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Abstract 

A novel bacterial strain was isolated from industrially contaminated waste water. In the presence of crude oil, 

this strain was shown to reduce the rate of total petroleum hydrocarbons (TPH) up to 97.10% in 24h. This 

bacterium was subsequently identified by 16S rRNA gene sequence and affiliated to the Serratia genus by the 

RDP classifier. Its genome was sequenced and annotated, and genes coding for catechol 1,2 dioxygenase and 

naphthalene 1,2-dioxygenase system involved in aromatic hydrocarbon catabolism, and LadA-type 

monooxygenases involved in alkane degradation, were identified. Gas Chromatography-Mass Spectrometry 

(GC-MS) analysis of crude oil after biological treatment showed that Serratia sp. Tan611 strain was able to 

degrade n-alkanes (from C13 to C25). This bacterium was also shown to produce a biosurfactant, the 

emulsification index (E24) reaching 43.47 % and 65.22 %, against vegetable and crude oil, respectively. Finally, 

the formation of a biofilm was increased in the presence of crude oil. These observations make Serratia sp. 

Tan611 a good candidate for hydrocarbon bioremediation. 

Keywords: aromatic hydrocarbon catabolism, bioremediation, biosurfactant, n-alkanes, total petroleum 

hydrocarbons (TPH). 

  



Introduction 

The exploitation of petroleum resources from offshore platforms and the increase in maritime transport are 

regularly the source of significant pollution by hydrocarbons (Ławniczak et al. 2020), and different techniques 

have then to be implemented for the treatment of spilled oil. These include physical removal of the pollutants, 

conventional skimming methods, mechanical restoration using oil absorbents, and biological methods, i.e. the 

use of hydrocarbonoclastic bacteria capable of degrading hydrocarbons (Marzan et al. 2017; Morales-Guzmán et 

al. 2017). 

Bacteria work as primary degraders of spilled oils in the environment, and several species of the Oleispira, 

Oleiphilus, Thalassolituus and Alcanivorax genera are even known to feed exclusively on hydrocarbons 

(Brooijmans et al. 2009). Microbial degradation of crude oil often occurs by the attack of alkanes or light 

aromatic fractions, while the high molecular weight hydrocarbons, aromatic, resins, and asphaltenes are 

considered recalcitrant (Kanaly and Harayama 2000; Koshlaf and Ball 2017). The saturated components of crude 

oil (alkanes and cycloalkanes), particularly the n-alkanes with intermediated lengths (C10-C20), are the first 

degraded compound. Although the degradation of both types of hydrocarbons, i.e. saturated hydrocarbons and 

aromatic compounds, requires different metabolic pathways, the difficulty to isolate bacterial strains owning 

such a double capacity is probably due to other factors such as the abundance of naturally occurring 

hydrocarbons, nutrient limitation, the formation of aerobic and anaerobic conditions, and the role of surfactants 

in biodegradation (Ławniczak et al. 2020). The determination of 16S rRNA gene sequences of oil-utilising 

bacteria has revealed that they are predominantly affiliated to Gammaproteobacteria and Actinobacteria (Isaac et 

al. 2015). Some Enterobacteriacaea, including Serratia sp. isolated from a petroleum-contaminated soil, were 

also found to be potential degraders of crude oil hydrocarbons  (Borah et al. 2019). 

Several bacteria are also known to produce surfactants, i.e. amphiphilic molecules that can be used as 

dispersing agents of crude oil, and microbial bioremediation is therefore one of the most broadly accepted 

methods to fight oil contamination because of its eco-friendly nature. Biosurfactants produced by petroleum-

degrading microorganisms have an important role in the emulsification of hydrocarbons to reduce them, make 

them more soluble and less toxic, so that they can be used in their metabolism (Ron and Rosenberg 2002; 

Mahanty et al. 2006; Deepak and Jayapradha 2015; Borah et al. 2019). In this respect, petroleum-contaminated 

sites may serve as a potential source of novel indigenous hydrocarbon-degrading microorganisms (Chaudhary 



and Kim 2017; Méndez et al. 2017; Hu et al. 2018). The adoption of nucleic acid based technologies makes it 

possible to assess their microbial biodegradation potential by detecting the presence of catabolic genes. 

We report here the characterisation of Serratia sp. Tan611, a novel strain isolated from an industrial site 

located in Algeria. This bacterial strain displays outstanding degradation capacities against petroleum 

hydrocarbons and an ability to emulsify crude oil and form a biofilm, improving its degrading power. The 

analysis of its genome provides a comprehensive understanding of this strain, opening up perspectives for its 

application in bioremediation. 

Materials and methods 

Bacterial isolation and growth conditions 

A bacterium, designated as ‘Tan611’, was isolated from a tannery effluent in the western region of Algeria. The 

strain was isolated on MSM minimal medium plates containing per liter : 1.2g NH4Cl ; 1.6g K2HPO4 ; 0.4g 

KH2PO4 ; 0.1g NaCl ; 1g KNO3 ; 20g MgSO4 7H2O ; 10g CaCl2 2H2O ; 0.05g FeCl3 ; pH 7.1 (Sidkey et al. 

2016). A solution of trace elements (1ml) was added separately under sterile conditions. Crude oil (1% v/v) was 

used as a carbon source to enrich the growth medium, and the plates were incubated at 30°C. The strain was 

further purified on glycerol nutrient broth (1 :1, v/v), and kept at -20°C. The bacterial strain was characterised for 

different phenotypic traits, including motility on tryptone swarm plates containing 1% Bacto-Tryptone, 0.5% 

NaCl, and 0.3% Bacto-Agar (Bertin et al. 1994). Swarm plates were inoculated with a 1:100 diluted sample and 

incubated at 30°C for 15-24 h. Qualitative assay for the production of different enzymes was performed from a 

liquid bacterial culture using the API-ZYM-20 test kit (Biomerieux. USA). The strips were inoculated according 

to the manufacturer’s instructions and incubated for 4 h – 4 h 30 at 37°C. 

Crude oil biodegradability 

To determine bacterial crude oil degradation, the total petroleum hydrocarbon (TPH) of residual crude oil was 

quantified after growth in triplicates using 250 ml flasks containing 100 ml of mineral salt medium MSM with 

20 ppm of crude oil as a carbon source. Crude oil was provided by Sonatrach Company (National Society for 

Petroleum Research, Production, Transport, the Transformation and the Commercialization of Hydrocarbons). 

Tan611 strain was incubated for 48h while uninoculated medium served as a control. The TPH degradation level 

was determined on an Oil Content Analyzer OCMA-310 equipment of Sonatrach Company (NF T90-203 

standard) using HORIBA’s special S-316 Solvent to extract the oil components from oily water samples, soil 

samples, or product surfaces. The extract is measured using IR absorbance, a non-dispersive infrared 



spectrophotometric technique which is specific to hydrocarbons such as oil. The OCMA-310 measures 

absorption in the 3.4-3.5 micrometer range in which all hydrocarbons, including oils, absorb infrared radiation. 

As a result, the unit measures any hydrocarbons in the extraction solvent quickly and accurately, with no 

distortion of values due to the presence of the solvent (NF T90-203 standard). The amount of crude oil to be 

added in ppm was calculated according to the refinery's treatment plant protocol, as follows (SIEMENS Omniflo 

manual): 

(𝑚𝑙) =
𝑉𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑤𝑎𝑡𝑒𝑟. [𝐶]𝑝𝑝𝑚

𝜌(𝑠𝑙𝑜𝑝). 1000
 

Molecular characterisation of Serratia sp. Tan611 

The molecular identification of the strain was carried out by 16S rRNA sequence analysis following standard 

procedures. Briefly, genomic DNA was extracted from a liquid culture according to the manufacturer’s 

instructions (Wizard Genomic DNA Purification Kit, Promega, USA). Amplification of 16S rRNA gene from 

genomic DNA was performed using universal forward and reverse primers, fD1 (5’-

AGAGTTTGATCCTGGCTCAG-3’) and rD1 (5’-AAGCTTAAGGAGGTGATCCAGCC-3’) respectively, in 

DNA Mastercycler Nexus (Eppendorf AG, Hamburg, Germany) with the following cycling parameters: 94°C for 

5 min : 35 cycles of 94°C, 56°C and 72°C for 1.30 min each, and final extension at 72°C for 3 min. The 

amplification PCR products were kept at 4°C, purified and sequenced by Eurofins Genomics (Ebersberg, 

Germany). The sequence was compared with National Center for Biotechnology Information (NCBI) GenBank 

entries using the BLAST algorithm and with RDP Naive Bayesian rDNA Classifier Version 2.11. 

DNA library preparation and genome sequencing 

In order to sequence the Tan611 genome, the strain was grown in LB liquid medium for 72h at 30°C and DNA 

was extracted using the MasterPureTM Complete DNA & RNA Purification Kit (Epicentre, Madison, 

Wisconsin) according to the manufacturer’s instructions. ONT Library preparation and sequencing were 

performed according to the manufacturer’s instructions “1D Native barcoding genomic DNA” (EXP-NBD103 

and SQKLSK109)”. At each step, DNA was quantified using the Qubit dsDNA HS Assay Kit (Life 

Technologies). DNA purity was tested using the nanodrop (Thermofisher) and size distribution and degradation 

assessed using the Fragment analyser (AATI) High Sensitivity DNA Fragment Analysis Kit. Purification steps 

were performed using AMPure XP beads (Beckman Coulter). For 1 Flowcell, 5µg of each DNA (10 samples) 

were purified then sheared at 20kb using the megaruptor system (diagenode). A one step DNA damage repair + 



END-repair + dA tail was performed on 700ng of each sample. Then specific index were ligated to each sample. 

The library was generated by an equimolar pooling of these barcodes samples. Then adapters were ligated to the 

library. Library was loaded on a R9.4.1 revD flowcell and sequenced on GridION instrument at 0.03pmol within 

48h. Illumina DNA-seq libraries were prepared according to Illumina’s protocols using the Illumina TruSeq 

Nano DNA HT Library Prep Kit. Briefly, DNA was fragmented by sonication, size selection was performed 

using SPB beads (kit beads) and adaptators were ligated to be sequenced. Library quality was assessed using a 

Advanced Analytical Fragment Analyser and libraries were quantified by QPCR using the Kapa Library 

Quantification Kit. DNA-seq experiments were performed on an Illumina MiSeq using a paired-end read length 

of 2x150 pb with the Illumina MiSeq Reagent Kits V2.  

Short reads were filtered with the BBDuk program from JGI’s BBTools (https://jgi.doe.gov/data-and-

tools/bbtools/bb-tools-user-guide) to trim adapters and extremities with a quality value per base lower than 20. 

Read pairs having an average quality less than 30 after the trimming step were discarded. Adapters were 

trimmed off long reads using the qcat program developed by Oxford Nanopore Technologies 

(https://github.com/nanoporetech/qcat). Long reads were subsequently filtered with Nanofilt version 2.5.0 (De 

Coster et al. 2018) to keep only reads with an average quality of 9. Genome assembly was performed with the 

Unicycler hybrid assembly pipeline (Wick et al. 2017) using both short and long filtered reads, yielding circular 

replicon of 4,963,609 bp. The quality assessment of the assembly by Quast version 5.0.2 (Gurevich et al. 2013) 

could be considered as good with 99.91% of reads mapping back on the assembly with an average coverage 

depth of 168x. According to the CheckM version 1.0.11 (Parks et al. 2015) analysis, the genome assembly was 

99.88% complete and showed insignificant contamination (0.51%) and no strain heterogeneity. The annotation 

of the genome was done using the MicroScope platform (Médigue et al. 2019). Ribosomal RNA genes were 

predicted with barrnap (https://github.com/tseemann/barrnap). The complete sequences of the Serratia Tan611 

genome have been deposited in DDBJ/EMBL/GenBank under BioProject PRJEB40361. 

Identification of LadA-type alkane monooxygenase sequences 

The protein sequences of Geobacillus thermoleovorans B23 LadAα (BAM76377.1), LadAβ (BAM76372.1) and 

LadB (BAM76371.1) alkane monooxygenases (Boonmak et al. 2014) were used as BlastP (Camacho et al. 2009) 

queries to search the Tan611 proteome on the MicroScope platform. Reference LadA protein sequences were 

retrieved from UniprotKB database (UniProt Consortium 2019) by keyword search on gene names. Since only 

fragments were returned with an equivalent search for LadB, the sequence of BAM76371.1 was used to search 

UniprotKB with BlastP. The first 10 sequences with different genera were retrieved and used as LadB-like 

https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide
https://github.com/nanoporetech/qcat
https://github.com/tseemann/barrnap
https://www.ebi.ac.uk/ena/browser/view/PRJEB40361


reference sequences. The 3 potential LadA-like protein sequences found in Tan611 (SERRA_v1_1764, 

SERRA_v1_2493, SERRA_v1_3086) were aligned with muscle 3.8.425 (Edgar 2004) to the 12 LadA, the 11 

LadB-like reference sequences, and Pseudomonas oleovorans AlkB as an outgroup. A phylogenetic tree was 

computed from the resulting alignment with FastTree 2.1.11 (Price et al. 2010) using default parameters and Le 

Gascuel model (-lg option). 

GC-MS analysis of oil fractions  

Oil fractions (abiotic control medium and medium after treatment with Tan611 strain) were analysed using an 

experimental protocol directly adapted from those used in petroleum geochemistry (Charrié-Duhaut et al. 2000). 

Briefly, an organic extract was fractionated by polarity classes, which simplifies the molecular mixtures and thus 

the structural identification. The less polar fraction containing among others saturated and aromatic 

hydrocarbons, which are the main constituents of oils, was analyzed by gas chromatography coupled with mass 

spectrometry (GC-MS) in order to obtain the precise molecular composition of each sample, as previously 

described (Brito et al. 2006).  

All solvents used were HPLC grade (Sigma Aldrich, purity: 99.9%) and CH2Cl2 cleaned glassware was used. 

2ml of MSM medium supplemented with 1% crude oil after incubation at 30°C for 72h in the presence of 

Tan611 strain and taken after manual homogenization of the medium, was extracted completely twice with 

dichloromethane. The same procedure was applied to the control medium supplemented with 1% crude oil but 

without inoculation. The organic extracts were then evaporated under gentle nitrogen flow.  

The organic extract dissolved in 50µl of CH2Cl2 was fractionated using a column chromatography on silica gel 

60 Å FLUKA 35-75µm granulometry and the less polar fraction was recovered by elution with 1,5ml of 

cyclohexane. These fractions which includes saturated and aromatic hydrocarbons, were evaporated under gentle 

nitrogen flow prior to GC-MS analysis. 

GC-MS analyses were performed on a Focus GC gas chromatograph interfaced with an ISQ mass detector 

ThermoScientific (splitless mode injector, HP-5 MS column, 30 m x 0.25 mm i.d., 0.25 µm film thickness, 

temperature program: 40°C (1 min), 40-100°C (10°C/min), 100-320°C (4°C/min), isothermal 320°C (30 min), 

carrier gas: Helium). Mass spectra were produced by electron impact at 70 eV in full detection mode over 40-

800 amu. Peak assignment was based on the interpretation of mass spectra and comparison with spectra available 

in literature and NIST library 2.0 and by consideration of the retention time. 



E24 =
Heigh to emulsion formed ∗ 100

Total heigh to solution
 

The biodegradation rate of selected n-alkanes, measured as a percentage, was calculated based on the difference 

between the area of the corresponding peaks in the incubated sample (As) and in the control (AC) for the same 

supplementation in crude oil, using the following formula : P (%) = 100 − (AS × 100/AC). The total degradation 

of the n-alkanes ranging from C13 to C25 was calculated by using the total area of the peaks from C13 to C25 in the 

incubated sample (TAs (C13-C25)) and in the control (TAC (C13-C25)) by the same formula (Abena et al., 2020). 

Oil displacement activity (ODA) 

The determination of oil displacement activity was performed as previously described (Huang et al. 2020). 

Briefly, crude oil or vegetable oil (100 μl) was placed on a surface of 40 ml distilled water Petri dish. Cell-free 

supernatant (10 μl) of Tan611 strain was applied onto the oil drop and the diameter of the clearance zone was 

observed for 30s. Water and Triton X-100, were used as negative and positive controls, respectively. 

Emulsifying potential against crude and vegetable oils 

The emulsifying ability of Tan611 strain against crude oil such as petrol and vegetable oil such as sunflower was 

determined from the emulsification index (E24) using pre-cultures in MSM broth. 3ml of oil were added to 3ml 

of cell-free broth in a test tube, which was vortexed vigorously at high speed for 2 min and allowed to stand for 

24h (Gaur et al. 2019). The emulsification index value (E24) was calculated using the following equation 

(Sumiardi et al. 2018) : 

 

All experiments were performed in triplicate and in the absence of any oil source as a control. 

Biofilm formation 

To evaluate the biofilm forming ability of the Tan611 strain, overnight cultures in the absence or the presence of 

1% crude oil were diluted 1:100 in Luria-Bertani medium (LB, MP Biomedicals, USA) and added to sterile 24-

well polystyrene plates. Following a further 48h aerobic incubation at 37°C, unattached bacterial cells were 

removed by the aspiration of culture medium and biofilms were washed twice with phosphate-buffered saline 

solution (PBS ; pH 7.2), as previously described (Andres et al. 2013). Biofilm biomass was then heat-fixed by 

exposing them to hot air at 55°C for 25 min, and next stained with 1ml crystal violet 0,1% (w/v) for 30 min. The 

dye was discarded and wells were washed three times with PBS and dried. Biofilms were resolubilised with 1ml 

95% ethanol, and optical density (OD) of each well was measured at 595nm using BIO-RAD reader 

(SmartspectPlus spectrophotometer). Negative control wells contained uninoculated broth medium. The strain 



was then categorised into one of the 4 following categories (Zhuo et al. 2014; Hemati et al. 2020) : no biofilm 

producer (OD≤ODc) ; weak biofilm producer (ODc<OD≤2xODc) ; moderate biofilm producer 

(2xODc<OD≤4xODc); and strong biofilm producer (4xODc<OD), where ODc = average OD of negative control 

+ ( 3 x standard deviation (SD) of the negative control). 

Results 

Phenotypic characterisation 

The Tan611 strain isolated from the tannery effluents produced round colonies without pigmentation on nutrient 

rich medium, and was motile on swarm plates. Its optimal growth was observed between 28°C-35°C and in pH 

values ranging from 5-9 (data not shown). On API-ZYM-20 strips, the strain was shown to produce eight 

extracellular hydrolytic enzymes (Table 1). The strain harbored alkaline phosphatase, esterase lipase (C8), 

leucine arylamidase activity, valine arylamidase activity, cystine arylamidase, trypsin, β-galactosidase, α-

glucosidase, β-glucosidase, N-acetyl-β-glucosaminidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase 

but no esterase (C4), lipase (C14), α-chymotrypsin, α-galactosidase, β-glucuronidase, α-mannosidase or α-

fucosidase activity. The Tan611 strain was also capable of utilizing vegetable oil and crude oil as energy source. 

To determine its crude oil degradation activity, the strain was grown in 50ml mineral medium containing 20ppm 

crude oil as a unique carbon and energy source. After 48h incubation at 30°C, analysis of TPH degradation with 

OCMA-310 equipment indicates a significant difference in absorption (according to the bands corresponding to 

the valence vibrations of the CH2-CH3 groups) between the control and the Tan611 strain with 20ppm and 

0.58ppm respectively. This corresponds to a degradation rate of 97.10%, providing evidence that this strain 

possess a high degradation ability. 

Genotypic and genomic characterisation of Tan611 strain 

The 16S-based taxonomic prediction by the RDP classifier server (Wang et al. 2007) identified the Tan611 strain 

as Serratia sp. Its genome was sequenced and the assembly produced a single circular chromosome with 

4,963,609 bp, and a GC content of 57.96%. The annotation with the MicroScope platform (Médigue et al. 2019) 

predicted the existence of 5,018 genes, of which 4,784 were coding sequences (CDS), 85 were tRNA genes, and 

22 were rRNA genes. To define more accurately the taxonomic position of the strain, the complete genomes of 

26 strains (10 representative genomes + 16 other strains) of the genus Serratia were obtained from the NCBI 

RefSeq library. Analysis of the Tan611 genome and the 26 Serratia genomes with GToTree v1.5.38 using a set 

of 172 single-copy genes in gamma-proteobacteria indicated that the closest match for Tan611 is Serratia sp. 



MYb239. The Tan611 strain can be considered to be close to MYb239, KUDC3025, rubidea and FGI94. The 

tree was drawn with ITol online (Interactive Tree of Life (iTOL) v4) (Fig 1). 

We investigated the metabolic network of hydrocarbon degradation in Serratia sp. Tan611 strain, in particular 

the n-alkane and PAH degradation pathways previously identified in other strains belonging to the same genus 

(Wang et al. 2008; Lai et al. 2012). The genome of Serratia sp. Tan611 contains genes coding for LadA-type 

monooxygenases (Boonmak et al. 2014). In addition, several genes associated with the metabolism of aromatic 

hydrocarbons and PAH degradation were identified in the genome. Two colocalised genes and a third one, cbdA, 

benB and bedA, respectively, encode the large and β-subunits of dioxygenases involved in benzene degradation. 

Two genes, i.e. catA and ndoA, that encode dioxygenase and the ferrodoxin component of the naphthalene 1,2-

dioxygenase (NDO) system, respectively, were also identified in Serratia sp. Tan611 strain.  

Crude oil fraction analysis 

To further investigate the high-degradation capacity of Serratia sp. Tan611 strain, we performed a GC-MS 

analysis on the fraction containing saturated and aromatic hydrocarbons. After 72h of growth, the gaz 

chromatogram of the medium was compared to that of an abiotic control sample (Fig 3). The fraction of the 

abiotic control included a classic distribution of linear saturated hydrocarbons (n-alkanes) ranging from C13 to 

C30 without even or odd predominance (Fig 3, Table 2). The amount of material present is much less in the 

incubated medium: the intensities of all peaks in the less polar fraction were significantly decreased and n-

alkanes were present only in trace amounts, unlike the control sample where they were always present in large 

quantities. As an example, Serratia sp. has the capacity to degrade 73,77% of the crude oil n-alkanes ranging 

from C13 to C25 in only 72h of incubation (Table 2). 

In addition, the degree of degradation of short-chain n-alkanes (C13 to C16) was higher than that of long-chain n-

alkanes with more than 90% degradation for C13 and C14  (Table 2). These results further support the existence of 

hydrocarbon degradation mechanisms in Serratia sp. Tan611 strain. The bacterial growth was also accompanied 

by a visual change in the appearance of oil as compared to an abiotic medium used as a control. This 

modification of the culture medium (emulsification) was detectable on the separation chromatography column, 

possibly resulting from the presence of biosurfactants produced by the strain. 

Emulsifying potential against crude oil and vegetable oil 

Using an oil spreading technique, the displacement of the clear zone demonstrated a biosurfactant production by 

Serratia sp. Tan611 strain (data not shown). To further study the production of bioemulsifier by Serratia sp. 



Tan611 strain, the biosurfactant activity was evaluated by emulsification (E24) assay (Bonilla et al. 2005). The 

index value obtained was higher for crude oil as compared to the emulsification with vegetable oil (E24 = 

65.2±0.5 and E24 = 43,5±0.1, respectively) after 24h incubation at 30°C. These differences may be explained by 

the emulsion forming and stabilising capacity of biomolecules being specific for certain hydrophobic compounds 

present in crude oil (Freitas et al. 2009; Maalej et al. 2016). Finally, the emulsions observed in the presence of 

crude oil were found to be stable after 7 days (Fig 4), which further supports the important emulsifying 

capacities of Serratia sp. Tan611 strain. 

Biofilm formation 

To determine the possible impact of crude oil on the biofilm formation by Serratia sp. Tan611, bacterial cells 

were grown in microtiter plates and stained with crystal violet. The results showed that biofilms produced by 

Serratia sp. Tan611 were thicker in the presence of 1% crude oil than those formed in its absence, with OD595 

(means ± SD) of 3,2±0,5 and 2,5±0,7, respectively (Fig 5). According to the OD values, Serratia sp. Tan611 was 

categorised as a strong producer. 

Discussion 

The most successful process for the removal or the elimination of hydrocarbons from the environment is their 

microbial transformation and biodegradation. The present study aimed at explorating the indigenous microflora 

of an Algerian industrial site and investigating its hydrocarbon degradation and biosurfactant production 

potential. The initial characterisation of different isolated strains revealed multiple cellular morphologies and a 

predominance of Gram-negative bacteria belonging to the Enterobacteriaceae. One strain was further 

characterised and shown by 16 rRNA sequencing to belong to the Serratia genus. The genome of this bacterial 

strain, designated as Serratia sp. Tan611, was sequenced and annotated to identify metabolic pathways possibly 

involved in hydrocarbon degradation. The analysis of the whole genome revealed the presence in Serratia sp. 

Tan611 strain of various genes involved in hydrocarbon degradation such as the ladA-type genes in alkane 

degradation (Boonmak et al. 2014), the catA, ndoA genes in aromatic hydrocarbon catabolism (Dong et al. 2017) 

and cbdA, benB, and bedA, in benzene degradation (Xu et al. 2017). 

GC-MS analysis of the less polar fraction containing saturated and aromatic hydrocarbons, which are the main 

constituents of oils, confirmed the hydrocarbon degradation capacities of Serratia sp. Tan611 strain. Such an 

approach provides access to the molecular composition of the effluents and thus makes it possible to selectively 

monitor the degradation of the different families of compounds. In addition, a possible interpretation of the 



apparently complete degradation of the (C13-C15) group is that this group of alkanes is less recalcitrant than the 

other hydrocarbons present and was biodegraded before the limitations of N and P occurred (Coulon et al. 2005). 

In addition, GC/MS analysis showed that the petroleum hydrocarbons were almost completely degraded by 

Serratia sp. Tan611 strain after 72h of total continuous feed. These results demonstrated the performance of this 

bacterium in the biodegradation of petroleum hydrocarbons for a wide range of n-alkanes. Overall, short- and 

medium-chain alkanes were degraded more rapidly than long-chain alkanes. Alkanes, especially those with 

relatively short chains (< C12), are generally readily degraded due to their lower molecular weight and water 

solubility. Medium-length (C12-C16) and higher molecular weight long-chain (> C16) alkanes are generally 

degraded at a relatively slow rate due to their hydrophobic nature (Sathishkumar et al. 2008). In addition, the 

sensitivity of crude oil to microbial degradation depends on the intrinsic ability of the microorganisms to degrade 

the crude oil and activate the key enzymes of the first phase of biodegradation. The crude oil used in this study 

consisted mainly of medium- and long-chain alkanes. Therefore, key enzymes that could have been involved in 

the biodegradation process were more likely enzymes for the degradation of medium (C8-C16) and long chain 

alkanes, such as LadA-type alkane monooxygenases (Boonmak et al. 2014; Chen et al. 2017).   

Biomolecules preferentially partition at the interface between polar and apolar molecules (e.g. hydrocarbons and 

water) to produce microemulsions that often enhance the bioavailability and degradation of hydrocarbons 

(Niknezhad et al. 2018). The emulsification assay was performed using 2 oils, i.e. crude oil and vegetable oil, the 

best production being observed with crude oil. The biosurfactant produced by Serratia sp. Tan611 was capable 

of forming an emulsion stable for more than two weeks at room temperature. Oil degradation is possible if the 

substrate, generally poorly soluble, is emulsified beforehand by bacterial biosurfactants (Sumiardi et al. 2018). 

Indeed, biosurfactants reduce the surface and interface tension between liquid and solid substances, leading to 

the formation of emulsions in liquids. This can facilitate intracellular uptake and degradation of hydrocarbons by 

microorganisms, which should improve the biological treatment used in oil refinery processing plants. 

Finally, the biofilm way of life represents a natural bacterial strategy to survive and optimise living conditions, in 

particular in contaminated sites (Isaac et al. 2017). The microbial nearness in biofilm structures is beneficial for 

cellular interactions, which improve the degradation processes (Edwards and Kjellerup 2013). The potential of 

biofilm formation by Serratia sp. Tan611 was shown to be more than 60% higher in the presence of crude oil. 

Taken together, our results suggests that Serratia sp. Tan611 strain can represent a good candidate, alone or in 

consortium, for bioremediation and wastewater treatment in bioreactors. The specific metabolic pathway of 

hydrocarbons is still unclear for many bacterial species, including Serratia sp. Therefore, further research is still 



needed to understand the mechanism of hydrocarbon degradation in strain Tan611 and to identify the 

intermediate metabolites that are produced during the biodegradation process. Similarly, the potential of these 

strains still needs to be investigated in soils contaminated with crude oil. 

Conclusion  

In this study, we isolated Serratia sp. Tan611 strain, an hydrocarbon-degrading microorganism, by enrichments 

obtained from a TPH and industrial pollutants contaminated site. This novel strain showed a percentage 

reduction of the oil content up to 97,10% from an initial content of 20ppm of crude oil. By sequencing and 

annotation of its genome, we identified the presence of ladA-type genes involved in alkane degradation and 

dioxygenase genes such as catA, and ndoA genes, and cbdA, benB, bedA genes involved in the catabolism of 

aromatic hydrocarbons. The formation of emulsifiers and biofilm further supports the possible use of Serratia sp. 

Tan611 strain in bioremediation. 
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Figure Legends 

 

Fig. 1 Unrooted Maximum Likelihood phylogenetic tree of Tan611 and the 26 publicly available Serratia 

complete genomes. The tree was obtained with the GToTree phylogenomic workflow using the Actinobacteria 

predefined gene set of 172 single-copy genes and default parameters (Lee MD. GToTree., 2019). The Serratia 

sp. Tan6.1 closest relatives were Serratia sp. MYb239, KUDC3025, rubidea and FGI94. The RefSeq accession 

numbers of the 26 complete genomes were: Serratia proteamaculans 568 (GCF 000018085.1), Serratia sp AS12 

(GCF 000214195.1), Serratia plymuthica AS9 (GCF 000214235.1), Serratia sp AS13 (GCF 000214805.1), 

Serratia sp FGI94 (GCF 000330865.1), Serratia liquefaciens ATCC 27592 (GCF 000422085.1), Serratia sp 

FS14 (GCF 000695995.1), Serratia sp SCBI (GCF 000747565.1), Serratia rubidaea 1122 (GCF 001572725.1), 

Serratia surfactantfaciens YD25 (GCF 001642805.2), Serratia fonticola FDAARGOS 411 (GCF 002588845.1), 

Serratia sp SSNIH1 (GCF 002935055.1), Serratia sp MYb239 (GCF 002966855.1), Serratia sp 1D1416 (GCF 

003641105.1), Serratia sp 3ACOL1 (GCF 003668775.1), Serratia sp P2ACOL2 (GCF 003691565.1), Serratia 

sp LS-1 (GCF 003719595.1), Serratia sp FDAARGOS 506 (GCF 003812745.1), Serratia nematodiphila DH-

S01 (GCF 004768745.1), Serratia proteamaculans 336X (GCF 009660185.1), Serratia sp KUDC3025 (GCF 

009817885.1), Serratia marcescens BP2 (GCF 011602465.1), Serratia ureilytica CC119 (GCF 014304635.1), 

Serratia ficaria NCTC12148 (GCF 900187015.1), Serratia odorifera NCTC11214 (GCF 900635445.1), Serratia 

quinivorans NCTC13188 (GCF 900638135.1).  

Fig. 2 Phylogenetic tree of LadA-type alkane monooxygenase sequences. The tree was drawn with ITol 

online (Interactive Tree of Life (iTOL) v4) showing the positions of Serratia sp. Tan611 sequences 

SERRA_v1_1764, SERRA_v1_2493 and SERRA_v1_3086 relative to other LadA-like proteins. 

SERRA_v1_2493 is grouped with LadA alkane monooxygenases whereas SERRA_v1_3086 is closer to the 

LadB type. SERRA_v1_1764, however is grouped with the alkanesulfonate monooxygenases, which were 

among the LadB-like reference sequences identified by BlastP in UniprotKB. 

Lad A: BAM76377, Geobacillus thermoleovorans B23 LadAα ; BAM76372, Geobacillus thermoleovorans B23 

LadAβ; A0A5P9QDS3, Luteimicrobium xylanilyticum; K5B7D3, Mycolicibacterium hassiacum; 

A0A0P8X8H1, Pseudomonas fluorescens; A0A0D5L7H8, Burkholderia sp. 2002721687; 

A0A095EJX9 Burkholderia cepacia; A4IU28 Geobacillus thermodenitrificans NG80-2; H8FHG1 Xanthomonas 



citri pv. mangiferaeindicae LMG 941; A0A401X335 Acetobacter pasteurianus NBRC 3278; 

A0A401XDI3 Acetobacter pasteurianus NBRC 3299; A0A4P5NNK8 Komagataeibacter diospyri; 

Lad B: BAM7631.1 Geobacillus thermoleovorans B23 LadB; F2F3T5 Solibacillus silvestris StLB046; 

A0A061P0S8 Geomicrobium sp. JCM 19038 alkanesulfonate monooxygenase; A0A0K1JRM7 Paenibacillus sp. 

32O-W; A0A417YDD4 Oceanobacillus profundus; A0A0K9GZ80 Peribacillus loiseleuriae; 

A0A0M5JI29 Bacillus gobiensis; 

SsuD: A0A165X204 Aeribacillus pallidus; A0A071LQX5 Mangrovibacter sp. MFB070; 

A4W8V4 Enterobacter sp. 638; A0A514EUD1 Raoultella electrica. 

Fig. 3 GC-MS total ion chromatograms (TIC) of the less polar fractions. The results were obtained from A, 

the abiotic control sample; B, the sample after 72h of  treatment with Serratia sp. Tan611 strain . Cx: notation for 

a chain with x carbon atoms. The blue box highlights the shortest alkane chains which were shown to be strongly 

degraded by the Serratia sp. Tan611 treatement. 

Fig. 4 Emulsification potential of Serratia sp. Tan611 strain with vegetable or crude oil. The emulsification 

assay was performed in minimal MSM medium with A, vegetable oil ; B, crude oil (1 % w/v for 24h). B and D 

are negative control of MSM medium without bacterial inoculum. 

Fig. 5 Biofilm formation by strain Serratia sp. Tan611 strain with or without 1% crude oil. A, negative 

control consisting of non-inoculated Luria-Bertani medium ; B, Serratia sp. Tan611 biofilm in Luria-Bertani 

medium without crude oil ; C, Serratia sp. Tan611 biofilm in Luria-Bertani medium with 1% crude oil. The 

biofilm formation was determined by the optical density measurement of crystal violet at 595 nm. Error bars 

represent standard deviations. 
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Table 1 Enzyme activity profiles of Serratia sp. Tan611 strain as determined by the API-ZYM system. The 

strain was shown to produce eight extracellular hydrolytic enzymes: +, positive reaction ; -, negative reaction. 

Enzyme Substrate Results 

Alkaline phosphatase 

Esterase (C4) 

Esterase lipase (C8) 

Lipase (C14) 

Leucine arylamidase 

Valine arylamidase 

Cystine arylamidase 

Trypsin 

α-chymotrypsine 

Acid phosphatase 

Naphtol-AS-BI-phosphohydrolase 

α-galactosidase 

β-galactosidase 

β-glucuronidase 

α-glucosidase 

β-glucosidase 

N-acetyl-β-glucosaminidase 

α-mannosidase 

α-fucosidase 

2-naphtyl phosphate 

2-naphtyl butyrate 

2-naphtyl caprylate 

2-naphtyl myristate 

L-leucyl-2-naphtylamide 

L-valyl-2-naphtylamide 

L-cystyl-2-naphtylamide 

N-benzoyl-DL-arginine-2-naphtylamide 

N-glutaryl-phénylalanine-2-naphtylamide 

2-naphtyl phosphate 

Naphtol-AS-BI-phosphate 

6-Br-2-naphtyl-αD-galactopyranoside 

2-naphtyl-ßD-galactopyranoside 

Naphtol-AS-BI-ßD-glucuronide 

2-naphtyl-αD-glucopyranoside 

6-Br-2-naphtyl-ßD-glucopyranoside 

1-naphtyl-N-acétyl-ßD-glucosaminide 

6-Br-2-naphtyl-αD-mannopyranoside 

2-naphtyl-αL-fucopyranoside 

+ 

- 

+ 

- 

+ 

+ 

+ 

+ 

- 

+ 

+ 

- 

+ 

- 

+ 

+ 

+ 

- 

- 
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Table 2 Percentage degradation of components of 1% crude oil by Serratia sp. Tan611 strain after 72h of 

treatment. The distribution of the selected components is presented on the GC–MS chromatogram (Figure 2). 

The degradation percentage of a specific component was calculated based on the difference between the area of 

the corresponding peaks in the incubated sample (As) and in the control (AC) for the same supplementation in 

crude oil, using the following formula : P (%) = 100 − (AS × 100/AC). The total degradation of the n-alkanes 

ranging from C13 to C25 is calculated by using the total area of the peaks from C13 to C25 in the incubated sample 

(TAs (C13-C25)) and in the control (TAC (C13-C25)) by the same formula. 

Retention time (min) Components of crude oil Degradation percentage (%) 

12.7 n-tridecane (C13) 97.42 

15.3 n-tetradecane (C14) 93.90 

18 n-pentadecane (C15) 83.91 

20.7 n-hexadecane (C16) 71.65 

23.4 n-heptadecane (C17) 62.25 

26 n-octadecane (C18) 43.78 

28.4 n-nonadecane (C19) 33.56 

30.8 n-eicosane (C20) 17.04 

33 n-heineicosane (C21) 26.88 

35.3 n-docosane (C22) 22.33 

37.4 n-tricosane (C23) 5.02 

39.4 n-tetracosane (C24) 24.10 

41.4 n-pentacosane (C25) 26.83 

 Total degradation  73,77 

 

 


