (hsum, hdiff) as3

precisely as possible to infer (ztop, H) accurately. To be quantitative, we would want the4

measurement uncertainties (error bars) on (hsum, hdiff) to be, say, 5-to-10 times smaller5

than the overall range of the relevant LUT. For hdiff that translates to an uncertainty6

(quantified by, e.g., “2 sigmas”) no larger than ≈0.05 km.7

We can now bring to bear the estimate of uncertainty on retrieved centroid cloud top8

height z
(app)
top in (23). The resulting uncertainty on hsum and hdiff is the root-mean-square9

(RMS) sum of ∆z
(app)
top for the A- and B-bands. Figure 5 shows the outcome (i.e., “110

sigma”) expressed in km. We clearly see that these sensor-induced uncertainties may be11

very reasonable for the horizontal axes (hsum) in Fig. 9 of [8], better still, if divided by12 √
2 (i.e., the estimate of the uncertainty on the mean of z

(app)
top for the A- and B-bands.13

However, the numbers in Fig. 5, especially if doubled to estimate the “2 sigma” range,14

will overwhelm the full extent of the vertical axes (hdiff) of [8]’s Fig. 9. This is in spite15

of the undeniable sensitivity of hdiff to H in the LUTs.16

Conversely, to reduce uncertainty on z
(app)
top enough to fit 5-to-10 observed “points”17

into the vertical axes of [8]’s Fig. 9, we would need to reduce the ranges obtained in18

our Fig. 5 to values no larger than ≈0.025 km, i.e., 10-to-20 times smaller. That would19

require relative uncertainties on the DOAS ratios to be 10-to-20 times smaller than20

1.5%, which is not feasible with current or foreseeably futuristic space-based sensors.21

Figure 5: Estimated uncertainties on hsum or hdiff in Fig. 9 of [8]—equivalently, Fig. 6 of
[7]—induced by instrumental error, modeled as the RMS sum of uncertainties on cloud
centroid heights from the A- and B-bands. Left: Dependence on µ0 in safe zone (&1/3)
for sphericity effects, and on ztop in km when H = 2 km (µ0 = cos 40◦ highlighted),

using τ
(∆λ)
O2

(5) values from Fig. 2. Right: Dependence on H in km and ztop ≥ H + 0.5
when µ0 = cos 40◦ (as in [8]).
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5 Closing Remarks1

5.1 Summary2

By invoking the signal physics underlaying EPIC’s differential optical absorption spec-3

troscopic (DOAS) ratios for the A- and B-bands, we have shown that these two mea-4

surements are too redundant to allow for retrieving both cloud top height (CTH) and5

cloud geometrical thickness (CGT). In the absence of any independent knowledge of6

CTH, this important cloud property can be inferred from either or, better, both A-7

and B-band channels (adopting the average, weighted as needed). However, if CGT8

is neglected altogether, these estimates will be biased low due to the O2 absorption9

path length cumulated inside the cloud. A bias-correction scheme is in order, and a10

reasonable approach used by others assumes an adiabatic lapse rate to relate CTH and11

cloud base height (i.e., CTH minus CGT). This finding is consistent with the outcome12

of the investigation by Xu et al. [28] of dust plume height retrieval using EPIC’s A- and13

B-band channels.14

The above conclusion is also completely aligned with that of the companion paper [7]15

by the same authors as here along with others in the same journal where the statistical16

formalism of optimal estimation was used. The two-pronged research described in the17

present pair of articles builds on a preliminary investigation by Yang et al. [8] of EPIC’s18

A- and B-band cloud sensing capability prior to DSCOVR’s launch to the L1 point,19

where the possibility of a joint retrieval of CTH and CGT was envisioned with an20

idealized instrument. Taking into account realistic levels of sensor noise makes it clear21

that only a robust retrieval of CTH should be targeted, and that is already a major22

contribution to cloud science for years to come.23

5.2 A remarkable invariance property of mean path length24

Before closing, we take note of a very interesting development in the optics of purely25

scattering media that relates directly to our present work with clouds and di-oxygen26

absorption, to diffuse optical tomography [29] in biomedical imaging [30], and to many27

other applications. Using thermodynamical and weak light absorption arguments Blanco28

and Fournier [31] showed theoretically that, in our notations,29

〈ct〉(all)
F = 4V/S, (24)

where:30

• the superscript “(all)” means isotropic (Lambertian) illumination of the whole31

surface of the arbitrarily-shaped medium M, and we recall that the subscript32

“F” means integration over all escape angles to obtain hemispherical flux, in this33

case, perpendicular to the local outgoing normal, and averaging covers the whole34

boundary ∂M of the medium;35

• V is the volume of M;36

• S is the surface of M.37
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Surprisingly, the result does not depend on the details of the scattering phase function,1

nor on the opacity of the medium: it can be void of scatterers (i.e., the uniform ex-2

tinction coefficient σ vanishes, hence only ballistic trajectories occur); or it can be very3

opaque (σV/S � 1); or anything in between. This mean path invariance property was4

extended by Pierrat et al. to multiple scattering theory using both physical optics and5

time-dependent 3D radiative transfer [32]. Recently, Savo et al. [33] demonstrated its6

experimental validity in the laboratory.7

In our present study, we use plane-parallel media that can be viewed, e.g., as rect-8

angular parallelepipeds of height H and square horizontal section of side L � H.9

We then have V = HL2 and S = 2L2 + 4HL, hence 4V/S = 2H/(1 + 2H/L) and10

limL→∞ 4V/S = 2H is the corresponding prediction for11

〈ct〉(all)
F = R〈ct〉R + T 〈ct〉T , (25)

where R . 1 is the optically thick cloud’s reflectivity, and T = 1 − R � 1 is its12

transmittivity, 〈ct〉R is the mean path for reflected light (any direction), denoted 〈ct〉F13

in the main text, and 〈ct〉T is its counterpart for transmitted light. With R approaching14

unity, hence vanishingly small T , our estimates of 〈ct〉R in (8) and in (10), after averaging15

over µ0 (leading term only in the latter case) and over µ (in the former case), fall16

significantly short of 2H. Although, they at least have the linear dependance H, and17

none on any other cloud optical property to first order. Consequently, 〈ct〉T in (25) must18

be large enough compared to H to compensate for the diminutive T in the weighted19

average. Appendix B draws on previously published results akin to the ones derived and20

used herein to show that (24) is indeed verified for light diffusing through plane-parallel21

slabs. To the best of our knowledge, therein is the first proof of the mean path length22

invariance property in (24) that uses formal diffusion theory.23

5.3 Outlook24

Future work will focus, on the one hand, on supporting the operational implementation25

of an algorithm to obtain CTH from EPIC’s A- and B-bands using an informed guess26

for CGT to minimize retrieval bias; uncertainty on the retrieved CTH will be reduced27

by using both oxygen bands, and stated as part of the retrieval. On the other hand, we28

will be investigating applications of (24) to remote sensing and radiant energy budget29

estimation.30
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Appendices1

A Prediction of Mean In-Cloud Pathlength 〈ct〉 in2

the Diffusion Limit3

A.1 Problem4

We need an explicit expression for mean in-cloud pathlength 〈ct〉 as a function of cloud5

properties, namely, CGT H, COT τ , phase function asymmetry factor g, when the solar6

beam is either normal or oblique, which we represent with µ0 = cosSZA.7

In the diffusion approximation, we limit the spherical harmonic expansion of the8

time/path-dependent diffuse radiance field I(ct, z,Ω) to the 0th- and 1st-order terms. In9

plane-parallel geometry (hence 1D RT), letting µ = Ωz, we have:10

I(ct, z,Ω) =
J(ct, z) + 3µF (ct, z)

4π
, (A.1)

irrespective of the azimuthal angle, where J(ct, z) is the scalar (a.k.a. actinic) flux and
F (ct, z) the net vertical vector flux. Note that J(ct, z) is closely related to the mean
(directionally-averaged) radiance J(ct, z)/(4π) and radiant energy density

U(t, z) = J(ct, z)/c.

The phase function expansion in spherical harmonics is similarly truncated:11

p(µs) =
1 + 3gµs

4π
, (A.2)

where µs = Ω ·Ω′ is the cosine of the scattering angle, and g is its mean value, viewing12

p(µs) as a probability distribution; see (5) in main text. Note that µ(s) in (A.1) and13

(A.2) is simply the 1st-order Legendre polynomial while F (ct, z) and g are its respective14

coefficients in the two expansions.15

Substitution of these truncated expansions in spherical harmonics into the time-16

dependent 1D RT equation leads to two coupled partial differential equations (PDEs);17

see, e.g., [24]. First, we have the exact “continuity” equation that expresses the conser-18

vation of radiant energy:19

∂J

∂ct
+
∂F

∂z
= −σaJ + qJ , with qJ(ct, z) = F0σse

−(σs+σa)z/µ0δ(ct− z/µ0), (A.3)

where σs/a is the scattering/absorption coefficient and F0 is the time-integrated incoming20

irradiance. Second, we have the approximate “constituent” equation that expresses how21

the radiant energy density flow (net flux) is driven by the gradient in its density:22

∂F

∂ct
+

1

3

∂J

∂z
= −((1−g)σs+σa)F+qF , with qF (ct, z) = F0µ0gσse

−(σs+σa)z/µ0δ(ct−z/µ0).

(A.4)
Remark: Neglecting ∂F/∂ct in the above, as is usual in the time -dependent diffusion
approximation per se, and noting that qF (ct, z) vanishes far from sources, we recognize

D = c/3((1− g)σs + σa)

19



as the diffusion coefficient in Fick’s law:

F = −D∂U/∂z.

Substituting Fick’s law into the continuity equation (A.3) with no absorption (σa = 0)
and, again, far from sources (qJ ≈ 0), yields the classic parabolic PDE for diffusion
processes such as heat transfer:[

∂/∂t−D(∂/∂z)2
]
U = 0.

Now, not neglecting ∂F/∂ct leads to the so-called “telegrapher’s PDEs,” which is a1

more accurate representation of the original linear transport problem than the diffusion2

approximation, especially at early times (short paths) [34], and that is the course we3

keep in the following.4

The source terms qJ(ct, z) and qF (ct, z) specified in the above PDEs model a pulsed5

version of solar irradiance impinging on the plane-parallel optical medium at ct = z = 0.6

As in the main text, we will not consider absorption by the scattering particles (water7

does not absorb much at the O2 A- and B-band wavelengths), hence σa = 0 and the8

(total) extinction coefficient is σ = σs.9

The required boundary conditions (BCs) express that no diffuse radiation is entering10

the plane-parallel medium at its top (z = 0), nor at its base (z = H), at any time past11

the instant the pulse arrives at the upper boundary. Rephrasing this as a statement12

for incoming hemispherical fluxes, and going back to (A.1), these BCs can be expressed13

simply as:14

J(ct, 0) + 2F (ct, 0) = 0, (A.5)

J(ct,H) − 2F (ct,H) = 0, (A.6)

for all ct > 0.15

For A- and B-band studies it is legitimate to neglect cloud droplet absorption: (σs, σa)16

becomes (σ, 0). In that context, we can take Laplace transforms of (A.3)–(A.6), recalling17

from (6) that the Laplace conjugate variable of path ct is gaseous absorption k, and this18

leads to an equivalent steady-state problem expressed with coupled ordinary differential19

questions (ODEs):20

kĴ +
dF̂

dz
= q̂J , (A.7)

kF̂ +
1

3

dĴ

dz
= −(1− g)σF̂ + q̂F . (A.8)

To complement these coupled ODEs, Laplace-transformed BCs in (A.5)–(A.6) are:21

Ĵ(k, 0) + 2F̂ (k, 0) = 0, (A.9)

Ĵ(k,H) − 2F̂ (k,H) = 0. (A.10)

This completes the definition of the boundary-value problem to solve.22
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A.2 Solution1

Standard methods can be used to solve the above problem of coupled 1st-order ODEs. In2

the present study, however, we are not interested in the solution [J, F ](k, z) everywhere.3

Specifically, we require reflected flux at z = 0, which is Ĵ(k, 0)−2F̂ (k, 0)]/4 = Ĵ(k, 0)/2,4

using the upper BC in (A.9). Normalized by the incoming downwelling flux, we obtain5

the cloud’s reflectivity:6

R̂(k) =
Ĵ(k, 0)/2

µ0F0

. (A.11)

This partial answer to our question about 〈ct〉 is given explicitly in [24] as a complicated7

function of four variables (kH, τ, g, µ0) where σ and H have been combined into the (non-8

dimensional) COT, τ = σH (denoted τc in the main text), and we note that k and H9

always occur as a non-dimensional product.10

Although it can be done in closed form [35], we will not need to compute here the11

inverse Laplace transform of R̂(k, · · · ) to obtain R(ct, · · · ). The last step to obtain 〈ct〉12

is to expand A.11 into a 1st-order Taylor series in k:13

R̂(k, · · · ) = R̂(0) + dR̂/dk
∣∣∣
k=0

k +O(k2). (A.12)

Finally, we invoke (7) from the main text, which is a consequence of the fundamental14

equivalence relation in (6). In short, we have:15

〈ct〉F (· · · ) = − 1

R̂(0)

dR̂

dk

∣∣∣∣∣
k=0

= − H

R̂(0)

dR̂

dkH

∣∣∣∣∣
kH=0

. (A.13)

The outcome, using R̂(kH, τ, g, µ0) from [24], is thus the product of H and a com-16

plicated non-dimensional function of (τ, g, µ0). Basically, we are looking at a rational17

function in multiple variables with additional polynomials multiplying exp(−τ/µ0) in18

both numerator and denominator.19

A.3 Result20

The mean path length in (A.13) for cloud-reflected light in non-dimensionalized form is21

〈ct〉F/H, which remains a function of (τ, g, µ0). Then, taking a cue from (10) in the main22

text, we can write it as (2/3 + µ0)× [1 + C(τ, g, µ0)]. We have thus identified explicitly23

the leading term for 〈ct〉F when τ → ∞, namely, (2/3 + µ0)H. The pre-asymptotic24

correction term is then isolated, and it reduces to the following expression:25

C(τ, g, µ0) =
p0(τ, g, µ0)− p1(τ, g, µ0)e

− τ
µ0

2 τµ0(2 + 3µ0)(4 + 3(1− g)τ)
(

3(1− g)τ + (2− 3µ0)
(

1− e
− τ
µ0

)) ,
(A.14)

where26

p0(τ, g, µ0) = 24µ0

(
1− 3µ2

0

)
(−2 + 3(1− g)µ0)

+ 2µ0

(
44− 54g − 9(2− 3g(2− g))µ0 − 18(7− 9g)µ2

0 + 81(1− g)2µ3
0

)
τ

+ 18µ0

(
3 + 2µ0(1− 3µ0)− g

(
3− 9µ2

0

))
(1− g)τ 2, (A.15)
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and1

p1(τ, g, µ0) = 24µ0

(
1− 3µ2

0

)
(2− 3(1− g)µ0)

+ 2
(
24 + µ0

(
8− 18g − 9(10− 3(2− g)g)µ0 − 18(1− 3g)µ2

0 + 81(1− g)2µ3
0

))
τ

+ 6(2− 3µ0)(3 + (4− 3µ0)µ0)(1− g)τ 2

+ 9µ0(2− 3µ0)(1− g)2τ 3. (A.16)

Figure A.1 shows log10C(τ, g, µ0) as a function of log10 τ and µ0 when g = 0.85, the2

canonical value for liquid water clouds, in the l-h panel. In the r-h panel, the same func-3

tion is plotted, but for scaled cloud properties using the so-called δ-Eddington scheme4

[36]: (τ, g) becomes (τ ′, g′) = ((1 − f)τ, (g − f)/(1 − f)), with f = 0.5. The rationale5

for this rescaling is that the accuracy of the present diffusion-type approximation is im-6

proved dramatically, especially at low τ , by removing the ≈50% of the single-scattered7

light that goes into the forward peak of the phase function and putting it back into the8

non-scattered beam, and then recomputing the asymmetry factor as g′ to ensure that9

(1− g′)τ ′ = (1− g)τ .10

Figure A.1: Left: log10C(τ, g, µ0) as function of (log10 τ, µ0) for g = 0.85, with µ0 = 2/3

highlighted since it is often used in the main text as a typical solar/viewing geometry
for EPIC. Right: Same as left panel but using δ-Eddington rescaling [36], that is, to use
g′ = (g − 0.5)/(1− 0.5) = 0.7 and log10 τ

′ = log10 τ + log10 0.5.

We note, finally, that the denominator in (A.14) is a 3rd-order polynomial in τ while11

p0(τ, g, µ0) is only 2nd-order, hence a slow decay of C(τ, g, µ0) in 1/(1 − g)τ with a12

prefactor given by13

lim
τ→∞

(1− g)τ × C(τ, g, µ0) = (1− g)

(
2− 1

2 + 3µ0

)
− (2− 3g)µ0, (A.17)

which is plotted and discussed in Fig. A.2. We can clearly see the decay in τ−1 as τ14

increases without bound in Fig. A.1.15

22



Figure A.2: Left: The prefactor (A.17) of the slow decay of C(τ, g, µ0) in 1/(1− g)τ is
plotted versus (g, µ0) over their full ranges, noting that g < 0 is associated with back-
ward -peaked phased functions. The value at (0, 1) for isotropic scattering and normal
incidence is highlighted, and it results in a slightly negative prefactor in (10), that is, a
pre-asymptotic approach to (15) from below rather than from above. This is consistent
with the trend displayed in [23, p. 590, Fig. 17.8] where the case of µ = µ0 = 1 is stud-
ied for isotropic (g = 0) scattering. Right: Zoom of the l-h panel into the region where
0.5 < g < 1; specific ranges for g = 0.85 and g = 0.7 are highlighted, corresponding
respectively to the standard value of g for warm clouds and its (δ-Eddington) rescaled
counterpart for f = 0. We note that the latter case has a narrow range of prefactor
values, as it is close to the saddle point of the function of two variables. In both panels,
the typical value of µ0 = 2/3 (used in the main text) is highlighted.

A.4 Verification & Validation1

For a Monte Carlo solution of the time-dependent 1D RT equation for the light pulse2

starting at cloud top under normal incidence (µ0 is unity), we refer to the Davis’ [21,3

Fig. 2]. Agreement with the diffusion approximation on the predicted values of 〈ct〉F/H4

is excellent over a large range of τ and two relevant values of g. Moreover, that is in spite5

of neglecting the time-derivative in (A.4), i.e., using bone fide time-dependent diffusion6

theory, not the improvement afforded by using the telegrapher’s equations solved here.7

This is tantamount to a validation of the diffusion-type approximations used here8

because validation is about “solving the right equations” [37]. Therefore, a model such9

as time-dependent 1D RT (implemented numerically with a Monte Carlo scheme) that10

is inherently more realistic than diffusion can provide validation data for a diffusion11

model. That is of course pending its own validation based on confrontation with real-12

world observations, even if they are laboratory-controlled instantiations of plane-parallel13

optical media [38].14

Another check that is more qualitative, but brings more physical insight, is to show15

that 〈ct〉F ∝ H follows from random walk theory, including the fact that dependencies16

on other cloud properties (τ, g) will at best be weak. Since we are now invoking a model17

that has less fidelity than our ODE-based model, we can only describe this exercise as a18
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preliminary form of verification, which has been defined as “solving the equations right”1

[37].2

We start by recalling that the space-time Green function G(t,x) of the above-3

mentioned diffusion problem in the absence of boundaries is the solution of ∂t−D∇2 =4

δ(t)δ(x). It’s expression for t > 0 is exp(−x2/4Dt)/(π4Dt)3/2. From there, two useful5

relations follow.6

First comes, by integration, the well-known law of diffusion:7 ∫
R3

x2G(t,x)dx = 〈x2〉 = 6Dt. (A.18)

We recall here that D = c`t/3, with `t = 1/(1−g)σ being the so-called “transport mean-8

free-path,” that is, the cumulative distance covered on average before the memory of9

the original direction has been all but erased in spite of the forward scattering tendency.10

It is the mean length of each step in an equivalent isotropic random walk, as is implicit11

in the diffusion model.12

Second is the lesser known “law of first return,” which answers the question: What13

is the probability p1st(t)dt of a random walk returning to its plane of origin between14

time t and t+ dt? It can be shown [39, 40] that15

p1st(t)dt =
c√
π`t

(
`t

ct

)3/2

exp(−`t/2ct), (A.19)

equivalently, p1st(ct) = p1st(t)/c. This PDF has a sharp increase from 0 at short16

times/paths, thanks to the exponential term, a peak at ct = `t/
√

3, and a very long17

tail, decaying in ct−3/2. In particular, both the mean and variance of ct are divergent.18

Physically, a pulse of light entering a semi-infinite scattering medium will keep coming19

back for a very long time due to the multiple scattering that sends it very deep in the20

absence of any absorption.21

What happens it the medium has a finite geometric thickness (H <∞), but also a22

very large optical thickness, even scaled for the forward scattering tendency? In other23

words, τt = (1− g)τ = H/`t � 1.24

Basically, there is a characteristic time/path ctH that the light takes to reach the25

cloud base in a substantial amount vis-à-vis the sum total of transmitted light. From26

(A.18), we can estimate it intuitively as2 ctH ≈ cH2/6D = H2/2`t = Hτt/2, which27

is � H and thus ≫ `t. That characteristic time/path acts in essence as a trunca-28

tion for the heavy tail of p1st(ct) in (A.19). We thus seek the mean 〈ct〉F (H) of this29

truncated PDF: pH(ct) ≈ p1st(ct) if ct < ctH , and 0 otherwise. That mean path can30

be estimated as 〈ct〉F (H) =
∫∞

0
ct pH(ct)dct ≈ π−1/2

∫ ctH
0

ct (ct/`t)
−3/2 dct/`t, ignoring31

the exponential “build-up” term. This leads to 〈ct〉F (H) ≈ (`t/
√
π) [
√
x ]

ctH/`t
x=0 /(1/2),32

where ctH/`t = (1/2)(H/`t)
2, which is indeed ≫ 1 since H/`t is already � 1 in the33

diffusion limit. Therefore, 〈ct〉F (H) ≈
√

2/π H, irrespective of the other length-scale in34

the problem, namely, `t that, in turn, is determined by τ and g (along with H). In spite35

of all the approximations, even the prefactor,
√

2/π ≈ 0.8, is not far from the proper36

hemispherical average of (µ + µ0), which is unity (hemispherical averages of µ0 and µ37

contribute each 1/2).38

2In solid-state physics, 2tH = H2/c`t is known as the Thouless dwell time [41].
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In summary, continuous-time random walk theory explains why 〈ct〉F ∝ (and even1

≈)H for optically thick clouds, irrespective of τ and g.2

B Verification of Mean Path Invariance for Diffuse3

Propagation Through Plane-Parallel Slabs4

In §5 we noted that a remarkable invariance property expressed in (24) was recently5

uncovered for the mean path length 〈ct〉(all)
F that corresponds to isotropic irradiance6

uniformly distributed over every boundary point of the uniform but arbitrarily-shaped7

optical medium M, as well as directionally-integrating sensors covering the boundary8

∂M . What is truly remarkable about the result is that it holds independently of the9

opacity. It can even be void of scattering particles, and all trajectories are ballistic. If10

not, then their density is immaterial, as is their phase function, as long as their is no11

absorption (i.e., conservative scattering, SSA is unity).12

What makes the fact that 〈ct〉(all)
F is invariably four times the volume V of M divided13

by its surface S relevant to our study is that, by definition, “reflected” light comes14

from the illuminated surfaces of the medium [42]. So, in this case, all the light is15

reflected, even if it originated on the opposite side of the medium. A key element of the16

present study is that the mean path length for light reflected from a plane-parallel slab17

is proportional to its geometrical thickness H. What is V/S, if not a generalization of18

H (actually H/2) to arbitrary cloud geometry?19

We noted in (25) that for a plane-parallel slab, 〈ct〉(all)
F is a weighted sum of the20

mean paths for reflected and transmitted light. However, we also noted that our present21

diffusion-theoretical estimates of 〈ct〉R for the reflected light, which for the optically22

thick media amenable to the diffusion approximation are the most heavily weighted,23

fall short of the expected 2H from the invariance rule, even after the required angular24

integration (hemispherical averages of µ0 and, as needed, µ are 1/2).25

Here, we revisit some previous work [43, 44] on path length statistics for both re-26

flected and transmitted light in the diffusion limit. However, in contrast with App. A,27

isotropic illumination is used rather than a collimated incoming beam, which is consis-28

tent with the set-up for the invariant mean path length result in (24).29

B.1 Reflection30

Davis et al. [43] formulated the concept of “off-beam,” or “multiple-scattering,” or31

“wide-field-of-view” lidar as a novel tool for cloud remote sensing, specifically targeting32

H and τc.33

One goal is to obtain τc without requiring absolute radiometric calibration nor loss34

of sensitivity at large optical thickness. The loss of sensitivity to τc can be clearly seen,35

e.g., in the well-known two-steam/diffusion expression for the albedo of a plane-parallel36

cloud:37

R(τt) =
τt

2χ+ τt

, (B.1)

where τt = H/`t = (1−g)τc is the scaled optical thickness and χ is the so-called “extrap-38

olation scale” expressed in units of the transport mean-free-path `t = 1/(1− g)σ, which39
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was used extensively in §A.4 on the approach to 〈ct〉R via random walk statistics rather1

than PDEs and numerical simulation (generally with Monte Carlo techniques). The2

numerical value of χ is determined by comparison with a more accurate representation3

of the transport problem at hand.4

Primarily with the inference of H in mind, the authors used the simplest possible5

model for the ratio 〈ct〉R/H based on isotropic illumination in the diffusion limit that6

comes hand-in-hand with the simple expression for R in (B.1). They show that7

〈ct〉R/H = (2χ)[1 + CR(τt/2χ)], (B.2)

where CR(x) = (x+ 3/2)/2x(x+ 1).8

B.2 Transmission9

For other purposes, such as predicting the waveform from cloud-to-ground lightning10

flashes as observed from space through an optically thick cloud, Davis and Marshak [44]11

did the same as in [43], but for transmitted light, thus obtaining a simple expression for12

the ratio 〈ct〉T/H based on isotropic illumination:13

〈ct〉T/H = (τt/2)[1 + CT (τt/2χ)], (B.3)

where CT (x) = (4x+ 3)/2x(x+ 1).14

B.3 Reflection & Transmission15

Detailed derivations of all of the above expressions follow the same steps as laid out in16

Appendix A, and can be found in the review paper by Davis, Polonsky, and Marshak17

[24] on diffusion of solar and laser radiation in plane-parallel media, as an idealized18

model for optically thick stratiform clouds. Apart from neglecting the ∂F/∂ct term in19

(A.4) to be in the framework of bone fide diffusion theory, the only differences are:20

• no source terms in the continuity (A.3) or constituent (A.4) equations;21

• instead the boundary/initial conditions in (A.5) and (A.6) become respectively22

J(ct, 0) + 3χF (ct, 0) = 4δ(ct) and J(ct,H)− 3χF (ct,H) = 0.23

Therein is introduced the numerical extrapolation length factor χ as a control on the24

mixing of J(ct, z) and F (ct, z) = −(`t/3)∂J/∂z in the Robin/3rd-type BCs of the simple25

Helmoltz ODE to solve (after Laplace transformations): [(d/dz)2 − a2] Ĵ = 0 with a2 =26

3k/`t = 3(1− g)σk, and BCs [1± χ`td/dz] Ĵ
∣∣∣
z=0(−),H(+)

= 4, 0.27

Collecting all the above expressions pulled from [43, 44], or [24], and recalling that28

T (τt) = 1 − R(τt) in the absence of absorption, we can compute 〈ct〉(all)
F in (25). Light29

diffusion theory predicts that (25) adds up to 3χH. This yields the expected result,30

〈ct〉(all)
F = 2H, if χ = 2/3, which is the standard “Eddington” choice.31

The left panel of Fig. B.1 displays the logs of all four of the quantities in (25) as32

functions of log10 τt, with τt = 1/10 to 100, when χ = 2/3 and H = 1. Note that33

diffusion theory does not apply in principle to media with τt . unity, but the validity of34

26



the expressions can be extended into that optically thin regime by varying the Eddington1

factor χ, in the limit of vanishingly small τt it increases from 2/3 to 4/3 (but not in this2

Figure). The right panel shows the transmitted and reflected contributions to 〈ct〉(all)
F3

in (25), with their asymptotic values.4
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Figure B.1: Left: log10 of 4 quantities in (25) versus log10 τt. Right: “T” & “R” terms.
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J. Riédi, C. Vanbauce, Toward new inferences about cloud structures from multidi-2

rectional measurements in the oxygen A-band: Middle-of-cloud pressure and cloud3

geometrical thickness from POLDER-3/PARASOL, Journal of Applied Meteorol-4

ogy and Climatology 49 (2010) 2492–2507.5

[26] S. Bakan, H. Quenzel, Path length distributions of photons scattered in turbid6
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