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1 » Vlasov-Poisson equation

Vlasov equation plays an important role in the modeling of plasma physics, it is a
non-linear transport in (x,v) of a density distribution f = f(t,x,v); coupled
with Poisson equation for estimate electric field £ = E(t, x):
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Example of filamentation process in a solution

High order methods are needed in phase space (x, v) to study filamentation.

2 » Simplified model

We study the stability problem on a simplifty model:

ovu + ad,u = 0. (%)

We discretize in space with WENO method [1], and we test various Runge-Kutta
methods for the time integrator. We apply von Neumann analysis on space
discretization to study amplification factor as a curve in complex plane C.

= linearized W = WENO

e Von Neumann analysis usually used on linear
method: first studies on stability of WENO method
2], and CFL estimate [3] have been done on
linearized WENO.

e We can try to apply von Neumann analysis to the
full non-linearized WENO method. WENO method

then we can compute
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Amplification factor of WENO
method (linearized or not)

IS weakly non-linear
amplification factor.

We define stability domain of an explicit Runge-Kutta method RK(s,n) as:
Dism) = {2 € C: |pim(2)| < 1}

with s the number of stages, n the order and p(, ) the stability function of
RK(s,n).

3 » Automatic CFL estimate

It is possible to interpret CFL number between time integrator and space method
as the biggest homothety ratio that wedges all the amplification factor curve into
the stability domain of considered Runge-Kutta methods. We estimate
numerically the CFL o (respectively a*) for various couples RK(s,n) with WENO
(respectively linearized WENO). All CFL have been approved with a long time
simulation of ().
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I RK(3,3) 1.43 1.60
\j* RK(4,4) 1.73 1.68
RK(3,3) \H
/r RK(6,5) (DP5) 1.78 2.06
Geometric CFL interpretation RK(8,6) 253 2506
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4 » Exponential integrator on Vlasov-Poisson equation

We apply a Fourier transform in x direction of (VP):

0,f +ikvf + (Ed,f) =0 of the form O;u + Lu + N(u) = 0.

Next we use an exponential integrator (Duhamel formula):

8, (e f) + e (ED, f) = 0 of the form 0, (e u) + e N(u) = 0.

With this exponential form we can use a classical Runge-Kutta method, in this
context we call them Lawson methods or Integrating factor Runge-Kutta
methods [4].

Stability function of Lawson schemes can be expressed in terms of the
underlying Runge-Kutta method:

PLawson(s,n) (Z) — DP(s,n) (2)6

with L = 1kv € 1R so stability domain is the same. Our numerical CFL study, on
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simplified model, still works on Duhamel formulation of Vlasov-Poisson.

5 » The chosen one

We are interested in the numerical cost % of RK(s,n). To compare each time
iIntegrator, we compute total energy in Vlasov-Poisson system:

H(t):/Q/szfdvd:ch/QE2dw

which is preserved In time. We propose to select the best method by

considering:
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h(s,n) as a function of numerical cost % In log scale

6 » Conclusion

e Promising approach for Vlasov-Poisson simulation, less stages than splitting
strategy.

e Selected Runge-Kutta method is Dormand-Prince RK(6,5), this is an embedded
Runge-Kutta method (adaptative stepsize, relaxation of the CFL).

o Extension to multi-dimensional Vlasov-Poisson is easier than splitting strategy.

Simulation of the bump on tail test case :

0.9 [v]? 0.2

ft=0,z,v) = (\/ﬂe2 +

8204'52) (1+0.04-cos(0.3 - z))

Bump on tail simulation (¢ = 0 on the left, t = 20 on the right)
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