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Abstract
We prove the finiteness of the total scattering cross-section for ion-atom collisions with an initial
channel given by a simple eigenvalue of the internal Hamiltonian describing the neutral cluster, i.e. the
atom. Under more restrictive assumptions, we show that some effective interaction in Born-Oppeheimer
approximation is precisely of order O(|z|™*) in the distance between the mass centers of two clusters.
We then extract the leading term of the scattering cross-section in the Born-Oppenheimer limit.

I Introduction

The scattering process for multi-particle Coulomb systems with initial two-cluster data has been studied
in physics litterature, both experimentally and theoretically. In particular, in the collision of a charged
cluster with a neutral one ( ion-atom scattering), it is believed that if the neutral sub-system has no static
dipole moment, the total cross-section would be is finite. In [ES], Enss-Simon put forward as open questions
to prove the finiteness of total cross-sections in this case and to give explicit bounds for them. In [CT],
Combes-Tips proved the finiteness and analyticity of forward scattering amplitude in electron-atom scatter-
ing. They indicated technical difficulties to extend their results to ion-atom collision and suggested to use
Born-Oppenheimer approximation to study the problem.

Recall that it is well-known in two-body scattering theory (see, for example, [Y] ) that if the potential V'
on R? has the decay

V(z)| <C<z>" VreR

with p > 2, the total cross-section for the scattering process described by ( —A, —A + V(z)) is finite, while
if V(z) ~ & as |z| — oo for some C # 0, the total cross-section is infinite. In the scattering theory
for multi-particle Coulomb systems with initial two-cluster data, the intercluster interaction between the
two clusters decays like O(|z|~!) in general case, like O(|z|~2) if one of the clusters is neutral ( ion-atom
scattering ) and like O(|z|~?) if the both clusters are neutral ( atom-atom scattering ). Here z € R® denotes
the relative position of the mass-centers of the two clusters. See Appendix A for more precise statements and
the calculus. For ion-atom scattering, the known results in two-body case suggest that without additional
assumption, the total cross-section would be infinite. In this paper, we prove the finiteness of total cross-
sections under the assumption that the atom is in the fundamental state which implies, by the symmetry
of Coulomb potentials, that there is no static dipole moment for the atom. The quantitive study of the
total cross-sections in ion-atom scattering is interesting and non-trivial, since the leading terms in various



known asymptotics for total cross-sections in N-body scattering ( [I1], [I2], [RW], [W]) are not defined in the
present case. In this paper, we only study the asymptotics in the Born-Oppenheimer approximation, where
the semiclassical parameter, h, is proportional to the ratio of the electonic to nuclear mass. Due to the use
of cluster coordinates which is needed to describe many-particle scattering processes, the potentials become
h-dependent. The perturbation by the shift term [(y) = O(h?|y|) is singular and the picture of eigenvalues
of the electronic Hamiltonian P,.(z,h) defined below changes drastically from h = 0 to h # 0. Our result
in Born-Oppenheimer approximation is based on the semiclassical resolvent estimates of [KMW2] which is
established in terms of the weight in 2 —I(y), the relative position between the two nucleus. We then use the
adiabatic approximation for total cross-sections and prove that the eigenvalue of the electronic Hamiltonian
P.(z,h) converges sufficiently fast as  — oo so that we can extract the leading term in the limit A — 0.

The plan of this paper is as follows. In Section II we introduce the basic notation which will be used
throughout the paper and we recall a few basic facts from N-body scattering theory. We introduce the
hypotheses which are relevant for this paper and we state our main results, i.e. Theorem II.2 on the
existence of the total scattering cross-section and Theorem II1.3, which gives the semiclassical asymptotics
of this cross-section. In Section III we prove Theorem I1.2. The essential point are certain weighted >
estimates which show that upon localization in energy in the relevant spectral range the effective interaction
decays faster than O(]z|~2), which is the obvious norm estimate on an ion-atom interaction. In Section IV,
we establish the relevant semiclassical estimates on potentials and resolvents, using methods from [KMW?2]
and give a sketch of the proof of Theorem I1.3. In Appendix A we include the relevant expansions for the
Coulomb interaction in ion-atom scattering which are used throughout the paper.

II Notation, assumptions and main results

The Hamiltonian of a diatomic molecule with N electrons can be written in the form

2 N+2

S Lo D7
Ppohys = ; 2mk( Azk) + ]2 2( Amj) + o — 2] (IL.1)
-+ i]\fz“ ﬂ + Z €l€;
k=1 j=3 [ = ] 2<I<GSN+2 |21 — 1

where z, € R, k = 1,2, denote the position of the two nuclei with mass my, and charge Z; > 0 and z; € R?,
j=3,...,N +2, denote the position of N electrons with mass 1 and charge e; € R (in the physical case
charges are equal and negative). Planck’s constant is taken to be 1 in this formula. The result on the
existence of total cross-sections remains valid for any Coulomb system.

We are interested in scattering processes where the incoming scattering channel is a two-cluster one,
while the out-going scattering channel can be arbitrary. Let a = (a1, a2) be a two-cluster decomposition of
{1,...,N + 2}, i.e. a partition (a1, as) of the particle labels {1,...,N + 2}, where j € a;, for j = 1,2.
Adapted to this cluster decomposition, we choose so called clustered atomic coordinates (z,y) € R® x R3V:

1 1 1/2
ho= <2M1+2M2> » My =my +ap],a, = ar \ {k} , k=1,2, (11.2)
1
R, = i, mkxk+2xj Jk=1,2,
JjEay,
v = FBi-R, (IL.3)
Yj = a:j—a:k,jEG;c,k:l,Q, (114)
1 1
l(y) = EEyj_EZyj. (11_5)
J€Ea; JEay

Notice that Ry is the center of mass of the cluster ag, for £ = 1,2, and that z is the relative position of these
centers of mass. These coordinates are well adapted to describe two-cluster scattering of diatomic molecules



(see [KMW1], [KMW2]). After removing the molecular center of mass motion, the Hamiltonian Py, s may
be written in this system of coordinates as

P = —h?A, +P.(z;h), P.(z;h) = P2h) +1,(z;h), (11.6)
where the sub-Hamiltonian P?(h) is given by
P?(h) = P™ (h) + P™2(h), (IL7)
with

. 1 Zre; 1 ? ;
Pra= ¥ (gt ) - (S0) + i

j€al, j€aj, lLi€al, Iy = vil
1<j

and the inter-cluster interaction I, (z; h) by

Z1Z2 €Lej Z2€] Z1€]
I,(z;h . I1.8
(wih) = [ —1(y)] k;lyk—yﬁm—l ];, lyj + 2 —1(y) le— ) — il (IL8)
]ea
Finally, we set
P.(h) = —h*A, +P%h). (11.9)

P is considered as a self-adjoint operator in L?(R3(N+1:dxdy). Note that I(y) = O(h?|y|) and that the
study of the dependence on h of the spectra of P.(xz;h) is technical. In fact, even to prove the terme %

is uniformly ( w.r.t. h ) —A,-bounded, the authors of [KMW2] used the facts that z € R* and Z;Z, > 0.

For an arbitrary cluster decomposition ¢ = (¢1,...,cx) of {1,... ,N+2}, ie. cqU---Ue, = {1,... ,N+2}
and ¢; Neg = 0, for j # k, we can also choose adapted coordinates (z.,y.). We call P¢ the sub-Hamiltonian,
z. € R3*=1) the inter-cluster coordinates, y. the intra-cluster coordinates, and I.(zc,y.) the inter-cluster
interaction. By D, (resp. D,,) and by —A,, (resp. —A,, ), we denote —i times the gradient and the
Laplacian in the inter-cluster (resp. intra-cluster) coordinates. It is well known (see e.g. [DG]) that, for this
Schridinger operator P, the modified wave operators

Qry = s—tilgooeltpef“( Asctfo Ie(sDec 0 >ds+Ev)J,Y (IL.10)

exist for any scattering channel v = (¢, E,, ¢,), where ¢ is an arbitrary cluster decomposition, ¢, is an
eigenfunction of P¢ with eigenvalue E,: P°¢, = E,¢,, and where J, denotes the identification operator,
which is defined for any L?-function f of the variable z. by

(J'Yf)(mmyC) = f($0)¢v(y6) (IL.11)

Furthermore, the family of wave operators {Q4 ~,Vy} is asymptotically complete. It is equally well known
(see [Ra]) that, if a = (a1, a2) is a two-cluster decomposition with one neutral cluster (an atom), say ay, i.e.

Y e = -7, (IL.12)

then, for any channel a = (a, E,, ¢,) with E, outside the thresholds of P?, one can define the wave operators
without modifier, namely by

L, = s— lim eitpefit(fA“+E°‘)Ja. (I1.13)
’ t—+oo

In this case, Q1 4 = Q’i7aew(Dwa), where 1 is a real function. Therefore the result on asymptotic complete-
ness remains true if we replace Q4 , by Q) , when the latter exists. So we just set Q. = Qf _ if they



exist. For any two scattering channels v, 3, we then define the associated scattering operator from channel
v to channel § by

Sgy = Wy 30—, Tsy = Spy — 0y, (I1.14)

where dg, = 1 if v = 8 and 0 otherwise.

Let us now define the total scattering cross-sections in many-particle scattering. Since few is known
about the scattering amplitudes in many-body scattering theory (see [V] for results in this subject), we
define the total scattering cross-sections according to the philosophy of [ES]. For A > E,(h), we introduce
the magnitude of the momentum associated with the kinetic energy of the relative motion of the two clusters
in the scattering channel a via

na(Ah) == AV2(h),  Aa(h) == X — Eq(h). (I1.15)

For g € C§°(I,;C), I, =]E4(h); +oo[, and w € S%, we consider the wave packet

R*>z = g,(z) =gw-z) (I1.16)
where
~ 1 ith™ ng (u;h)v g(:u‘)
v) = e alV 22— dy.
) 2\/7r_h/m n (s )1 72

The normalization is chosen such that

lgllz2®) = |9l L2 R)-

Denoting by C the set of all channels, we want to apply, for § € C, Tsa to g (2)da(y; h). Since this function
does not belong to L? (]R3(N+1)) - it decays rapidly only in the direction defined by w - we regularize it by
multiplication with a function hg, € L*°(R?), depending only on the variable x — (w - x)w transversal to
the direction w of the incident wave packet g, (z), such that pointwisely

lim hp., = 1. (IL.17)

R—o0

For the purpose of this paper we shall specify this cut-off function to be a Gaussian, i.e. we take
hpw(z) = e (@ (@m)w)?/R (11.18)

Definition. For A € I, and w € S?, we shall say that the total cross-section o, (\,w) with the incoming
channel « exists at the energy A with the incident direction w, if the following limit is finite and well defined:

oa(\w) = lim lim Y (| Tsahrwgnudall’, (I1.19)

n—00 R—o0
6eC

where g, is defined as in (I1.16) with g replaced by gp:

gn(p) =0~ 2h((n = X)/n)

and h is any C§°(R)-function normalized by [ |h(p)|*dp = 1.

Recall that in [ES] and [W], the total cross-section is defined as distribution in p € I, by

“+o00
| oauwlg@P di = fim Y [Tsahnoguoal (11.20)
Ea(h) R—o0 §€C

for all g € C§°(I,;C). Since |gn(-)|* converges to d)(-), the Dirac measure at A, as n — oo, the definitions
(I1.19) and (I1.20) coincide if the distribution defined in (II.20) can be identified with a continuous function
in a neighbourhood of A, which is true in the case when one knows to prove the existence in the sense of



distributions ( see [RW, W] ). For physical background of this definition and its equivalence to the usual
one in two-body case, see [ES], [RW], [W], [Jec]. For some channels v, and some incident direction w, total
scattering cross-sections may not exist on any interval I (see [W]). Usually it is required that the interactions
decay quite rapidly to ensure their existence. In the present situation with Coulomb interactions, which a
priori do not decay sufficiently fast, we shall show the existence, i.e. finiteness, of o, only for some special
channel o describing ion-atom scattering, for all incident directions w € S2. The conditions on « are collected
in the following hypothesis.

Hypothesis 1. Let a = (a, E,, ¢o) be a channel with E, € o4isc(P®*) and cluster decomposition a = (aq, az)
such that each cluster contains a nucleus and such that ai is neutral (an atom), that is

Y e +Z1=0. (I1.21)
JjEal
Assume that
E, = Ea,l + Ea,g with Ea,j S O'disc(Paj) R _] = ].,2 R (1122)

where P% stands for the internal Hamiltonian of cluster a; and E, 1 (the eigenvalue of the neutral cluster)
is non-degenerate.

Remark I1.1. Write y = (y',y") for the electronic coordinates in the clusters ay,as and put

ba(¥) = a1(¥) da2(y”), VyeR?W, (11.23)
’U}lth Paj ¢a,j = Ea,j ¢a,j .

By the spherical symmetry of Coulomb potential and the non-degeneracy of E, 1, it can be deduced that
|a1 (—Y')| = |fa (¥')|. Therefore,

/RMU Yildan (y')Pdy’ =0,  Vj€ay.
Since a1 is neutral, an elementary calculus using the Taylor expansion of I, in y shows that
< I(, W) bas o >y= O(|2]73).
< -,- >, denotes the scalar product in LQ(]RgN;dy).

We denote by R(z;h) the resolvent of P(h) and recall that its boundary value R(A+i0;h) : L** — L%~
is well defined outside the set 7 of the thresholds and the eigenvalues of P(h) as an operator between the
weighted L? spaces, for any s > 1/2.

Our first main result concerns the existence of o, and gives a useful formula for it.

Theorem I1.2. Let a = (a, Eq(h), ¢o(h)) be a scattering channel satisfying Hypothesis 1. We set
F(z,w;h) = <R(z, h) Lea, Iaea> . Imz#£0, (I1.24)

where L
ealm,y) = et MMy (b,

Let T be the set of thresholds and eigenvalues of P. Then, for any energy A € I, \ T and any incident
direction w € S?, the limit
F(A+i0,w;h) = lim F(A+ie,w;h) (I1.25)
E—)0+

exists and defines a continuous function in X. The total scattering cross-section oo(\,w) exists for any
energy A € I, \ T and any incident direction w € S®> and one has the optical formula

1

Oa(Aw) = (R

ImF (A +i0,w; h) . (11.26)



Since I,e, does not belong to L?**, for some s > 1/2, this result is not trivial. Its proof - given in Section
IIT - depends crucially on the decay of some appropriate effective potentials, combined with phase space
analysis, i.e. an appropriate localization in the relative kinetic energy of the two clusters.

Next we are interested in the Born-Oppenheimer approximation (h — 0) of o,. We restrict ourselves to
the groundstate energy of P® and demand some stability property w.r.t. z and h.

Hypothesis 2. Let hg > 0 be small enough. Let E,(h), satisfying Hypthesis 1, be the bottom of the spectrum
of P*(h), 0 < h < hg. Let \g > E4(0). From (I1.7), we see that, for some § >0, \g—9 > E,(h), 0 < h < hg.
Let i (z; h) be the bottom of the spectrum of P.(x;h). We assume that for x in a neighborhood Oy, of the
non-compact set

{$€R3; )\1(.’E,0) S )\0},

A1 (z; h) is a simple eigenvalue and is the unique eigenvalue of P.(x; h) that tends to Eo(h) as |z| = oo, and
the unique eigenvalue of P.(x;h) that tends to A1 (z;0) as h — 0. Furthermore, we demand that

A(z;h) = Eo(h) as |z| — oo, uniformly w.r.t. h < hg, (T1.27)
Ar(z;h) = A(2;0) as h — 0, uniformly w.r.t. z € Oy, . (I1.28)

Note that there exists 5y > 0, such that, for hg small enough and 0 < h < hg,
{zeR; Ni(z;h) < Xo+6} C Oy, .

We also impose that for 0 < h < hy,

inf (o(Pe(x;h))\{/\l(a:;h)}) > Ao+ 209, (I1.29)

z€0x,

where a(P.(x; h)) denotes the spectrum of Pe(z; h).

For x € Oy,, let 1. (x; h) be a normalized eigenfunction of P, (z; h) associated to Ay (z; h). Asin [KMW2],
we can extend it to a smooth, normalized function ¢.(z;h) of x such that, for some §; > 0,

(Pe(z; h)de (w3 h) , @e(x;h)) > Ao+ 01, (I1.30)
for all 0 < h < hg and for all z in some compact neighborhood K of the complement of O,,, satisfying
K C {ZEGIRS;)\l(ZE;h) > /\o,OShSho}

We denote the orthogonal projection on the one-dimensional space generated by ¢.(x;h) in LQ(IRgN ) by
II(x, h). It induces a projection II(h) on L?(R¥N+1)). The orthogonal projection IIy(h) onto ¢q(h) (intro-
duced in Hypothesis 1) also induces a projection on L?(R¥N+1)) which we still denote by IIy(h). We then
define the adiabatic operator associated with the spectral projection II(h) by

PAP(h) := TI(h)PTI(h).

We denote by RAP (z; h) its resolvent and set II(h) = 1 — II(h) and IIy(h) = 1 — Iy (h).
We consider an energy range J C|E4(0); A\o[. Let ¢y be the Hamiltonian flow of the effective Hamiltonian
function

Heg (7,€) = |€]2 + A1 (2;0) — E,(0). (I1.31)

An energy A € R is non-trapping for Heg if, for all (z, ) belonging to the energy surface of Heg of energy A,
the point ¢ (z,£) goes to infinity as ¢ and —t go to +oo.

Hypothesis 3. Let J an open interval of R such that J is non-trapping for the effective Hamiltonian
function Heg, i.e. X is a non-trapping energy for Heg for all X € J.



Note that such an interval J is contained in I, \ 7, for h small enough. Thus Theorem II.2 holds on J.
In our context we need such a hypothesis to obtain a semiclassical estimate on the resolvent.

Under the previous hypotheses, we shall derive in Proposition IV.1 semiclassical estimates on R(A % 70)
and RAP(X £ i0), for A\ € J, using arguments developed in [KMW?2]. Finally we introduce the effective
potentials which govern the leading terms of o,. Denoting by C5 the electronic charge of as, that is

Cy = > e, (I1.32)
j€al
we define the function

Cliy) = (Co+ Z2) > ead -y, (I1.33)

lea)

where & = z/|z| and where - denotes the standard scalar product in R®. Physically, this function describes
the interaction of the dipoles formed by the electrons in cluster a; with the effective charge of cluster as.
Define

Ry (h) = (P*(W)TIo(h) — Ea(h)) ™' To(R). (I1.34)
The effective potential in the context of the Born-Oppenheimer approximation is given by
L (z) := M (2;0) — E4(0). (11.35)

While the intuitive effective term < I, (z;0)¢q(0), #¢(0) >, may decay exponentially, we shall prove that
L (z) is exactly of the order O(|z|~*). In fact, we prove in Lemma IV.2 that

Lt () — L ()| = O(|2|7?), as |z| = o0 (I1.36)

where

Ieff(w) = _2<Ra (O)HO (O)C(ﬁv y)¢a (0)7 1:[0 (O)O(i": y)¢a (0)>L2(R2N) |£L”|_4 ’ (11-37)

is everywhere negative if C'y + Z> # 0. It is essentially this fact which allows to extract the leading order of
the total scattering cross-section in equation (I1.39) below. Now we can state our second main result, which
gives the semiclassical asymptotics of o .

Theorem I1.3. Let a = (a, Eo(h), o (h)) be a scattering channel satisfying Hypothesis 1 and Hypothesis 2.
Let J be a real interval satisfying Hypothesis 3. Then we have

o\ w) = O(h™?3), (11.38)

locally uniformly w.r.t. X\ € J and w € S%. We set na(X;0) = (A — E,(0))"/? and we denote by H,, the
hyperplane orthogonal to w. Then there exists some eg > 0 such that, for either choice of effective potential,
i.e. for I =1Ieg and I = Iog, we have

1
a =4[ sin® | o——re [ 1 —2/3te II.
oa(Aw) /Hw sin <4hna()\;0) /R (u+ sw)ds) du + O(h ) (11.39)

locally uniformly w.r.t. X € J and w € S2. If ay is not neutral (i.e. the electronic charge Co of as satisfies
Cy # —7Z5), the leading term (I1.39) with I = I.g is exactly of order h=2/* and thus is oy .

Theorem I1.3 shows that the Born-Oppenheimer approximation correctly describes the asymptotics of
the total scattering cross-section in the situation considered in this paper, as expected in [CT].



IITI Existence of the total scattering cross-section

In this section we shall prove the existence of the total scattering cross-section as stated in Theorem II.2.
The parameter h plays no role in this section and will be set to 1. We shall assume throughout this section
that the initial channel « is associated to a two-cluster decomposition a = (a1, a2) with a; a neutral cluster,
that is, (I1.21) holds for a;. As a first step, we establish the following representation formula. Here we use
the function ug . = guhrw, where g, hgr, are defined in (I1.16) and (IL.18).

Lemma IIL.1. For g € C§°(14;C), I, :=]E4; +00[, one has

S Tsaunwdall® = 4n / (RO + i0) Ty bt (V) Tada g (V) dA (I11.1)
gec Ta
where
R (n.(}) o2 ina(N)z-0—B X, (02+62) 2
uR,w(A,x):§ —_— e'ne 122027001 /01 g(Aa 07 + En)db, (I11.2)

where 6, = 6 - w, the components 65,05 denote the directions orthogonal to w € S? and S3 denotes the half
sphere 6; > 0,6 € S2.

The proof is the same as in [RW, W] and is omitted here. Remark that the asymptotic completeness of
wave operators plays an essential role in the proof.

Writing 6/ = (65,63), setting B, g = {8’ € R*;]¢'| < R=(1=9/2} and using df = (1 — 6'*)~/2d#" on S,
we note that equation (III.2) implies

™

3/2 .
UR,u(/\,x) _ g <n01(/\)> / eina(/\)(11\/179’2+m -0 )67%/\0‘0 (1 _ 0!2)71/49()\ _ )\ael2)d01
B, r
+Oc(|RX[), (IIL3)

uniformly in z € R?. For |#'] < R~(1=9)/2 we change variables via 7 = VR ' and, considering separately the
regions |z| > R/? and |z| < R*/?, we observe that, for e sufficiently small,

(@)~ |e/ e NV IRE TR pina a1 | < O, (A)(1 + 72 R/,

Taylor expansion of the integrand in equation (III.3) combined with the evaluation of the Gaussian integral

_%)“’Wdﬁ' _ 471'
/Rze R

gives

Lemma IIL.2. For any € > 0, N € N there ezists C' > 0 such that

1

1
|up,w(z, A) — 3 <

1/2
W) g(N)em=NTw | < C(xy R ng (N7 (I11.4)

TN
uniformly in x € R*, R > 1 and ny(\) > ¢ > 0.
We shall now derive Theorem I1.2 as an easy consequence of

Theorem II1.8. Let x € C5°(R) be equal to 1 on [—8/2,6/2] with supp x C (—4d,8). Assuming Hypothesis
1, there exists § > 0 such that for any X € I, \ T and for u,v € L= (R3) with

X(—A; — A)u = u, X(—Az = A)v =w (IIL.5)
one has

(RO + i0)Lugatt, Lgav)| < Cyll(z) "ull=]I(x) "ol (I1L6)



where 0 < s < 1/2 and C; is independent of X in any compact subset of I, \ T and € €]0,1]. The weak limit

(RIA+10)I,pqu, [ypav) := 1561 (R(A +i€)Iadqu, Indav) (T11.7)

exists and defines a continuous function of X in I, \ T.

Proof of Theorem I1.2: It is well known that the map
I\ T) 3 A= ((2,9)) " RN +i0)((2,9)) "
is continuous for any s > 1/2. From Theorem III.3, we see that the function
F(A+i0,w) := (RO + i0)Typq e N7 T, ¢ e MNew) (I11.8)

is well defined and continuous for A € I, \ 7. Let ug,(\) be the function defined in Lemma III.1. Then
up,,(\) and €=M are [, _functions satisfying the condition (ITL.5) in Theorem IIT.3. Therefore, com-
bining Lemma II1.2 with the definition of f, and ug,()\), we find that for some 0 < s < 1/2

‘(R(/\ +i0)[aPatr,w(A), Ladatir,w(A)) — %F(A, w)‘
—s g(/\) N Tw
< 0o (une) - g Ao )|
S OMR75/2|na()‘)|7M7 (IIIQ)

for all M, |ny(A)| > ¢ > 0. This estimate proves that for any g € C§° (I, \ T), the limit

i, 3 ool
€

exists and is equal to

lg(M)I?
o ()
Now we replace g by ¢y, in the above formula and take the limit n — oo. Since F'(A 4 i0,w) is continuous in
A€ 1, \ T, we obtain from the definition of total cross section that o, (), w) exists and

dX

/ImF(/\ +i0,w)

1
Na(A)

oa(A,w) = ImF(A +i0,w) (I11.10)

for A€ I, \ T and w € S% O

The remaining part of this section is devoted to proving Theorem II1.3. This is divided into several steps
which shall be stated as distinct Lemmata. Here we are inspired by the weighted L? estimates and the phase
space decomposition in [CT].

Lemma II1.4. If u € L®(R3) satisfies x(—Az — X\o)u = u, with x as in Theorem IIL.3, then
(1= Xx(—As — X)) Lagau € L>*(RXNFD)
for any s < 3/2 and
(1= x(=As = Aa)) Tadattl |2 macv+1) < Co o [[(2) " ul| (IIL11)

for any s,s’ with s+ s' < 3/2.



Proof: Let I" be the set of all possible collisions between nuclei and electrons, described in the coordinates
(z,y). We choose a cut-off function ¥ € C5°(R*V+1) with 0 < ¥ < 1, which is equal to 1 in a small conic
neighborhood of I' and vanishes outside a slightly bigger conic neighborhood. Then

adau € L2 (RPNTDY and (1 — x(=A, — X)) Xladau € L2 (RENVHD), Vs >0

On the support of 1 — ¥, the interaction potential I, is smooth, and since the cluster a; is neutral, we have
forI, =(1—-x)L.

L(2,9)¢a = O(2]7%), 3:1a(2,y)da = O(2[7*)  in L**(R}N), Vs > 0.

Next we rewrite R }
(1 - X(_AI - )‘Oz)) (Ia¢au) = _[X(_Az - /\a)aIa](¢au)
The kernel of the commutator —[x(—A, — \y),14] is given by

K(l',x’) — ﬁ / (ia(x,y) _ L(a:’,y)) eig.(zfz’)x(gz —Aa)de
) I , 1 B
= (271’)3 /elh &(z—2a') /0 (2£ . aﬂ’fla) (ZL”I + t(:E _ a:'),y)dt XI(€2 _ /\a)df (11112)

An easy analysis shows that

X(—Az = Xa), L)(¢aw) = O(|z| ®)  in L»*(RIN),V¥s > 0.
This implies the first statement of the Lemma. The asserted norm estimate (III.11) is evident from the
above proof. O

Lemma IIL.5. Let ¢g be a normalized eigenfunction of P® : P*¢3 = Eg¢p with eigenvalue Eg < E,. Then

(Toha, d5)y € L**(R2) Vs < 1/2, (IT1.13)

and in the case £, = Eg we have the improved estimate

(TodasPa)y € L*5(R3) Vs < 3/2. (TT1.14)
Proof: We use an explicit computation to check the case F, = Eg. In this case, Hypothesis 1 implies
that
b5(Y) = ba,1(y1)ds,2(y2)
where
P ¢35 = Ea2¢p,2, lps.2l|l =1
Setting & = {37, we have modulo a term in L?3(R3), for any s < 3/2 and for |z| > 1,
1 . .
(Tatas d8)y = EE ((Cr + Z1)As3(2) — (Co + Z2)A1,(2)) (IIL.15)
where
Ci=> e, j=12
kea’;
and

Np@) = e / 7 Yo (1) (y)dy

I
kea’;

= ) e /53 Ykl ban )P ba2(y2)ds2(2)dy,  y = (y1,92)

I
kea’;
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Since C; = —Z, one has, modulo a term in L?*(R3), for any s < 3/2,
(Ldor b9y =~ (Co + 2) Av o (2)
Using Hypothesis 1 (see the remark following it), we see that
y' Z et - Yk|a,1 ()|
kEa),
is an odd function of y', where y' = (yg; k € a}). Thus its integral vanishes and Ay (&) = 0, V&, which

proves (II1.14). The proof of (II1.13) is similar. O

We shall now localize in energy using the spectral projections for P®. We set 26 := dist (E,,o(P%) \
{E,}) > 0 and denote by II; the spectral projection of P associated with E, and by II5,II5 the spectral
projections associated with the intervals | —oo, E, [ and |E,, co[. The projections IT; are regarded as operators
in L2(R*W™+1)_ Tt is then possible to estimate on the range of the spectral projections IIs, IT5 the resolvent
Ro(z) = (P, — 2z)~! of the Hamiltonian P, describing the free motion of the clusters, which was defined in
(I1.9). One finds

Lemma IIL.6. Let x € C5°(] — 4,6]) and u € L®(R2). For j = 2,3, R,(MILix(=A, — \,) are bounded
operators and we have the weighted estimate

1()* (2)* RaMWILx(—Ay = Aa)Lagau)]] < CJ[(a) ™ ul| =
for all s > 0 and for all s',s" satisfying s’ + s < 1/2.

Proof: Setting ¢ = I,¢,u, we have Ilxp = ZEﬁ<EQ (¥, ¢3)L2(ng)¢g, where {¢g} is an orthonormal set
of eigenfunctions of P® with eigenvalue E3 < E,. By definition of 4, if |¢2 — \,| < §, then

E+E3- A= - M +E;—E,

is invertible. Thus, using the support properties of x, the function gg(&,A) = x (€% — X\a) (2 + Eg — X)L is
bounded and smooth, for Ez as above. Furthermore

RaOX (A ATt = 3 (D At 65) 15 gy 5. (I1L.16)
Eg<E,

Using decay of ¢3 in the variable y one can apply Lemma IIL.5 with s = s’ + s” < 1/2 to get the asserted
estimate for j = 2. For j = 3, we have P{ := I3 P°Il; > (E, + 2J)II3. Applying the Fourier transformation
with respect to the x-variable, we see as above that

Ra(/\)X(_Ax - /\a)HS = (P; - Ax - /\)_1X(_Aac - /\a)HS (IH-17)

is well defined as a bounded operator on L?(R*™+1)_ Applying the method of commutators, one can verify
by induction that

’

w27 (P = s = )7 (= 20 = Xa)TIaty) = ()~

<
L(L2) —

for any s, s’ € R. Granted this, the estimate for j = 3 follows from the following weighted estimate on 1)

| @) Lgau

| < Cllullz=,

for any s > 0,s' < 1/2, which is an easy consequence of decay of ¢, in y and fall-off proportional to |z|~>
of ||Ia¢oz||y' 0

Piecing together the results of these Lemmata, we are now ready to give the

11



Proof of Theorem III.3: Let 6 > 0 be given as above and let A € I,,\J. We then decompose ¢ = I, ¢, u
into 4 pieces via

3
= i to=(1=x(D; =X, ¥ =Tx(=Ar =AY, j=1,2,3. (IT1.18)
=0

Similarly, for v € L®(R3), with u, v satisfying equation (IIL.5), we decompose ¢ := I, v := Z?:o ¢;. This
gives

3

(RO +ie)p, ¢) = Y (RN +ie)t;, r). (I11.19)

J k=0

For j = 0,1, we get from Lemma II1.4 and IIL5 that 1;,$; € L>»*(R*N+1D) Vs < 3/2. This gives for
j,k =0,1, using the weighted estimate for the resolvent,

(RO + i)y, o)l < Cli((,9)) b {2, 9))" Pl
< i) ull = [l (@) vl (II1.20)

for any s > 1/2, 0 < s’ < 3/2 — s. This estimate and those below are all uniform in € € [—1,0[U]0, 1]. In the
case j = 0,1, but k = 2,3, we decompose further using the resolvent equation

R(X\ +i€) = Ry(A + i€) — Ro(A +ie)I,R(\ + ie).
This gives

(RO A+ i)y, 600 < C (1) ;1) =" Ra(h — ie)dell + [1{(, 9)) 5l () ™+ Ra(A — ie) i)
Cull@) " ull= ()~ vll =, (Im.21)

ININ

for any s > 1/2, 0 < s’ < 3/2 — s. Here we have used the weighted estimate on the resolvent R(\ + ie) and
on ¢;, for j = 0,1, - as explained after equation (III.19) - to estimate the contribution of ¢; and we have
used Lemma IT1.6 to estimate the contribution of ¢y. Interchanging j, k we obtain the same estimates for
the other cross terms 7 = 2,3 and k£ =0, 1.

Finally, to treat the case j, k = 2,3, we iterate the resolvent equation once more:

R(A+ie)=R,(A+ie) — Ry(A+ie)[,Ry (A +ie) + Ro(A +ie)[,R(A + ie)[, R, (X + ie). (I11.22)
The first 2 terms on the rhs of this equation are easily handled by Lemma II1.6 and give

[(Ba (A +i€)ibj, dn)|
[(Ra(X + ie)T, Ra (A + i€);, o)

Cllz) = ull = (@)~ vll =, Vs’ < 1/2

<
< Oll@) " ullp= @)~ wll e, V' <1 (TT1.23)

For the third term on the rhs of equation II[.22 we obtain, again via Lemma III.6,

[(Ra(A +i€)Ia R(A + i€) L Ra (A + i€)1)j, d)| Cll¢a) ™ Ra (X + ie) [[[[{2) " Ra (X — i€) g

<
< Cl) " ull oo 12y~ vll e, (IT1.24)

for any s > 1/2, 0 < s’ < 3/2—s. Choosing s arbitrarily close to 1/2 and adding equations (I111.20), (III.21),
(I11.23) and (III.24) proves the uniform boundedness in Theorem IIL.3. To see the existence of the weak
limit, we use the same decompositions. The desired result follows from Lemma II1.5, Lemma III.6 and the
existence of the boudary values R(\ £ i0) as operator from L>* to L>~* for s > 1/2. O
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IV Born-Oppenheimer approximation of o,

This section is devoted to a sketch of the proof of Theorem I1.3. Within this section, we shall always assume
Hypotheses 1,2 and 3 and we reinsert the parameter h which is defined in (I1.2).

To study o, given by (I1.26), we need various approximations and estimates for the boundary value of
the resolvent and for the function I, e, which are collected in the following

Proposition IV.1. Let ' be the h-dependent set of all possible collisions (defined in A.5) and let x be an
h-dependent smooth function on R¥N*Y) | equal to one on some conic neighborhood of T, and equal to zero
on some bigger conic neighborhood. For any s > 0, we have, uniformly w.r.t. h,

Xapa € L3 (RN, (IV.1)
11 = X)Ladally = O((z)7?), (IV.2)
where || - ||, denotes the norm on L?(R3N). For |z| > 1, uniformly w.r.t. h,
I(z; ) La(@, s h)dally = O(l2™), (IV.3)
Lg(z) := Al(x 0) = Ea(0) = O(lz|"), (IV.4)
(s h) (Ta(z, 5 ) = La(2)) dall, = O(h|z|™) +O(lz[7%), (IV.5)
IT0(z; ) (Ta(z, -3 h) = Ieff(iﬂ))%ﬂy = O(R?fa™) + O(l2]7°) , (IV.6)

Furthermore, the smooth function R® \ {0} > x — T (z; h) has the following properties. There exists u > 0
such that, uniformly w.r.t. x and h,

|ﬁ§2<x>4+w“eu(y>ﬂ(x;h)6£(ﬂ(x;h)_Ho(h))HO(h)HL(LZ(RgN)) = 0(1). (IV.7)

Note that (IV.7) remains true if the first projector I(z; h) is replaced by Uo(h). The resolvents satisfy, for
all s > 1/2 and locally uniformly for X € J,

[(z — 1)) "R £i0)(z — I(y)) | + [|{z) "RAP(A£i0;h)(z) %] = O™, (IV.8)
[(z = 1(y))~ SR(AizO,h o = o), (IV.9)
H ()" T(R(A £ i0) — RAP (A % i0; 1)) I (z) (IV.10)

I

Q
—~

—_
~

uniformly in h €]0, ho].

Proof: (IV.1) follows from the exponential decay of the eigenfunctions ¢ (h), which is uniform w.r.t. h.
According to Appendix A, equation (IV.2) holds for |z| > 1 and uniformly w.r.t. h, and
A(Z; h)

| (T () + Mo (0)) (Ia (@3 b) + La(x30)) (o (h) +T(0)) ||, = a]f + O(|=|79), (IV.11)

where # = x/|z| and A(%; h) is uniformly bounded as h — 0. Furthermore, the operator ()1, (z; h)Iy(h)
is uniformly bounded. Using this fact, we can show, as in [KMW2], that

> ()1 He““"’)aff (IL(x; h) — o (h)) H - 001). (IV.12)
181<2 v

Using (IV.12) and (IV.11), we obtain

T(z; h)Ta (25 Mo (h) = (TI(; h) — Mo (h))Ta(; )Mo (h) + o (h)Ta (x5 h)TIo(h)
= O(z|™"). (IV.13)

Next, we show that

Ai(z3h) — Eo(h) = Lea(z) + O(h*z|™) + O(|z|77) . (IV.14)
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Using (IV.12), we first note that, since the eigenfunction ¢, (h) is normalized,
MI(; B)da (M), = 1+ O(|27?) .

Thus, according to (IV.11), for || large enough and writing (-,-), for the scalar product in L*(R3"), we
have

M(z;h) = Ba(h) = (T(;h)da(h) ,Ta(w; WTI(; ) (h)), [ |TT (2 1) b ()]
= (H(z;h)¢a(h) Ta(z; W)IL(z; h)ga(h)), + O(|2|~°)
= 2R((T(2; h) — o (h)) $a(h) , Ta(w; W)L (; ) pa (), + O (|| )
= 2R((I(z; ) — o (h)) da(h) ,La(w;h)a (), + O(|2|7) (IV.15)

Next, we use the following lemma, which will be proved after the present proof.
Lemma IV.2. Setting R,(z,h) = (P*(h)IIo(h) — z) 'My(h) and R.(h) = R.(E.(h),h) (as in equation
(11.84)), we have, for |x| large enough and uniformly w.r.t. h,
2R((I(w; h) — Mo(h)) a (h) ,1a(z; h)da (h)),
= —2(Ra (Mo (h)C (&, y)da(h) , To(W)C(&,y)¢a(h)), - 2| + O(|z|7°) . (IV.16)
In particular, the two forms of the effective potential satisfy equation (II.36), i.e.
L (2) — Lg(2)] = O(|2|7°),  as |2| = .
Furthermore, the first term on the rhs of (IV.16) is negative, for all x # 0, if the cluster as is not neutral.
Using Lemma IV.2, we obtain (IV.14). By a Taylor expansion w.r.t. h and using the previous estimates,
(z; h)La (2 )Mo (k) = T(z;h)
II(z;0)
II(z; 0)
= II(

L, (z;0)Io (k) + O(hlz|~%)
Io(z; O)Ho( ) + O(R?)2|7%) + O(|z]7%)
(A@;0) = Ba(0)To(0) + O(A*[2|7%) + O(||™°)
wM(L)JMMmW+0WMﬂ+OWW%
We then have proved (IV.5). Using (IV.15), we derive (IV.6) from (IV.5).

Finally, we follow the arguments in [KMW?2] to derive (IV.7) from (IV.13). Still following [KMW?2], we
obtain resolvent estimates with the weight (x —I(y)). As already remarked in [KMW?2], (z) *II(z)(z —1(y))®

is uniformly bounded. Thus we may replace this weight by (z) if II is present. We do this for the second
term in (IV.8) and in (IV.10). O

5

Proof of Lemma IV.2: Equation(I1.36) simply follows from (IV.15) and(IV.16), for h = 0. To prove
(IV.16), we write the projections as contour integrals. Let I' a complex contour enclosing E, (h) and Ay (z; h)
for h sufficiently small and |z| sufficiently large. For brevity, we shall now notationally suppress the depen-
dence on h. We rewrite the lhs of equation (IV.16) as

Ihs (IV.16) 2R( (Po(x) — 2) — (P* — 2))a % j{((m(m) C ) (Pa) — 2)Y) ¢a>y
- _Qzﬁzzi?{ &2 ((Ba = (Po() = b0 60), + (o — 27 (L@ s 60),)
= —2%—7{ dz (Eq — 2){(Pe(z) — 2) ' 00, ¢a>y + O(|z|7%) , (IV.17)

by (IV.11). So we need to compute ITgR.(2)Ily, where R.(z) = (P.(z) — z)~!'. To this end, we use the
resolvent, equation

R.(2) = Ro(2) — Ro(2)[.Ro(2) + Ru(2) 14 (2)Re(2) [nRo(2) (IV.18)
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which gives
MoR.(2)y = Ry (2)Mo + Ro(2) oI, Mg Re (2) oI, o Ry (2) + O(|2| %) (IV.19)

Inserting these estimates into (IV.17) and using Appendix C and (IV.11) again, we arrive at (IV.16) with
R, (h) replaced by o R.(E,(h))IIy. But

Iy (Re(Ea) — Ra(Ea)) MoC (& y)dally = O(|z]72), (IV.20)

uniformly w.r.t. h. This follows from a Neumann expansion of R.(z), exponential decay of ¢,, uniform
boundedness of the weighted reduced resolvent (y)™ R, (y)~™, for any M > 0, combined with ||, (y)~™||, =
O(|z|=?). This proves equation (IV.20) and thus (IV.16).
Since f{a(Ea(h)) > b > 0, uniformly w.r.t. h, the first term on the rhs of (IV.16) is bounded above by
—b||TLyC (2; y) b (h)||?/|z|*. Since

1o C(#;-)a (B =0

by the rotational invariance of ¢,,1 (see Appendix A), we have

IToC (& y)ba (W = IC (& y)da (Wl > 0. (IV.21)
o
Recall from (I1.26) that
h™1 ,
oa(Aw;h) = m Im<R()\ +i0; h)l,eq , Iaea>.

In view of the adiabatic approximation of the resolvent, we introduce

h—l

Tad(A,wi h) = maOuh)

Im(TIRAP (A +i0; W Les , Tuea) - (IV.22)

0ad is almost the total cross-section for the scattering process of the pair of operators (PAP (h), TI(h)(—h? A, +
E,(h))II(h)), as shown in [Jec]. It thus should be a good approximation for o,. Indeed, we claim that

Proposition IV.3. For all € > 0 small enough, there exists some Cs0 such that, for all h > 0 sufficiently
small and locally uniformly in (\,w) € J x S2,

Oa(\,w; h) = oaa(A,w; h) + O(R2/3+(1/279)), (IV.23)

With the estimates given in Proposition IV.1, the proof of Proposition IV.3 follows the same arguments
as in [Jec].

The adiabatic operator PAP (h) is equal to TI(h)(—=h2A, + A (z, h))II(h) in Oy, which looks like a two-
body Schrédinger operator with operator-valued potential. We can use the methods of [RT] and [Jec] to
prove that

Taa(N\,w; h) = O(h™2/?)

and that
1 oo
oad(A,w;h) = 4/ sin? <m/ Tegr (2, +uw)du> dzr, + (’)(h*2/3+€°) , (IV.24)
H, a\’\y —00

which, according to Proposition IV.3, gives (I1.39) for I = L.g. Since the potential Lo has the same properties
as Ly and Iog — Iy = O(]z|~3) (see Proposition IV.1), we can show that (IV.24) still holds with L.g replaced
by Ieg. We thus obtain the formula (IV.24) with g, which is (I1.39) for I = I.g.

Now we assume that Cy + Z> # 0. To show that 0,4 (and thus o,,) is exactly of order h=2/3 we estimate
as in [Jec] the integral in (I1.39) for I = I.g. Recall that Lg(z) is of the form A(#;0)|z|* (see (IL37)) and
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that A(z;0) is everywhere negative by Lemma IV.2 since Cy + Z5 # 0. Thanks to this form, one can show
as in [Y] that, for some h-independent constant b # 0,

1 too 2/3
.9 _
4 L sin (m [m Ieﬁ‘(mw + uw)du) dl‘w =bh 2/3 o |Q(w, T)| dr s (IV25)

w

where S! is the unit sphere in H,, and where Q) is given by
Qw,7) = / T (cosf w + sin @ 7)sin’ 0 df (IV.26)
0

for 7 € SL. By Lemma IV.2 we know that the integrand - and thus Q - is negative everywhere. Thus the
rhs of (TV.25) is exactly of order h=2/3. O

A Expansion of the potentials

In this section we collect the relevant expansions of the Coulomb interactions for atom-ion scattering, which
involve the effective dipole moments and quadrupole moments of the two clusters a;,as. They are certainly
well known in the physics literature. For the sake of the reader, we state them as

Lemma A.1. Let o = (a,E,(h), do(h)) be a scattering channel satisfying Hypothesis 1. Then
oz, )¢, = O((x)™?), (A1)

(22 ]| = o com=erm Tusw s

y l€a)
(da(h), Ta(z;D)pa(R)), = O(a)™?), (A.3)

uniformly w.r.t. h, for 0 < h < hg. Assuming in addition that « satisfies Hypothesis 2, we even have the
stronger estimate

(ba(h), Ta(z; h)da(h))y = O((z)~°), (A4)
uniformly w.r.t. h, for 0 < h < hy.

Proof: Because of the Coulomb singularities, we separate the contribution of collisions. Let I' be the
(h-dependent ) set of all possible collisions, that is

__ 3(N+1) . b s - o z=—y+ly) or z=y;—y+I(y)
r = {(x,y)E]R ; Al eal ,3j € ay, or w=Ily) or z=ys+Iy) . (A.5)

Let x € C’°°(]R3(N+1)) such that 0 < x <1, x equals 1 on a small conic neighborhood of T, and x equals 0
outside a slightly bigger conic neighborhood. We also demand that x is even in y. Thanks to the exponential
decay (uniformly w.r.t. h) of the eigenfunctions ¢,(h), we have

X (2,3 ) () Ta (25 ) pa (B)]ly = O(x) ™), VL, M €N (A.6)
Thus, we only have to estimate the contribution of the regular part
Lreg() := (da(h), Ta(; W)da(R))y,  Talz;h) := (1= x(z,y;h)La(z; ). (A7)
According to (II1.8), we want to expand terms of the form
- |_1

lz+1(y)" = |27 |2+ (y)/ |2l
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for large |z|. To this end, we use a Taylor expansion at zero of the function f : R > r ~ |u+ rv|~! for
non-zero vectors u,v € R®. More precisely, one obtains by Taylor expansion, that for each r € R, there
exists some 6 €]0; 1[ such that

rk r4
fr) = 3P0 + 7P (A8)

We observe that the first order term (the term in |z|~!) of the expansion of Lieg(¢) vanishes by neutrality of
ay (cf. (IL.21)). The second order term is given by

_<¢a(h) 70(5%7 )¢a(h)>y : |:E|_2, C(ﬁvy) = (02 + ZQ) Z 6l5% “ Y, (Ag)

l€a)

where Cy = Zlea; e; is the electronic charge of as and where we have used an estimate similar to(A.6) to
get
Ix(, 93 1) $a(R)C (&, ) $a (Bl = O(z) ™), VM € N.

By the reflexion symmetry, we see that the second order term also vanishes. The rest of the expansion is
seen to be O(|z|~?), uniformly w.r.t. h. In view of equation (A.6), this proves (A.2) and (A.3). The proof of
(A.1) is similar and involves a non-vanishing term of second order. Next we shall prove the estimate (A.4).
It crucially depends on the full rotational symmetry of the wave function ¢, = ¢q,104,2 in both clusters
(which is a consequence of Hypothesis 2). For convenience, we choose the cut-off y in such a way that the
new cut-off also has the same symmetry properties. To this end, we consider T, defined as the union of the
orbits under the action o : y = o0-y = (0-y1,---,0-yn) of O(3,R) on the y-variables of each point in T’
(for h = 0). As before, we construct a cut-off ¥ € C°°(R3(N+1) guch that 0 < ¥ < 1, ¥ equals 1 on a small
conic neighborhood of T', and ¥ equals 0 outside a slightly bigger conic neighborhood. Notice that, on the
support of ¥, the previous properties are preserved since |z| and |y| are equivalent there. Thus (A.6) holds
in this case also, and it again suffices to estimate the regular part defined in (A.7). Obviously, the first and
second order term of the expansion are zero. Expanding further, we find that the third order term is

<¢a(h) 7F3(:%vy) ¢a(h)> ! |:E|73 ) (AlO)

where we have estimated the contribution of the region cut out by x as above and where

Fy(d,y) = —(Ca+ 2Z2) > (eddwnl® = 3w -2)) +2 > erej (yi-y; — 3y - 2)(y; - #)) - (A.11)

l€a) l€al,j€al

By the rotation symmetry of Coulomb potentials, we can replace in (A.10) & by the canonical basis vectors
b1, ba, by of R®. Since Y, F3(by,y) = 0, it follows that the third order term also vanishes. For the fourth
order term, we get

(ha(h) , Fy(#,y) pa(h)) - x|, (A.12)
where the function Fj satisfies
F4(i.7y17_y2):_F4(i'7y17y2)7 y:(ylay2)7

since it is homogeneous of degree 3 in y. By Hypothesis 2 the eigenvalue E, 5 is simple and ¢, > is invariant
under the reflection ys — —y»>. Thus the fourth order term is zero, and a standard application of Taylor’s
theorem (A.8) shows that the remainder of the expansion is O(|z|~?), uniformly w.r.t. h. O
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