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Abstract

The emerging tumor-on-chip (ToC) approaches allow to address biomedical questions

out of reach with classical cell culture techniques: in biomimetic 3D hydrogels they par-

tially reconstitute ex vivo the complexity of the tumor microenvironment and the cellular

dynamics involving multiple cell types (cancer cells, immune cells, fibroblasts, etc.). How-

ever, a clear bottleneck is the extraction and interpretation of the rich biological informa-

tion contained, sometime hidden, in the cell co-culture videos. In this work, we develop

and apply novel video analysis algorithms to automatically measure the cytotoxic effects

on human cancer cells (lung and breast) induced either by doxorubicin chemotherapy

drug or by autologous tumor-infiltrating cytotoxic T lymphocytes (CTL). A live fluorescent

dye (red) is used to selectively pre-stain the cancer cells before co-cultures and a live

fluorescent reporter for caspase activity (green) is used to monitor apoptotic cell death.

The here described open-source computational method, named STAMP (spatiotemporal

apoptosis mapper), extracts the temporal kinetics and the spatial maps of cancer death,

by localizing and tracking cancer cells in the red channel, and by counting the red to

green transition signals, over 2–3 days. The robustness and versatility of the method is

demonstrated by its application to different cell models and co-culture combinations.

Noteworthy, this approach reveals the strong contribution of primary cancer-associated

fibroblasts (CAFs) to breast cancer chemo-resistance, proving to be a powerful strategy

to investigate intercellular cross-talks and drug resistance mechanisms. Moreover, we

defined a new parameter, the ‘potential of death induction’, which is computed in time and

in space to quantify the impact of dying cells on neighbor cells. We found that, contrary to

natural death, cancer death induced by chemotherapy or by CTL is transmissible, in that
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it promotes the death of nearby cancer cells, suggesting the release of diffusible factors

which amplify the initial cytotoxic stimulus.

Author summary

The tumor microenvironment (TME) is a very complex cellular ecosystem, composed of

the cancer cells (carrying the disease-causing genetic alterations), immune cells and other

stromal cells (such as fibroblasts), which contribute to disease progression and drug

responses. Here, we investigated these complex cellular dynamics by reconstituting the

tumor ecosystems in a very controlled manner within microfluidic devices, with multiple

cell populations, generating the so-called ‘tumors-on-chip’, which can be visualized by

video-microscopy and treated with anti-cancer drugs. The resulting videos contain a huge

amount of information that requires advanced computational approaches to be extracted.

In this work, we developed a novel method, named STAMP, that precisely measures the

kinetics and the spatial maps of cancer cell deaths within tumor-on-chip. Two case studies

are presented: breast cancer cells upon chemotherapy treatment (doxorubicin) and lung

cancer cells upon killing by specific immune cells (tumor-infiltrating cytotoxic T lympho-

cytes). We generated spatio-temporal maps on cancer death uncovering unsuspected rela-

tions between death events. This indicates that dying cancer cells might release soluble

factors that induce death of neighbor cancer cells. The STAMP method was suitable to

study the capacity of fibroblasts to promote resistance of cancer cells to chemotherapy.

Introduction

Recent advances in microfluidics and microfabrication inspired new solutions to reproduce ex
vivo 3D microarchitectures on chip imitating characteristics of organ functional units and of

tumor microenvironments (TME). This established the basis for the technology of organ-on-

chip (OoC) [1–3] and tumor-on-chip (ToC) [4–6]. The OoC/ToC technology offers numerous

advantages, such as tight control of biological and physicochemical conditions (cell types, 3D

biomimetic hydrogel, biochemical environment), real-time observation of cellular dynamics,

miniaturization (few cells and little reagent are needed), fast results, and lower costs. Despite

this huge potential, so far, the ToC use has been restrained to specialized laboratories and has

not reached the broad community of cancer researchers. Several promising applications in

basic and translational research, as well as in clinics, have been proposed, but their implemen-

tation clearly requires further developments. In particular, a major bottleneck of ToC technol-

ogy is the lack of standardized user-friendly computer tools to process, analyze, and fully

exploit the rich information generated by ToC imaging. The integration of advanced image

analysis tools and deep learning methods is expected to foster new powerful solutions to this

problem.

Our previous works demonstrated the feasibility of reconstituting on-chip various tumor

ecosystems, composed of up to four cell types (cancer cells, immune cells, cancer-associated

fibroblasts [CAF], and endothelial cells), which can be treated with various anti-cancer drugs,

including standard chemotherapies and targeted therapies (e.g., trastuzumab) [7–9]. The vid-

eos faithfully monitor the cancer death, in time and space, upon these various treatments. In

this work we develop, validate and apply a novel computational method, named STAMP, to
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automatically extract the temporal kinetics and the spatial maps of cancer death in ToC

cultures.

Thanks to their capacity to capture the cell death kinetics, image analysis approaches are

progressively replacing the historical end-point cytotoxic assays, such as the luminescent

detection of ATP [10] or the 51Cr-release assay [11]. For example, a recent work combines

live/dead cell markers and mathematical modeling to achieve a high-throughput analysis of

cell death kinetics with over 1800 bioactive compounds [12]. Similarly, image analysis algo-

rithms to measure cytotoxic or apoptotic index are commercially available (e.g., IncuCyte-

Essen BioScience or NanoLive). A real-time bio-imaging cytotoxic assay has been proposed

for 96-well microplate [13]. All these software tools have been conceived to work in 2D set-

tings, with focus on temporal information. Recently, an ingenious 96-well microfluidic plat-

form was developed to perform bio-imaging cytotoxic assay in 3D gels [14]. Since 3D

microfluidic devices allow to keep confined the cells as well as their released soluble factors,

they are appropriate to investigate the consequences of each death event on surrounding cells.

For this purpose, we focused on analysis strategies to extract not only the temporal informa-

tion, but also the spatial information of cancer death events. STAMP introduces the new con-

cept of ‘potential of death induction’, by calculating the induction that each death region

(defined as ‘object’) produces on the surrounding regions, with respect to their mutual dis-

tances and to their temporal relationships. The combination of measures both in time and in

space allowed us to conduct an original apoptosis analysis that accounts not only for the num-

ber of death events and their kinetics, but most shrewdly for their spatial distribution in the

3D confined environments of ToC cultures.

Results

Imaging strategy to monitor cancer death in tumor-on-chip (ToC) co-

cultures

In order to generate 3D tumor-on-chip (ToC) co-cultures, we used commercially available

microfluidic devices in plastic (AIM-Biotech), that were imaged under an inverted video-micro-

scope with controlled CO2 (5%) and temperature (37˚C) for 2–3 days. Cells were embedded in a

3D biomimetic collagen gel and injected in the 3.41 mm3 chamber of the microfluidic device.

For this work we generated mono-cultures (cancer cells only) and two kinds of bi-cultures

(cancer cells with immune cells, cancer cells with CAFs). For all experiments, a live fluorescent

dye (CellTrace, red) was used to selectively pre-stain the cancer cells before cultures on-chip, and

a live fluorescent reporter for caspase activity (CellEvent Caspase-3/7, green) was added to on-

chip culture medium to monitor apoptotic death. No matter the degree of co-culture complexity,

the cancer death detection was achieved by monitoring the red to green signal transitions.

Description of the STAMP method

A computational strategy was developed to automatically and objectively monitor, in time and

in space, the events of apoptotic cancer cell deaths, i.e. the red to green signal transitions (Fig

1, see Materials and Methods for details). The software was named STAMP, from Spatiotem-

poral apoptosis mapper.

Briefly, from multi-channel videos of ToC co-cultures, the cancer cells are localized and

tracked in the red channel. The dying cancer cells are identified in the green channel, after signal

normalization and thresholding. The death signal is modeled to vanish during T time frames.

Then, the spatiotemporal features of all death signals are integrated in a unique map, from which

a novel parameter, named potential of death induction (Pdeath), is computed over time.

PLOS COMPUTATIONAL BIOLOGY Automated cytotoxicity quantifications in tumor-on-chip

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008870 March 30, 2021 3 / 23

https://doi.org/10.1371/journal.pcbi.1008870


Several output measurements were extracted and used for the following analysis. First, the

apoptotic rate, i.e. the percentage of cancer cells dying within a certain TLAG time interval (4 to

10 h, in this study), calculated using the number of cells at the beginning of each time interval

as starting reference. Second, the overall survival, i.e. the percentage of cancer cells alive over

time, which is calculated using the number of cells at the beginning of the experiment as start-

ing reference and therefore takes into account both cell death and proliferation. Third, the spa-

tiotemporal map of death events, integrating the information of when and where all deaths

occur. Fourth, the potential of death induction (Pdeath) within a ~T time over the entire field of

view and experimental time, measuring the capacity of dying cells to promote the death of

nearby living cells in the 3D experimental setting.

Application to quantify chemotherapy-mediated cytotoxicity in breast-

cancer-on-chip cultures

First, we applied the STAMP method to analyze the response of a standard cell model, the tri-

ple-negative breast cancer MDA-MB-231 cells, to a standard chemotherapy drug, doxorubicin

(Fig 2 and S1 and S2 Movies). To achieve a moderate killing, we chose a doxorubicin

Fig 1. Description of the STAMP method. From multi-channel videos of ToC co-cultures, the cancer cells (pre-stained in red) are localized and tracked in the red

channel. The dying cancer cells (becoming green because of the caspase reporter) are identified in the green channel, after signal normalization and thresholding. The

method monitors cancer cell deaths both in time and in space. The death signal is modeled to vanish during T time frames. Then, the spatiotemporal features of all death

signals are integrated in a unique map, from which a parameter, named potential of death induction (Pdeath), is computed over time (see Materials and Methods for

details).

https://doi.org/10.1371/journal.pcbi.1008870.g001
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Fig 2. Chemotherapy-mediated cytotoxicity in breast-cancer-on-chip cultures. A. Experimental design: breast cancer MDA-MB-231 cells are embedded in a

collagen matrix in the central chamber of the chip; cells are live-imaged in transmission channel and fluorescence channels (red and green) every hour for 72 h,

without or with doxorubicin (1 μM). B. Representative images of MDA-MB-231 cells after 1 h, 24 h and 48 h of culture on-chip, without drug (uppers panels)

or with doxorubicin (lowers panels). Red arrows indicate living cells, whereas green arrows point at apoptotic cells. Scale bar, 100 μm. C. Time-course

quantifications of the apoptosis rate, calculated in 10 h-time-intervals, showing the comparison between manual counts (black rounds) and automatic counts

PLOS COMPUTATIONAL BIOLOGY Automated cytotoxicity quantifications in tumor-on-chip
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concentration of 1 μM, which is slightly lower than the IC50 of doxorubicin for MDA-MB-231

cells (2.8 μM), that we previously measured in standard 2D dishes.

In order to benchmark the accuracy of the automated method, we compared the values

obtained by the algorithm with those obtained by manual counting. Manual and automated

counting of the apoptosis rate reached numbers in very similar ranges (Fig 2C). Even if the

numbers were not identical for all time points, the curve trends were very similar. We observed

that the algorithm had a tendency to underestimate the apoptotic cells at early time-points.

This might be due to the fact that the green channel threshold, that is used to detect apoptotic

events (Fig 1), is automatically determined over the 72 h. Early, weak signals may be lost

because under the threshold. Conversely, a human operator cannot discriminate between

weak and strong green emissions and therefore may assign apoptotic events to any green emis-

sion increase. Importantly, we could reach a much higher (10-fold) time resolution for auto-

mated measurements (every hour) than for manual measurements (every 10 hours).

Therefore, STAMP is a bona fide automated method to measure apoptosis rate.

In control MDA-MB-231 cells without drug, the basal apoptosis rate in 10 h-time-intervals

(TLAG = 10 h) fluctuated around 5% during the experiment time (72 h), meaning that roughly

5% of the cells died every 10 h (Fig 2C, left). In doxorubicin-treated cells, the death rate

remained at basal level during the first 20 h of treatment, then after 20 h of doxorubicin expo-

sure the death rate increased up to more than 10% (Fig 2C, right). Therefore, the time-resolved

STAMP analysis revealed that the speed of cytotoxic response to doxorubicin increases with

the time in this 3D on-chip setting.

Application to quantify T-cell mediated cytotoxicity in lung-cancer-on-

chip cultures

Next, we challenged the STAMP method with a more complex situation in which a non-small

cell lung cancer (NSCLC) cell line (IGR-Pub) was co-cultured with an autologous CTL clone

(P62) that was isolated from tumor-infiltrating lymphocytes (TIL) and selected to recognize

and kill the cognate target [15] (Fig 3 and S3 and S4 Movies). To achieve a moderate killing,

we chose a 1:1 effector (CTL) to target (cancer) cell (E:T) ratio.

The algorithm could accurately distinguish the prestained cancer cells from the unstained T

cells, and again all the values obtained by the algorithm were very similar to those obtained by

manual counting (Fig 3C).

The basal apoptosis rate of IGR-Pub cells in 10 h-time-intervals (TLAG = 10 h) was very low

(around 2%) during the experiment time (48 h). The presence of the T cells immediately

induced a significant death rate (around 10%); after 30 h of co-cultures the apoptosis rate dra-

matically increased (up to 30%). Interestingly, similarly to what observed for cytotoxic

response to doxorubicin (Fig 2C, right), the speed of cytotoxic response to CTL appears to

increase with the time as well (Fig 3C, right).

We further characterized, in a separate experiment, the real-time dependency of T-cell

mediated cytotoxicity on T-cell density by using different E:T ratios with a better time resolu-

tion (TLAG = 4 h) (Fig 4). At low T-cell density, 1:10 E:T ratio, the apoptosis rate was not differ-

ent from the control without T cells. A mild killing started to appear at 1:2 E:T ratio, but only

at 1:1 ratio, an efficient killing could be detected (Fig 4A). Interestingly, there was not a linear

(red squares, TLAG = 10 h), without (left) or with (right) doxorubicin. The means +/- SEM of 3 measurements on 3 view fields from the same experiment were

calculated automatically with STAMP every hour and manually every 10 hours. For statistical analysis, the measurements for each of the two conditions

(manual and automated) were assembled regardless of the time variable. The non-parametric Mann-Whitney test was applied, since the data did not pass the

Shapiro-Wilk normality test, and the difference resulted not significant.

https://doi.org/10.1371/journal.pcbi.1008870.g002
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proportionality between density and killing capacity of T cells, suggesting threshold effects.

Again, the death rate increased with the time of co-cultures, despite the fact that after 2 days

on chip the T cell viability was reduced; as assessed from the videos by manual counting, dur-

ing the 2-day experiment time 19.7 ± 3.1% of T cells showed green fluorescence, indication of

apoptotic death.

Consistently, the overall survival curves of cancer cells, which takes into account the balance

between cell death and cell proliferation (the on-chip IGR-Pub doubling time being approxi-

mately 5 days), showed a detectable T-cell mediated killing only for the 1:2 and 1:1 ratios (Fig

4B), with a near 80% and 40% overall survival respectively, after 48-h co-cultures.

Cancer-associated fibroblasts promote chemo-resistance in breast-cancer-

on-chip

Having established that STAMP is accurate to monitor cancer death within co-cultures of can-

cer and T cells, we moved to bi-cultures of cancer cells and CAFs. CAFs are a major compo-

nent of the stroma which is crucial for tumor progression; in NSCLC tumor-stroma ratio

could be used as prognostic factor for survival [16]. Since it is well established that CAFs con-

tribute to chemo-resistance in various cancer types [17–22], we assessed the capacity of ToC to

recapitulate ex vivo the CAF impact on doxorubicin resistance by co-culturing primary breast

CAFs [8,23] with the breast cancer MDA-MB-231 cells (S5 and S6 Movies). The addition of

CAFs (1,6 CAF:cancer cell ratio) slightly increased the basal MDA-MB-231 apoptosis rate.

Interestingly, when CAFs were added, the doxorubicin-dependent apoptosis of MDA-MB-231

cells was completely impaired, indicating a protective role of CAF against chemotherapy (Fig

5). These results indicate that ToC technology and STAMP quantifications will be very valu-

able to study the mechanisms underlying stroma contribution to cancer progression and to

drug resistance.

Spatiotemporal analysis of cytotoxicity death reveals the release of pro-

apoptotic signals

In addition to the temporal kinetics, the STAMP method allows to extract the localization of

dying cells, to build cumulative spatial maps of time-integrated death events, and to compute a

potential of death induction (Pdeath) that quantifies the capability of dying cells to promote the

death of nearby cells (see Materials and Methods for mathematical details and S7 Movie for a

representative STAMP output video). Of note, since the window size for the calculation of the

Pdeath is 283 μm x 283 μm, a ‘nearby’ cell would be a cell within this window.

The Pdeath (see Eq (11)) combines in a unique parameter both spatial and temporal death

induction effects. On one hand, the spatial distribution of regions with death events (dense or

sparse) contributes to the final value of Pdeath thanks to the dependency on the inverse of the

mutual distances. On the other hand, the average value of the cumulative map MC, that takes

Fig 3. T-cell mediated cytotoxicity in lung-cancer-on-chip cultures. A. Experimental design: the lung cancer IGR-Pub cells are embedded in a

collagen matrix in the central chamber of the chip, alone or together with autologous CTLs (P62 clone) at 1:1 effector to target cell (E:T) ratio;

cells are live-imaged in transmission channel and fluorescence channels (red and green) every hour for 48 h. B. Representative images of

IGR-Pub cells after 1 h, 24 h and 48 h of culture on-chip, alone (uppers panels) or with autologous T cells (lowers panels). Red arrows indicate

living cells, whereas green arrows point at apoptotic cells. Blue arrows point at CTLs. Scale bar, 100 μm. C. Time-course quantifications of the

apoptosis rate, calculated in 10 h-time-intervals, showing the comparison between manual counts (black rounds) and automatic counts (red

squares, TLAG = 10 h), without (left) or with (right) T cells. The means +/- SEM of 3 measurements on 3 view fields from the same experiment

were calculated automatically with STAMP every hour and manually every 10 hours. For statistical analysis, the measurements for each of the

two conditions (manual and automated) were assembled regardless of the time variable. The non-parametric Mann-Whitney test was applied,

since the data did not pass the Shapiro-Wilk normality test, and the difference resulted not significant.

https://doi.org/10.1371/journal.pcbi.1008870.g003
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into account the effect of the death wake in the temporal window ~T , contributes to Pdeath
thanks to the direct dependence on MC calculated for all paired death regions. In S1 Fig, we

provide a simulated example for the Pdeath calculation, to qualitatively explain how this param-

eter integrates both spatial and temporal properties.

Fig 4. Real-time dependency of T-cell mediated cytotoxicity on T cell density. IGR-Pub lung cancer cells were co-cultured on-chip with autologous T cells at

indicated E:T ratios. A. Time-course quantifications of the apoptosis rate, calculated in 4 h-time-intervals (TLAG = 4 h), for a total duration of 48 h. B. Survival curves of

cancer cells within the ToC at 1-hr time resolution. For each ti the % of surviving cells, calculated with respect to the initial number of living cells, is the average of 3

hours, centered on ti, to smoothen the fluctuations. The graphs show the means of 3 measurements on 3 view fields from the same experiment (+/- SEM). For statistical

analysis, the measurements for each of the 4 conditions were assembled regardless of the time variable (n = 36 per condition). The different E:T ratio conditions were

compared to the control condition of cancer cells only. In panel A, the data passed the Shapiro-Wilk normality test, therefore the unpaired t test was applied. In panel B,

the data did not pass the Shapiro-Wilk normality test, therefore the non-parametric Mann-Whitney test was applied. ���� indicates p<0.0001, �� indicates p<0.001, �

indicates p<0.05 and ns indicates not significant.

https://doi.org/10.1371/journal.pcbi.1008870.g004
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We computed Pdeath for the videos of both breast MDA-MB-231 and lung IGR-Pub cells

(Figs 6 and S2). In basal conditions, without drug or T cells, Pdeath is low for both cell types

(< 0.1–0.2 x10-3) and globally stable over the experimental time (2–3 days), meaning that nat-

urally dying cancer cells do not have an impact on viability of nearby cells. When cytotoxic

death of MDA-MB-231 cells is induced with doxorubicin, Pdeath gradually increases up to 3–4

folds during the first 2 days, and remains high during the 3rd day, meaning that doxorubicin-

dependent cytotoxic death actually promotes the death of nearby cells. Similarly, when death

of IGR-Pub cells was induced by autologous CTL, Pdeath is higher than the control without T

cells from the start of co-cultures, and further increases during the 2-day experimental time,

suggesting that T-cell-dependent cytotoxic death promotes the death of nearby cells as well.

When MDA-MB-231 cells are co-cultured with CAFs, the Pdeath remains low without and with

doxorubicin (Fig 6C), providing another evidence of the CAF-dependent chemo-resistance.

Pdeath increase does not simply result from the increase of death numbers over time, but it

depends also on the death positions, as shown by the simulations reported in S3 Fig. Indeed,

an artificial video, with the same rate of death events as a real video (in this case, MDA-MB-

231 cells treated with 1 μM doxorubicin), but with a spatially random distribution which main-

tains approximatively the relative death object distances as the real video, displays a computed

Pdeath increase much lower than the one measured for the real video. Moreover, when artificial

videos with the same rate of death events but different spatial distribution (random versus

clustered) are compared, the computed Pdeath is much higher for the clustered deaths than for

the random deaths, but in both cases it does not increase over time.

Therefore, the real Pdeath kinetics depend on both temporal and spatial features, and suggest

the possibility that, contrary to naturally dying cancer cells, the cells that enter into apoptosis

triggered by chemotherapy or T cells, send pro-apoptotic signals to neighbor cells, initiating a

chain of death that amplifies the initial cytotoxic effect.

Fig 5. Cancer-associated fibroblasts promote chemo-resistance in breast-cancer-on-chip. MDA-MB-231 cancer cells were co-cultured on-chip +/- cancer-associated

fibroblasts (CAFs) and +/- doxorubicin (1μM) treatment. Final CAF:cancer ratio was 1:6. The graph shows the time-course quantifications of the apoptosis rate,

calculated in 4 h-time-intervals (TLAG = 4 h), for a total duration of 68 h. The graphs show the means of 3 measurements on 3 view fields from the same experiment (+/-

SEM). The data illustrating the MDA-MB-231 without CAF conditions come from the same videos analyzed for Fig 2 but with different time-interval resolution. For

statistical analysis, the measurements for each of the 4 conditions were assembled regardless of the time variable (n = 51 per condition). The different CAF/drug

conditions were compared to the MDA-MB-231 control condition. The data passed the Shapiro-Wilk normality test, therefore the unpaired t test was applied. ��

indicates p<0.001, � indicates p<0.05 and ns indicates not significant.

https://doi.org/10.1371/journal.pcbi.1008870.g005
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Fig 6. The Potential of death induction (Pdeath) of cancer cells increases over time upon cytotoxic death, but not upon natural death. A.

Representative Pdeath analysis on one video of breast cancer MDA-MB-231 cells cultured within ToC without (left, natural death) or with

1 μM doxorubicin (right, cytotoxic death). B. Representative Pdeath analysis on one video of NSCLC IGR-Pub cells cultured within ToC alone

(left, natural death) or together with autologous CTL (P62 clone) (right, cytotoxic death). C. Representative Pdeath analysis on one video of

breast cancer MDA-MB-231 cells co-cultured with CAFs within ToC, without (left) or with 1 μM doxorubicin (right). More video analyses on

additional view fields are shown in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1008870.g006
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Discussion

The STAMP method

We report here a new method, STAMP, which extracts the temporal kinetics and the spatial

maps of cancer death events within ToC co-cultures. The robustness and versatility of the

method is demonstrated by its successful application to different cell models (breast and lung

cancers), co-culture combinations (cancer cell alone, or together with T cells or CAFs), and

experimental time-lapse acquisitions (frequency and duration). In principle, the STAMP

method could be used to measure the death of other cells types within ToC, such as immune

cells or fibroblasts, by selectively pre-staining one of these populations. However, some adjust-

ments will be required. First, the time acquisition rate needs to be adapted to the motility of

the specific cell type; for example, T-cell tracking would require a temporal resolution much

higher than cancer cells, with time intervals less than 1 min [24]. Second, the STAMP code

needs to be adapted to different cell morphologies; for example, the cell radius parameter must

be revised.

Moreover, the STAMP image analysis method might be useful for many other cellular con-

texts and biological questions, beyond the ToC technology. This adaptability to multiple exper-

imental conditions is possible thanks to the integration within the STAMP software of three

modular parameters.

First, the TLAG mentioned in step 6-iii and used in Eq (4) (see Materials and Methods).

TLAG is the temporal window used to measure the average number of apoptotic events Nap(t,
TLAG) and the average number of living cells Navg (t, TLAG), allowing to compute the percent-

age of apoptosis events. TLAG should be set depending on the time frame image acquisition fre-

quency and on the desired time resolution of the investigated phenomenon. For example, the

acquisition frequency being every 1 h in this study, the choice of TLAG value is bounded below.

However, TLAG values larger than acquisition frequencies were more appropriate to avoid spu-

rious fluctuations due to uncontrollable changes affecting the measurements (e.g., abrupt

change in illumination). Conversely, TLAG is also bounded above by the necessity to avoid flat-

tening dynamic phenomena. We set TLAG to 10 h for Figs 2 and 3 whose purpose was the com-

pare global accuracies, and to 4 h for Fig 4 whose purpose was to compare kinetics.

Second, the parameter r, included in the morphological operator C
B
E (Eq (7)). The dimen-

sion of r impacts on the death wake construction. In particular, starting from a circular object

of radius rtc the effect of the application of the operator in Eq (7) is to restrict the object radius

of a quantity equal to r. Hence, by indicating with t0 the time at which the cell tc dies and with

t a generic time frame such that t> t0, the radius vanishes according to the formula

rtcðtÞ ¼ max ð0; rtcðt0Þ � r � ðt � t0ÞÞ

By setting r as one third of rtc the equation can be re-written as

rtc tð Þ ¼ maxð0; rtc t0ð Þ �
1

3
rtc t0ð Þ � t � t0ð Þ ¼

¼ max 0; rtcðt0Þ 1 �
1

3
t � t0ð Þ

� �� �

¼ max 0; rtc t0ð Þ 1 �
1

3
Dt

� ��

where it can be noted that for at least three hours (Δt = 3) the wake exists.

Third, the parameter ~T , in computation of MC (Eq (9)) and of Pdeath (Eq (11)). ~T is the

time window over which the aggregation of deaths and their wake were computed by means of

the definition of the cumulative map MC (Eq (9)). Then, for each t 2 f1; ::T � ~Tg, the poten-

tial of death induction Pdeathðt; ~TÞ simultaneously measured the spatial and temporal death
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induction effects at time t. The value of ~T has a key role in the quantification of death induc-

tion: a too small ~T value results in the under-detection of genuine death induction effects,

while a too large ~T value causes a misleading flattening effect.

In this study, we set ~T ¼ 16 h for both breast and lung cancer cells, based on the mathemat-

ical investigation of an induction interval that was associated to each cell and computed as fol-

lows. Let us consider a tumor cell tc centered in (xtc(t), ytc(t)) with radius rtc(t) at the time of its

death, t ¼ Tdeath
tc . We assume that from its beginning at t ¼ Tdeath

tc , the apoptosis of the cell tc
induces some deaths and these deaths cause others and so on, by creating a chain of death
started from the cell tc. We constructed this chain by involving deaths that occurred in a circu-

lar zone of radius equals to 10�rtc(t), centered in (xtc(t), ytc(t)), at a temporal distance from each

other equals to TLAG. The total duration of the chain of death defines the induction interval
related to the cell tc. The distributions of the duration of the induction intervals of cells from

16 videos from 2 experiments (S4 Fig), show that vast majority of induction intervals is below

16 h, meaning that ~T ¼ 16 permits to capture the vast majority of chain of death events.

The biological implications

Among the various types of cell death [25], this work specifically investigates the programmed

apoptosis which involves the activation of the cascade of caspase enzymes. Both cytotoxic sti-

muli we used are known to promote apoptosis of cancer cells. Doxorubicin, which acts by

causing irremediable DNA damages in dividing cells, has been shown to induce apoptosis on

breast cancer cell lines in vitro [26], as well in breast cancer patients in vivo [27]. The CTL

clone (P62) used in this work kills autologous cells (IGR-Pub) at least in part via Apo2L/

TRAIL-dependent pathway [15].

By using novel mathematical (potential of death) and computational (STAMP software)

strategies, we achieved an original spatiotemporal analysis of apoptotic cancer death in the 3D

confined environments of ToC cultures. Surprisingly, contrary to natural death, both doxoru-

bicin-dependent and T-cell-dependent cytotoxicity toward target cells promoted the death of

nearby cancer cells, indicating that dying cancer cells might release soluble pro-apoptotic sig-

naling factors and trigger a chain of death that amplifies the initial cytotoxic stimulus.

Apoptotic cells do not passively empty their cellular content but they actively release various

signals, named as damage-associated molecular-pattern (DAMP) molecules [28]. First, they

release ‘find-me’ and ‘eat-me’ signals (such ATP and UTP nucleotides, the CX3CL1 chemo-

kine, and the bioactive lipid metabolites phosphatidylserine (PS), lysophosphatidylcholine

(LysoPC) and sphingosine-1-phosphate (S1P)), which enhance the attraction of phagocytes to

dying cells and their consequent phagocytic clearance (a process called efferocytosis) [29]. Sec-

ond, they send metabolite ‘good-bye’ signals with biological functions (such as AMP, GMP,

creatine, spermidine, glycerol-3-phosphate (G3P), ATP), which act as tissue messengers alter-

ing gene expression of healthy nearby cells, for example suppressing inflammation [30]. Third,

in the case of apoptotic cancer cells, they secrete cytokines/chemokines (such as IL-8, CCL2,

CXCL1, CXCL2, CXCL5) that act as ‘immunomodulatory’ signals, promoting for example the

polarization of monocytes to M2-like cells with consequent establishment of a tumor-support-

ive immune microenvironment [31]. Fourth, our findings indicate that apoptotic cancer cells

release unknown ‘pro-apoptotic’ signals that directly induce death of neighboring cells, with-

out intervention of phagocytic macrophages, absent in our co-culture models. Identification of

these compounds warrants more work. We estimated that the diffusion times of potential sig-

naling molecules of various sizes (e.g., 100–500 Da for nucleotides, lipid metabolites, organic

compounds or 10–20 kDa for cytokines), between cells with a distance in the 20–100 micron

range, within the collagen gel (2.3 mg/mL), are very low, less than 10 minutes. Therefore, these
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diffusion times are fully compatible with the hypothesis of release of pro-apoptotic compounds

from dying cells, triggering chains of deaths that last for 2–14 hours (S4 Fig). Importantly, the

biology of development teaches us that many secreted factors control apoptotic death events,

spatially and temporally, to build multicellular organisms [32]. Pro-apoptotic compound can-

didates might be searched among these already known killers. However, at this stage we cannot

exclude the implication of other processes in shaping the cytotoxic spatiotemporal behaviors.

For example, the 20 h latency in the response to doxorubicin (Fig 2C, right) might be caused

by the necessity for cancer cells to enter DNA replication phase or by the time-dependent

intracellular accumulation of this drug [33]. In lung cancer-T cell co-cultures, the late burst of

death after 30 h of co-culture (Fig 3C, right) might be due at least in part to a further activation

of T cells upon co-culture with the target cells.

The phenomenon of ’death transmissibility’ or ‘death contagiousness’ we unveiled in our ex
vivo experimental setting might be linked to the well-known bystander effects observed in clin-

ics [34]. Radiation-induced or chemotherapy-induced or immunotherapy-induced bystander

effects refer to the induction of biological effects in cells that are not directly treated by radia-

tion or chemotherapy or immunotherapy, but are in close proximity to cells that are. In our

specific cases, all cancer cells are treated with doxorubicin or co-cultured with CTL, but the

cells for which the treatments are effective have an indirect, unexpected, effect on the nearby

cells.

In conclusion, this interdisciplinary work, by combining cancer biology, microfluidic engi-

neering, mathematical modeling and computational analysis, created an innovative and

needed image analysis method (STAMP), confirmed the power of ToC technology and shed a

new light on the complexity of tumor ecosystem, emphasizing the intricacy of its non-autono-

mous cell behaviors.

Materials and methods

Cell cultures

The MDA-MB-231 cell line, from triple negative breast cancer, was cultured in high-glucose

DMEM (GE Healthcare, #SH30081.01) supplemented with 10% fetal bovine serum (Biosera),

1% Penicillin/Streptomycin (Gibco), 1% glutamine (Gibco). The IGR-Pub lung adenocarci-

noma cells and the autologous T cells P62 were generated from the same patient in one of our

laboratories at Institut Gustave Roussy [15]. The IGR-Pub cells were cultured in DMEM F12

(GIBCO) supplemented with 10% fetal bovine serum (Biosera), 1% of Ultroser G (Pall), 1% of

Sodium Pyruvate (Gibco) and 1% Penicillin/Streptomycin (GIBCO). P62 T cells were cultured

in RPMI-1640 (GE Healthcare) supplemented with 10% human AB serum (Institut Jacques

Boy, Reims, France), rIL-2 (20 U/ml, Gibco), 1% of Sodium Pyruvate (Gibco) and 0,1% Peni-

cillin/Streptomycin (Gibco). Primary cancer-associated fibroblasts (CAFs) were isolated and

cultured as previously reported [8,23]. All cell lines were periodically tested to exclude myco-

plasma contamination using a qPCR-based method (VenorGem Classic, BioValley, #11–

1250). The MDA-MB-231 cell line was authenticated by short tandem repeat (STR) profiling

(GenePrint 10 system, Promega, #B9510). Doxorubicin was purchased from Teva pharmaceu-

ticals (200 mg/100 ml).

Tumor-on-chip preparation

The microfluidic devices were purchased from AIM-Biotech (#DAX-1). Cells were seeded in

the central chamber of the DAX-1 chips embedded in a matrix composed of type I rat tail col-

lagen (Thermofisher, #A1048301) at the final concentration of 2.3 mg/ml. Cancer cells were

seeded in the gel at a final density of 2x106 cells/ml. Autologous T cells were added at final
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densities of 0.2x106 to 2x106 cells/ml in order to obtain different ratios (from 10:1 to 1:1)

between cancer and T cells. Primary CAFs were added at CAF:cancer 1:6 ratio. The microflui-

dic devices were incubated for 30 min at 37˚C in a humidified chamber to allow the polymeri-

zation of the collagen solution; afterwards, 120 μl of culture medium were added in each

lateral chamber. MDA-MB-231 cells in chip were cultured in the same medium used for dish

2D culture, whereas the IGR-Pub/P62 co-cultures were in T-cell medium, supplemented with

rIL-2 (10 U/ml, GIBCO, #PHC0027). After the addition of the medium, the microfluidic

devices were kept for 1 h in the incubator before transfer to the incubating chamber of the

microscope for imaging.

Cell staining

Cancer cells were labeled with CellTrace Yellow before seeding in the gel (Thermofisher,

#C34567), for the detection in the so-called “red channel” of fluorescence: cells were trypsi-

nized, and then resuspended at 1x106 cells/ml density in PBS with 5 μM CellTraceYellow; after

incubation in cell medium for 5 min at 37˚C, cells were centrifuged at 300g for 5 min, resus-

pended in PBS and added to the rat-tail collagen solution.

CellEvent Caspase-3/7 Green Detection Reagent (Thermofisher, #C10423) was added to

the medium in the lateral chamber of the chip in order to visualize in the “green channel” the

cells undergoing apoptosis.

Live cell imaging

Time-lapse images were acquired with an inverted Leica DMi8 equipped with a Retiga R6

camera and Lumencor SOLA SE 365 light engine, using a 5X objective. The filter cubes used

were TXRed (excitation filter 560/40 nm, emission filter 630/75 nm, dichroic mirror 585 nm)

and GFP (excitation filter 470/40 nm, emission filter 525/50 nm, dichroic mirror 495 nm). The

exposure times were 20 ms for the bright field and 700 ms for the fluorescent channels. The

video-microscope was equipped with a motorized stage for multi-positioning acquisition, a

CO2 and temperature-controlled (37˚C) incubator chamber (S5A Fig). The presence of a satu-

rating humidity in the microscope chamber is crucial for optimal cell viability, therefore dis-

tilled water was added in the plastic wells of the DAX-1 chips and humidified small sponges

were added in the chip surroundings (S5B Fig). Since in the AIM-Biotech devices the gas-per-

meability is provided by the underside sealing layer, before inserting them on the microscope

stage, we placed them on a standard microscope glass slides and we lifted them using magnet

holders (1 mm thick), in order to create an air circulating space underneath the devices, for

CO2 and temperature control (S5C and S5D Fig). The acquisition of images in transmission

and fluorescent channels was performed every hour for a total duration of 48 h to 72 h.

The STAMP method

A STAMP software was developed under MATLAB environment and can be downloaded

using the following link: https://cloudstore.bee.uniroma2.it/index.php/s/LEpHYTsPnDj4Ajt

(password: STAMP2021).

The STAMP method was applied on each video V, with spatial dimensions D1 (number of

row) and D2 (number of columns) and with a total duration of T frames (from 48 to 72

depending on experiments, with a frame rate of 1 h).

Let us consider (x,y,t)2{1,..,D1}×{1,..D2}×{1,..T} the tuple indicating the position of the

coordinates (x,y) occupied by an arbitrary pixel on the video frame of V acquired at time t,
where t = 1,. . .,T. Then, V(x,y,t) indicates the video sequence with the specific coordinates (x,
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y) at time t. We can refer to the video under examination indistinctly with V or V(x,y,t) to vary

of (x,y,t)2{1,..,D1}×{1,..D2}×{1,..T}.

1. Cell localization and tracking. Tumor cells (stained in red) were located and tracked in

the red channel video of V by adapting Cell-Hunter software to the frame rate of 1 h

[7,35,36]. Localization was performed by preliminary binarizing the red channel video of V
by Otsu approach [37]. Then, Cell-Hunter was applied. Shortly, in each binarized video

frame, the software implements the Circular Hough Transform (CHT) [38] which automat-

ically locates tumor cells, assumed as circular-shaped objects of radius imposed, providing

an accurate estimate of individual cell radii. Then cell trajectories/tracks were constructed

by linking positions between consecutive frames according to an optimized procedure

based on the concept of cell proximity and optimal assignment problem [39].

2. ROI extraction around each tumor cell. After tracking all the tumor cells along the video

V, we isolated a square region of interest (ROI) 31 pixels x 31 pixels (about 20μm), centered

around each tumor cell position along each track. In this way, we constructed a square sec-

tion tube around each track. This procedure allowed us to confine the next analysis in the

neighborhood of the tumor cells and to limit confounding factors in apoptosis analysis due

to surrounding cells.

3. Background and foreground identification. Each ROI visualizes the cell (the foreground)

and the background culture environment. To separate them, we segmented the tumor cells

in the ROI by CHT approach and determined a neighborhood circular region around the

cell by a given radius, here set to double the average radius of tumor cells.

4. Time-dependent green emission signal extraction. In order to extract the green emission

signals of tumor cells (i.e. tumor apoptosis events), we transposed from the red to the green

channel video the tracked positions of tumor cells (i.e. the centers of the cell regions auto-

matically detected by Cell-Hunter software).

Let us denote as (xtc(t), ytc(t))2{1,..,D1}×{1,..D2} the pixel representing the position of the

arbitrary tumor cell tc at time-frame t in the red and then green channel of video V, with t2F�
{1,..,T}, where F ¼ ftstarttc ; . . . ; tendtc g is the set of time-frames for which the cell track constructed

by Cell-Hunter exists. We can define:

• IGREEN(x,y,t), the intensity value of the green emission signal referred to the pixel in position

(x,y) on the video frame acquired at time t in the green channel, i.e., the green channel video

sequence of V(x,y,t), with (x,y,t)2{1,..,D1}×{1,..D2}×{1,..,T},

• R(xtc(t),ytc(t)), the squared ROI centered on the position (xtc(t),ytc(t)) of the tumor cell tc at

time t, t2F,

• RB(xtc(t),ytc(t)) and RF(xtc(t),ytc(t)), the circular background and the circular foreground

regions within the ROI R, respectively, both centered on the position of the same tumor cell

tc at the same time t, t2F.

Moreover, if �RðxtcðtÞ; ytcðtÞÞ is a generic ROI centered on (xtc(t),ytc(t)), i.e., �R ¼ R _ RB_ RF
for t2F, and (x,y) is a pixel on the video frame acquired at time t in the green channel belong-

ing to the ROI �RðxtcðtÞ; ytcðtÞÞ, we can write (x,y)� �RðxtcðtÞ; ytcðtÞÞ:
Then, in order to capture the information content of the green emission in the tumor cell tc

at a time t2F, we proceed as follows
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4-i Compute the average green emission signal in the foreground region RF(xtc(t),ytc(t)),
expressed by

mRFtc ðtÞ ¼
1

AreaðRFðxtcðtÞ; ytcðtÞÞÞ

X

ðx;yÞ2RFðxtcðtÞ;ytcðtÞÞ

IGREENðx; y; tÞ: ð1Þ

4-ii Compute the average green emission signal in the local background RB(xtc(t),ytc(t)),
that is

mRBtc ðtÞ ¼
1

AreaðRBðxtcðtÞ; ytcðtÞÞÞ

X

ðx;yÞ2RBðxtcðtÞ;ytcðtÞÞ

IGREENðx; y; tÞ: ð2Þ

4-iii Perform background subtraction and normalization correction in order to avoid mis-

leading surrounding green emission, thus obtaining μtc(t) as follows

mtcðtÞ ¼
m
RF
tc ðtÞ � m

RB
tc ðtÞ

m
RB
tc ðtÞ

� min
t̂2F

m
RF
tc ðt̂Þ � m

RB
tc ðt̂Þ

m
RB
tc ðt̂Þ

� �

: ð3Þ

By computing μtc(t) for each t2F, the time-depending signal μtc referred to the track of the

tumor cell tc is produced. The higher the signal is the higher is the green emission of the cell

region and the probability to have an apoptosis event.

5. Detection of the beginning of the apoptosis events. Let assume N, the total number of

detected tumor cells along the entire duration of the video V. From the previous step, N
time-dependent signals μtc were computed, one for each of tumor cells denoted as tc. We

estimated a threshold value th as the optimal inter-variance separation value of all the N sig-

nals μtc (Otsu approach) [37]. For each tumor cell tc, we considered that the death by apo-

ptosis occurs if μtc> th and that apoptosis begins at the time-frame at which the μC exceeds

the value th for the first time, Tdeath
tc ¼ mintft 2 FjmtcðtÞ > thg.

6. Counting the apoptotic events. In order to count the apoptotic events, we have to move

from a tumor cell-centric view, used in depicting Steps 2–5, to a time-centric view. So, for

each t2{1,. . .,T}, we followed the approach below:

6-i Compute the number of apoptosis at time-frame t, Nap(t, TLAG), which sum up the num-

ber of apoptosis events found in the range [t−TLAG, t] as the cumulative number of tracks of

tumor cells tc whose signal μtc satisfies the condition μtc(t)>th, for all t2[t−TLAG, t].

6-ii Compute the number of tracks of living cells at time-frame t, Ntrack(t), as the number of

tracks at time t that did not yet go into apoptosis, i.e. the number of tracks whose μtc at time t
satisfies the condition μtc(t)<th.

6-iii Compute the average number of tracks found in a temporal lag of TLAG frames, Navg(t,
TLAG), as the average of Ntrack(t) in the range [t−TLAG, t]. The value of TLAG was defined in the

order of a few hours (2–10 h) according to the desired temporal resolution and heuristic inves-

tigation (see Discussion).

6-iv Compute the percentage of apoptotic events in TLAG frames, O(t, TLAG), as

Oðt;TLAGÞ ¼
Napðt;TLAGÞ

Navgðt;TLAGÞ
� 100% ð4Þ

6-v Compute the average of surviving cells in each time point Navg2(t, t±1), between 3 time

points centered on t, as the average of Ntrack(t) in the range t±1 = [t−1−t+1].
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6-vi Compute the percentage of surviving cells, OS(t, t±1) (also referred as “overall sur-

vival”), as

OSðt; t�1Þ ¼
Navg2ðt; t�1Þ

Navg2ðt; t1 � t3Þ
� 100% ð5Þ

Where t1 and t3 are the first and third time points.

7. Construction of spatiotemporal maps of apoptotic events. By using the information of

death of the single tumor cell tc (namely, position, (xtc(t),ytc(t)) for each t2F and timing of

the apoptotic event, Tdeath
tc ), we constructed a spatiotemporal map of death by the following

procedure:

7-i An artificial video with the same spatial and temporal dimensions of video V, (D1, D2, T,

respectively), was generated such that, for each tumor cell tc, at frame t ¼ Tdeath
tc , the cell region,

assumed as a circle and centered in the position ðxtcðTdeath
tc Þ; ytcðT

death
tc ÞÞ, was labelled with a

white pixels, i.e., with pixel intensity values equal to 1. It allowed to artificially reproduce the

cell region of each tumor cell tc at its time of death, Tdeath
tc .

Let us indicate with MD(x,y,t) the artificial video sequence, with (x,y,t)2{1,..,D1}×{1,..

D2}×{1,..T}.

7-ii By assuming a spatiotemporal signaling of death produced by cells going into apoptosis,

we constructed a new artificial video, M(x,y,t), according to an iterative approach, expressed

by:

Mðx; y; tÞ ¼ C
B
EðMðx; y; t � 1ÞÞ þMDðx; y; tÞ; ð6Þ

with (x,y,t)2{1,..,D1}×{1,..D2}×{2,..T}, and M(x,y,1) = MD(x,y,1).

The operator C
B
E denotes the gray-scale morphological erosion operator [36], with structure

element B, defined as:

C
B
EððMðx; y; tÞÞ≜ min

ðx0;y0Þ2B
fMðxþ x0; yþ y0; tÞg: ð7Þ

It is the extended binary erosion operator defined on gray-scale intensity matrices. The

global effect of theC
B
E operator is to reduce the area occupied by each white objects in the pro-

cessed frame thus implementing a vanishing signaling that we called a death wake (see death

signaling modeling step in Fig 1).

To apply the operator C
B
E, in the present work, we used a circular structure element with

radius r, i.e., Br defined as:

Br≜fðx; yÞ j x2 þ y2 � rg ð8Þ

where the parameter r is defined as one third of the estimated average cell radius in the experi-

ment. The choice of r depends on the need to simulate a wake with a reasonable duration with

respect to the timing of the experiments (see Discussion).

The constructed artificial video M(x,y,t) takes into account the death wakes of cells enabling

to cumulate the death signaling in a given region.

7-iii We combined in a unique index both spatial and temporal death influence. First, given

a temporal windowing of size ~T , we designed the cumulative map MC defined as:

MCðx; y; t; ~TÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xtþ~T

t0¼t

ðMðx; y; t0ÞÞ2;

v
u
u
t ð9Þ
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with ðx; y; tÞ 2 f1; ::;D1g � f1; ::D2g � f1; ::T � ~Tg. The cumulative map allows to aggregate

the death events and their wakes over a given temporal interval equal to ~T , whose value needs

to be optimized (see Discussion). Then, to account for spatial influence (i.e., to discriminate

randomly versus deterministically spatially distributed deaths) we defined a potential of death
induction (S1 Fig).

Let us consider the temporal map ðx; y; t; ~TÞ. Since cell death is a sparse phenomenon, most

part of the map MC is null. Hence, we can define a generic object s(t) at frame t as a region of

the map MC at time t that is not connected with other non-null region, and indicate with S(t)
the set of not connected objects,

SðtÞ≜fsiðtÞjsiðtÞ \ sjðtÞ ¼ O=; i 6¼ jg: ð10Þ

Connection is defined under the 8-connectivity criterion [36]. Under these assumptions,

for each t 2 f1; ::T � ~Tg, we defined the potential of death induction as follow:

Pdeathðt; ~TÞ≜
1

2jSðtÞj

XjSðtÞj

i¼1

XjSðtÞj

j¼iþ1

meanðx;yÞ2siðtÞMCðx; y; t; ~TÞ þmeanðx;yÞ2sjðtÞMCðx; y; t; ~TÞ
�dðsiðtÞ; sjðtÞÞ

; i 6¼ jð11Þ

where |S(t)| denotes the number of elements in S and �dðsiðtÞ; sjðtÞÞ denotes any distance opera-

tor between objects si(t) and sj(t), normalized by the maximum dimension of the video frame.

In this work, we chose the Euclidean distance between the geometrical center of the two

objects, i.e., the average coordinates of their boundary.

In the computation of the Pdeath, Eq (11) is repeatedly applied to a sliding detection window

of dimension 283 μm x 283 μm to cover the entire view field. In this way, not only the death

signal is spatially confined, but also the statistical relevance of the calculus is increased at each

time point. We define as ‘nearby cells’ those falling in this 283 μm x 283 μm window.

Statistical analysis

Statistical analysis and graphs were made with GraphPad Prism software (v8). We first per-

formed a Shapiro-Wilk normality test. When the conditions passed the normality test, we

applied a parametric t test. If not, we performed the non-parametric Mann-Whitney test. Sta-

tistical threshold for significance was set for p-values inferior to 0.05.

Supporting information

S1 Fig. Simulated example for the calculation of the Potential of death induction (Pdeath).

Three simulated deaths occur at 2 h, 9 h, and 11 h (first video sequence). The death signals are

modeled by the construction of a signal wake (second video sequence), the duration of which

depends on the dimension of the original death region (first video sequence). Then, a cumula-

tive map MCðx; y; t; ~TÞ is constructed by combining both spatial and temporal death influence

(third video sequence) using ~T ¼ 6. Finally, Pdeath is computed over time for the entire image

area (bottom graph). Until t = 8 h, there is only one death, so there is no induction phenome-

non. An additional death occurs at t = 9 h thus producing an induction phenomenon and an

increase in potential. A third death occurs at t = 11 h thus producing a further increase in the

potential value. Potential is also influenced by the absolute value of the map MC and by the dis-

tances of the different zones of death. From t = 12 h there is no more memory of the first

death, hence only the last two death zones remain whose distance is larger than that of the two

death zones involved in t = 9 h and 11 h, thus causing a decrease in potential.

(PNG)
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S2 Fig. Addition Pdeath analyses supporting Fig 6.

(PNG)

S3 Fig. Simulations showing the dependency of the Potential of death induction (Pdeath) on

temporal and spatial features. A. Experimental data showing the spatial localization of death

events at different time points (above), and the corresponding Pdeath measurements (below) on

a video of MDA-MB-231 cells treated with 1 μM doxorubicin (the same reported in Fig 6A).

B. Simulation of a video with the same death events as in A, but with a spatially random distri-

bution, maintaining approximately the relative object distances. Note that the corresponding

Pdeath measurements are increasing much less than in A, indicating that the Pdeath increase

does not simply result from the increase of death numbers over time, but it depends also on

death positions. C. Simulation of a video with a constant number of death events with a spa-

tially random distribution. Note that the corresponding Pdeath measurements are constant over

time. D. Simulation of a video with a constant number of death events with a clustered distri-

bution. Note that the corresponding Pdeath measurements are constant over time, but higher

than in C.

(PNG)

S4 Fig. Rationale for the calculation of the optimal ~T . ~T is the time window over which the

aggregation of deaths and their wake were computed by means of the definition of the cumula-

tive map MC (Eq (9)). The induction intervals, defined as the duration of the chain of death,

were computed for each cell, from 16 videos from 2 experiments, one experiment with the

lung cancer cell line IGR-Pub (A) and one experiment with the breast cancer cell line

MDA-MB-231 (B). The distributions of induction show that vast majority of induction inter-

vals is below 16 h, meaning that ~T ¼ 16 h is an optimal choice.

(PNG)

S5 Fig. Images showing the microscope setup for ToC cultures. A. Global view of the Leica

DMi8 used to perform the live imaging experiments. The white arrow points at the heating

black chamber, in which is maintained a temperature of 37˚C. The temperature is set and

maintained by a temperature controller (blue arrow). The CO2 controller (black arrow) mixes

CO2 with atmospheric air. Through a tubing system, the air with the controlled CO2 at 5%,

after passing through a bottle half filled with water for humidification (red arrow), is injected

in the microscope chamber. B. View of the chip placed in the microscope chamber. The white

arrow indicates the lid of the chamber in which is injected the humidified air with CO2 at 5%.

The red arrow points at the chip to be imaged. Humidified sponges contribute to humidify the

chamber and to minimize micro-evaporation phenomena (black arrows). C. Picture from the

side of the chip filled with medium. At each ‘anchor’ point, three magnets (red arrows) are

used to lift and attach the chip to the glass slide (black arrow). D. Top view of an empty chip

with magnets. Two piles composed of three magnets (red arrows) are applied in the central

part of the chip and glass slide.

(PNG)

S1 Movie. Breast cancer MDA-MB-231 cells alone.

(AVI)

S2 Movie. Breast cancer MDA-MB-231 cells with doxorubicin.

(AVI)

S3 Movie. Lung cancer IGR-Pub cells alone.

(AVI)
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S4 Movie. Lung cancer IGR-Pub cells with autologous T cells (ratio 1 to1).

(AVI)

S5 Movie. Breast cancer MDA-MB-231 cells with CAFs.

(AVI)

S6 Movie. Breast cancer MDA-MB-231 cells with CAFs with doxorubicin.

(AVI)

S7 Movie. Representative STAMP output video.

(AVI)
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