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Abstrat

We prove the �niteness of the total sattering ross-setion for ion-atom ollisions with an initial

hannel given by a simple eigenvalue of the internal Hamiltonian desribing the neutral luster, i.e. the

atom. Under more restritive assumptions, we show that some e�etive interation in Born-Oppeheimer

approximation is preisely of order O(jxj

�4

) in the distane between the mass enters of two lusters.

We then extrat the leading term of the sattering ross-setion in the Born-Oppenheimer limit.

I Introdution

The sattering proess for multi-partile Coulomb systems with initial two-luster data has been studied

in physis litterature, both experimentally and theoretially. In partiular, in the ollision of a harged

luster with a neutral one ( ion-atom sattering), it is believed that if the neutral sub-system has no stati

dipole moment, the total ross-setion would be is �nite. In [ES℄, Enss-Simon put forward as open questions

to prove the �niteness of total ross-setions in this ase and to give expliit bounds for them. In [CT℄,

Combes-Tips proved the �niteness and analytiity of forward sattering amplitude in eletron-atom satter-

ing. They indiated tehnial diÆulties to extend their results to ion-atom ollision and suggested to use

Born-Oppenheimer approximation to study the problem.

Reall that it is well-known in two-body sattering theory (see, for example, [Y℄ ) that if the potential V

on R

3

has the deay

jV (x)j � C < x >

��

; 8x 2 R

3

with � > 2, the total ross-setion for the sattering proess desribed by ( ��, ��+ V (x)) is �nite, while

if V (x) �

C

jxj

2

as jxj ! 1 for some C 6= 0, the total ross-setion is in�nite. In the sattering theory

for multi-partile Coulomb systems with initial two-luster data, the interluster interation between the

two lusters deays like O(jxj

�1

) in general ase, like O(jxj

�2

) if one of the lusters is neutral ( ion-atom

sattering ) and like O(jxj

�3

) if the both lusters are neutral ( atom-atom sattering ). Here x 2 R

3

denotes

the relative position of the mass-enters of the two lusters. See Appendix A for more preise statements and

the alulus. For ion-atom sattering, the known results in two-body ase suggest that without additional

assumption, the total ross-setion would be in�nite. In this paper, we prove the �niteness of total ross-

setions under the assumption that the atom is in the fundamental state whih implies, by the symmetry

of Coulomb potentials, that there is no stati dipole moment for the atom. The quantitive study of the

total ross-setions in ion-atom sattering is interesting and non-trivial, sine the leading terms in various
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known asymptotis for total ross-setions in N-body sattering ( [I1℄, [I2℄, [RW℄, [W℄) are not de�ned in the

present ase. In this paper, we only study the asymptotis in the Born-Oppenheimer approximation, where

the semilassial parameter, h, is proportional to the ratio of the eletoni to nulear mass. Due to the use

of luster oordinates whih is needed to desribe many-partile sattering proesses, the potentials beome

h-dependent. The perturbation by the shift term l(y) = O(h

2

jyj) is singular and the piture of eigenvalues

of the eletroni Hamiltonian P

e

(x; h) de�ned below hanges drastially from h = 0 to h 6= 0. Our result

in Born-Oppenheimer approximation is based on the semilassial resolvent estimates of [KMW2℄ whih is

established in terms of the weight in x� l(y), the relative position between the two nuleus. We then use the

adiabati approximation for total ross-setions and prove that the eigenvalue of the eletroni Hamiltonian

P

e

(x; h) onverges suÆiently fast as x!1 so that we an extrat the leading term in the limit h! 0.

The plan of this paper is as follows. In Setion II we introdue the basi notation whih will be used

throughout the paper and we reall a few basi fats from N-body sattering theory. We introdue the

hypotheses whih are relevant for this paper and we state our main results, i.e. Theorem II.2 on the

existene of the total sattering ross-setion and Theorem II.3, whih gives the semilassial asymptotis

of this ross-setion. In Setion III we prove Theorem II.2. The essential point are ertain weighted L

2

estimates whih show that upon loalization in energy in the relevant spetral range the e�etive interation

deays faster than O(jxj

�2

), whih is the obvious norm estimate on an ion-atom interation. In Setion IV,

we establish the relevant semilassial estimates on potentials and resolvents, using methods from [KMW2℄

and give a sketh of the proof of Theorem II.3. In Appendix A we inlude the relevant expansions for the

Coulomb interation in ion-atom sattering whih are used throughout the paper.

II Notation, assumptions and main results

The Hamiltonian of a diatomi moleule with N eletrons an be written in the form

P

phys

=

2

X

k=1

1

2m

k

�

��

x

k

�

+

N+2

X

j=3

1

2

�

��

x

j

�

+

Z

1

Z

2

jx

1

� x

2

j

(II.1)

+

2

X

k=1

N+2

X

j=3

e

j

Z

k

jx

j

� x

k

j

+

X

2�l<j�N+2

e

l

e

j

jx

l

� x

j

j

where x

k

2 R

3

, k = 1; 2, denote the position of the two nulei with mass m

k

and harge Z

k

> 0 and x

j

2 R

3

,

j = 3; : : : ; N + 2, denote the position of N eletrons with mass 1 and harge e

j

2 R (in the physial ase

harges are equal and negative). Plank's onstant is taken to be 1 in this formula. The result on the

existene of total ross-setions remains valid for any Coulomb system.

We are interested in sattering proesses where the inoming sattering hannel is a two-luster one,

while the out-going sattering hannel an be arbitrary. Let a = (a

1

; a

2

) be a two-luster deomposition of

f1; : : : ; N + 2g, i.e. a partition (a

1

; a

2

) of the partile labels f1; : : : ; N + 2g, where j 2 a

j

, for j = 1; 2.

Adapted to this luster deomposition, we hoose so alled lustered atomi oordinates (x; y) 2 R

3

� R

3N

:

h =

�

1

2M

1

+

1

2M

2

�

1=2

; M

k

= m

k

+ ja

0

k

j ; a

0

k

= a

k

n fkg ; k = 1 ; 2 ; (II.2)

R

k

=

1

M

k

�

m

k

x

k

+

X

j2a

0

k

x

j

�

; k = 1 ; 2 ;

x = R

1

�R

2

; (II.3)

y

j

= x

j

� x

k

; j 2 a

0

k

; k = 1 ; 2 ; (II.4)

l(y) =

1

M

1

X

j2a

0

1

y

j

�

1

M

2

X

j2a

0

2

y

j

: (II.5)

Notie that R

k

is the enter of mass of the luster a

k

, for k = 1; 2, and that x is the relative position of these

enters of mass. These oordinates are well adapted to desribe two-luster sattering of diatomi moleules
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(see [KMW1℄, [KMW2℄). After removing the moleular enter of mass motion, the Hamiltonian P

phys

may

be written in this system of oordinates as

P = �h

2

�

x

+P

e

(x;h); P

e

(x;h) = P

a

(h) + I

a

(x;h); (II.6)

where the sub-Hamiltonian P

a

(h) is given by

P

a

(h) = P

a

1

(h) + P

a

2

(h) ; (II.7)

with

P

a

k

(h) =

X

j2a

0

k

�

�

1

2

�

y

j

+

Z

k

e

j

jy

j

j

�

�

1

2m

k

�

X

j2a

0

k

�

y

j

�

2

+

X

l;j2a

0

k

l<j

e

l

e

j

jy

l

� y

j

j

;

and the inter-luster interation I

a

(x;h) by

I

a

(x;h) =

Z

1

Z

2

jx� l(y)j

+

X

k2a

0

1

j2a

0

2

e

k

e

j

jy

k

� y

j

+ x� l(y)j

+

X

j2a

0

1

Z

2

e

j

jy

j

+ x� l(y)j

+

X

j2a

0

2

Z

1

e

j

jx� l(y)� y

j

j

: (II.8)

Finally, we set

P

a

(h) = �h

2

�

x

+P

a

(h): (II.9)

P is onsidered as a self-adjoint operator in L

2

(R

3(N+1)

; dxdy). Note that l(y) = O(h

2

jyj) and that the

study of the dependene on h of the spetra of P

e

(x;h) is tehnial. In fat, even to prove the terme

Z

1

Z

2

jx�l(y)j

is uniformly ( w.r.t. h ) ��

y

-bounded, the authors of [KMW2℄ used the fats that x 2 R

3

and Z

1

Z

2

> 0.

For an arbitrary luster deomposition  = (

1

; : : : ; 

k

) of f1; : : : ; N+2g, i.e. 

1

[� � �[

k

= f1; : : : ; N+2g

and 

j

\ 

k

= ;, for j 6= k, we an also hoose adapted oordinates (x



; y



). We all P



the sub-Hamiltonian,

x



2 R

3(k�1)

the inter-luster oordinates, y



the intra-luster oordinates, and I



(x



; y



) the inter-luster

interation. By D

x



(resp. D

y



) and by ��

x



(resp. ��

y



), we denote �i times the gradient and the

Laplaian in the inter-luster (resp. intra-luster) oordinates. It is well known (see e.g. [DG℄) that, for this

Shr�odinger operator P, the modi�ed wave operators




�;

= s� lim

t!�1

e

itP

e

�it

�

��

x



+

R

t

0

I



(sD

x



;0)ds+E



�

J



(II.10)

exist for any sattering hannel  = (; E



; �



), where  is an arbitrary luster deomposition, �



is an

eigenfuntion of P



with eigenvalue E



: P



�



= E



�



, and where J



denotes the identi�ation operator,

whih is de�ned for any L

2

-funtion f of the variable x



by

(J



f)(x



; y



) = f(x



)�



(y



): (II.11)

Furthermore, the family of wave operators f


�;

;8g is asymptotially omplete. It is equally well known

(see [Ra℄) that, if a = (a

1

; a

2

) is a two-luster deomposition with one neutral luster (an atom), say a

1

, i.e.

X

j2a

0

1

e

j

= �Z

1

; (II.12)

then, for any hannel � = (a;E

�

; �

�

) with E

�

outside the thresholds of P

a

, one an de�ne the wave operators

without modi�er, namely by




0

�;�

= s� lim

t!�1

e

itP

e

�it

�

��

x

a

+E

�

�

J

�

: (II.13)

In this ase, 


�;�

= 


0

�;�

e

i (D

x

a

)

, where  is a real funtion. Therefore the result on asymptoti omplete-

ness remains true if we replae 


�;�

by 


0

�;�

when the latter exists. So we just set 


�;

= 


0

�;

if they

3



exist. For any two sattering hannels ; �, we then de�ne the assoiated sattering operator from hannel

 to hannel Æ by

S

�

= 


�

+;�




�;

; T

Æ

= S

�

� Æ

�

; (II.14)

where Æ

�

= 1 if  = � and 0 otherwise.

Let us now de�ne the total sattering ross-setions in many-partile sattering. Sine few is known

about the sattering amplitudes in many-body sattering theory (see [V℄ for results in this subjet), we

de�ne the total sattering ross-setions aording to the philosophy of [ES℄. For � � E

�

(h), we introdue

the magnitude of the momentum assoiated with the kineti energy of the relative motion of the two lusters

in the sattering hannel � via

n

�

(�;h) := �

1=2

�

(h); �

�

(h) := ��E

�

(h): (II.15)

For g 2 C

1

0

(I

�

; C ), I

�

=℄E

�

(h); +1[, and ! 2 S

2

, we onsider the wave paket

R

3

3 x 7! g

!

(x) = ~g(! � x) (II.16)

where

~g(�) =

1

2

p

�h

Z

R

e

ih

�1

n

�

(�;h)�

g(�)

n

�

(�;h)

1=2

d�:

The normalization is hosen suh that

kgk

L

2

(R)

= k~gk

L

2

(R)

:

Denoting by C the set of all hannels, we want to apply, for Æ 2 C, T

Æ�

to g

!

(x)�

�

(y;h). Sine this funtion

does not belong to L

2

(R

3(N+1)

) - it deays rapidly only in the diretion de�ned by ! - we regularize it by

multipliation with a funtion h

R;!

2 L

1

(R

3

), depending only on the variable x � (! � x)! transversal to

the diretion ! of the inident wave paket g

!

(x), suh that pointwisely

lim

R!1

h

R;!

= 1 : (II.17)

For the purpose of this paper we shall speify this ut-o� funtion to be a Gaussian, i.e. we take

h

R;!

(x) = e

�(x�(!�x)!)

2

=R

(II.18)

De�nition. For � 2 I

�

and ! 2 S

2

, we shall say that the total ross-setion �

�

(�; !) with the inoming

hannel � exists at the energy � with the inident diretion !, if the following limit is �nite and well de�ned:

�

�

(�; !) := lim

n!1

lim

R!1

X

Æ2C

kT

Æ�

h

R;!

g

n;!

�

�

k

2

; (II.19)

where g

n;!

is de�ned as in (II.16) with g replaed by g

n

:

g

n

(�) = n

�1=2

h((�� �)=n)

and h is any C

1

0

(R)-funtion normalized by

R

R

jh(�)j

2

d� = 1.

Reall that in [ES℄ and [W℄, the total ross-setion is de�ned as distribution in � 2 I

�

by

Z

+1

E

�

(h)

�

�

(�; !)jg(�)j

2

d� = lim

R!1

X

Æ2C

kT

Æ�

h

R;!

g

!

�

�

k

2

; (II.20)

for all g 2 C

1

0

(I

�

; C ). Sine jg

n

(�)j

2

onverges to Æ

�

(�), the Dira measure at �, as n ! 1, the de�nitions

(II.19) and (II.20) oinide if the distribution de�ned in (II.20) an be identi�ed with a ontinuous funtion

in a neighbourhood of �, whih is true in the ase when one knows to prove the existene in the sense of
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distributions ( see [RW, W℄ ). For physial bakground of this de�nition and its equivalene to the usual

one in two-body ase, see [ES℄, [RW℄, [W℄, [Je℄. For some hannels ; Æ and some inident diretion !, total

sattering ross-setions may not exist on any interval I (see [W℄). Usually it is required that the interations

deay quite rapidly to ensure their existene. In the present situation with Coulomb interations, whih a

priori do not deay suÆiently fast, we shall show the existene, i.e. �niteness, of �

�

only for some speial

hannel � desribing ion-atom sattering, for all inident diretions ! 2 S

2

. The onditions on � are olleted

in the following hypothesis.

Hypothesis 1. Let � = (a;E

�

; �

�

) be a hannel with E

�

2 �

dis

(P

a

) and luster deomposition a = (a

1

; a

2

)

suh that eah luster ontains a nuleus and suh that a

1

is neutral (an atom), that is

X

j2a

0

1

e

j

+ Z

1

= 0 : (II.21)

Assume that

E

�

= E

�;1

+ E

�;2

with E

�;j

2 �

dis

(P

a

j

) ; j = 1; 2 ; (II.22)

where P

a

j

stands for the internal Hamiltonian of luster a

j

and E

�;1

(the eigenvalue of the neutral luster)

is non-degenerate.

Remark II.1. Write y = (y

0

; y

00

) for the eletroni oordinates in the lusters a

1

; a

2

and put

�

�

(y) = �

�;1

�

y

0

�

�

�;2

�

y

00

�

; 8y 2 R

3N

; (II.23)

with P

a

j

�

�;j

= E

�;j

�

�;j

:

By the spherial symmetry of Coulomb potential and the non-degeneray of E

�;1

, it an be dedued that

j�

�;1

�

�y

0

�

j = j�

�;1

�

y

0

�

j. Therefore,

Z

R

3ja

0

1

j

y

j

j�

�;1

�

y

0

�

j

2

dy

0

= 0; 8j 2 a

0

1

:

Sine a

1

is neutral, an elementary alulus using the Taylor expansion of I

a

in y shows that

< I

a

(x; h)�

�

; �

�

>

y

= O(jxj

�3

):

< �; � >

y

denotes the salar produt in L

2

(R

3N

y

; dy).

We denote by R(z;h) the resolvent of P(h) and reall that its boundary value R(�� i0;h) : L

2;s

! L

2;�s

is well de�ned outside the set T of the thresholds and the eigenvalues of P(h) as an operator between the

weighted L

2

spaes, for any s > 1=2.

Our �rst main result onerns the existene of �

�

and gives a useful formula for it.

Theorem II.2. Let � = (a;E

�

(h); �

�

(h)) be a sattering hannel satisfying Hypothesis 1. We set

F (z; !;h) =

D

R(z; h) I

a

e

�

; I

a

e

�

E

; Imz 6= 0; (II.24)

where

e

�

(x; y) = e

ih

�1

n

�

(�;h)!�x

�

�

(y;h):

Let T be the set of thresholds and eigenvalues of P. Then, for any energy � 2 I

�

n T and any inident

diretion ! 2 S

2

, the limit

F (�+ i0; !;h) = lim

�!0

+

F (� + i�; !;h) (II.25)

exists and de�nes a ontinuous funtion in �. The total sattering ross-setion �

�

(�; !) exists for any

energy � 2 I

�

n T and any inident diretion ! 2 S

2

and one has the optial formula

�

�

(�; !) =

1

hn

�

(�;h)

ImF (� + i0; !;h) : (II.26)
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Sine I

a

e

�

does not belong to L

2;s

, for some s > 1=2, this result is not trivial. Its proof - given in Setion

III - depends ruially on the deay of some appropriate e�etive potentials, ombined with phase spae

analysis, i.e. an appropriate loalization in the relative kineti energy of the two lusters.

Next we are interested in the Born-Oppenheimer approximation (h! 0) of �

�

. We restrit ourselves to

the groundstate energy of P

a

and demand some stability property w.r.t. x and h.

Hypothesis 2. Let h

0

> 0 be small enough. Let E

�

(h), satisfying Hypthesis 1, be the bottom of the spetrum

of P

a

(h), 0 � h � h

0

. Let �

0

> E

�

(0). From (II.7), we see that, for some Æ > 0, �

0

�Æ > E

�

(h), 0 < h � h

0

.

Let �

1

(x;h) be the bottom of the spetrum of P

e

(x;h). We assume that for x in a neighborhood O

�

0

of the

non-ompat set

fx 2 R

3

; �

1

(x; 0) � �

0

g ;

�

1

(x;h) is a simple eigenvalue and is the unique eigenvalue of P

e

(x;h) that tends to E

�

(h) as jxj ! 1, and

the unique eigenvalue of P

e

(x;h) that tends to �

1

(x; 0) as h! 0. Furthermore, we demand that

�

1

(x;h) ! E

�

(h) as jxj ! 1 ; uniformly w.r.t. h � h

0

; (II.27)

�

1

(x;h) ! �

1

(x; 0) as h ! 0 ; uniformly w.r.t. x 2 O

�

0

: (II.28)

Note that there exists Æ

0

> 0, suh that, for h

0

small enough and 0 � h � h

0

,

fx 2 R

3

; �

1

(x;h) � �

0

+ Æ

0

g � O

�

0

:

We also impose that for 0 � h � h

0

,

inf

x2O

�

0

�

�

�

P

e

(x;h)

�

n f�

1

(x;h)g

�

> �

0

+ 2Æ

0

; (II.29)

where �(P

e

(x;h)) denotes the spetrum of P

e

(x;h).

For x 2 O

�

0

, let  

e

(x;h) be a normalized eigenfuntion of P

e

(x;h) assoiated to �

1

(x;h). As in [KMW2℄,

we an extend it to a smooth, normalized funtion �

e

(x;h) of x suh that, for some Æ

1

> 0,




P

e

(x;h)�

e

(x;h) ; �

e

(x;h)

�

� �

0

+ Æ

1

; (II.30)

for all 0 � h � h

0

and for all x in some ompat neighborhood K of the omplement of O

�

0

, satisfying

K � fx 2 R

3

;�

1

(x;h) > �

0

; 0 � h � h

0

g :

We denote the orthogonal projetion on the one-dimensional spae generated by �

e

(x;h) in L

2

(R

3N

y

) by

�(x; h). It indues a projetion �(h) on L

2

(R

3(N+1)

). The orthogonal projetion �

0

(h) onto �

�

(h) (intro-

dued in Hypothesis 1) also indues a projetion on L

2

(R

3(N+1)

), whih we still denote by �

0

(h). We then

de�ne the adiabati operator assoiated with the spetral projetion �(h) by

P

AD

(h) := �(h)P�(h):

We denote by R

AD

(z;h) its resolvent and set

^

�(h) = 1��(h) and

^

�

0

(h) = 1��

0

(h).

We onsider an energy range J �℄E

�

(0);�

0

[. Let  

t

be the Hamiltonian ow of the e�etive Hamiltonian

funtion

H

e�

(x; �) = j�j

2

+ �

1

(x; 0)�E

�

(0): (II.31)

An energy � 2 R is non-trapping for H

e�

if, for all (x; �) belonging to the energy surfae of H

e�

of energy �,

the point  

t

(x; �) goes to in�nity as t and �t go to +1.

Hypothesis 3. Let J an open interval of R suh that J is non-trapping for the e�etive Hamiltonian

funtion H

e�

, i.e. � is a non-trapping energy for H

e�

for all � 2 J .
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Note that suh an interval J is ontained in I

�

n T , for h small enough. Thus Theorem II.2 holds on J .

In our ontext we need suh a hypothesis to obtain a semilassial estimate on the resolvent.

Under the previous hypotheses, we shall derive in Proposition IV.1 semilassial estimates on R(� � i0)

and R

AD

(� � i0), for � 2 J , using arguments developed in [KMW2℄. Finally we introdue the e�etive

potentials whih govern the leading terms of �

�

. Denoting by C

2

the eletroni harge of a

2

, that is

C

2

=

X

j2a

0

2

e

j

; (II.32)

we de�ne the funtion

C(x̂; y) =

�

C

2

+ Z

2

�

X

l2a

0

1

e

l

x̂ � y

l

; (II.33)

where x̂ = x=jxj and where � denotes the standard salar produt in R

3

. Physially, this funtion desribes

the interation of the dipoles formed by the eletrons in luster a

1

with the e�etive harge of luster a

2

.

De�ne

^

R

a

(h) = (P

a

(h)

^

�

0

(h)�E

�

(h))

�1

^

�

0

(h): (II.34)

The e�etive potential in the ontext of the Born-Oppenheimer approximation is given by

I

e�

(x) := �

1

(x; 0) � E

�

(0): (II.35)

While the intuitive e�etive term < I

a

(x; 0)�

�

(0); �

a

(0) >

y

may deay exponentially, we shall prove that

I

e�

(x) is exatly of the order O(jxj

�4

). In fat, we prove in Lemma IV.2 that

jI

e�

(x) �

^

I

e�

(x)j = O(jxj

�5

); as jxj ! 1 (II.36)

where

^

I

e�

(x) := �2




^

R

a

(0)

^

�

0

(0)C(x̂; y)�

�

(0);

^

�

0

(0)C(x̂; y)�

�

(0)

�

L

2

(R

3N

y

)

jxj

�4

; (II.37)

is everywhere negative if C

2

+Z

2

6= 0. It is essentially this fat whih allows to extrat the leading order of

the total sattering ross-setion in equation (II.39) below. Now we an state our seond main result, whih

gives the semilassial asymptotis of �

�

.

Theorem II.3. Let � = (a;E

�

(h); �

�

(h)) be a sattering hannel satisfying Hypothesis 1 and Hypothesis 2.

Let J be a real interval satisfying Hypothesis 3. Then we have

�

�

(�; !) = O

�

h

�2=3

�

; (II.38)

loally uniformly w.r.t. � 2 J and ! 2 S

2

. We set n

�

(�; 0) = (� � E

�

(0))

1=2

and we denote by H

!

the

hyperplane orthogonal to !. Then there exists some �

0

> 0 suh that, for either hoie of e�etive potential,

i.e. for I = I

e�

and I =

^

I

e�

, we have

�

�

(�; !) = 4

Z

H

!

sin

2

�

1

4hn

�

(�; 0)

Z

R

I(u+ s!)ds

�

du + O

�

h

�2=3+�

0

�

; (II.39)

loally uniformly w.r.t. � 2 J and ! 2 S

2

. If a

2

is not neutral (i.e. the eletroni harge C

2

of a

2

satis�es

C

2

6= �Z

2

), the leading term (II.39) with I =

^

I

e�

is exatly of order h

�2=3

and thus is �

�

.

Theorem II.3 shows that the Born-Oppenheimer approximation orretly desribes the asymptotis of

the total sattering ross-setion in the situation onsidered in this paper, as expeted in [CT℄.
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III Existene of the total sattering ross-setion

In this setion we shall prove the existene of the total sattering ross-setion as stated in Theorem II.2.

The parameter h plays no role in this setion and will be set to 1. We shall assume throughout this setion

that the initial hannel � is assoiated to a two-luster deomposition a = (a

1

; a

2

) with a

1

a neutral luster,

that is, (II.21) holds for a

1

. As a �rst step, we establish the following representation formula. Here we use

the funtion u

R;!

= g

!

h

R;!

, where g

!

; h

R;!

are de�ned in (II.16) and (II.18).

Lemma III.1. For g 2 C

1

0

(I

�

; C ), I

�

:=℄E

�

; +1[, one has

X

�2C

kT

��

u

R;!

�

�

k

2

= 4�

Z

I

�

ImhR(�+ i0)I

a

�

�

u

R;!

(�); I

a

�

�

u

R;!

(�)id� (III.1)

where

u

R;!

(�; x) =

R

8

�

n

�

(�)

�

�

3=2

Z

S

2

+

e

in

�

(�)x���

R

4

�

�

(�

2

2

+�

2

3

)

p

�

1

g(�

�

�

2

1

+E

�

)d�; (III.2)

where �

1

= � � !; the omponents �

2

; �

3

denote the diretions orthogonal to ! 2 S

2

and S

2

+

denotes the half

sphere �

1

> 0; � 2 S

2

.

The proof is the same as in [RW, W℄ and is omitted here. Remark that the asymptoti ompleteness of

wave operators plays an essential role in the proof.

Writing �

0

= (�

2

; �

3

), setting B

�;R

= f�

0

2 R

2

; j�

0

j � R

�(1��)=2

g and using d� = (1� �

0

2

)

�1=2

d�

0

on S

2

+

,

we note that equation (III.2) implies

u

R;!

(�; x) =

R

8

�

n

�

(�)

�

�

3=2

Z

B

�;R

e

in

�

(�)(x

1

p

1��

0

2

+x

0

��

0

)

e

�

R

4

�

�

�

0

2

(1� �

0

2

)

�1=4

g(�� �

�

�

0

2

)d�

0

+O

�

(jR�

�

j

�1

); (III.3)

uniformly in x 2 R

3

. For j�

0

j � R

�(1��)=2

we hange variables via � =

p

R�

0

and, onsidering separately the

regions jxj > R

�=2

and jxj < R

�=2

, we observe that, for � suÆiently small,

hxi

��

je

in

�

(�)(x

1

p

1��

2

=R+

�

p

R

�x

0

)

� e

in

�

(�)x

1

j � Cn

�

(�)(1 + �

2

)R

��=2

:

Taylor expansion of the integrand in equation (III.3) ombined with the evaluation of the Gaussian integral

Z

R

2

e

�

R

4

�

�

�

0

2

d�

0

=

4�

R�

�

gives

Lemma III.2. For any � > 0; N 2 N there exists C > 0 suh that

ju

R;!

(x; �) �

1

2

�

1

�n

�

(�)

�

1=2

g(�)e

in

�

(�)x�!

j � Chxi

�

R

��=2

jn

�

(�)j

�N

(III.4)

uniformly in x 2 R

3

; R � 1 and n

�

(�) �  > 0:

We shall now derive Theorem II.2 as an easy onsequene of

Theorem III.3. Let � 2 C

1

0

(R) be equal to 1 on [�Æ=2; Æ=2℄ with supp � � (�Æ; Æ): Assuming Hypothesis

1, there exists Æ > 0 suh that for any � 2 I

�

n T and for u; v 2 L

1

(R

3

x

) with

�(��

x

� �

�

)u = u; �(��

x

� �

�

)v = v (III.5)

one has

jhR(�+ i�)I

a

�

�

u; I

a

�

�

vij � C

s

jjhxi

�s

ujj

L

1

jjhxi

�s

vjj

L

1

(III.6)
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where 0 � s < 1=2 and C

s

is independent of � in any ompat subset of I

�

n T and � 2℄0; 1℄. The weak limit

hR(�+ i0)I

a

�

�

u; I

a

�

�

vi := lim

�!0

+

hR(�+ i�)I

a

�

�

u; I

a

�

�

vi (III.7)

exists and de�nes a ontinuous funtion of � in I

�

n T .

Proof of Theorem II.2: It is well known that the map

(I

�

n T ) 3 � 7! h(x; y)i

�s

R(�+ i0)h(x; y)i

�s

is ontinuous for any s > 1=2: From Theorem III.3, we see that the funtion

F (�+ i0; !) := hR(�+ i0)I

a

�

�

e

in

�

(�)x�!

; I

a

�

�

e

in

�

(�)x�!

i (III.8)

is well de�ned and ontinuous for � 2 I

�

n T : Let u

R;!

(�) be the funtion de�ned in Lemma III.1. Then

u

R;!

(�) and e

in

�

(�)x�!

are L

1

�funtions satisfying the ondition (III.5) in Theorem III.3. Therefore, om-

bining Lemma III.2 with the de�nition of f

�

and u

R;!

(�), we �nd that for some 0 < s < 1=2

�

�

�

�

hR(�+ i0)I

a

�

�

u

R;!

(�); I

a

�

�

u

R;!

(�)i �

jg(�)j

2

4�n

�

(�)

F (�; !)

�

�

�

�

� C









hxi

�s

�

u

R;!

(�)�

g(�)

2(�n

�

(�))

1=2

e

in

�

(�)x�!

�









L

1

� C

M

R

�s=2

jn

�

(�)j

�M

; (III.9)

for all M; jn

�

(�)j �  > 0. This estimate proves that for any g 2 C

1

0

(I

�

n T ); the limit

lim

R!1

X

�2C

kT

��

h

R;!

g

!

�

�

k

2

exists and is equal to

Z

ImF (�+ i0; !)

jg(�)j

2

n

�

(�)

d�

Now we replae g by g

n

in the above formula and take the limit n!1. Sine F (�+ i0; !) is ontinuous in

� 2 I

�

n T , we obtain from the de�nition of total ross setion that �

�

(�; !) exists and

�

�

(�; !) =

1

n

�

(�)

ImF (� + i0; !) (III.10)

for � 2 I

�

n T and ! 2 S

2

.

The remaining part of this setion is devoted to proving Theorem III.3. This is divided into several steps

whih shall be stated as distint Lemmata. Here we are inspired by the weighted L

2

estimates and the phase

spae deomposition in [CT℄.

Lemma III.4. If u 2 L

1

(R

3

x

) satis�es �(��

x

� �

�

)u = u, with � as in Theorem III.3, then

(1� �(��

x

� �

�

)) I

a

�

�

u 2 L

2;s

(R

3(N+1)

)

for any s < 3=2 and

jj (1� �(��

x

� �

�

)) I

a

�

�

ujj

L

2;s

(R

3(N+1)

)

� C

s;s

0

jjhxi

�s

0

ujj

L

1

(III.11)

for any s; s

0

with s+ s

0

< 3=2.
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Proof: Let � be the set of all possible ollisions between nulei and eletrons, desribed in the oordinates

(x; y). We hoose a ut-o� funtion ~� 2 C

1

0

(R

3(N+1)

) with 0 � ~� � 1, whih is equal to 1 in a small oni

neighborhood of � and vanishes outside a slightly bigger oni neighborhood. Then

~�I

a

�

�

u 2 L

2;s

(R

3(N+1)

) and (1� �(��

x

� �

�

)) ~�I

a

�

�

u 2 L

2;s

(R

3(N+1)

); 8s > 0

On the support of 1� ~�; the interation potential I

a

is smooth, and sine the luster a

1

is neutral, we have

for

~

I

a

= (1� ~�)I

a

~

I

a

(x; y)�

�

= O(jxj

�2

); �

x

~

I

a

(x; y)�

�

= O(jxj

�3

) in L

2;s

(R

3N

y

); 8s > 0:

Next we rewrite

(1� �(��

x

� �

�

)) (

~

I

a

�

�

u) = �[�(��

x

� �

�

);

~

I

a

℄(�

�

u)

The kernel of the ommutator �[�(��

x

� �

�

);

~

I

a

℄ is given by

K(x; x

0

) =

1

(2�)

3

Z

�

~

I

a

(x; y)�

~

I

a

(x

0

; y)

�

e

i��(x�x

0

)

�(�

2

� �

�

)d�

=

i

(2�)

3

Z

e

ih

�1

��(x�x

0

)

Z

1

0

�

2� � �

x

~

I

a

�

(x

0

+ t(x� x

0

); y)dt �

0

(�

2

� �

�

)d� (III.12)

An easy analysis shows that

[�(��

x

� �

�

);

~

I

a

℄(�

�

u) = O(jxj

�3

) in L

2;s

(R

3N

y

);8s > 0:

This implies the �rst statement of the Lemma. The asserted norm estimate (III.11) is evident from the

above proof.

Lemma III.5. Let �

�

be a normalized eigenfuntion of P

a

: P

a

�

�

= E

�

�

b

with eigenvalue E

�

� E

�

: Then

hI

a

�

�

; �

�

i

y

2 L

2;s

(R

3

x

) 8s < 1=2; (III.13)

and in the ase E

�

= E

�

we have the improved estimate

hI

a

�

�

; �

�

i

y

2 L

2;s

(R

3

x

) 8s < 3=2: (III.14)

Proof: We use an expliit omputation to hek the ase E

�

= E

�

: In this ase, Hypothesis 1 implies

that

�

�

(y) = �

�;1

(y

1

)�

�;2

(y

2

)

where

P

a

2

�

�;2

= E

�;2

�

�;2

; jj�

�;2

jj = 1

Setting x̂ =

x

jxj

, we have modulo a term in L

2;s

(R

3

x

); for any s < 3=2 and for jxj > 1;

hI

a

�

�

; �

�

i

y

=

1

jxj

2

((C

1

+ Z

1

)�

2;�

(x̂)� (C

2

+ Z

2

)�

1;�

(x̂)) (III.15)

where

C

j

=

X

k2a

0

j

e

k

; j = 1; 2

and

�

j;�

(x̂) =

X

k2a

0

j

e

k

Z

x̂ � y

k

�

�

(y)�

�

(y)dy

=

X

k2a

0

j

e

k

Z

x̂ � y

k

j�

�;1

(y

1

)j

2

�

�;2

(y

2

)�

�;2

(y

2

)dy; y = (y

1

; y

2

)
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Sine C

1

= �Z

1

, one has, modulo a term in L

2;s

(R

3

x

); for any s < 3=2,

hI

a

�

�

; �

�

i

y

= �

1

jxj

2

(C

2

+ Z

2

)�

1;�

(x̂)

Using Hypothesis 1 (see the remark following it), we see that

y

0

7!

X

k2a

0

1

e

k

x̂ � y

k

j�

�;1

(y

0

)j

2

is an odd funtion of y

0

, where y

0

= (y

k

; k 2 a

0

1

). Thus its integral vanishes and �

1;�

(x̂) = 0; 8x̂; whih

proves (III.14). The proof of (III.13) is similar.

We shall now loalize in energy using the spetral projetions for P

a

. We set 2Æ := dist (E

�

; �(P

a

) n

fE

�

g) > 0 and denote by �

1

the spetral projetion of P

a

assoiated with E

�

and by �

2

;�

3

the spetral

projetions assoiated with the intervals ℄�1; E

�

[ and ℄E

�

;1[. The projetions �

j

are regarded as operators

in L

2

(R

3(N+1)

): It is then possible to estimate on the range of the spetral projetions �

2

;�

3

the resolvent

R

a

(z) = (P

a

� z)

�1

of the Hamiltonian P

a

desribing the free motion of the lusters, whih was de�ned in

(II.9). One �nds

Lemma III.6. Let � 2 C

1

0

(℄ � Æ; Æ[) and u 2 L

1

(R

3

x

): For j = 2; 3, R

a

(�)�

j

�(��

x

� �

a

) are bounded

operators and we have the weighted estimate

jjhyi

s

hxi

s

0

R

a

(�)�

j

�(��

x

� �

a

)(I

a

�

�

u)jj � Cjjhxi

�s

00

ujj

L

1

for all s > 0 and for all s

0

; s

00

satisfying s

0

+ s

00

< 1=2:

Proof: Setting  = I

a

�

a

u, we have �

2

 =

P

E

�

<E

�

h ; �

�

i

L

2

(R

3N

y

)

�

�

; where f�

�

g is an orthonormal set

of eigenfuntions of P

a

with eigenvalue E

�

< E

�

. By de�nition of Æ, if j�

2

� �

�

j < Æ; then

�

2

+E

�

� � = �

2

� �

�

+E

�

�E

�

is invertible. Thus, using the support properties of �, the funtion g

�

(�; �) = �(�

2

� �

�

)(�

2

+E

�

� �)

�1

is

bounded and smooth, for E

�

as above. Furthermore

R

a

(�)�(��

x

� �

�

)�

2

 =

X

E

�

<E

�

g

�

(D

x

; �)h ; �

�

i

L

2

(R

3N

y

)

�

�

: (III.16)

Using deay of �

�

in the variable y one an apply Lemma III.5 with s = s

0

+ s

00

< 1=2 to get the asserted

estimate for j = 2: For j = 3, we have P

a

3

:= �

3

P

a

�

3

� (E

�

+ 2Æ)�

3

: Applying the Fourier transformation

with respet to the x-variable, we see as above that

R

a

(�)�(��

x

� �

�

)�

3

= (P

a

3

��

x

� �)

�1

�(��

x

� �

�

)�

3

(III.17)

is well de�ned as a bounded operator on L

2

(R

3(N+1)

): Applying the method of ommutators, one an verify

by indution that







hyi

s

hxi

s

0

(P

a

3

��

x

� �)

�1

�(��

x

� �

�

)�

3

hyi

�s

hxi

�s

0







L(L

2

)

� C

for any s; s

0

2 R: Granted this, the estimate for j = 3 follows from the following weighted estimate on  







hyi

s

hxi

s

0

I

a

�

�

u







� Ckuk

L

1

;

for any s > 0; s

0

< 1=2; whih is an easy onsequene of deay of �

�

in y and fall-o� proportional to jxj

�2

of kI

a

�

�

k

y

.

Pieing together the results of these Lemmata, we are now ready to give the
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Proof of Theorem III.3: Let Æ > 0 be given as above and let � 2 I

�

nJ . We then deompose  = I

a

�

�

u

into 4 piees via

 =

3

X

j=0

 

j

;  

0

= (1� �(D

2

x

� �

�

)) ;  

j

= �

j

�(��

x

� �

�

) ; j = 1; 2; 3: (III.18)

Similarly, for v 2 L

1

(R

3

x

), with u; v satisfying equation (III.5), we deompose � := I

a

�

�

v :=

P

3

j=0

�

j

: This

gives

hR(�+ i�) ; �i =

3

X

j;k=0

hR(�+ i�) 

j

; �

k

i: (III.19)

For j = 0; 1; we get from Lemma III.4 and III.5 that  

j

; �

j

2 L

2;s

(R

3(N+1)

); 8s < 3=2: This gives for

j; k = 0; 1, using the weighted estimate for the resolvent,

jhR(�+ i�) 

j

; �

k

ij � Ckh(x; y)i

s

 

j

kkh(x; y)i

s

�

k

k

� C

1

khxi

�s

0

uk

L

1

khxi

�s

0

vk

L

1

; (III.20)

for any s > 1=2; 0 < s

0

< 3=2� s: This estimate and those below are all uniform in � 2 [�1; 0[[℄0; 1℄. In the

ase j = 0; 1, but k = 2; 3, we deompose further using the resolvent equation

R(�+ i�) = R

a

(�+ i�)�R

a

(�+ i�)I

a

R(�+ i�):

This gives

jhR(�+ i�) 

j

; �

k

ij � C

�

khxi

s

 

j

kkhxi

�s

R

a

(�� i�)�

k

k+ kh(x; y)i

s

 

j

kkhxi

�1+s

R

a

(�� i�)�

k

k

�

� C

1

khxi

�s

0

uk

L

1

khxi

�s

0

vk

L

1

; (III.21)

for any s > 1=2; 0 < s

0

< 3=2� s. Here we have used the weighted estimate on the resolvent R(�� i�) and

on  

j

; for j = 0; 1, - as explained after equation (III.19) - to estimate the ontribution of  

j

and we have

used Lemma III.6 to estimate the ontribution of �

k

. Interhanging j; k we obtain the same estimates for

the other ross terms j = 2; 3 and k = 0; 1.

Finally, to treat the ase j; k = 2; 3, we iterate the resolvent equation one more:

R(�+ i�) = R

a

(�+ i�)�R

a

(�+ i�)I

a

R

a

(�+ i�) +R

a

(�+ i�)I

a

R(�+ i�)I

a

R

a

(�+ i�): (III.22)

The �rst 2 terms on the rhs of this equation are easily handled by Lemma III.6 and give

jhR

a

(�+ i�) 

j

; �

k

ij � Ckhxi

�s

0

uk

L

1

khxi

�s

0

vk

L

1

; 8s

0

< 1=2

jhR

a

(�+ i�)I

a

R

a

(�+ i�) 

j

; �

k

ij � Ckhxi

�s

0

uk

L

1

khxi

�s

0

vk

L

1

; 8s

0

< 1: (III.23)

For the third term on the rhs of equation III.22 we obtain, again via Lemma III.6,

jhR

a

(�+ i�)I

a

R(�+ i�)I

a

R

a

(�+ i�) 

j

; �

k

ij � Ckhxi

�1+s

R

a

(�+ i�) 

j

kkhxi

�1+s

R

a

(�� i�)�

k

k

� Ckhxi

�s

0

uk

L

1

khxi

�s

0

vk

L

1

; (III.24)

for any s > 1=2; 0 < s

0

< 3=2� s: Choosing s arbitrarily lose to 1=2 and adding equations (III.20), (III.21),

(III.23) and (III.24) proves the uniform boundedness in Theorem III.3. To see the existene of the weak

limit, we use the same deompositions. The desired result follows from Lemma III.5, Lemma III.6 and the

existene of the boudary values R(�� i0) as operator from L

2;s

to L

2;�s

for s > 1=2.
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IV Born-Oppenheimer approximation of �

�

This setion is devoted to a sketh of the proof of Theorem II.3. Within this setion, we shall always assume

Hypotheses 1,2 and 3 and we reinsert the parameter h whih is de�ned in (II.2).

To study �

�

given by (II.26), we need various approximations and estimates for the boundary value of

the resolvent and for the funtion I

a

e

�

, whih are olleted in the following

Proposition IV.1. Let � be the h-dependent set of all possible ollisions (de�ned in A.5) and let � be an

h-dependent smooth funtion on R

3(N+1)

, equal to one on some oni neighborhood of �, and equal to zero

on some bigger oni neighborhood. For any s � 0, we have, uniformly w.r.t. h,

�I

a

�

�

2 L

2

s

�

R

3(N+1)

�

; (IV.1)

k(1� �)I

a

�

�

k

y

= O

�

hxi

�2

�

; (IV.2)

where k � k

y

denotes the norm on L

2

(R

3N

y

). For jxj > 1, uniformly w.r.t. h,

k�(x;h) I

a

(x; �;h)�

�

k

y

= O

�

jxj

�4

�

; (IV.3)

I

e�

(x) := �

1

(x; 0)�E

�

(0) = O

�

jxj

�4

�

; (IV.4)

k�(x;h)

�

I

a

(x; �;h)� I

e�

(x)

�

�

�

k

y

= O

�

h

2

jxj

�4

�

+O

�

jxj

�5

�

; (IV.5)

k�(x;h)

�

I

a

(x; �;h)�

^

I

e�

(x)

�

�

�

k

y

= O

�

h

2

jxj

�4

�

+O

�

jxj

�5

�

; (IV.6)

Furthermore, the smooth funtion R

3

n f0g 3 x 7! �(x;h) has the following properties. There exists � > 0

suh that, uniformly w.r.t. x and h,

X

j�j�2

hxi

4+j�j







e

�hyi

�(x;h)�

�

x

�

�(x;h)��

0

(h)

�

�

0

(h)







L(L

2

(R

3N

y

))

= O(1) : (IV.7)

Note that (IV.7) remains true if the �rst projetor �(x;h) is replaed by �

0

(h). The resolvents satisfy, for

all s > 1=2 and loally uniformly for � 2 J ,





hx� l(y)i

�s

R(� � i0)hx� l(y)i

�s





+





hxi

�s

R

AD

(�� i0;h)hxi

�s





= O(h

�1

) ; (IV.8)





hx� l(y)i

�s

R(�� i0;h)

^

�





= O(1) ; (IV.9)







hxi

�s

�

�

R(� � i0)� R

AD

(�� i0;h)

�

�hxi

�s







= O(1) : (IV.10)

uniformly in h 2℄0; h

0

℄.

Proof: (IV.1) follows from the exponential deay of the eigenfuntions �

�

(h), whih is uniform w.r.t. h.

Aording to Appendix A, equation (IV.2) holds for jxj > 1 and uniformly w.r.t. h, and





�

�

0

(h) + �

0

(0)

��

I

a

(x;h) + I

a

(x; 0)

��

�

0

(h) + �

0

(0)

�





y

=

A(x̂;h)

jxj

5

+ O

�

jxj

�6

�

; (IV.11)

where x̂ = x=jxj and A(x̂;h) is uniformly bounded as h ! 0. Furthermore, the operator hxi

2

I

a

(x;h)�

0

(h)

is uniformly bounded. Using this fat, we an show, as in [KMW2℄, that

X

j�j�2

hxi

2+j�j







e

�hyi

�

�

x

�

�(x;h)��

0

(h)

�







y

= O(1) : (IV.12)

Using (IV.12) and (IV.11), we obtain

�(x;h)I

a

(x;h)�

0

(h) =

�

�(x;h) ��

0

(h)

�

I

a

(x;h)�

0

(h) + �

0

(h)I

a

(x;h)�

0

(h)

= O

�

jxj

�4

�

: (IV.13)

Next, we show that

�

1

(x;h)�E

�

(h) =

^

I

e�

(x) + O

�

h

2

jxj

�4

�

+ O

�

jxj

�5

�

: (IV.14)
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Using (IV.12), we �rst note that, sine the eigenfuntion �

�

(h) is normalized,

k�(x;h)�

�

(h)k

2

y

= 1 + O

�

jxj

�2

�

:

Thus, aording to (IV.11), for jxj large enough and writing h�; �i

y

for the salar produt in L

2

(R

3N

y

), we

have

�

1

(x;h)�E

�

(h) =




�(x;h)�

�

(h) ; I

a

(x;h)�(x;h)�

�

(h)

�

y

= k�(x;h)�

�

(h)k

2

y

=




�(x;h)�

�

(h) ; I

a

(x;h)�(x;h)�

�

(h)

�

y

+ O

�

jxj

�6

�

= 2<


�

�(x;h)��

0

(h)

�

�

�

(h) ; I

a

(x;h)�(x;h)�

�

(h)

�

y

+ O

�

jxj

�5

�

= 2<


�

�(x;h)��

0

(h)

�

�

�

(h) ; I

a

(x;h)�

�

(h)

�

y

+ O

�

jxj

�5

�

(IV.15)

Next, we use the following lemma, whih will be proved after the present proof.

Lemma IV.2. Setting

^

R

a

(z; h) = (P

a

(h)

^

�

0

(h) � z)

�1

^

�

0

(h) and

^

R

a

(h) =

^

R

a

(E

�

(h); h) (as in equation

(II.34)), we have, for jxj large enough and uniformly w.r.t. h,

2<


�

�(x;h) ��

0

(h)

�

�

�

(h) ; I

a

(x;h)�

�

(h)

�

y

= �2




^

R

a

(h)

^

�

0

(h)C(x̂; y)�

�

(h) ;

^

�

0

(h)C(x̂; y)�

�

(h)

�

y

� jxj

�4

+ O

�

jxj

�5

�

: (IV.16)

In partiular, the two forms of the e�etive potential satisfy equation (II.36), i.e.

jI

e�

(x)�

^

I

e�

(x)j = O(jxj

�5

); as jxj ! 1:

Furthermore, the �rst term on the rhs of (IV.16) is negative, for all x 6= 0, if the luster a

2

is not neutral.

Using Lemma IV.2, we obtain (IV.14). By a Taylor expansion w.r.t. h and using the previous estimates,

�(x;h)I

a

(x;h)�

0

(h) = �(x;h)I

a

(x; 0)�

0

(h) + O

�

hjxj

�6

�

= �(x; 0)I

a

(x; 0)�

0

(0) + O

�

h

2

jxj

�5

�

+ O

�

jxj

�6

�

= �(x; 0)

�

�(x; 0)�E

�

(0)

�

�

0

(0) + O

�

h

2

jxj

�5

�

+ O

�

jxj

�6

�

= �(x;h)

�

�(x; 0)�E

�

(0)

�

�

0

(h) + O

�

h

2

jxj

�5

�

+ O

�

jxj

�6

�

:

We then have proved (IV.5). Using (IV.15), we derive (IV.6) from (IV.5).

Finally, we follow the arguments in [KMW2℄ to derive (IV.7) from (IV.13). Still following [KMW2℄, we

obtain resolvent estimates with the weight hx� l(y)i. As already remarked in [KMW2℄, hxi

�s

�(x)hx� l(y)i

s

is uniformly bounded. Thus we may replae this weight by hxi if � is present. We do this for the seond

term in (IV.8) and in (IV.10).

Proof of Lemma IV.2: Equation(II.36) simply follows from (IV.15) and(IV.16), for h = 0. To prove

(IV.16), we write the projetions as ontour integrals. Let � a omplex ontour enlosing E

�

(h) and �

1

(x;h)

for h suÆiently small and jxj suÆiently large. For brevity, we shall now notationally suppress the depen-

dene on h. We rewrite the lhs of equation (IV.16) as

lhs (IV.16) = 2<

D

�

(P

e

(x)� �z)� (P

a

� �z)

�

�

�

;

1

2i�

I

�

�

(P

e

(x)� z)

�1

� (P

a

(x)� z)

�1

�

dz �

�

E

y

= �2<

1

2i�

I

�

dz

�

(E

�

� z)




(P

e

(x)� z)

�1

�

�

; �

�

�

y

+ (E

�

� z)

�1




I

a

(x)�

�

; �

�

�

y

�

= �2<

1

2i�

I

�

dz (E

�

� z)




(P

e

(x) � z)

�1

�

�

; �

�

�

y

+ O

�

jxj

�5

�

; (IV.17)

by (IV.11). So we need to ompute �

0

R

e

(z)�

0

, where R

e

(z) = (P

e

(x) � z)

�1

. To this end, we use the

resolvent equation

R

e

(z) = R

a

(z)�R

a

(z)I

a

R

a

(z) +R

a

(z)I

a

(z)R

e

(z)I

a

R

a

(z) (IV.18)
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whih gives

�

0

R

e

(z)�

0

= R

a

(z)�

0

+R

a

(z)�

0

I

a

^

�

0

R

e

(z)

^

�

0

I

a

�

0

R

a

(z) +O(jxj

�5

) (IV.19)

Inserting these estimates into (IV.17) and using Appendix C and (IV.11) again, we arrive at (IV.16) with

^

R

a

(h) replaed by

^

�

0

R

e

(E

�

(h))

^

�

0

. But

k

^

�

0

(R

e

(E

�

)�R

a

(E

�

))

^

�

0

C(x̂; y)�

�

k

y

= O(jxj

�2

); (IV.20)

uniformly w.r.t. h. This follows from a Neumann expansion of R

e

(z), exponential deay of �

�

, uniform

boundedness of the weighted redued resolvent hyi

M

^

R

a

hyi

�M

, for anyM � 0, ombined with kI

a

hyi

�M

k

y

=

O(jxj

�2

): This proves equation (IV.20) and thus (IV.16).

Sine

^

R

a

(E

�

(h)) � b > 0, uniformly w.r.t. h, the �rst term on the rhs of (IV.16) is bounded above by

�bk

^

�

0

C(x̂; y)�

�

(h)k

2

=jxj

4

. Sine

k�

0

C(x̂; �)�

�

(h)k

2

y

= 0

by the rotational invariane of �

�;1

(see Appendix A), we have

k

^

�

0

C(x̂; y)�

�

(h)k

2

y

= kC(x̂; y)�

�

(h)k

2

y

> 0 : (IV.21)

Reall from (II.26) that

�

�

(�; !;h) =

h

�1

n

�

(�;h)

Im




R(�+ i0;h)I

a

e

�

; I

a

e

�

�

:

In view of the adiabati approximation of the resolvent, we introdue

�

ad

(�; !;h) :=

h

�1

n

�

(�;h)

Im




�R

AD

(� + i0;h)� I

a

e

�

; I

a

e

�

�

: (IV.22)

�

ad

is almost the total ross-setion for the sattering proess of the pair of operators (P

AD

(h);�(h)(�h

2

�

x

+

E

�

(h))�(h)), as shown in [Je℄. It thus should be a good approximation for �

�

. Indeed, we laim that

Proposition IV.3. For all � > 0 small enough, there exists some C

>

0 suh that, for all h > 0 suÆiently

small and loally uniformly in (�; !) 2 J � S

2

,

�

�

(�; !;h) = �

ad

(�; !;h) +O(h

�2=3+(1=2��)

): (IV.23)

With the estimates given in Proposition IV.1, the proof of Proposition IV.3 follows the same arguments

as in [Je℄.

The adiabati operator P

AD

(h) is equal to �(h)(�h

2

�

x

+ �

1

(x; h))�(h) in O

�

0

whih looks like a two-

body Shr�odinger operator with operator-valued potential. We an use the methods of [RT℄ and [Je℄ to

prove that

�

ad

(�; !;h) = O(h

�2=3

)

and that

�

ad

(�; !;h) = 4

Z

H

!

sin

2

�

1

4n

�

(�; 0)h

Z

+1

�1

I

e�

(x

!

+ u!)du

�

dx

!

+ O

�

h

�2=3+�

0

�

; (IV.24)

whih, aording to Proposition IV.3, gives (II.39) for I = I

e�

. Sine the potential

^

I

e�

has the same properties

as I

e�

and

^

I

e�

� I

e�

= O(jxj

�5

) (see Proposition IV.1), we an show that (IV.24) still holds with I

e�

replaed

by

^

I

e�

. We thus obtain the formula (IV.24) with

^

I

e�

, whih is (II.39) for I =

^

I

e�

.

Now we assume that C

2

+Z

2

6= 0. To show that �

ad

(and thus �

�

) is exatly of order h

�2=3

, we estimate

as in [Je℄ the integral in (II.39) for I =

^

I

e�

. Reall that

^

I

e�

(x) is of the form A(x̂; 0)jxj

�4

(see (II.37)) and
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that A(x̂; 0) is everywhere negative by Lemma IV.2 sine C

2

+ Z

2

6= 0. Thanks to this form, one an show

as in [Y℄ that, for some h-independent onstant b 6= 0,

4

Z

H

!

sin

2

�

1

4n

�

(�; 0)h

Z

+1

�1

^

I

e�

(x

!

+ u!)du

�

dx

!

= b h

�2=3

Z

S

1

!

�

�


(!; �)

�

�

2=3

d� ; (IV.25)

where S

1

!

is the unit sphere in H

!

and where 
 is given by


(!; �) =

Z

�

0

^

I

e�

(os � ! + sin � �) sin

2

� d� (IV.26)

for � 2 S

1

!

. By Lemma IV.2 we know that the integrand - and thus 
 - is negative everywhere. Thus the

rhs of (IV.25) is exatly of order h

�2=3

.

A Expansion of the potentials

In this setion we ollet the relevant expansions of the Coulomb interations for atom-ion sattering, whih

involve the e�etive dipole moments and quadrupole moments of the two lusters a

1

; a

2

. They are ertainly

well known in the physis literature. For the sake of the reader, we state them as

Lemma A.1. Let � = (a;E

�

(h); �

�

(h)) be a sattering hannel satisfying Hypothesis 1. Then

kI

a

(x; h)�

�

(h)k

y

= O(hxi

�2

); (A.1)









�

I

a

�

C(x̂; �)

jxj

2

�

�

�

(h)









y

= O(hxi

�3

); C(x̂; y) =

�

C

2

+ Z

2

�

X

l2a

0

1

e

l

x̂ � y

l

; (A.2)

h�

�

(h); I

a

(x;h)�

�

(h)i

y

= O(hxi

�3

); (A.3)

uniformly w.r.t. h, for 0 � h � h

0

. Assuming in addition that � satis�es Hypothesis 2, we even have the

stronger estimate

h�

�

(h); I

a

(x;h)�

�

(h)i

y

= O(hxi

�5

); (A.4)

uniformly w.r.t. h, for 0 � h � h

0

.

Proof: Beause of the Coulomb singularities, we separate the ontribution of ollisions. Let � be the

(h-dependent ) set of all possible ollisions, that is

� :=

�

(x; y) 2 R

3(N+1)

; 9l 2 a

0

1

; 9j 2 a

0

2

;

x = �y

l

+ l(y) or x = y

j

� y

l

+ l(y)

or x = l(y) or x = y

j

+ l(y)

�

: (A.5)

Let � 2 C

1

(R

3(N+1)

) suh that 0 � � � 1, � equals 1 on a small oni neighborhood of �, and � equals 0

outside a slightly bigger oni neighborhood. We also demand that � is even in y. Thanks to the exponential

deay (uniformly w.r.t. h) of the eigenfuntions �

�

(h), we have

k�(x; y;h)hyi

L

I

a

(x;h)�

�

(h)k

y

= O(hxi

�M

); 8L;M 2 N: (A.6)

Thus, we only have to estimate the ontribution of the regular part

I

reg

(�) := h�

�

(h);

~

I

a

(x;h)�

�

(h)i

y

;

~

I

a

(x;h) := (1� �(x; y;h))I

a

(x;h): (A.7)

Aording to (II.8), we want to expand terms of the form

jx+

~

l(y)j

�1

= jxj

�1

�

�

�

x̂+

~

l(y)=jxj

�

�

�1
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for large jxj. To this end, we use a Taylor expansion at zero of the funtion f : R 3 r 7! ju + rvj

�1

for

non-zero vetors u; v 2 R

3

. More preisely, one obtains by Taylor expansion, that for eah r 2 R, there

exists some � 2℄0; 1[ suh that

f(r) =

3

X

k=0

r

k

k!

f

(k)

(0) +

r

4

4!

f

(k)

(�r) (A.8)

We observe that the �rst order term (the term in jxj

�1

) of the expansion of I

reg

(�) vanishes by neutrality of

a

1

(f. (II.21)). The seond order term is given by

�




�

�

(h) ; C(x̂; �)�

�

(h)

�

y

� jxj

�2

; C(x̂; y) = (C

2

+ Z

2

)

X

l2a

0

1

e

l

x̂ � y

l

; (A.9)

where C

2

=

P

l2a

0

2

e

l

is the eletroni harge of a

2

and where we have used an estimate similar to(A.6) to

get

k�(x; y;h)�

�

(h)C(x̂; �)�

�

(h)k

y

= O(hxi

�M

); 8M 2 N:

By the reexion symmetry, we see that the seond order term also vanishes. The rest of the expansion is

seen to be O(jxj

�3

), uniformly w.r.t. h. In view of equation (A.6), this proves (A.2) and (A.3). The proof of

(A.1) is similar and involves a non-vanishing term of seond order. Next we shall prove the estimate (A.4).

It ruially depends on the full rotational symmetry of the wave funtion �

�

= �

�;1

�

�;2

in both lusters

(whih is a onsequene of Hypothesis 2). For onveniene, we hoose the ut-o� � in suh a way that the

new ut-o� also has the same symmetry properties. To this end, we onsider

~

�, de�ned as the union of the

orbits under the ation o : y ! o � y = (o � y

1

; � � � ; o � y

N

) of O(3;R) on the y-variables of eah point in �

(for h = 0). As before, we onstrut a ut-o� ~� 2 C

1

(R

3(N+1)

) suh that 0 � ~� � 1, ~� equals 1 on a small

oni neighborhood of

~

�, and ~� equals 0 outside a slightly bigger oni neighborhood. Notie that, on the

support of ~�, the previous properties are preserved sine jxj and jyj are equivalent there. Thus (A.6) holds

in this ase also, and it again suÆes to estimate the regular part de�ned in (A.7). Obviously, the �rst and

seond order term of the expansion are zero. Expanding further, we �nd that the third order term is




�

�

(h) ; F

3

(x̂; y)�

�

(h)

�

� jxj

�3

; (A.10)

where we have estimated the ontribution of the region ut out by ~� as above and where

F

3

(x̂; y) = �(C

2

+ Z

2

)

X

l2a

0

1

�

e

l

jy

l

j

2

� 3(y

l

� x̂)

2

�

+ 2

X

l2a

0

1

;j2a

0

2

e

l

e

j

(y

l

� y

j

� 3(y

l

� x̂)(y

j

� x̂)) : (A.11)

By the rotation symmetry of Coulomb potentials, we an replae in (A.10) x̂ by the anonial basis vetors

b

1

; b

2

; b

3

of R

3

. Sine

P

k

F

3

(b

k

; y) = 0, it follows that the third order term also vanishes. For the fourth

order term, we get




�

�

(h) ; F

4

(x̂; y)�

�

(h)

�

� jxj

�4

; (A.12)

where the funtion F

4

satis�es

F

4

(x̂; y

1

;�y

2

) = �F

4

(x̂; y

1

; y

2

); y = (y

1

; y

2

);

sine it is homogeneous of degree 3 in y. By Hypothesis 2 the eigenvalue E

�;2

is simple and �

�;2

is invariant

under the reetion y

2

7! �y

2

. Thus the fourth order term is zero, and a standard appliation of Taylor's

theorem (A.8) shows that the remainder of the expansion is O(jxj

�5

), uniformly w.r.t. h.
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