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COMBINATORICS OF SERRE WEIGHTS IN THE

POTENTIALLY BARSOTTI–TATE SETTING

by

Xavier Caruso, Agnès David & Ariane Mézard

Abstract. — Let F be a finite unramified extension of Qp and ρ be a absolutely irreducible
mod p 2-dimensional representation of the absolute Galois group of F . Let also t be a tame
inertial type of F . We relate the Kisin variety associated to these data to the set of Serre
weights D(t, ρ) = D(t) ∩ D(ρ). We prove that the Kisin variety enriched with its canonical
embedding into (P1)f and its shape stratification are enough to determine the cardinality of
D(t, ρ). Moreover, we prove that this dependance is nondecreasing (the smaller is the Kisin
variety, the smaller is the number of common Serre weights) and compatible with products
(if the Kisin variety splits as a product, so does the number of weights). These results provide
new evidences towards the conjectures of [CDM2].
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Introduction

Let p > 2 be a prime number. For K a finite extension of Qp, let OK denote its ring of
integers, πK an uniformizer and kK its residue field. Let E and F be two extensions of Qp

with E large enough. We set GF = Gal(Qp/F ) and fix a continuous absolutely irreducible

representation ρ : GF → GL2(kE) together with a lift ψ : GF → O
×
E of det ρ. Let Rψ(ρ)

denote the universal lifting ring of ρ over OE with fixed determinant ψ.

Given in addition a Hodge type λ and an inertial type t, Kisin [Ki1] has constructed
a quotient Rψ(λ, t, ρ) of Rψ(ρ) whose E-rational points parametrize the potentially crys-
talline lifts of ρ of Hodge type λ and inertial type t. The central ingredient in Kisin’s
argument is the construction of a scheme GRψ(λ, t, ρ) which is a moduli space for the
so-called Breuil–Kisin modules. This scheme is equipped with a morphism to SpecRψ(ρ)
whose schematic image is, by definition, the spectrum of Rψ(λ, t, ρ).
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These deformation rings Rψ(λ, t, ρ) play a pivotal role in many deep contemporary
arithmetical subjects. Understanding their structure is then a challenging question, which
have been and continue to have many outstanding applications. The Breuil-Mézard conjec-
ture [BM1, EmGe] is a powerful statement which describes the special fibre of Rψ(λ, t, ρ)
in terms of the representation theory of GL2(OF ). In its geometrical form, it predicts the
following coincidence of cycles in SpecRψ(ρ):

(1) Spec
(
Rψ(λ, t, ρ)/(πE)

)
=
∑

σ∈D

µλ,t(σ)Zρ(σ).

We recall briefly what are the terms in the right hand side of the above equality. The
set D over which the sum runs is the set of Serre weights, which are by definition the
irreductible representations of GL2(kF ) with coefficients in kE . The factor µλ,t(σ) is the
multiplicity of σ in the Jordan–Hölder decomposition of a GL2(OF )-lattice of Wλ ⊗ σ(t)
where Wλ is the algebraic representation of GL2(OF ) associated to λ and σ(t) denotes
the Bushnell–Kutzko type associated to t (see [He]). Finally, Zρ(σ) is a certain cycle in

SpecRψ(ρ) which depends only on ρ and σ.

The Breuil–Mézard conjecture has been proved for F = Qp by Kisin [Ki1] using
the p-adic local Langlands correspondence for GL2(Qp) and the (global) Taylor–Wiles–
Kisin patching argument (without assumption of irreducibility of ρ). Sander [Sa] and
Paškūnas [Pa] gave a purely local alternative proof which has been extended later on by
Hu and Tan to nonscalar split residual representations [HuTa]. The case where λ = 0
(which corresponds to potentially Barsotti–Tate deformations) is easier to handle. In this
case, the Breuil–Mézard conjecture was established by Gee and Kisin [GeKi] (see also
[CEGS, Appendix C]), who then deduced from it the weight part of the Serre’s conjec-
ture when F/Qp is unramified and the Buzzard–Diamond–Jarvis conjecture [BDJ]. Some
extensions of the Breuil–Mézard conjecture to 3-dimensional representations have also
been considered by Le, Le Hung, Levin and Morra [LLHLM1, LLHLM2]. In all cases,
the Breuil-Mézard conjecture is one of the most concrete and general statement relating
representations of GF and representations of p-adic reductive groups and hence it paves
the way towards a p-adic Langlands correspondence beyond the case of GL2(Qp).

In [CDM1, CDM2], we addressed the question of the effective computation of the
deformation ring Rψ(λ, t, ρ) and considered the simplest—but already very rich and
interesting—case where F = Qpf , λ = 0 and t is tame. From now, we always make
these hypothesis and then omit the λ in the notations. Our strategy for carrying out the
computation of Rψ(t, ρ) was to come back to Kisin’s construction and consider the scheme
GRψ(t, ρ). We first studied its special fibre—which is known as the Kisin variety associ-
ated to (t, ρ)—and determined explicit equations of it. In order to write them down, we
associated to (t, ρ) a simple combinatorial datum (it is a sequence of length 2f assuming
values in the finite set {A, B, AB, O}) that we called the gene, and gave a totally explicit
recipe for finding the equations of the Kisin variety by looking at the gene. In a second
step, given a gene X satisfying mild assumptions, we constructed a rigid space D(X) and
conjectured that:

Spm
(
Rψ(t, ρ)

[
1
p

])
≃ D(X)

as soon as X is the gene of (t, ρ). In other words, we conjectured that the gene determines
the generic fibre of Rψ(t, ρ). We observed in addition that our conjecture is compatible
with the computations of [BM2] (which covers all the generic cases) and proved that it
is holds true when f = 2 (except maybe for one very degenerate case) by an explicit long
calculation.
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The aim of the present paper is to relate the gene with the special fibre of Rψ(t, ρ). By
the Breuil–Mézard conjecture, this boils down to relate the gene with the quantities µt(σ)
and Zρ(σ) appearing in Eq. (1). Since in our particular setting, µt(σ) is either 0 or 1 and
Zρ(σ) is conjecturally either empty or isomorphic to SpecOE[[T ]], it is sufficient to work
with the following sets of Serre weights:

D(t) =
{
σ ∈ D s.t. µt(σ) 6= 0

}
,

D(ρ) =
{
σ ∈ D s.t. Zρ(σ) 6= ∅

}
,

D(t, ρ) = D(t) ∩ D(ρ).

With these notations, the σ’s in D(t, ρ) are exactly those that contribute to the sum in
the right hand side of (1). We are then reduced to relate the set D(t, ρ) to the gene of
(t, ρ).

For this, we first attach to each gene X a set of so-called combinatorial weights, denoted
by W(X). These weights are simply elements of {0, 1}f , i.e. sequences of length f with
values in {0, 1}. The construction of W(X) is purely combinatorial and elementary (but a
bit technical). We then prove the following theorem.

Theorem 1 (cf Theorem 3.1.2). — If the gene of (t, ρ) is X, there is a canonical bi-

jection W(X)
∼
−→ D(t, ρ).

Theorem 1 says that the gene determines the set D(t, ρ) and then, thanks to the Breuil–
Mézard conjecture, it contains a lot of information about the special fibre of Rψ(t, ρ).
Recall that, in [CDM2], we have conjectured that it determines the generic fibre of
Rψ(t, ρ) as well. We are then naturally led to propose the following conjecture.

Conjecture 2. — The deformation ring Rψ(t, ρ) is determined (up to isomorphism) by
the gene of (t, ρ).

After Conjecture 2, it becomes obvious that the gene is an important object that cap-
tures and nicely encodes a lot of information. However, it is also clear that it is an ad hoc
object and not an intrinsic one as Galois representations, inertial types and Serre weights
are. By chance, one can work around this inconvenience by noticing that the Kisin variety
(equipped with some extra structures) can be substituted to the gene in many places. In
order to state precise results in this direction, let us write GR(t, ρ) for the Kisin variety
attached to (t, ρ); it comes equipped with a canonical embedding into (P1)f and a stratifica-
tion (the so-called shape stratification). Concretely, the stratification is defined by a upper
semi-continuous function (the so-called shape function) g : GR(t, ρ)(F̄p)→ {I, II}f where

I and II are two new symbols with I ≤ II. In what follows, we always consider GR(t, ρ) as
a variety equipped with these additional structures. In this language, Theorem 1 can be
reformulated as follows.

Theorem 3 (cf Theorem 4.2.1). — For nondegenerate(1) inertial types t, the cardi-
nality of D(t, ρ) depends only on GR(t, ρ) (equipped with its embedding into (P1)f and its
shape stratification).

Besides, examining closely the construction of W(X), one can derive from Theorem 1
the following refinement of Theorem 3.

(1)Nondegeneracy is a mild assumption; we refer to [CDM2, Definition 1.1.1] for the definition.



4 X. CARUSO, A. DAVID & A. MÉZARD

Theorem 4 (cf Corollary 4.2.8). — If t and t′ are nondegenerate and GR(t, ρ) ⊂
GR(t′, ρ′) (inclusion as subvarieties of (P1)f , commuting with the shape functions), then
CardD(t, ρ) ≤ CardD(t′, ρ′).

Another remarkable property (which has been already noticed in [CDM2] for the con-
struction D(−)) is the compatibility with products. Let SEKV (for “Stratified Embed-
ded Kisin Varieties”) be the set of subvarieties Vs of (P1)n (for some varying integer n)
equipped with a upper semi-continuous shape function g : Vs(F̄p)→ {I, II}

n. The product
of varieties defines a structure of multiplicative monoid on SEKV.

Theorem 5 (cf Theorem 4.2.1 and Remark 4.2.2). — There exists a morphism of
monoids c : SEKV → (N,×) with the property that CardW(t, ρ) = c

(
GR(t, ρ)

)
for all ρ

and all nondegenerate t.

Theorem 5 shows in particular that if the Kisin variety GR(t, ρ) splits as a direct
product of smaller stratified embedded varieties, then the cardinality of W(t, ρ) admits a
factorization that reflects the geometrical splitting.

Finally, Conjecture 2 can also be reformulated in the language of Kisin varieties (and
even made more precise after Theorem 5).

Conjecture 6 (cf Conjecture 4.1.2). — There exists a morphism of monoids:

R : SEKV −→
{
complete noetherian OE-algebras

}

(where the multiplicative structure on the codomain is given by the completed tensor prod-
uct) with the property that Rψ(t, ρ) ≃ R

(
GR(t, ρ)

)
for all ρ and all nondegenerate t.

Organization of the paper. — In §1, we introduce the notations and the main objects of
this article: Galois representations, inertial type, Serre weights and genes. The construc-
tion of the set of combinatorial weights W(X) is achieved in §2. Several results concerning
the cardinality of W(X) are also discussed. Then, §3 is entirely devoted to Theorem 1:
we first construct the function W(X) → D(t, ρ) and then prove that it is bijective. In
§4, we clarify the link between genes and Kisin varieties and prove Theorems 3, 4 and 5.
The article is supplemented with an appendix in which we design efficient algorithms for
counting and enumerating weights. An implement of these algorithms in SageMath is also
presented.

Grants. — The three authors are supported by the ANR project CLap–CLap (ANR-18-
CE40-0026-01).

1. Representations, types, weights and genes

The aim of this introductory section is to present the panel of objects we work with
in this article. These are Galois representations, inertial types (§1.1), Serre weights (§1.2)
and genes (§§1.3, 1.4). First we parametrize Galois representations and inertial types
by coherent triples (Definition 1.1.1). Then, following [BP], we associate to a Galois
representation (resp. inertial type) a set of Serre weights (§1.2). The set of common
weights is the intersection of these two sets of Serre weights. We recall the definition of
the gene and give its first properties.

Throughout this paper, we fix a prime number p > 2 together with an algebraic closure
Qp of Qp. All the algebraic extensions we consider in this article, live inside Qp. We
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consider an integer f ≥ 2 and set q = pf . We let F be the unique unramified extension of
Qp of degree f . We denote its ring of integers by OF ; it is a local ring with maximal ideal

(p) and residue field of cardinality q. Let GF = Gal(Qp/F ) be the absolute Galois group
of F .

We also fix a finite extension E of Qp and denote its ring of integers OE and its residue
field by kE . This extension E is the field of coefficients of our representations. Actually,
it would be easier to consider representations with coefficients in Qp; however, in several

places, we need finiteness assumptions, which discards the option of working with Qp

directly. It is the reason why we introduce E as before; nevertheless, we constantly allow
ourselves to enlarge E is needed.

1.1. Representations and types. — The first objects of interest we study in this
paper are Galois representations of GF . Precisely, we consider a continuous 2-dimensional
absolutely irreducible representation ρ : GF → GL2(kE). Such a representation actually
admits a very concrete description. Indeed, let F ′ be the unique unramified extension of
F of degree 2 and set GF ′ = Gal(Qp/F

′). Assuming that E contains F ′, there exists an

integer h and an element θ ∈ k×E such that ρ takes the form:

(2) ρ ≃ IndGFGF ′

(
ωh2f · nr

′(θ)
)

where ω2f is the fundamental character of GF ′ of level 2f and nr′(θ) denotes the unique
unramified character of GF ′ sending the arithmetic Frobenius to θ. In what precedes,
h must be not divisible by q+1 (in order to guarantee that ρ is absolutely irreducible).
Moreover, it is uniquely determined modulo q2−1 and modulo the transformation h 7→ qh.

The second objects we are interested in are inertial types. Let IF denote the inertial
subgroup of GF . By definition, an inertial type (or simply a type) is a representation
of IF which admits a prolongation to GF . In the present article, we only work with 2-
dimensional tame types, that are types which factor through the tame inertia. Like Galois
representations, those types admit very concrete descriptions as they all take the form:

(3) t = ωγf ⊕ ω
γ′

f

where ωf denotes (the restriction to IF of) the fundamental character of GF of level f
and γ and γ′ are integers, which are uniquely defined modulo q−1.

To those data, one can associate deformation spaces. For this, we fix in addition a
character ψ : GF → O

×
E lifting det ρ. We let Rψ(ρ) denote the universal deformation ring

parametrizing the liftings of ρ having determinant ψ. From [Ki3], we know that there
exists a unique reduced quotient Rψ(t, ρ) of Rψ(ρ) whose E-rational points parametrize the
representations ρ : GF → GL2(E) of determinant ψ and semi-simplification ρ, exhibiting
in addition the two following extra properties:

(1) ρ is potentially crystalline of type t;

(2) the Hodge–Tate weights of ρ are {0, 1} for each embedding F →֒ E.

In order to have a chance that Rψ(t, ρ) does not vanish, one has to impose a compatibility
condition on the determinants. It reads:

(4) det ρ|IF = ε · det t

where ε denotes the cyclotomic character mod p. Coming back to the explicit descriptions
of ρ and t, this condition translates to a numerical congruence connecting the parameters
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h, γ and γ′, namely:

(5) h ≡ γ + γ′ +
q − 1

p− 1
(mod q − 1).

Definition 1.1.1. — A coherent triple is a triple

(h, γ, γ′) ∈ Z/(q2−1)Z × Z/(q−1)Z × Z/(q−1)Z

such that h is not divisible by q+1 and the congruence (5) holds.

A coherent triple then encodes a pair (ρ|IF , t) with ρ absolutely irreducible and condi-

tion (4) satisfied. We underline that this encoding is surjective but not injective. Precisely,
two triples (h1, γ1, γ

′
1) and (h2, γ2, γ

′
2) correspond to isomorphic (ρ|IF , t) when h1 ≡ qh2

(mod q2−1) or (γ1, γ
′
1) = (γ′2, γ2). In what follows, we often work with coherent triples

instead of pairs (t, ρ) because they are more suitable for the combinatorial constructions
we develop in this paper.

1.2. Serre weights. — A Serre weight is an (isomorphism class of an) absolutely irre-
ducible kE-representation of the group GL2(kF ). Again, one has a concrete description
of Serre weights. Before giving it, we need to introduce further notations. On the one

hand, we let τ0 denote the inclusion F →֒ E and, for each integer i, we set τi = τp
−i

0 . The
τi’s then exhaust all the field embeddings from F into E. On the other hand, given a
positive integer r and an embedding τ : F → E, we let (Symr k2E)

τ denote the space of
homogeneous bivariate polynomials over kE of degree r and endow it with the action of
GL2(kF ) defined by:

(
a b
c d

)
· P (X,Y ) = P

(
τ(a)X + τ(b)Y, τ(c)X + τ(d)Y )

)
.

With these notations, one proves that any Serre weight takes the form:

(6) σs,r ≃ (τ0 ◦ det
s) ⊗

f−1⊗

i=0

(Symri k2E)
τi

where s is an integer modulo q−1 and the ri’s are integers in the range {0, 1, . . . , p−1}
with r = (r0, . . . , rf−1) 6= (p−1, . . . , p−1). Moreover, in the above writing, both s and r
are uniquely determined.

Serre weights associated to Galois representation and inertial type. — To each Galois
representation ρ (resp. inertial type t) as in §1.1, one associates a set of Serre weights,
which is denoted by D(ρ) (resp. by D(t)). The construction of these sets is given by a
combinatorial recipe that we recall now.

Let ρ be the 2-dimensional absolutely irreducible Galois representation associated with
the parameters h and θ thanks to Eq. (2). We consider the following equation:

h ≡

f−1∑

i=0

(−1)εipi(1 + ri) (mod q + 1)

whose unknowns are ε = (ε0, . . . , εf−1) and r = (r0, . . . , rf−1). Precisely we seek solutions
of this equation with εi ∈ {0, 1} and ri ∈ {0, . . . , p−1} for all i. To each such solution, one
associates the Serre weight σs,r where s is defined by:

(7) s ≡
1

q + 1

(
h−

f−1∑

i=0

(−1)εipi(1 + ri)

)
−

f−1∑

i=0

εip
i(1 + ri) (mod q − 1).
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The set D(ρ) is finally defined as the set of Serre weights obtained this way.

Let t = ωγf⊕ω
γ′

f be an inertial type and let c0, . . . , cf−1 ∈ {0, 1, . . . , p−1} be the integers
defined by the following congruence:

γ − γ′ ≡

f−1∑

i=0

cip
i (mod q − 1).

When γ ≡ γ′ (mod q − 1), then c0 = · · · = cf−1 = 0. Given ε′0, . . . , ε
′
f−1 ∈ {0, 1}, we form

the tuple r = (r0, . . . , rf−1) defined by the rules summarized in the following table (see
[BP, Da]):

(8)

ri ε′i−1 = 0 ε′i−1 = 1

ε′i = 0

ε′i = 1

ci

p− 2− ci

ci − 1

p− 1− ci

where we have set ε′−1 = ε′f−1. When all the ri’s lie in {0, . . . , p−1}, we further form the

Serre weights σs,r where s ∈ Z/(q−1)Z is given by the formula:

(9) s ≡ γ′ +
1

2

(
ε′f−1(q − 1) +

f−1∑

i=0

(ci − ri) p
i

)
(mod q − 1).

If one of the ri’s falls outside the interval [0, p−1], the procedure fails and does not produce
a Serre weight. The set D(t) is the collection of all the Serre weights obtained as before
when the family (ε′i)i∈Z/fZ varies in {0, 1}f .

Lemma 1.2.1. — With the above notations, the integer s is alternatively given by:

s ≡ γ′ +

f−1∑

i=0

ε′i (p− 1− ri) p
i (mod q − 1).

Moreover, for any integer i0 ∈ {0, . . . , f−1}, we have the formula:

s ≡ γ′ +
1

2

(
ε′i0(q − 1) +

f−1∑

i=0

λi+i0(ci − ri)p
i

)
(mod q − 1)

where, by definition, λj = q if j < f−1 and λj = 1 otherwise.

Proof. — It follows by inspection that ci − ri = ε′i (p− 2− 2ri)− ε
′
i−1 for all i. Injecting

this relation and reorganizing terms, we obtain:

f−1∑

i=0

(ci − ri) p
i = ε′f−1(1− q) + 2

f−1∑

i=0

ε′i (p− 1− ri) p
i.

Plugging this in Eq. (9), we get the first part of the lemma. The second part is proved
similarly.

Remark 1.2.2. — Lemma 1.2.1 shows that the datum of a type t and a weight σs,r ∈ D(t)
uniquely determines the ε′i’s since any single ε′i0 can be recoved from s, r and the ci’s thanks
to second formula of Lemma 1.2.1.
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Common weights and deformation spaces. — Given ρ and t as above, we define the set
of common weights as

D(t, ρ) = D(ρ) ∩ D(t).

If we fix in addition a character ψ : GF → O
×
E lifting det ρ, the Breuil–Mézard conjecture

(which is a theorem in this setting, [GeKi]) relates the set D(t, ρ) to the special fibre
of the deformation space SpecRψ(t, ρ). More precisely, its geometric version states that
there is an equality of cycles in Spec(kE ⊗OE R

ψ(ρ)):

Spec
(
kE ⊗OE R

ψ(t, ρ)
)
=

∑

σ∈D(t,ρ)

Z(σ)

where Z(σ) depends only on σ. In our context, it is moreover expected that the Z(σ)’s
are all smooth but, to the best of our knowledge, this has not been proved yet. In this
article, we give an explicit combinatorial description of the set D(t, ρ) (Theorem 3.1.2)
and, consequently, shed new lights on the description of special fibre of Rψ(t, ρ).

1.3. The gene of (h, γ, γ′). — In [CDM2], with the perspective of writing down ex-
plicit equations of the deformations rings Rψ(t, ρ), we have associated to each pair (t, ρ)
a combinatorial data that we called the gene. We have conjectured (see [CDM2, Conjec-
ture 5.1.6]) that the gene determines the generic fibre of Rψ(t, ρ) (by an explicit recipe)
and, as a first step in this direction, we have shown that it actually determines the Kisin
variety associated to (t, ρ) (see §4.1.1 for more details).

In this subsection, we recall the definition of the gene and prove some additional com-
binatorial facts about it. We fix a coherent triple (h, γ, γ′) and consider the integers
h0, . . . , hf−1 in {0, . . . , p−1} uniquely defined by the congruence:

(10) h ≡ 1 +

f−1∑

i=0

hip
f−1−i (mod q + 1).

We also set hi = p − 1 − hi−f for i ∈ {f, f+1, . . . , 2f−1} and hi = hi mod 2f for all i ∈ Z.
By construction, the sequence (hi)i∈Z is periodic with period 2f .

Definition 1.3.1. — Let ν = pf−1 + · · ·+ p. For i ∈ Z, we define:

(1) the integer αi as the unique integer in {0, . . . , q−2} satisfying the congruence:

αi ≡

⌊
pih

q + 1

⌋
− piγ′ (mod q − 1)

(2) the symbol Xi ∈ {A, B, AB, O} by:

Xi = A if αi ∈
[
0, 1

p ν + ιi+f
[

= AB if αi ∈
[
1
p ν + ιi+f ,

p−1
p ν − ιi

]

= B if αi ∈
]p−1

p ν − ιi, ν
]

= O if αi ∈
]
ν, e
[

where ιi = 1 if hi = p− 1 and ιi = 0 otherwise.

The sequence X = (Xi)i∈Z is called the gene of (h, γ, γ′).

As we did in [CDM2], we will always picture a gene on two rows, writing down the
f first symbols X0, . . . ,Xf−1 on the top row and the others on the bottom one (this is
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justified by the fact that the pair (Xi,Xi+f ) plays a quite important role). For example,
the gene of length 7

X = (. . . ,X0, . . . ,X13, . . .) = (. . . , O, A, B, A, AB, O, A, B, A, AB, O, O, B, AB, . . .)

is drawn as follows:

B

O

A

A

AB

B

O

A

O

AB

B

O

AB

A

The next proposition is proved in [CDM2, Lemme 2.1.4].

Proposition 1.3.2. — Let X = (Xi)i∈Z be the gene of (h, γ, γ′). Then:

(i) if Xi = AB for some integer i, then Xi+1 = O;

(ii) if Xi = O for some integer i, then Xi−1 ∈ {AB, O}.

Given a coherent triple (h, γ, γ′), we let v0, . . . , v2f−1 be the unique integers in the range
[0, p−1] such that:

(11) h− (q+1)γ′ ≡ p2f−1v0 + p2f−2v1 + · · · + pv2f−2 + v2f−1 (mod q2 − 1).

We extend the definition of the vi’s to all indices i ∈ Z by letting vi = vi mod 2f . It turns
out that the vi’s are closely related to the gene of (h, γ, γ′). The next lemma, which we
use repeatedly in this article, makes these relationships precise.

Lemma 1.3.3. — Let X = (Xi)i∈Z be the gene of (h, γ, γ′) and (vi)i∈Z defined by Eq. (11).
For all integers i ∈ Z, the following holds:

(a) if Xi = A, then vi = 0;

(ab) if Xi = AB, then vi = 0;

(b) if Xi = B, then vi = 1;

(o) if Xi = O, then vi ≥ 1.

Proof. — Write v = h−(q+1)γ′. A direct computation shows that piv ≡ aiq+ai+f where

the ai’s are defined by ai = pf−1vi + pf−2vi+1 + · · ·+ vi+f−1. Moreover, we have:

αi =

⌊
piv

q + 1

⌋
mod (q−1) =

⌊
ai +

ai+f − ai
q + 1

⌋
= ai if ai+f ≥ ai

= ai − 1 otherwise.

Let us now assume that Xi = A. By definition, we then have

αi ≤ 1 + p+ p2 + · · ·+ pf−2 < pf−1 − 1.

Thus ai ≤ αi + 1 < pf−1 and, coming back to the definition of the ai’s, we deduce vi = 0.
We have proved (a). Similarly, if Xi = O, we obtain ai ≥ p + p2 + · · · + pf−1 and then
deduce vi ≥ 1, which proves (o).

Let us now consider the case where Xi = AB. Then αi ≤ pf−1 − 1 and so ai ≤ pf−1.
We deduce from this that vi = 0 except maybe in the very special case where ai = pf−1.
However, if this happens, we deduce in addition that vi+1 = · · · = vi+f−1 = 0. This
implies in particular that Xi+1 6= O, which is a contradiction. Consequently, vi = 0 in all
cases and we have proved (ab).

Finally, if Xi = B, we get the estimation:

pf−1 − 1 ≤ ai ≤ p+ p2 + · · · + pf−1.

Therefore vi = 1 except maybe in the particular case where ai = pf−1 − 1. However, in
this case, we also have vi+1 = · · · = vi+f−1 = p−1. From (a) and (ab), we deduce that
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Xi+1 cannot be A nor AB. It cannot also be B by what we have just done. Therefore Xi+1

must be O, which contradicts the fact that Xi = B.

Corollary 1.3.4. — Let X = (Xi)i∈Z be the gene associated to a coherent triple (h, γ, γ′).
Then there exists an integer i such that Xi = O or Xi 6= Xi+f .

Proof. — We argue by contradiction and assume that Xi = Xi+f ∈ {A, B} for all i. Note
that it is safe to assume Xi 6= AB because otherwise, we would have Xi+1 = O, which we
exclude. Let v0, . . . , v2f be the integers introduced above. From Lemma 1.3.3, we know
that vi = 0 if Xi = A, and vi = 1 if Xi = B. From our assumption, we then derive that
vi = vi+f for all i. Plugging this in the congruence (11), we find that h is divisible by q+1,
which contradicts the fact that ρ is absolutely irreducible.

Remark 1.3.5. — We prove in §A.1 several refined versions of Lemma 1.3.3 and Corol-
lary 1.3.4 (see for instance Proposition A.1.7).

1.4. Abstract genes. — For the purpose of this article, it is relevant to introduce an
abstract definition of a gene; it is the aim of this subsection. Our definition is simply
obtained by gathering the properties enlightened in Proposition 1.3.2 and Corollary 1.3.4.

Definition 1.4.1. — A gene of length f is a (2f)-periodic sequence X = (Xi)i∈Z assum-
ing values in the finite set {A, B, AB, O} and satisfying the following conditions:

(i) if Xi = AB for some integer i, then Xi+1 = O;

(ii) if Xi = O for some integer i, then Xi−1 ∈ {AB, O};
(iii) there exists an integer i such that Xi = O or Xi 6= Xi+f .

Remark 1.4.2. — In [CDM2, Lemme 2.1.6], the case where {Xi,Xi+f} = {A, B} for all
index i is also excluded because it corresponds to a type with γ = γ′. In the current paper,
we do not want to discard such types; it is the reason why we have not incorporated this
condition in Definition 1.4.1.

The next proposition shows that Definition 1.4.1 exactly captures the genes we are
interested in.

Proposition 1.4.3. — We assume p > 3. Given a gene X, there exists a coherent triple
(h, γ, γ′) whose associated gene is X.

Proof. — Let (vi)i∈Z be a sequence of integers such that:

vi = 0 if Xi ∈ {A, AB},
vi = 1 if Xi = B,

2 ≤ vi ≤ p−1 if Xi = O

and vi 6= vi+f for at least one index i. The condition (iii) of Definition 1.4.1 guarantees
that such a sequence always exists.

We set h = p2f−1v0+p
2f−2v1+ · · ·+ v2f−1 and γ′ = 0. We let γ be an integer for which

the compatibility relation (5) holds. Let us first check that h is not divisible by q+1. A
simple calculation shows that q+1 divides h if and only if

f−1∑

i=0

pf−1−ivi+f ≡

f−1∑

i=0

pf−1−ivi (mod q+1).

Since the vi’s are between 0 and p−1, this can only occur if vi = vi+f for all i, which does
not hold by construction.

Let (α′
i)i∈Z and (v′i)i∈Z be the sequences of integers associated to (h, γ, γ′) (see §1.3)

and X′ = (X ′
i)i∈Z be the corresponding gene. It is clear from the construction of h and γ′
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that v′i = vi for all i. We have to show that this implies X = X′.

For this, we consider an integer i. If Xi = O, then v′i > 1 and Lemma 1.3.3 ensures
that X ′

i = O as well. If Xi = AB, then Xi+1 = O. By what we have done before, we find
X ′
i+1 = O as well. Hence X ′

i ∈ {AB, O}. Since v
′
i = 0, Lemma 1.3.3 then guarantees that X ′

i

cannot be O. Therefore X ′
i = AB. If Xi = B, Lemma 1.3.3 shows that X ′

i ∈ {B, O}, which is
a priori not enough to conclude. However, coming back to the proof of Lemma 1.3.3 and
setting

a′i = pf−1v′i + pf−2v′i+1 + · · ·+ v′i+f−1

we find a′i ≤ p+ p2 + · · ·+ pf−1. Thus α′
i ≤ p+ p2 + · · ·+ pf−1 as well, which discards the

option X ′
i = O. Finally, if Xi = A, applying Lemma 1.3.3, we obtain X ′

i ∈ {A, AB}. But
X ′
i = AB would imply that X ′

i+1 = O, which is impossible because Xi+1 ∈ {A, B, AB}.

To conclude this section, we recall the definition of viability.

Definition 1.4.4. — Let X = (Xi)i∈Z be a gene. We say that X is not viable if there
exists i such that Xi = Xi+1 = O. It is viable otherwise.

It has been shown in Proposition 4.1.3 [CDM2] that the gene of (h, γ, γ′) is viable if and
only if the corresponding deformation space is not zero.

2. Combinatorial weights of a gene

In this section, given a gene X, we construct a set W(X) of so-called combinatorial
weights. We see in the next section (§3) that this set is closely related to the set of
common Serre weights of ρ and t when the gene of (t, ρ) is X.

First we construct the set of combinatorial weightsW(X) (§2.1). For this, we decompose
the gene X into fragments (Definition 2.1.3) and work on each fragment separately. The
set W(X) is finally defined as the product of sets of weights associated to each fragment.
Then, we prove that W(X) is not empty if and only if the gene is viable (Theorem 2.2.1)
and we study its cardinality; in particular, we obtain upper bounds on it given by the
Fibonacci’s numbers (Theorems 2.3.3, 2.3.4).

2.1. Construction of W(X). — We begin with the definition of the combinatorial
weights.

Definition 2.1.1. — A combinatorial weight of length f is a f -periodic sequence assum-
ing values in {0, 1}.

By definition, a combinatorial weight of length f is determined by its values on
{0, 1, . . . , f−1}. We then can alternatively think of it as a subset of {0, 1, . . . , f−1}. In
any case, there are exactly 2f combinatorial weights of length f .

When the gene X is not viable, we just set W(X) = ∅. The rest of this subsection is
devoted to the construction of W(X) when X is viable. From now on, we pick a gene X

(in the sense of Definition 1.4.1) and assume that it is viable.
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2.1.1. Genes with O. — To start with, we assume that X contains at least one occurrence
of O. Under this extra assumption, we decompose X into fragments by cutting vertically
the gene before each occurrence of O.

Example 2.1.2. — The following gene:

B

O

A

A

AB

B

O

A

O

AB

B

O

AB

A

has four fragments, which are:

B

O

A

A

AB

B
;

O

A
;

O

AB
;

B

O

AB

A

Formally, a fragment can be abstractly defined as follows.

Definition 2.1.3. — A fragment F of length ℓ is a tuple (F0, F1, . . . , Fℓ−1) where each

Fi is a pair (Fi , Fi ) ∈ {A, B, AB, O}
2 satisfying the following requirements:

(L) F0 = O or F0 = O, but (F0 , F0 ) 6= (O, O),

(C) Fi 6= O and Fi 6= O for i > 0,

Fi 6= AB and Fi 6= AB for i < ℓ−1,

(R) if ℓ > 1: Fℓ−1 = AB or Fℓ−1 = AB, but (Fℓ−1, Fℓ−1) 6= (AB, AB).

To a fragment F of length ℓ, we associate a set W(F ) of fragmentary combinatorial
weights, which are tuples (w0, . . . , wℓ−1) in {0, 1}ℓ. In order to handle smoothly corner
cases, it is convenient to introduce the equivalence relation ∼ on {A, B, AB, O} whose equiv-
alence classes are {A, AB} on the one hand and {B, O} on the other hand.

Definition 2.1.4. — Let F = (F0, . . . , Fℓ−1) be a fragment of length ℓ and write Fi =

(Fi , Fi ). We define three sequences (W
(b,b)
i )0≤i<ℓ, (W

(a,b)
i )0≤i<ℓ, (W

(b,a)
i )0≤i<ℓ by:

• W
(b,b)
0 = ∅ if ℓ = 1 and

(
F0 ∈ {A, B} or F0 ∈ {A, B}

)

= {1} otherwise

• W
(a,b)
0 = ∅ if F0 = O

= {0} otherwise

• W
(b,a)
0 = ∅ if F0 = O

= {0} otherwise

and the following recurrence formulas (for 1 ≤ i ≤ ℓ− 1):

• W
(b,b)
i =

(
W

(a,b)
i−1 ∪W

(b,a)
i−1

)
× {1} if Fi−1 ∼ Fi−1

=W
(b,b)
i−1 × {1} otherwise
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• W
(a,b)
i =W

(a,b)
i−1 × {0} if Fi ∼ Fi−1

=
(
W

(b,a)
i−1 ∪W

(b,b)
i−1

)
× {0} otherwise

• W
(b,a)
i =W

(b,a)
i−1 × {0} if Fi ∼ Fi−1

=
(
W

(a,b)
i−1 ∪W

(b,b)
i−1

)
× {0} otherwise.

We then set:

W(F ) =W
(b,b)
ℓ−1 ∪W

(a,b)
ℓ−1 if Fℓ−1 = AB

=W
(b,b)
ℓ−1 ∪W

(b,a)
ℓ−1 if Fℓ−1 = AB

=W
(b,b)
0 ∪W

(a,b)
0 ∪W

(b,a)
0 otherwise.

Notice that the last case can only show up when ℓ = 1.

Example 2.1.5. — Let us compute the set of combinatorial weights associated to the
fragments of Example 2.1.2. For the first one, following the definitions, we get:

[ i=0 ] : W
(b,b)
0 = {1} ; W

(a,b)
0 = {0} ; W

(b,a)
0 = ∅

[ i=1 ] : W
(b,b)
1 =

(
W

(a,b)
0 ∪W

(b,a)
0

)
× {1} =

{
(0, 1)

}

W
(a,b)
1 =

(
W

(b,a)
0 ∪W

(b,b)
0

)
× {0} =

{
(1, 0)

}

W
(b,a)
1 =

(
W

(a,b)
0 ∪W

(b,b)
0

)
× {0} =

{
(0, 0), (1, 0)

}

[ i=2 ] : W
(b,b)
2 =

(
W

(a,b)
1 ∪W

(b,a)
1

)
× {1} =

{
(0, 0, 1), (1, 0, 1)

}

W
(a,b)
2 =

(
W

(b,a)
1 ∪W

(b,b)
1

)
× {0} =

{
(0, 0, 0), (1, 0, 0), (0, 1, 0)

}

W
(b,a)
2 =W

(b,a)
0 × {0} =

{
(0, 0, 0), (1, 0, 0)

}

and therefore:

W
(
B

O

A

A

AB

B
)
=W

(b,b)
2 ∪W

(a,b)
2 =

{
(0, 0, 1), (1, 0, 1), (0, 0, 0), (1, 0, 0), (0, 1, 0)

}
.

Similarly, we obtain:

W
(
O

A
)
=
{
0
}

; W
(

O

AB
)
=
{
0, 1
}

; W
(
B

O

AB

A
)
=
{
(0, 1), (1, 0)

}
.

We now come to the definition of the set of combinatorial weights of a gene.

Definition 2.1.6. — We set:

W(X) =
∏

F

W(F )

where the product runs over all fragments F of X (and the coordinates of the fragmentary
combinatorial weights go at the corresponding positions).
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Example 2.1.7. — After the computation of Example 2.1.5, we find that the gene of
Example 2.1.2 has 5× 1× 2× 2 = 20 combinatorial weights, which are:

(0, 0, 1, 0, 0, 0, 1), (0, 0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 1, 0, 1), (0, 0, 1, 0, 1, 1, 0),

(1, 0, 1, 0, 0, 0, 1), (1, 0, 1, 0, 0, 1, 0), (1, 0, 1, 0, 1, 0, 1), (1, 0, 1, 0, 1, 1, 0),

(0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 0, 1), (0, 0, 0, 0, 1, 1, 0),

(1, 0, 0, 0, 0, 0, 1), (1, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0),

(0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 1, 0), (0, 1, 0, 0, 1, 0, 1), (0, 1, 0, 0, 1, 1, 0).

2.1.2. Genes without O. — We now consider the case where X contains no occurrence of
the letter O, i.e. Xi 6= O for all i. It follows from the definition that X does not contain
any occurrence of AB either. Besides, by [CDM2, Lemme 2.1.5], we know that such genes
correspond to very special representations, which are called degenerate in loc. cit.

In this new setting, fragmentation no longer makes sense and the definition of
W(X) needs to be adapted. Precisely, we now need to define nine recursive sequence

(W�,�′

i )−1≤i≤f−1 for � and �
′ varying in {(b, b), (a, b), (b, a)}. The initial values of these

sequences are given by:

• W�,�′

−1 = ∅ if � 6= �
′

= {( )} otherwise

where () denotes the empty tuple (which is the unique element of {0, 1}0). The next values
(for 0 ≤ i ≤ f−1) are given by the formulas:

• W
�,(b,b)
i =

(
W

�,(a,b)
i−1 ∪W

�,(b,a)
i−1

)
× {1} if Xi−1 = Xi−1+f

=W
�,(b,b)
i−1 × {1} otherwise

• W
�,(a,b)
i =W

�,(a,b)
i−1 × {0} if Xi = Xi−1

=
(
W

�,(b,a)
i−1 ∪W

�,(b,b)
i−1

)
× {0} otherwise

• W
�,(b,a)
i =W

�,(b,a)
i−1 × {0} if Xi+f = Xi−1+f

=
(
W

�,(a,b)
i−1 ∪W

�,(b,b)
i−1

)
× {0} otherwise.

The set of combinatorial weights of X is finally defined by:

W(X) =W
(b,b),(b,b)
f−1 ∪ W

(a,b),(b,a)
f−1 ∪ W

(b,a),(a,b)
f−1 .

Example 2.1.8. — Let us consider the following simple gene:

A

B

A

A

The values of the sequences (W�,�′

i ) are recorded in the tables of Figure 1. From this
calculation, we find that our gene has 2 combinatorial weights, which are (0, 0) and (1, 0)
(both coming from � = (b, a) and �

′ = (a, b)).

A similar (but longer) computation indicates that the combinatorial weights of the gene:
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W�,�′

−1
�

′ = (b, b) �
′ = (a, b) �

′ = (b, a)

� = (b, b)

� = (a, b)

� = (b, a)

{
( )
}

∅

∅

∅
{
( )
}

∅

∅

∅
{
( )
}

W�,�′

0
�

′ = (b, b) �
′ = (a, b) �

′ = (b, a)

� = (b, b)

� = (a, b)

� = (b, a)

∅
{
(1)
}

{
(1)
}

{
(0)
}

∅
{
(0)
}

∅

∅
{
(0)
}

W�,�′

1
�

′ = (b, b) �
′ = (a, b) �

′ = (b, a)

� = (b, b)

� = (a, b)

� = (b, a)

∅
{
(1, 1)

}

{
(1, 1)

}

∅
{
(1, 0)

}

{
(0, 0), (1, 0)

}

∅

∅
{
(0, 0)

}

Figure 1. Computation of a set of combinatorial weights step by step

A

B

B

B

A

B

A

A

are (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 1, 1), (1, 0, 1, 0) and (1, 1, 0, 0).

2.2. Viability and non-emptiness. — The aim of this subsection is to prove the
following theorem.

Theorem 2.2.1. — Let X be a gene. Then W(X) is not empty if and only if X is viable.

If X is not viable, the set W(X) is empty by definition. It is then enough to prove that
W(X) is not empty as soon as X is viable. The case where X contains an occurrence of
the letter O is a direct consequence of the next lemma.

Lemma 2.2.2. — For all fragments F , we have W(F ) 6= ∅.

Proof. — The lemma is easily proved when ℓ = 1 by examining all cases by hand. We

assume then that ℓ ≥ 2. An easy induction on i shows that W
(b,b)
i and W

(a,b)
i ∪W

(b,a)
i

are always not empty for i ∈ {0, . . . , ℓ−1}. Since W(F ) contains W
(b,b)
ℓ−1 , it is also not

empty.

We now move to the case where the gene X does not contain any occurrence of O, i.e.

Xi ∈ {A, B} for all i. In what follows, we use the notations W�,�′

i introduced in §2.1.2.
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We argue by contradiction, assuming that W(X) = ∅. Then:

W
(b,b),(b,b)
f−1 =W

(a,b),(b,a)
f−1 =W

(b,a),(a,b)
f−1 = ∅.

Moreover, by the third condition of Definition 1.4.1, the sequence (Xi)i∈Z cannot be con-
stant. As a consequence, there exists an index i ∈ {0, . . . , f−1} for which Xi−1 6= Xi or
Xi−1+f 6= Xi+f . Let j be the maximal such index. For all i between j+1 and f−1, we

then have W
(a,b),(b,a)
i =W

(a,b),(b,a)
i−1 and W

(b,a),(a,b)
i =W

(b,a),(a,b)
i−1 . Hence:

W
(a,b),(b,a)
j =W

(a,b),(b,a)
j = ∅.

Claim 2.2.3. — There exists �
′ ∈ {(b, b), (a, b), (b, a)} such that W�,�′

j = ∅ for all

� ∈ {(b, b), (a, b), (b, a)}.

In order to prove this claim, we distinguish between two cases.

First case. — We assume that Xi−1 6= Xi−1+f for all i ∈ {j+1, . . . , f−1}. Under this
additional assumption, we have:

W
(b,b),(b,b)
j+1 = · · · =W

(b,b),(b,b)
f−2 = · · · =W

(b,b),(b,b)
f−1 = ∅.

If Xj−1 6= Xj but Xj−1+f = Xj+f , we get Xj−1 = Xj−1+f . Therefore:

∅ =W
(b,b),(b,b)
j =

(
W

(b,b),(a,b)
j−1 ∪W

(b,b),(b,a)
j−1

)
× {1}

∅ =W
(a,b),(b,a)
j =W

(a,b),(b,a)
j−1 × {0}

∅ =W
(b,a),(a,b)
j =

(
W

(b,a),(b,a)
j−1 ∪W

(a,b),(b,b)
j−1

)
× {0}

In particular, we deduce that W
�,(b,a)
j−1 = ∅ for all � ∈ {(b, b), (a, b), (b, a)} and our claim

is proved.

Similarly, if Xj−1 = Xj but Xj−1+f 6= Xj+f , we find that W
�,(a,b)
j−1 = ∅ for all � ∈

{(b, b), (a, b), (b, a)}, which proves the claim as well.

Let us now examine the situation where both Xj−1 6= Xj and Xj−1+f 6= Xj+f . In this
case, we have Xj−1 6= Xj−1+f and thus:

∅ =W
(b,b),(b,b)
j =W

(b,b),(b,b)
j−1 × {1}

∅ =W
(a,b),(b,a)
j =

(
W

(a,b),(a,b)
j−1 ∪W

(a,b),(b,b)
j−1

)
× {0}

∅ =W
(b,a),(a,b)
j =

(
W

(b,a),(b,a)
j−1 ∪W

(a,b),(b,b)
j−1

)
× {0}

and the claim holds with �
′ = (b, b).

Second case. — Here, we assume that there exists an integer j′ ∈ {j+1, . . . , f−1} such
that Xj′−1 = Xj′−1+f . We choose j′ maximal. Then:

W
(b,b),(b,b)
j′+1 = · · · =W

(b,b),(b,b)
f−1 = ∅

and:

W
(b,b),(b,b)
j′+1 =

(
W

(b,b),(a,b)
j′ ∪W

(b,b),(b,a)
j′

)
× {1}.

Consequently W
(b,b),(a,b)
j′ =W

(b,b),(b,a)
j′ = ∅, from what we deduce by decreasing induction

that:

W
(b,b),(a,b)
j =W

(b,b),(b,a)
j = ∅.
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Now, as in first case, we examine the three subcases depending on the truth values of the
assertions “Xj−1 = Xj” and “Xj−1+f = Xj+f” and conclude in all settings that our claim
indeed holds.

End of the proof. — We observe that, if Claim 2.2.3 holds for the index j, then it also holds

for the index j−1. Indeed, either it holds for the same�′ ifW�,�′

j =W�,�′

j−1 ×{⋆}, or it holds

for �′
1 and �

′
2 ifW

�,�′

j =
(
W

�,�′
1

j−1 ∪W
�,�′

2
j−1

)
×{⋆} with {�′,�′

1,�
′
2} = {(b, b), (a, b), (b, a)}.

By descending induction we deduce that Claim 2.2.3 holds with j = −1, which contra-

dicts the definition of the W�,�′

−1 ’s. Theorem 2.2.1 is proved.

2.3. Counting weights. — Beyond the emptiness caracterization of Theorem 2.2.1,
one can actually rather easily count the number of combinatorial weights ofW(X) without
having to write them down all explicitely. In this subsection, we explain how to proceed.

2.3.1. Genes with O. — As before, we first assume that X contains at least one occurrence
of the letter O. From Definition 2.1.6, we readily deduce that the number of weights of X
is the product of the number of weights of its fragments. Here is the key lemma allowing
for an efficient computation of the cardinality of W(F ).

Lemma 2.3.1. — Let F be a fragment of length ℓ and let (W
(b,b)
i )0≤i<ℓ, (W

(a,b)
i )0≤i<ℓ,

(W
(b,a)
i )0≤i<ℓ be the sequences defined in Definition 2.1.4. Then, for all i ∈ {0, . . . , ℓ− 1},

we have:

(i) W
(a,b)
i ∩W

(b,b)
i = ∅,

(ii) W
(b,a)
i ∩W

(b,b)
i = ∅,

(iii) W
(a,b)
i ⊂W

(b,a)
i or W

(b,a)
i ⊂W

(a,b)
i .

Proof. — The two first assertions are obvious since the last coordinate of an element of

W
(a,b)
i (resp. W

(b,a)
i ) is always 0 whereas the last coordinate of an element of W

(b,b)
i is

always 1.
We prove the assertion (iii) by induction on i. For i = 0, it follows immediately from the

definition. Let us now assume that (iii) holds for the index i−1. We distinguish between
four cases.

If Fi ∼ Fi−1 and Fi ∼ Fi−1, then:

W
(a,b)
i =W

(a,b)
i−1 × {0} ; W

(b,a)
i =W

(b,a)
i−1 × {0}

and the conclusion follows directly by induction.
If Fi 6∼ Fi−1 and Fi ∼ Fi−1, then:

W
(b,a)
i =W

(b,a)
i−1 × {0} ⊂

(
W

(b,a)
i−1 ∪W

(b,b)
i−1

)
× {0} =W

(a,b)
i .

If Fi ∼ Fi−1 and Fi 6∼ Fi−1, then:

W
(a,b)
i =W

(a,b)
i−1 × {0} ⊂

(
W

(a,b)
i−1 ∪W

(b,b)
i−1

)
× {0} =W

(b,a)
i .

If Fi 6∼ Fi−1 and Fi 6∼ Fi−1, then:

W
(a,b)
i =

(
W

(a,b)
i−1 ∪W

(b,b)
i−1

)
× {0} ; W

(b,a)
i =

(
W

(b,a)
i−1 ∪W

(b,b)
i−1

)
× {0}

and the conclusion again follows by induction (the order is reversed).
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For 0 ≤ i < ℓ and � ∈ {(a, b), (b, a), (b, b)}, we set c�i = CardW�

i . Definition 2.1.4 and
Lemma 2.3.1 together show that the c�i ’s are subject to the following recurrence relations:

• c
(b,b)
i = max

(
c
(a,b)
i−1 , c

(b,a)
i−1

)
if Fi−1 ∼ Fi−1

= c
(b,b)
i−1 otherwise

• c
(a,b)
i = c

(a,b)
i−1 if Fi ∼ Fi−1

= c
(b,a)
i−1 + c

(b,b)
i−1 otherwise

• c
(b,a)
i = c

(b,a)
i−1 if Fi ∼ Fi−1

= c
(a,b)
i−1 + c

(b,b)
i−1 otherwise

and that the cardinality we are looking for is finally given by:

Corollary 2.3.2. — The cardinality of the set of combinatorial weights associated to a
fragment F is given by:

CardW(F ) = c
(b,b)
ℓ−1 + c

(a,b)
ℓ−1 if Fℓ−1 = AB,

= c
(b,b)
ℓ−1 + c

(b,a)
ℓ−1 if Fℓ−1 = AB.

Beyond the fact that these recursive formulas are well suited for a direct and simple
computation of CardW(F ), they also have interesting corollaries. In order to state them,
let us call (Fibi)i≥0 the Fibonacci sequence defined by Fib0 = 0, Fib1 = 1 and Fibi =
Fibi−1 + Fibi−2 for i ≥ 2.

Theorem 2.3.3. — Let F be a fragment of length ℓ ≥ 2. Then CardW(F ) ≤ Fibℓ+2 and
equality occurs if and only if F is the following fragment:

if ℓ is even: O

B

A

A

B

B
. . .

A

A

B

B

AB

A

if ℓ is odd: O

B

A

A

B

B
. . .

A

A

B

B

A

A

B

AB

or the fragment obtained from the above one by interverting the letters A and B.

Proof. — We keep the notations introduced above the statement of the theorem. We are
going to prove by induction on i that:

c
(b,b)
i ≤ Fibi+1, c

(a,b)
i ≤ Fibi+2 and c

(b,a)
i ≤ Fibi+2.

The statement is clearly true for i = 0. For i > 0, we have:

c
(b,b)
i = max

(
c
(a,b)
i−1 , c

(b,a)
i−1

)
≤ Fibi+1 if Fi−1 ∼ Fi−1

= c
(b,b)
i−1 ≤ Fibi ≤ Fibi+1 otherwise

c
(a,b)
i = c

(a,b)
i−1 ≤ Fibi+1 ≤ Fibi+2 if Fi ∼ Fi−1

= c
(b,a)
i−1 + c

(b,b)
i−1 ≤ Fibi+1 + Fibi = Fibi+2 otherwise

c
(b,a)
i = c

(b,a)
i−1 ≤ Fibi+1 ≤ Fibi+2 if Fi ∼ Fi−1

= c
(a,b)
i−1 + c

(b,b)
i−1 ≤ Fibi+1 + Fibi = Fibi+2 otherwise.
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We finally conclude that:

CardW(F ) = c
(b,b)
ℓ−1 + c

(a,b)
ℓ−1 ≤ Fibℓ + Fibℓ+1 = Fibℓ+2 if Fℓ−1 = AB

= c
(b,b)
ℓ−1 + c

(b,a)
ℓ−1 ≤ Fibℓ + Fibℓ+1 = Fibℓ+2 if Fℓ−1 = AB.

The first assertion of the theorem is then proved.
Let us now study the case of equality. It holds if and only all inequalities encoutered

along the way are equalities. Let us assume first that Fℓ−1 = AB. We then derive that

c
(b,b)
ℓ−1 and c

(a,b)
ℓ−1 must be equal to Fibℓ and Fibℓ+1 respectively. Noticing that Fibi < Fibi+1

as soon as i ≥ 2, these equalities imply by descending induction that c
(b,b)
i = Fibi for all

i ∈ {0, . . . , ℓ− 1} and that:

– if ℓ−i is odd, then c
(a,b)
i = Fibi+2 and Fi 6∼ Fi−1,

– if ℓ−i is even, then c
(b,a)
i = Fibi+2 and Fi 6∼ Fi−1.

Similarly, the equality c
(b,b)
i = Fibi is only possible if Fi−1 ∼ Fi−1 for all i ≥ 2. The two

possible shapes of F given in the statement of the theorem follow from these observations.
Finally, the case where Fℓ−1 = AB is treated similarly.

In Theorem 2.3.3, we have intentionally discarded the fragments of length 1. It is
actually not difficult to handle these fragments by hand. Precisely, there are exactly six
such segments, which are:

O

A ;
A

O ;
O

B ;
B

O ;
O

AB ;
AB

O

Their number of fragmentary combinatorial weights are 1, 1, 1, 1, 2 and 2 respectively. The
upper bound of Theorem 2.3.3 is then correct for the four first fragments (with equality)
but it is not for the two last ones.

Numerical experimentations show that almost—but not all—integers between 1 and
Fibℓ+2 can show up as the number of fragmentary combinatorial weights of a fragment of
length ℓ. Exceptions are large integers which are rather close to the upper bound Fibℓ+2;
for example, when ℓ = 10 (so that Fibℓ+2 = 144), they are 113, 114, 118, 120, 126, 127,
130 and all the integers in the interval [132, 142]. We notice that Fibℓ+2−1 always appear
for the following fragment:

if ℓ is even: O

B

A

A

B

B
. . .

A

A

B

B

A

AB

if ℓ is odd: O

B

A

A

B

B
. . .

A

A

B

B

A

A

AB

B

2.3.2. Genes without O. — We now come to the case of genes without any occurrence of
O. Since this case corresponds to very special Galois representations and inertial types
and since it becomes unsightly, we merely sketch the constructions. We hope that we give
enough information to the reader to redo the long computations and checkings.

Let then X be a gene without any O. Similarly to what we have done before, we set

c�,�
′

i = CardW�,�′

i when � and �
′ are elements of {(b, b), (a, b), (b, a)}. As before, we
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have recurrence relations from which we easily derive the values of the c�,�
′

i ’s. Unfortu-
nately, this is not sufficient to calculate the cardinality ofW(X) because the union defining
it, namely

W(X) =W
(b,b),(b,b)
f−1 ∪ W

(a,b),(b,a)
f−1 ∪ W

(b,a),(a,b)
f−1 .

is usually not a disjoint union. To tackle this issue, we introduce more sequences: given
�,�′,∆,∆′ ∈ {(b, b), (a, b), (b, a)}, we set:

c�,�
′,∆,∆′

i = Card
(
W�,�′

i ∪W∆,∆′

i

)
.

It then turns out that the following set of 14 sequences:
(
c�,�

′

i

)
−1≤i≤f−1

for �,�′ ∈ {(b, b), (a, b), (b, a)}
(
c
(a,b),�′,(b,a),∆′

i

)
−1≤i≤f−1

for �′,∆′ ∈ {(a, b), (b, a)}
(
c
(a,b),(b,b),(b,a),(b,b)
i

)
−1≤i≤f−1

satisfy a full collection of recurrence relations, allowing for their complete determination.
For example, from the equalities:

W
(a,b),(b,b)
i ∪W

(b,a),(b,b)
i =

(
W

(a,b),(a,b)
i−1 ∪W

(a,b),(b,a)
i−1

∪W
(b,a),(a,b)
i−1 ∪W

(b,a),(b,a)
i−1

)
× {1} if Xi−1 = Xi−1+f

=
(
W

(a,b),(b,b)
i−1 ∪W

(b,a),(b,b)
i−1

)
× {1} if Xi−1 6= Xi−1+f .

we derive using a straightforward analogue of Lemma 2.3.1:

c
(a,b),(b,b),(b,a),(b,b)
i = max c

(a,b),�′,(b,a),∆′

i−1 if Xi−1 = Xi−1+f

= c
(a,b),(b,b),(b,a),(b,b)
i−1 if Xi−1 6= Xi−1+f .

where the maximum is taken over �′ and ∆′ varying in {(a, b), (b, a)}. In a similar fashion,

we obtain recurrence relations for the 13 other sequences. Note that for c
(a,b),�′,(b,a),∆′

i ,
we have to distinguish between four cases depending on the values of Xi, Xi−1, Xi+f and
Xi−1+f . The cardinality of W(X) is finally given by the formula:

CardW(X) = c
(b,b),(b,b)
f−1 + c

(a,b),(b,a),(b,a),(a,b)
f−1

since the two corresponding set of weights are now disjoint.

As a summary, although the computation becomes more sophisticated and unpleasant,
it remains possible to have access to the cardinality of W(X) without computing the set
W(X) itself. This conclusion will be important when we will design fast algorithms for
enumerating and counting elements of W(X) in §A.2.2.

Previous constructions are also important for deriving the next theorem.

Theorem 2.3.4. — Let X be a gene of length f without any occurrence of O. Then
CardW(X) < Fibf+2.

Proof. — One checks by induction on i that:

c
�,(b,b)
i ≤ Fibi+1 ; c

(b,b),�′

i ≤ Fibi+1 ; c
(a,b),(b,b),(b,a),(b,b)
i ≤ Fibi+1

c
(b,b),(b,b)
i ≤ Fibi+2 ; c�,�

′

i ≤ Fibi+2 ; c
(a,b),�′,(b,a),∆′

i ≤ Fibi+2

for i ∈ {−1, 0, . . . , f−1} and �,�′,∆′ ∈ {(a, b), (b, a)}. Knowing this, we deduce that
CardW(X) ≤ Fibf+1 + Fibf = Fibf+2. The fact that the inequality is strict is proved by
driving out the equality cases; we left it to the reader.
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3. From combinatorial weights to Serre weights

In this section, we explain how combinatorial weights defined in §2.1 are related to Serre
weights. We give a precise statement of Theorem 1 of the introduction which provides an
explicit bijection between the set of common weights of t and ρ and the set of combinatorial
weights of their gene (Theorem 3.1.2). The rest of the section (§3.2–3.4) is devoted to the
proof of this theorem.

3.1. Statement of the theorem. — We consider an absolutely irreducible representa-
tion

ρ = IndGFGF ′

(
ωh2f ⊗ nr′(θ)

)

together with a tamely ramified Galois type t = ωγf ⊕ ω
γ′

f . We let X = (Xi)i∈Z denote the

gene associated to (h, γ, γ′). As in §1.2, we define the integers c0, . . . , cf−1 in {0, . . . , p−1}

by the relation γ′−γ ≡
∑f−1

i=0 cip
i (mod q−1). As in §1.3, we introduce the (2f)-periodic

sequence (vi)i∈Z defined by the fact that 0 ≤ vi ≤ p−1 for all i and the congruence (11),
namely:

h− (q+1)γ′ ≡ p2f−1v0 + p2f−2v1 + · · · + pv2f−2 + v2f−1 (mod q2 − 1).

We also recall that we have defined an equivalence relation ∼ on {A, B, AB, O} by A ∼ AB

and B ∼ O. For i in Z, we set δi = 1 if Xi ∼ Xi+f and δi = 0 otherwise. This then defines
a f -periodic sequence (δi)i∈Z with values in {0, 1}.

After these preparations, we are ready to explain the recipe to construct a Serre weight
S(w) from the datum of a combinatorial weight w = (wi)i∈Z in W(X). For this, we need
to describe its parameters s and r = (r0, . . . , rf−1). For i in {0, . . . , f−1}, we let rf−i−1

be the integer defined in the table of Figure 2. Defining s is a bit more painful. Eq. (9)

rf−1−i wi−1 = δi−1 wi−1 6= δi−1

Xi = O

Xi+f = O

otherwise

vi − 1− wi

vi+f − 1−wi

wi · (p − 1)

p− 1− vi + wi

p− 1− vi+f + wi

p− 2 + wi

Figure 2. Table giving the values of rf−1−i

tells us that we have to choose s with the property that:

2s ≡ γ + γ′ −

f−1∑

i=0

rip
i (mod q − 1).

However, this leaves us with two possibilities between them we have to decide. In order
to do so, we distinguish between two cases:

(1) if there exists an integer i0 such that ci0 6=
p−1
2 , we set ε′i0 = 0 if ri0 ∈ {ci0 , ci0 − 1}

and ε′i0 = 1 otherwise;

(2) if ci =
p−1
2 for all i, we consider an integer i0 such that Xf−1−i0 = O and set ε′i0 = 0

if wf−2−i0 = δf−2−i0 and ε′i0 = 1 otherwise.
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Then, for this particular choice of i0, we define:

s = γ′ +
1

2

(
ε′i0(q − 1) +

f−1∑

i=0

λi+i0(ci − ri)p
i

)
∈ Z/(q−1)Z

where, by definition, λj = q if j < f−1 and λj = 1 otherwise. In order to be sure that the
above definition makes sense, we need to justify that we can always find i0 in the case (2).
This is the content of the following lemma.

Lemma 3.1.1. — If ci =
p−1
2 for all i, the gene X contains at least an occurrence of the

letter O.

Proof. — The assumption means that γ′ = γ + q−1
2 . Using in addition that the triple

(h, γ, γ′) is coherent, we deduce that:

h− (q+1)γ′ ≡
q − 1

2
+
q − 1

p− 1
(mod q − 1).

Moreover, we derive from the definition of the vi’s that:

h− (q+1)γ′ ≡

f−1∑

i=0

(vi + vi+f ) p
f−1−i (mod q − 1).

If the gene X did not contain any occurrence of O, we would derive from Lemma 1.3.3
that vi ∈ {0, 1} for all i. Therefore, comparing the two congruences above, we would get

vi+ vi+f = p+1
2 for all i. Using again that vi ∈ {0, 1} for all i, we would deduce that p = 3

and vi = 1 for all i. Applying Lemma 1.3.3 again, we would finally find that Xi = B for
all i, which contradicts the definition of a gene.

We are now ready to state the main theorem of this section.

Theorem 3.1.2. — The construction S induces a bijection W(X)
∼
−→ D(t, ρ).

Example 3.1.3. — We take p = 5, f = 7, and:

h = (3 + 4p + 3p3 + 4p4 + 4p5 + 3p6)(q + 1) +

(1 + 3p+ p2 + 4p3 + 4p4 + 4p5 + p6)

γ = 3 + 4p+ p2 + p3 + 4p4 + 3p5 + 3p6

γ′ = 3 + p+ 3p3 + 3p4 + 4p5 + 4p6.

A straightforward computation shows that the gene associated to these data is the one
considered in Example 2.1.2 (see also Example A.1.6). Its combinatorial weights are then
those enumerated at the end of Example 2.1.7. Besides, the δi’s are given (δ0, . . . , δ7) =
(1, 1, 0, 0, 0, 1, 1). Moreover, we find (v0, . . . , v13) = (4, 0, 1, 0, 0, 3, 0, 1, 0, 0, 4, 2, 1, 0).

Applying the recipe described above, we find that the Serre weights associated to the
combinatorial weights listed in Example 2.1.7 are respectively:

(τ0 ◦ det
77758)⊗ Sym[4,2,1,0,4,3,3] k2E ; (τ0 ◦ det

140262)⊗ Sym[0,1,1,0,4,3,0] k2E
(τ0 ◦ det

77773)⊗ Sym[4,1,0,0,4,3,3] k2E ; (τ0 ◦ det
140272)⊗ Sym[0,2,0,0,4,3,0] k2E

(τ0 ◦ det
90258)⊗ Sym[4,2,1,0,4,0,2] k2E ; (τ0 ◦ det

137137)⊗ Sym[0,1,1,0,4,0,1] k2E
(τ0 ◦ det

90273)⊗ Sym[4,1,0,0,4,0,2] k2E ; (τ0 ◦ det
137147)⊗ Sym[0,2,0,0,4,0,1] k2E

(τ0 ◦ det
77883)⊗ Sym[4,2,1,3,3,3,3] k2E ; (τ0 ◦ det

140387)⊗ Sym[0,1,1,3,3,3,0] k2E
(τ0 ◦ det

77898)⊗ Sym[4,1,0,3,3,3,3] k2E ; (τ0 ◦ det
140397)⊗ Sym[0,2,0,3,3,3,0] k2E
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(τ0 ◦ det
90383)⊗ Sym[4,2,1,3,3,0,2] k2E ; (τ0 ◦ det

137262)⊗ Sym[0,1,1,3,3,0,1] k2E
(τ0 ◦ det

90398)⊗ Sym[4,1,0,3,3,0,2] k2E ; (τ0 ◦ det
137272)⊗ Sym[0,2,0,3,3,0,1] k2E

(τ0 ◦ det
77258)⊗ Sym[4,2,1,3,0,4,3] k2E ; (τ0 ◦ det

139762)⊗ Sym[0,1,1,3,0,4,0] k2E
(τ0 ◦ det

77273)⊗ Sym[4,1,0,3,0,4,3] k2E ; (τ0 ◦ det
139772)⊗ Sym[0,2,0,3,0,4,0] k2E

where Sym[r0,r1,...,r6] k2E is a shortcut for
⊗6

i=0(Sym
ri k2E)

τi .

Note that, in this particular example, D(ρ) has cardinality 96 and D(t) has cardinality
60. If one wants to calculate D(t, ρ), it is then much faster to use the previous techniques
than to compute the intersection naively. We make the latest assertion more rigourous in
§A.

The rest of this section is devoted to the proof of Theorem 3.1.2. First, in §3.2, we con-
struct a surjection between specific (2f)-periodic sequences of integers said to be active
and (h, γ, γ′)-compatible (see Definitions 3.2.1 and 3.2.2) and the set of common weights
(see Proposition 3.2.4). Then, in §3.3, we introduce the notion of enriched weights (see
Definition 3.3.4) and use it to describe the set of active and (h, γ, γ′)-compatible sequences.
Finally, in §3.4, we relate enriched weights to combinatorial weights and deduce the theo-
rem.

3.2. A first description of common weights. — In what follows, we constantly
work with (2f)-periodic sequences of integers. We denote their set by Σ and introduce
two definitions on these sequences.

Definition 3.2.1. — A pair of integers (x, y) is active if the three following conditions
are fulfilled:

(i) 0 ≤ x, y ≤ p;
(ii) x ∈ {0, p} or y ∈ {0, p};
(iii) x 6= y.

A sequence σ = (σi)i∈Z in Σ is active if (σi, σi+f ) is active for all i in Z. We denote Σac

the subset of Σ consisting of active sequences.

Definition 3.2.2. — We say that σ = (σi)i∈Z in Σ is (h, γ, γ′)-compatible if, for all i in
Z, we have:

(12)

2f−1∑

i=0

σi p
2f−1−i ≡ h− (q+1)γ′ (mod q2 − 1).

We let Σ(h,γ,γ′) denote the set of (h, γ, γ′)-compatible sequences.

3.2.1. From sequences to weights. — Active sequences are closely related to Serre weights.
Indeed, to any active sequence σ = (σi)i∈Z, we associates the tuple

SΣ(σ) = (s, r) ∈
(
Q/(q−1)Z

)
× {0, . . . , p−1}f

defined as follows. Given an index i ∈ {0, . . . , f−1}, we set:

(13)

rf−1−i = σi − 1 if σi+f = 0,
rf−1−i = p− 1− σi if σi+f = p,
rf−1−i = σi+f − 1 if σi = 0,
rf−1−i = p− 1− σi+f if σi = p
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and r = (r0, . . . , rf−1). We observe that the activity condition ensures that the above
definition covers all cases and is not ambiguous. We further set εf−1−i = 0 if σi < σi+f
and εf−1−i = 1 otherwise. We finally put:

(14) s =
1

q + 1

(
h−

f−1∑

i=0

(−1)εi(1 + ri)p
i

)
−

f−1∑

i=0

εi(1 + ri)p
i ∈ Q/(q−1)Z.

When s is an integer, we will slightly abuse notations and identify the pair (s, r) with the
corresponding Serre weight without further discussion.

Proposition 3.2.3. — The function SΣ induces a mapping Σac ∩ Σ(h,γ,γ′) → D(t, ρ).

Proof. — We consider σ = (σi)i∈Z in Σac ∩ Σ(h,γ,γ′) and write SΣ(σ) = (s, r) with r =
(r0, . . . , rf−1). By definition, the ri’s and s are given by the formulas (13) and (14) where
we recall that εf−1−i = 0 if σi < σi+f and εf−1−i = 1 otherwise. It follows from the fact
that σ is (h, γ, γ′)-compatible that:

(15) h ≡

2f−1∑

i=0

σi p
2f−1−i ≡

f−1∑

i=0

(σi+f − σi) p
f−1−i (mod q + 1).

Observe that if σi < σi+f , the activity condition implies that σi = 0 or σi+f = p. In
the first case, rf−1−i = σi+f − 1, from what we derive σi+f − σi = 1 + rf−1−i. A similar
calculation shows that the last equality holds in the second case as well. If σi > σi+f , one
finds σi − σi+f = 1 + rf−1−i. Therefore, in all cases, we have the relation:

(16) σi+f − σi = (−1)εf−1−i · (1 + rf−1−i).

Plugging this in Eq. (15), we find that:

h ≡

f−1∑

i=0

(−1)εi(1 + ri)p
i (mod q + 1).

Hence s is an integer (see 14) and we can see the pair (s, r) as a Serre weight. Moreover,
the congruences (14) and (15) show that it lies in D(ρ). In order to prove that it lies also
in D(t), we have to construct ε′0, . . . , ε

′
f−1 exhibiting the two following properties: first,

the ri’s and the ci’s have to be related by the rules of the table (8) (page 7) and, second,
the congruence:

(17) s ≡ γ′ +

f−1∑

i=0

ε′i(p− 1− ri)p
i (mod q − 1)

must hold (see Lemma 1.2.1). Here the ci’s are the integers introduced in §1.2; we recall
that they all belong to {0, . . . p−1} and that they satisfy the relation:

γ′ − γ ≡

f−1∑

i=0

cip
i (mod q − 1).

The definition of the ε′i’s goes as follows: for those indices i for which {σi, σi+f} 6= {0, p},
we set ε′f−1−i = 0 if σi = 0 or σi+f = 0, and ε′f−1−i = 1 if σi = p or σi+f = p. Note that
this dichotomy covers all cases thanks to the activity condition. We then complete the
sequence of ε′i’s by setting ε′f−1−i = ε′f−2−i (where the indices are considered modulo f)

when {σi, σi+f} = {0, p}. This definition is not ambiguous except in the situation where
{σi, σi+f} = {0, p} for all i; in this case, we agree to define ε′i = 1 for all i.

In order to prove that the ε′i’s are convenient, we first observe that the equality:

σi + σi+f = p− (−1)ε
′
f−1−i

(
p− 1− rf−1−i

)
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holds in all cases. Reducing the congruence (14) modulo q−1 and using the fact that the
triple (h, γ, γ′) is coherent, a simple calculation leaves us with the relation:

f−1∑

i=0

cip
i ≡

f−1∑

i=0

(−1)ε
′
i

(
p− 1− ri

)
pi (mod q − 1).

We set si = p−1− ri if ε
′
i = 0 and si = ri+1 otherwise. An easy computation then shows

that (−1)ε
′
i

(
p− 1− ri

)
= si − pε

′
i, from what we finally deduce:

(18)

f−1∑

i=0

cip
i ≡

f−1∑

i=0

(
si − ε

′
i−1

)
pi (mod q − 1).

An interesting feature of the latest equality is that si − ε
′
i−1 is in the range {0, . . . , p−1}

for all i. Indeed, consider first the case where ε′i = 1. With this additional assumption,
we have 1 ≤ si ≤ p and the equality si = p holds if and only if {σf−1−i, σ2f−1−i} = {0, p}.
However, in this case, we know that ε′i−1 = ε′i, i.e. ε

′
i−1 = 1. In all cases, we can then

conclude that 0 ≤ si − ε
′
i−1 ≤ p−1. The case where ε′i = 0 is treated similarly.

From Eq. (18), we then deduce that ci = si − ε
′
i−1 for all i except possibly if ci = 0 for

all i (i.e. γ = γ′), in which case the option si − ε
′
i−1 = p−1 for all i is left open. On the

one hand, when ci = si − ε
′
i−1, we check by inspection that ci are ri are related by the

rules of the table (8) as expected. On the other hand, when ci = 0 and si − ε
′
i−1 = p−1

for all i, one proves by induction that either ri = ε′i = 0 for all i, or ri = p−1 and ε′i = 1
for all i. In both cases, we verify that the rules of the table (8) are respected.

It remains to check that Eq. (17) holds. For this, we observe that the congruence
defining the (h, γ, γ′)-compatibility of σ can be rewritten as follows:

1

q + 1

(
h−

f−1∑

i=0

(σi+f − σi)p
f−1−i

)
≡ γ′ +

f−1∑

i=0

σip
f−1−i (mod q − 1).

Noticing in addition that

σi+f − σi = (−1)εf−1−i · (1 + rf−1−i)

and σi = εf−1−i · (1 + rf−1−i) + ε′f−1−i · (p− 1− rf−1−i)

for all i ∈ {0, . . . , f−1}, we end up with the relation:

s ≡
1

q + 1

(
h−

f−1∑

i=0

(−1)εi(1 + ri)p
i

)
−

f−1∑

i=0

εi(1 + ri)p
i(19)

≡ γ′ +

f−1∑

i=0

ε′i(p − 1− ri)p
i (mod q − 1)

which is exactly what we had to prove.

Proposition 3.2.4. — The mapping SΣ : Σac ∩ Σ(h,γ,γ′) → D(t, ρ) is surjective.

Proof. — Let (s, r) be the parameters of a Serre weight in D(t, ρ) and write r =
(r0, . . . , rf−1). By definition of D(ρ) and D(t), there exists ε0, . . . , εf−1, ε

′
0, . . . , ε

′
f−1 in

{0, 1} satisfying the congruences (19). For i in {0, . . . , f−1}, we set εi+f = 1 − εi and
ε′i+f = εi. We further extend the sequences (εi)i and (ε′i)i to all i in Z by (2f)-periodicity.
For all i ∈ Z, we then put:

σi = εf−1−i · (1 + rf−1−i) + ε′f−1−i · (p− 1− rf−1−i).

Obviously the sequence σ = (σi)i∈Z lies in Σ. We claim that it is actually an element of

Σac ∩Σ(h,γ,γ′), whose image under SΣ equals σs,r. The fact that σ is (h, γ, γ′)-compatible
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is proved by doing in the reverse direction the final computation of the proof of Propo-
sition 3.2.3. In order to check that σ is active, we build the following table in which we
record the values of the pair (σi, σi+f ) depending on the values of εf−1−i and ε

′
f−1−i.

(σi, σi+f ) εf−1−i = 0 εf−1−i = 1

ε′f−1−i = 0

ε′f−1−i = 1

(
0, 1+rf−1−i

)
(
p−1−rf−1−i, p

)
(
1+rf−1−i, 0

)
(
p, p−1−rf−1−i

)

We observe that, for each case, both coordinates are between 0 and p, they cannot be
equal and one of them is equal to 0 or p. Hence the pair (σi, σi+f ) is active in the sense
of Definition 3.2.1. Since this holds for all i, we conclude that σ ∈ Σac.

Finally, looking again at the above table, we deduce that the values of rf−1−i and εf−1−i

can be recovered from the pair (σi, σi+f ) thanks to the formulas (13) on the one hand and
the fact that εf−1−i = 0 if and only if σi < σi+f on the other hand. This observation
eventually ensures that SΣ takes σ to the Serre weight with parameters (s, r) we started
with.

3.2.2. An application: nonviable genes. — As a first application of Propositions 3.2.3
and 3.2.4, we prove that if X is not viable (see Definition 1.4.4), then the set of common
Serre weights is empty. We start by recording a lemma that we shall use several times in
this section.

Lemma 3.2.5. — Let σ = (σi)i∈Z be in Σac ∩ Σ(h,γ,γ′) and i be in Z. We assume σi ∈
{0, p}. Then Xi 6= O.

Proof. — The compatibility condition tells us that αi ≡ βi (mod q−1) where βi is defined
by:

βi =


f∑

j=1

qσi+j + σi+j+f
q + 1

pf−1−j

 .

From the activity condition, we deduce that qσi+j + σi+j+f < p · (q+1) for all j. We then

find 0 ≤ βi < 1 + p+ · · · + pf−1, from what it follows Xi 6= O.

Corollary 3.2.6. — If the gene X is not viable, then D(t, ρ) is empty.

Proof. — By Proposition 3.2.4, it is enough to prove that Σac ∩ Σ(h,γ,γ′) = ∅. Arguing
by contradiction, let us consider σ = (σi)i∈Z ∈ Σac ∩ Σ(h,γ,γ′). From our assumption, we
know that there exists an index i such that Xi = Xi+f = O. From Lemma 3.2.5, it then
follows that both σi and σi+f do not belong to {0, p}, which contradicts the definition of
activity.

Theorem 3.1.2 follows from Corollary 3.2.6 when X is not viable (since W(X) is then
empty by definition). The case of viable genes is more complicated; it is covered in the
next subsections.

3.3. Description of Σac∩Σ(h,γ,γ′). — In this subsection, we give a complete description
of the set Σac ∩Σ(h,γ,γ′) in terms of a combinatorial datum, that we call enriched weights.
The link between enriched weights and combinatorial weights as defined in §2.1 is precised
in §3.4.
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3.3.1. Mutations. — We recall that to any coherent triple (h, γ, γ′), we have associated
in §1.3 a sequence v = (vi)i∈Z ∈ Σ such that:

h− (q + 1)γ′ ≡

2f−1∑

i=0

vi p
2f−1−i (mod q2 − 1)

In other words, v is (h, γ, γ′)-compatible. Even better, it is the unique sequence in Σ(h,γ,γ′)

assuming values in {0, . . . , p−1}. In order to describe all sequences in Σ(h,γ,γ′), we intro-
duce the mutation operators. Given χ = (χi)i∈Z in Σ, we define:

µχ : Σ −→ Σ

(σi)i∈Z 7→ (σi − χi + pχi−1)i∈Z

One readily checks that µχ ◦µχ′ = µχ+χ′ for all χ, χ′ ∈ Σ. In other words, the association

χ 7→ µχ defines a group homomorphism. In particular, the µχ’s pairwise commute.

Proposition 3.3.1. — A sequence σ in Σ lies in Σ(h,γ,γ′) if and only if there exists χ in
Σ such that σ = µχ(v). Moreover, when this occurs, χ is uniquely determined.

Proof. — We consider σ ∈ Σ. Solving a linear system, we find that σ = µχ(v) is equivalent
to:

χi =
1

q2 − 1

2f−1∑

j=0

(σi+j − vi+j) p
2f−1−j (i ∈ Z).

The proposition follows easily from this.

We aim at describing all the sequences σ which are at the same time (h, γ, γ′)-compatible
and active. By Proposition 3.3.1, this amounts to characterize the χ’s such that µχ(v)
is active. The starting point is the following simple lemma that narrows the field of
possibilities.

Lemma 3.3.2. — If µχ(v) is active, then χ assumes values in {0, 1}.

Proof. — Set σ = (σi)i∈Z = µχ(v). By assumption, σi = vi − χi + pχi−1 ∈ [0, p] for all i.
Let i0 be the index for which χi is maximal. Then:

p ≥ σi0+1 = vi0+1 − χi0+1 + pχi0 ≥ vi0 + (p− 1)χi0 ≥ (p− 1)χi0 .

We deduce that χi0 ≤ 1 and then, that χi ≤ 1 for all i. We prove similarly that χi is
always nonnegative, showing the lemma.

3.3.2. Enriched weights. — Instead of working with the sequence χ, it is convenient to
slightly re-encode it. For this, we introduce the notion of enriched weights.

Definition 3.3.3. — An enriched weight of length f is a periodic sequence of period 2f
assuming values in the finite set {a, b}.

We introduce the function λ : {A, B, AB, O} → {a, b} defined by λ(A) = λ(AB) = a and
λ(B) = λ(O) = b. Notice that the equality λ(X) = λ(Y ) is equivalent to X ∼ Y where
∼ is the equivalence relation introduced in §2.1.1. To a numerical sequence χ = (χi)i∈Z
assuming values in {0, 1}, we associate the enriched weight ŵ = (ŵi)i∈Z which is uniquely
determined by the following condition: for all i ∈ Z, χi = 1 if and only if ŵi = λ(Xi).
More concretely, the following table shows what is the value of ŵi in terms of χi and Xi:
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(20)

Xi ∈ {A, AB} Xi ∈ {B, O}

χi = 0 b a

χi = 1 a b

There is obviously a bijection between the set of enriched weights and the set of χ’s. We
are now going to translate the activity condition (introduced in Definition 3.2.1) at the
level of enriched weights. For convenience, we introduce the following definition.

Definition 3.3.4. — An enriched weight ŵ is called (h, γ, γ′)-active (or just active if
no confusion may arise) if the sequence µχ(v) lies in Σac (where χ denotes as usual the

numerical sequence associated to ŵ).

We denote by Ŵ(h, γ, γ′) the set of (h, γ, γ′)-active enriched weights.

Our goal is now to caracterize active enriched weights.

Lemma 3.3.5. — Let ŵ be an enriched weight and let χ be the numerical sequence asso-
ciated to it. Set σ = (σi)i∈Z = µχ(v). Then, for all i in Z, the following holds:

(i) if ŵi = a, then p does not divide σi;

(ii) if ŵi = b and Xi 6= O, then σi ∈ {0, p}.

Proof. — We assume ŵi = a. Looking up at the above table, we deduce that either χi = 0
and Xi ∈ {B, O} or χi = 1 and Xi ∈ {A, AB}. In the first case, from Lemma 1.3.3, we find
that vi ∈ {1, . . . , p−1}. In the second case, we obtain vi = 0. In both cases, it turns out
that vi − χi cannot be divisible by p. Hence σi = vi − χi + pχi−1 is not divisible by p
either. This proves (i).

Let us now assume ŵi = b and Xi 6= O. Then looking up again at the table, we are faced
to the following alternative: either χi = 0 and Xi ∈ {A, AB} or χi = 1 and Xi = B. In both
cases, Lemma 1.3.3 shows that χi = vi. Hence σi = pχi−1, from which (ii) follows.

After Lemma 3.3.5, we have:

Corollary 3.3.6. — If ŵ is an active enriched weight, then (ŵi, ŵi+f ) 6= (a, a) for all i.

We now come to the core proposition which caracterizes active enriched weights “outside
O”.

Proposition 3.3.7. — Let ŵ = (ŵi)i∈Z be an enriched weight with (ŵi, ŵi+f ) 6= (a, a)
for all i. Let χ be the numerical sequence associated to it and set σ = (σi)i∈Z = µχ(v).

Let i be an integer with Xi 6= O and Xi+f 6= O. Then the pair (σi, σi+f ) is active if and
only if the following holds:

(bb1) if (ŵi, ŵi+f ) = (b, b) and λ(Xi−1) = λ(Xi−1+f ), then ŵi−1 6= ŵi−1+f ;

(bb2) if (ŵi, ŵi+f ) = (b, b) and λ(Xi−1) 6= λ(Xi−1+f ), then ŵi−1 = ŵi−1+f ;

(ab1) if (ŵi, ŵi+f ) = (a, b) and λ(Xi) = λ(Xi−1), then ŵi−1 = a;

(ab2) if (ŵi, ŵi+f ) = (a, b) and λ(Xi) 6= λ(Xi−1), then ŵi−1 = b;

(ba1) if (ŵi, ŵi+f ) = (b, a) and λ(Xi+f ) = λ(Xi−1+f ), then ŵi−1+f = a;

(ba2) if (ŵi, ŵi+f ) = (b, a) and λ(Xi+f ) 6= λ(Xi−1+f ), then ŵi−1+f = b.
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Proof. — We first assume that (ŵi, ŵi+f ) = (b, b). It then follows from Lemma 3.3.5 that
both σi and σi+f lie in {0, p}. As a consequence, the pair (σi, σi+f ) is active if and only
if σi 6= σi+f , which is further equivalent to χi−1 6= χi−1+f . Looking up at table (20), we
finally obtain the necessary and sufficient conditions (bb1) and (bb2).

Let us now assume (ŵi, ŵi+f ) = (a, b). From Lemma 3.3.5, we deduce that σi+f ∈ {0, p}
whereas p does not divide σi. Consequently, the pair (σi, σi+f ) is active if and only if
1 ≤ σi ≤ p regardless the value of σi+f . Since σi = vi − χi + pχi−1 and vi ∈ {0, 1} (by
Lemma 1.3.3), this happens if and only if χi−1 = χi, which is further equivalent to the
conditions (ab1) and (ab2) thanks to the records of table (20).

Finally, the case (ŵi, ŵi+f ) = (b, a) is handled similarly.

It now remains to understand the activity condition at positions where the letter O

appears in the gene. This is the content of the following proposition.

Proposition 3.3.8. — Let ŵ = (ŵi)i∈Z be an enriched weight. Let χ be the numerical
sequence associated to it and set σ = (σi)i∈Z = µχ(v).

Then ŵ is active if and only if:

(a) for all i such that Xi 6= O and Xi+f 6= O, the pair (σi, σi+f ) is active, and

(b) for all i such that Xi = O, we have ŵi−1 6= λ(Xi−1) and ŵi+f = b.

Proof. — We first assume that ŵ is active. Then (a) is clearly true. We now consider an
index i such that Xi = O. From Lemma 3.2.5, we deduce that both vi and σi are different
from 0 and p, i.e. vi, σi ∈ [1, . . . , p−1]. It follows that |σi − vi| ≤ p−2. Since we have the
equality σi = vi − χi + pχi−1, we deduce that:

|pχi−1| ≤ |σi − vi|+ |χi| ≤ p− 1.

Therefore χi−1 has to vanish, implying by definition that ŵi−1 6= λ(Xi−1). Moreover, from
the activity of the pair (σi, σi+f ), we derive that σi+f = vi+f − χi+f + pχi+f−1 ∈ {0, p}.
Hence χi+f ≡ vi+f (mod p), which gives χi+f = vi+f since both χi+f and vi+f are in the
range [0, p−1]. Looking up at table (20), we finally deduce that ŵi+f = b. We have then
proved (b).

Conversely, let us assume the conditions (a) and (b). We need to prove that the pair
(σi, σi+f ) is active as soon as Xi = O or Xi+f = O. Since replacing i by i+f leaves
unchanged the activity condition, we may assume without loss of generality that Xi = O.
Combining the assumption (b) with Lemma 1.3.3, we derive χi−1 = 0 and χi+f = vi+f .
Thus σi = vi − χi and σi+f = pχi+f−1. Hence 0 ≤ σi ≤ p−1 and σi+f ∈ {0, p}. It
is enough to exclude the option σi = 0. For this, we cannot apply directly Lemma 3.2.5
because we do not know that σ is active (it is actually what we want to prove); however we
can mostly reuse the same argument. Indeed, looking at the proof of Lemma 3.2.5, we see
that the conclusion follows if we can ensure that qσi+j+σi+j+f < p ·(q+1) for all integer j.
If Xi+j 6= O and Xi+j+f 6= O, this is a consequence of the activity condition (as already
noticed in the proof of Lemma 3.2.5). If Xi+j = O, we have just proved that σi+j < p
and σi+j+f = pχi+j+f−1 ≤ p. Hence qσi+j + σi+j+f < p · (q+1) as wanted. Similarly
if Xi+j+f = O, we have σi+j = pχi+j−1 ≤ p and σi+j+f < p, so the same conclusion
follows.

3.3.3. Fragmentation and description of active enriched weights. — Propositions 3.3.7
and 3.3.8 together entirely elucidate the activity condition for enriched weights. Besides,
Proposition 3.3.8 shows that the activity condition can be checked independently on each
fragment of the gene as defined in §2.1.1. In order to be more precise, we introduce the
following definition.
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Definition 3.3.9. — A fragmentary enriched weight of length ℓ is a tuple ŵ =
(ŵ0, . . . , ŵℓ−1) with ŵi = (ŵi , ŵi ) ∈ {a, b}

2 for all i ∈ {0, 1, . . . , ℓ− 1}.

Let F = (F0, . . . , Fℓ−1) be a fragment of length ℓ with Fi = (Fi , Fi ). We say that ŵ is
a fragmentary enriched weight of F if

(L) if F0 = O (resp. F0 = O), then ŵ0 = b (resp. ŵ0 = b)

(R) if Fℓ−1 = AB (resp. Fℓ−1 = AB), then ŵℓ−1 = b (resp. ŵℓ−1 = b)

if ℓ = 1 and F0 ∈ {A, B} (and thus F0 = O), then ŵ0 = a

if ℓ = 1 and F0 ∈ {A, B} (and thus F0 = O), then ŵ0 = a

and, for all i ∈ {1, . . . , ℓ−1}:

(aa) (ŵi , ŵi ) 6= (a, a)

(bb1) if (ŵi , ŵi ) = (b, b) and λ(Fi−1) = λ(Fi−1), then ŵi−1 6= ŵi−1,

(bb2) if (ŵi , ŵi ) = (b, b) and λ(Fi−1) 6= λ(Fi−1), then ŵi−1 = ŵi−1,

(ab1) if (ŵi , ŵi ) = (a, b) and λ(Fi ) = λ(Fi−1), then ŵi−1 = a,

(ab2) if (ŵi , ŵi ) = (a, b) and λ(Fi ) 6= λ(Fi−1), then ŵi−1 = b,

(ba1) if (ŵi , ŵi ) = (b, a) and λ(Fi ) = λ(Fi−1), then ŵi−1 = a,

(ba2) if (ŵi , ŵi ) = (b, a) and λ(Fi ) 6= λ(Fi−1), then ŵi−1 = b.

We denote by Ŵ(F ) the set of all fragmentary enriched weights of F .

After Propositions 3.3.7 and 3.3.8, we obtain:

Proposition 3.3.10. — If the gene X contains at least an instance of O,

Ŵ(h, γ, γ′) ≃
∏

F

Ŵ(F )

where the product runs of all fragments F of X.

Proposition 3.3.10 shows in particular that the set Ŵ(h, γ, γ′) depends only on the gene

X. In what follows, we will often denote it by Ŵ(X). Besides, describing Ŵ(X) reduces to

compute the sets Ŵ(F ). This can actually be easily achieved by induction on i as stated
in the following proposition.

Proposition 3.3.11. — Let F = (F0, . . . , Fℓ−1) be a fragment and write Fi = (Fi , Fi ).
Then:

Ŵ(F ) = Ŵ
(b,b)
ℓ−1 ∪ Ŵ

(a,b)
ℓ−1 if Fℓ−1 = AB

= Ŵ
(b,b)
ℓ−1 ∪ Ŵ

(b,a)
ℓ−1 if Fℓ−1 = AB

= Ŵ
(b,b)
0 ∪ Ŵ

(a,b)
0 ∪ Ŵ

(b,a)
0 otherwise.

where the sequences (Ŵ
(b,b)
i )0≤i<ℓ, (Ŵ

(a,b)
i )0≤i<ℓ, (Ŵ

(b,a)
i )0≤i<ℓ are defined by:

• Ŵ
(b,b)
0 = ∅ if ℓ = 1 and

(
F0 ∈ {A, B} or F0 ∈ {A, B}

)

=
{
(b, b)

}
otherwise

• Ŵ
(a,b)
0 = ∅ if F0 = O

=
{
(a, b)

}
otherwise
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• Ŵ
(b,a)
0 = ∅ if F0 = O

=
{
(b, a)

}
otherwise

and the following recurrence formulas (for 1 ≤ i ≤ ℓ− 1):

• Ŵ
(b,b)
i =

(
Ŵ

(a,b)
i−1 ∪ Ŵ

(b,a)
i−1

)
×
{
(b, b)

}
if λ(Fi−1) = λ(Fi−1)

= Ŵ
(b,b)
i−1 ×

{
(b, b)

}
otherwise

• Ŵ
(a,b)
i = Ŵ

(a,b)
i−1 ×

{
(a, b)

}
if λ(Fi ) = λ(Fi−1)

=
(
Ŵ

(b,a)
i−1 ∪ Ŵ

(b,b)
i−1

)
×
{
(a, b)

}
otherwise

• Ŵ
(b,a)
i = Ŵ

(b,a)
i−1 ×

{
(b, a)

}
if λ(Fi ) = λ(Fi−1)

=
(
Ŵ

(a,b)
i−1 ∪ Ŵ

(b,b)
i−1

)
×
{
(b, a)

}
otherwise.

Proof. — This is a direct consequence of the definitions.

3.4. From enriched weights to combinatorial weights. — Before continuing, we
do a brief recap of what we have done. On the one hand, we have seen in §3.3 that active
and (h, γ, γ′)-compatible sequences are described by enriched weights. Precisely, we have
constructed a bijection:

Ŵ(h, γ, γ′)
∼
−→ Σac ∩ Σ(h,γ,γ′)

ŵ 7→ σ = µχ(v)

where χ denotes the numerical sequence associated to ŵ by the rules of the table (20). On
the other hand, in §3.2, we have constructed a surjection:

SΣ : Σac ∩ Σ(h,γ,γ′) −→ D(t, ρ)

(see Proposition 3.2.4). Composing these two functions, we get a surjective map:

Ŝ : Ŵ(h, γ, γ′)
∼
−→ Σac ∩ Σ(h,γ,γ′) SΣ−→ D(t, ρ).

The final step in the proof of Theorem 3.1.2 consists in establishing a link between
Ŵ(h, γ, γ′) and the setW(X) of combinatorial weights of X introduced in Definitions 2.1.4
and 2.1.6. Precisely, we are going to prove that the map S considered in Theorem 3.1.2
and the map Ŝ introduced above sit in a commutative diagram of the form:

Ŵ(h, γ, γ′)

∆
��

Ŝ
// //

��
��

D(t, ρ)

W(X)

S

66
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧

where X denotes the gene of (h, γ, γ′). The vertical map ∆ is defined as follows: it takes
an enriched weight ŵ = (ŵi)i∈Z to the combinatorial weight:

∆(ŵ) =
(
δ(ŵi, ŵi+f )

)
i∈Z

where the δ function is defined by:

δ(x, y) = 1 if x = y

δ(x, y) = 0 otherwise.

The fact that ∆ takes Ŵ(h, γ, γ′) toW(X) follows from Propositions 3.3.10 and 3.3.11 when
X contains an occurrence of the letter O and from Proposition 3.3.7 otherwise. Moreover,
in both cases, it follows from the constructions that ∆ is surjective.
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Before getting to the heart of the matter, we underline that the δ notation allows us to
write down a simple formula summarizing the table (20), that is:

(21) χi = δ
(
ŵi, λ(Xi)

)

where (ŵi)i∈Z is an enriched weight and (χi)i∈Z is its associated numerical sequence.
Similarly, the parameter δi, which appears in the table of Figure 2, is simply equal to
δ(λ(Xi), λ(Xi+f )). Another important remark on the δ function is the next useful lemma.

Lemma 3.4.1. — If E is a set with two elements and x1, x2, y1 and y2 are elements of
E, we have the identity:

(22) δ
(
δ(x1, x2), δ(y1, y2)

)
= δ
(
δ(x1, y1), δ(x2, y2)

)
.

Proof. — Without loss of generality, we may take E = {0, 1}. With this further assuption,
the congruence δ(x, y) = x+y+1 (mod 2) holds for all x, y in E. Therefore, the left hand
side and the right hand side of (22) are both congruent to x1 + x2 + y1 + y2 + 1 modulo
2. Since they also both belong to E, they need to be equal.

Proposition 3.4.2. — We have Ŝ = S ◦∆.

Proof. — Let ŵ = (ŵi)i∈Z be an enriched weight in Ŵ(h, γ, γ′), let (χi)i∈Z be the associ-
ated sequence and set σ = (σi)i∈Z = µχ(v). Let further (s, r) be the parameters of the

Serre weight Ŝ(ŵ). As usual, we write r = (r0, . . . , rf−1) and define ri = ri mod f for i in

Z. We also let ε′0, . . . , ε
′
f−1 in {0, 1} be the parameters describing the Serre weight Ŝ(ŵ)

inside D(t) (see §1.2 for more details). By Remark 1.2.2, we know that they are uniquely
determined. By the proof of Proposition 3.2.3, we even have a formula for their values.
In particular, when {σi, σi+f} 6= {0, p}, we have ε′f−1−i = 0 if σi = 0 or σi+f = 0 and

ε′f−1−i = 1 otherwise.

We first focus on the parameter r: we fix an index i in {0, . . . , f−1} and aim at proving
that rf−1−i is given by the rules of the table of Figure 2. To start with, we consider the
case where Xi = O. By Proposition 3.3.8, we know that ŵi−1 6= λ(Xi−1) and ŵi+f = b.
These properties allow us to find the values of χi−1 and χi. Indeed, after (21), it is clear
that the former one means that χi−1 = 0 whereas the latter one gives χi = wi since
ŵi+f = λ(Xi) = b. Consequently σi = vi − wi. Besides, since Xi+f 6= O and ŵi+f = b,
the proof of Lemma 3.3.5 indicates that σi+f = pχi+f−1. Applying Lemma 3.4.1 with the
inputs x1 = ŵi+f−1, x2 = λ(Xi+f−1), y1 = ŵi−1 and y2 = λ(Xi−1), we find moreover that
the condition χi+f−1 = 0 is equivalent to wi−1 = δi−1. Putting all together and coming
back to the definition of SΣ (see in particular Eq. (13), page 23), we find that:

rf−1−i = vi − wi − 1 if wi−1 = δi−1,

rf−1−i = p− 1− vi + wi if wi−1 6= δi−1

as recorded in the table of Figure 2. We have then proved that the value of rf−1−i is
correct when Xi = O. In this setting, we can actually also determine the value of ε′f−1−i

(which will be useful for later use). Indeed, from Lemma 3.2.5, we deduce that σi 6∈ {0, p}.
As a consequence, we can find the value of ε′i using the recipe we have recalled earlier; in
our setting, we obtain ε′f−1−i = χi+f−1, that is:

ε′f−1−i = 0 if wi−1 = δi−1,

ε′f−1−i = 1 if wi−1 6= δi−1.

The case where Xi+f = O is treated similarly. We then move to the case where Xi 6= O

and Xi+f 6= O. If wi = 1, we must have ŵi = ŵi+f = b thanks to Corollary 3.3.6. From
Lemma 3.3.5, it then follows that {σi, σi+f} = {0, p} and hence rf−1−i = p − 1. This
again agrees with the table of Figure 2. It remains to examine the case where wi = 0.
By symmetry, one may assume that ŵi = a and ŵi+f = b. In this setting, we have
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σi = vi − χi + pχi−1 and σi+f = pχi+f−1. Moreover vi and χi are both in {0, 1} (see
Lemma 1.3.3) and vi − χi is not divisible by p (see Lemma 3.3.5). Hence, we must have
vi = 1− χi and we get σi = 1− 2χi + pχi−1. Since σi must be in addition between 0 and
p, we find that χi = χi−1 necessarily. So σi = 1 + (p − 2)χi−1. A simple calculation then
shows that rf−1−i = 0 if χi−1 = χi+f−1 and rf−1−i = p−2 otherwise. Finally, applying
Lemma 3.4.1 with the inputs x1 = ŵi+f−1, x2 = λ(Xi+f−1), y1 = ŵi−1 and y2 = λ(Xi−1),
we find that the condition χi+f−1 = χi−1 is equivalent to wi−1 = δi−1. The result of our
computations then again agrees with the table of Figure 2.

To summarize, we have proved the tuple r is correct in all cases. It remains to prove
that s is also correct, i.e. that it is given by the recipe presented at the beginning of §3.1.
By the second part of Lemma 1.2.1, it is sufficient to show that εi0 is correct. This follows

from the computation we have carried out earlier when Xi0 = O. When ci0 6=
p−1
2 , this

follows by looking at the table of Figure 2.

Proposition 3.4.2 shows that S takes its values in D(t, ρ) (since ∆ is surjective) on the
one hand, and that S is surjective onto D(t, ρ) (since SŴ is surjective) on the other hand.
It then only remains to prove that S is injective. It is the content of the next proposition,
which concludes the proof of Theorem 3.1.2.

Proposition 3.4.3. — The mapping S :W(X)→ D(t, ρ) is injective.

Proof. — We consider w = (wi)i∈Z and w′ = (w′
i)i∈Z in W(X) and assume that S(w) =

S(w′). We denote by s and r = (r0, . . . , rf−1) the parameters of this Serre weight. Let i
be in {0, . . . , f−1}. If Xi = O then it follows from the definition of S that:

rf−1−i = vi − wi − 1 if wi−1 = δi−1,

rf−1−i = p− 1− vi + wi if wi−1 6= δi−1

where we recall that δi−1 = δ(λ(Xi−1,Xi+f−1)). Of course, the same result holds when
wi−1 and wi are replaced by w′

i−1 and w
′
i respectively. Examining all options, we find that,

if wi 6= w′
i, we must have vi =

p+1
2 and wi−1 6= w′

i−1 as well. Coming back to the proof of
Proposition 3.4.2, we realize that the latter condition implies that the ε′f−1−i associated

to w and w′ differ. This contradicts the fact that S(w) and S(w′) share the same s. Hence
wi = w′

i when Xi = O.
Obviously, the assumption Xi+f = O leads to the same conclusion that wi = w′

i. To
finish with, we need to examine the case where Xi 6= O and Xi+f 6= O. In this situation
we have rf−1−i ∈ {wi(p − 1), p − 2 + wi} and similarly rf−1−i ∈ {w

′
i(p − 1), p − 2 + w′

i}.
These two sets must then meet, which is only possible when wi = w′

i.
In conclusion, we have shown that wi = w′

i in all cases. Hence w = w′ and injectivity is
established.

4. Applications to deformations spaces

The aim of this section is to relate Theorem 3.1.2 to the results of [CDM2], with the ob-
jective to provide new evidences supporting the conjectural description of the deformations
rings Rψ(t, ρ) we made in [CDM2, §5].

Indeed, these conjectures suggest that the deformation ring Rψ(t, ρ) is determined by
the gene associated to (t, ρ) and, more precisely, that it can be obtained as a completed
tensor product of some rings associated to each fragment of the gene. A way to support
this conjectural fragmentation is to consider its implications in terms of special fibres.
Following the Breuil–Mézard conjecture, proved in [CEGS] in the considered case, the
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number of irreducible components of the special fiber of a deformation ring Rψ(t, ρ) is
closely related to the number of common weights. If our conjectures are true, the number
of common weights should reflect the fragmentation phenomena. Theorem 3.1.2 is a first
enlighting result in this perspective as it shows that D(t, ρ) splits canonically as a direct
product indexed by the fragments of the associated gene.

In this section, we do a thorough study of these phenomena. Precisely, our intention is to
go beyond the fragmentation of the gene and to relate (the cardinality of) D(t, ρ) to a more
intrinsic object attached to the situation: the Kisin variety. We will notably show that
the Kisin variety equipped with some extra structures (which are its canonical embedding
into (P1)f and its so-called shape stratification) entirely determines CardD(t, ρ) and that
the latter appears as a product as soon as the Kisin variety itself splits a direct product
(Theorem 4.2.1). This will allow us to formulate refinements of the conjectures of [CDM2]
(Conjecture 4.1.2) and give convincing evidences towards them.

4.1. From genes to Kisin varieties. — Given ψ, t and ρ as in the previous sections,
we recall from §1.1 that Kisin constructed in [Ki3] a ring Rψ(t, ρ) parametrizing the
potentially Barsotti–Tate deformations of ρ with Hodge–Tate weights {0, 1} at all embed-
dings, determinant ψ and inertial type t. The key ingredient in Kisin’s argument is the
construction of an auxiliary scheme GRψ(t, ρ) parametrizing the Breuil–Kisin modules of

type t inside the étale ϕ-module associated to ρ by Fontaine and Wintenberger’s theory(2).
This scheme comes equipped with a canonical morphism GRψ(t, ρ) → SpecRψ(ρ) whose
schematic image is, by definition, the spectrum of the deformation ring Rψ(t, ρ) we want
to construct. One then gets for free a morphism:

GRψ(t, ρ) −→ SpecRψ(t, ρ)

which is sometimes considered as a partial resolution of singularities. Indeed, Kisin notably
proves that the above morphism induces an isomorphism in generic fibre. The special fibre
of GRψ(t, ρ), namely

GR
ψ
(t, ρ) = SpeckE ×SpecRψ(t,ρ) GR

ψ(t, ρ).

is the so-called Kisin variety ; it is not smooth in general but its structure is much easier
to describe than that of the special fibre of the deformation ring Rψ(t, ρ) itself.

4.1.1. Review of our previous results. — The first important result of [CDM2] is The-

orem 2.2.1 which gives an entirely explicit description of the Kisin variety GR
ψ
(t, ρ) in

terms of the gene X associated to (t, ρ). Let us recall briefly what it is when X = (Xi)i∈Z
contains at least an occurrence of the letter O (which is the only case we will work with
later on).

By definition, we say that the letter A (resp. B) is dominant at position i if it appears
more often that B (resp. A) in {Xi,Xi+f} or, in case of equality, if A (resp. B) is dominant
at position i+1. The fact that X contains O somewhere ensures that the definition is not
circular and, consequently, that each position has a well-defined dominant letter; we will
denote it by Domi(X) in what follows. For i in Z, we set λi = 1 if Xi = Domi(X) and

λi = 0 otherwise. Then, the variety GR
ψ
(t, ρ) is isomorphic to the closed subscheme of

(P1)f , with projective coordinates [xi : xi+f ] on the i-th factor (0 ≤ i < f), defined by the
following equations:

• for 0 ≤ i < 2f , if Xi = O, then xi = 0;

(2)We refer to [CDM2, §2] for a more detailed exposition of Kisin’s construction in the setting of this
article.
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• for 0 ≤ i < f , if Domi(X) = Domi+1(X), then λixixi+1+f = λi+fxi+fxi+1.

Besides, the Kisin variety is equipped with a so-called shape stratification which can be read
off on the gene too (see [CDM2, Proposition 5.2.5]). This stratification is materialized
by the datum of a shape function in the sense of the following definition.

Definition 4.1.1. — Let V be a subvariety of (P1)f .

A shape function of V is a upper semi-continuous function g : V(F̄p)→ {I, II}
f where I

and II are two new symbols subject to the inequality I < II.

We say that V is shape-stratified if it is equipped with a shape function.

In what follows, we use the notation GR
s
(X) to denote the Kisin variety associated to X,

viewed as a closed subscheme of (P1)f and equipped with its shape function. In particular,

equalities between various GR
s
(X) will always mean equalities inside (P1)f and equalities

of the shape functions.

For a fixed gene X, let S be the set of indices i in {0, . . . , f−1} for which the i-th
projection map pri : (P1)f → P1 is constant (necessarily equal to [0 : 1] or [1 : 0]) on
GR

s
(X). If X contains at least an occurrence of O, it is clear that S is nonempty. Without

loss of generality, one may further assume that 0 ∈ S. Write S = {i0, . . . , ir−1} with

0 = i0 < i1 < · · · < ir−1 and set ir = f . By [CDM2, §5.2.3], GR
s
(X) splits as a direct

product:

(23) GR
s
(X) = Vs0 × V

s
1 × · · · × V

s
r−1

where Vsj is a shape-stratified closed subscheme of (P1)ij+1−ij corresponding to the portion

of the gene located between the columns ij (included) and ij+1 (excluded). We insist on
the fact that (23) respects the stratification and the embedding into (P1)f .

After this result, we conjectured (under mild assumptions on the inertial type) that the
generic fibre Dψ(t, ρ) (viewed as a rigid space) of Rψ(t, ρ) splits as a direct product

Dψ(t, ρ) = D(Vs1)× · · · ×D(Vsr−1)

where D(Vsj) is a rigid space which depends only on Vsj (see [CDM2, Conjecture 5.2.7])

and we gave a geometrical construction (in terms of blow-ups and formal completions) of
a candidate for D(Vsj ). Unfortunately, regarding the deformation ring Rψ(t, ρ) itself, we

cannot expect it to be simply the ring of power-bounded functions on Dψ(t, ρ) in general.
Indeed, in [CDM2, §5.3.2], we exhibited an example where, conjecturally:

Dψ(t, ρ) ≃ Spm
(
OE [[T1,T2,U,V ]]

UV+p2 [1/p]
)

but where the set of Serre weights D(t, ρ) has cardinality 3. By the Breuil–Mézard con-

jecture, we cannot then have Rψ(t, ρ) = OE [[T1,T2,U,V ]]
UV+p2 in this case.

Nevertheless, we propose the following weaker conjecture which looks plausible.

Conjecture 4.1.2. —

(1) We have:

Rψ(t, ρ) ≃ R(Vs0) ⊗̂OE R(V
s

1) ⊗̂OE · · · ⊗̂OE R(V
s

r−1)

where R(Vsj ) is a local noetherian complete OE-algebra depending only on Vsj .

(2) The deformation ring Rψ(t, ρ) is the ring of power-bounded functions on Dψ(t, ρ) if
there is no index i with Xi = Xi+f = Domi+1(X).
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In what follows, we establish several results relating D(t, ρ) and GR
s
(X) which, com-

bined with the Breuil–Mézard conjecture, will eventually give some evidences towards the
above conjecture (see Theorems 4.2.1, 4.2.6, 4.3.1).

4.1.2. Fragmentation. — In order to define the factor varieties Vsj , we have divided the
gene X into parts. Of course, this division is related to the fragmentation we have intro-
duced in §2.1.1 but one needs to be careful that they are not exactly the same. In order
to clarify the relationships between these two splittings, we remember that, by definition,
[xi : xi+f ] is constantly equal to [0 : 1] on the Kisin variety as soon as Xi = O. Hence each
fragment in the sense of Definition 2.1.3 corresponds to a slice of indices j but, in full
generality, this slice can have cardinality larger than 1.

In order to study in more details this phenomenon, it is convenient to associate a shape-
stratified Kisin variety GR

s
(F ) ⊂ (P1)ℓ to any fragment F of length ℓ. This can be done

simply by copying the rules we detailed previously in the case of genes. Concretely, if
[xi : yi] are the coordinates on the i-th factor, GR

s
(F ) is defined by the equations:

• x0 = 0 if F0 = O (resp. y0 = 0 if F0 = O),

• for 0 ≤ i < ℓ− 1, if Domi(F ) = Domi+1(F ), then λixiyi+1 = µiyixi+1.

where λi (resp. µi) is 1 if Fi = Domi(F ) (resp. Fi = Domi(F )) and 0 otherwise.

The Kisin variety of a gene is obviously equal to the product of the Kisin varieties of
its fragments. It may happen that the Kisin variety of a given fragment splits further as
a product of smaller Kisin varieties. For instance, if F is a fragment of the form:

i: 0 1 n−2 n−1 ℓ−1

Fi :

Fi :

A

O

A

⋆

A ⋆

⋆

⋆

where the letter A is dominant in all positions between 0 and n−1, the rules giving the
equations of the Kisin variety imply that pr0, . . . , prn−1 : GR

s
(F ) → P1 are all constant

equal to [0 : 1]. The next lemma shows that all the examples are of this type.

Lemma 4.1.3. — Let F be a fragment of length ℓ > 1 such that F0 = O and F0 = A. Let

n be the largest integer for which Fi = A for i < n− 1 and A is dominant in all positions

i < n. Then, the map pri : GR
s
(F )→ P1 is constant if i < n and surjective if i ≥ n.

Proof. — We have already seen that pri is constant equal to [0 : 1] for i < n. Let us now
prove that prn is surjective. For this, the key is to observe that if we are given [xi : yi] ∈ P1,
there always exists [xi+1 : yi+1] ∈ P1 satisfying the equation λixiyi+1 = µiyixi+1.

Now we argue as follows. If B is dominant at position n, then there is no equation
relating [xn−1 : yn−1] and [xn : yn]. We can then choose [xn : yn] arbitrarily and complete
the family into an actual point of the Kisin variety by using repeatedly the observation we
made above. On the contrary, if A is dominant at position n, it follows from the definition
of n that Fn−1 = B and then that µn−1 = 0. The equation λn−1xn−1yn = µn−1yn−1xn
is then trivially satisfied since xn−1 = 0 as well. Therefore, as in the first case, we can
choose [xn : yn] arbitrarily and conclude as before.

The surjectivity of pri for i > n follows by induction on i using a similar argument.

Lemma 4.1.3 tells us that we have a decomposition of the form:

GR
s
(F ) =

{
[0 : 1]

}n
× Vs
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where Vs is some shape-stratified subvariety of (P1)ℓ−n and the shape of the prefactor{
[0 : 1]

}n
is (I, . . . , I). It is actually possible to go further and make the factor Vs explicit.

Let us first consider the case where Fn−1 = A which is the easiest one. Under this

assumption, one can check that Vs = GR
s
(F ′) where F ′ is the fragment:

A

O

Fn

Fn

Fn+1

Fn+1

Fℓ−1

Fℓ−1

When Fn−1 = B, it is still true that Vs = GR
s
(F ′) as subvarieties of (P1)ℓ−n but the

shape stratification does not agree. Actually, in this situation, Vs does not appear as the
Kisin variety of a smaller fragment. However we can write:

GR
s
(F ) =

{
[0 : 1]

}n−1
× GR

s
(F ′′)

where F ′′ is the following fragment:

A

O

B

A

Fn

Fn

Fn+1

Fn+1

Fℓ−1

Fℓ−1

(Notice that, in this case, we necessarily have Fn−1 = A because otherwise B would be
dominant in position n−1, which contradicts the definition of n.)

Remark 4.1.4. — In what precedes, we have assumed that F0 = O and F0 = A. Of

course, there are similar statements where A is remplaced by B and where the roles of F0

and F0 are exchanged. All fragments of length at least 2 are covered by these variants.

4.1.3. Reduced fragments. — After [CDM2, Theorem 2.2.1], the Kisin variety of a pair
(t, ρ) is entirely determined by the gene. Conversely, one may wonder if the Kisin variety
determines the gene. Lemma 4.1.3 shows that this too naive question has a negative
answer; indeed, if n is the integer defined in the statement of this lemma, the values of Fi
for 1 ≤ i < n do not have any influence on GR

s
(F ). Besides, one easily checks that if F

is any segment and F ′ is the segment deduced from F by flipping the letters A and B, we
have GR

s
(F ) = GR

s
(F ′). Nonetheless, beyond these two “trivial” obstructions, one can

prove injectivity results about GR
s
.

Definition 4.1.5. — Let F be a fragment of length ℓ.
We say that F is top-reduced if F0 = O, F0 ∈ {A, AB} and:

(i) either ℓ = 1,

(ii) or ℓ > 1 and B is dominant at position 1,

(iii) or ℓ > 2, F1 = A, F1 = B and A is dominant at position 2.

We say that F is bottom-reduced if the fragment deduced from F by swapping its top row
and its bottom row is top-reduced.

We say that F is reduced if it is either top-reduced or bottom-reduced.

If F is reduced, we set G̃R
s
(F ) = GR

s
(F ) in cases (i) and (ii) whereas, in case (iii), we

define G̃R
s
(F ) by the equality GR

s
(F ) =

{
[0 : 1]} × G̃R

s
(F ).

It is easy to check that any fragment F can be related to a reduced fragment F red by
flipping letters and/or performing the transformation presented at the end of §4.1.2. We
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then have the relation:
GR

s
(F ) =

{
[0 : 1]

}n
× G̃R

s
(F red)

where n is the integer defined in Lemma 4.1.3.

Proposition 4.1.6. — The function G̃R
s
is injective on the set of reduced fragments.

Proof. — Let F be a reduced fragment of length ℓ > 1. It is easy to see on the Kisin variety
GR

s
(F ) if F is top-reduced or bottom-reduced since the function pr1 : GR

s
(F ) → P1 is

constant equal to [0 : 1] in the first case and constant equal to [1 : 0] in the second case.

We then assume that F0 = O, F0 = A and first consider the case where Dom1(F ) = B.
Let i be in {1, . . . , ℓ−1}. From the proof of Lemma 4.1.3, we deduce that, for 0 < i < ℓ−1,
the map πi = (pri,pri+1) : GR

s
(F ) → P1 × P1 is surjective if and only if Domi(F ) 6=

Domi+1(F ). Therefore, the values of Domi(F ) can be reconstructed from the sole datum

of GR
s
(F ). When Domi(F ) 6= Domi+1(F ), this is enough to reconstruct Fi and Fi because

we need to have Fi = Fi = Domi(F ). On the contrary, when Domi(F ) = Domi+1(F ), we
note that the image of πi is:

– the subscheme of equation xt = 0 if Fi = Domi(F ) and Fi 6= Domi(F ),

– the subscheme of equation yz = 0 if Fi 6= Domi(F ) and Fi = Domi(F ),

– the subscheme of equation xt = yz if Fi = Fi = Domi(F ),

where [x : y] are the coordinates on the first copy of P1 and [z : t] are the coordinates

on the second copy. (We notice that the case Fi = Fi 6= Domi(F ) cannot occur.) As a

consequence, one can also reconstruct Fi and Fi in this case.

In a similar fashion, we prove that F is determined by GR
s
(F ) when ℓ > 2, F1 = A,

F1 = B and A is dominant at position 2. It then remains to check that we can see on

GR
s
(F ) if we are in the case (i), (ii) or (iii) of Definition 4.1.5. Recognizing case (i) is

trivial. Finally, distinguishing between the cases (ii) and (iii) can be done by looking at
the shape stratification (see [CDM2, Proposition 5.2.5]).

Corollary 4.1.7. — Given a fragment F , there exists a unique nonnegative integer n
and a unique reduced fragment F red such that

GR
s
(F ) =

{
[0 : 1]

}n
× G̃R

s
(F red)

where the shape of the prefactor
{
[0 : 1]

}n
is (I, . . . , I).

Proof. — Existence have been already discussed. Unicity follows from Proposition 4.1.6
after having noticed that there is a unique way to obtain n and F ′ for F by flipping letters
and performing the transformation of §4.1.2.

Another byproduct of the proof of Proposition 4.1.6 is the following proposition which
underlines the particular interest of the factorisation given by Eq. (23).

Proposition 4.1.8. — Let X be a gene. If GR
s
(X) splits as a product As×Bs, then there

exists an integer k such that

As = Vs0 × V
s

1 × · · · V
s

k−1

and Bs = Vsk × V
s

k+1 × · · · V
s

r−1

where the Vsj ’s are those defined by Eq. (23).

Proof. — It is enough to prove that if F is a reduced fragment, then the variety G̃R
s
(F )

cannot be decomposed as a product. For this, using the notations of the proof of Propo-
sition 4.1.6, it suffices to show that the image of each function πi cannot be written as
a product of shape-stratified varieties (the shape stratification descends to the image of



COMBINATORICS OF SERRE WEIGHTS 39

πi thanks to [CDM2, Proposition 5.2.5]). When Domi(F ) = Domi+1(F ), this directly
follows for the explicit equations of the image of πi we have obtained. On the contrary,
when Domi(F ) = Domi+1(F ), we use [CDM2, Proposition 5.2.5] which teaches us that
the subvariety of (P1)2 of equation xz = yt is a stratum of the shape stratification. Hence
πi cannot be decomposed as a product of shape-stratified varieties of dimension 1 and the
proof of Proposition 4.1.8 is complete.

4.2. Weights and Kisin variety. — In this subsection, we study the relationships
between the Kisin variety of a gene X and its set of combinatorial weights. We will
actually particularly be interested in the cardinality of W(X). Indeed, this numerical
invariant has a huge arithmetical meaning since the Breuil–Mézard conjecture relates it
directly to the number of irreducible components of the special fibres of deformation rings.

4.2.1. Behaviour of weights under gene transformations. — In §4.1, we have seen a couple
of transformations of a fragment F that preserve the associated Kisin varieties. To begin
with, we would like to study how these transformations affect the set of fragmentary
combinatorial weights W(F ) of F and its cardinality. Eventually, we aim at proving the
following theorem which, in some sense, can be seen as a numerical version of the first
part of Conjecture 4.1.2 and then provides some support to it.

Theorem 4.2.1. — Let X be a gene containing at least an instance of the letter O. Then
the cardinality of W(X) depends only on the Kisin variety GR

s
(X). More precisely, if

GR
s
(X) = Vs0 × V

s

1 × · · · × V
s

r−1

is the canonical decomposition of GR
s
(X) given by Eq. (23), we have:

CardW(X) = c(Vs0) · c(V
s

1) · · · c(V
s

r−1)

where c(Vsj ) is an integer depending only on Vsj (as suggested by the notation).

Remark 4.2.2. — After Proposition 4.1.8, we see that Theorem 4.2.1 can be rephrased
as follows. Let SEKV be the set of all shape-stratified subvarieties of (P1)n (for varying n)

that can be written as a product of the form G̃R
s
(F 0)×· · ·× G̃R

s
(F r−1) for some reduced

fragments F 0, . . . , F r−1. Theorem 4.2.1 then tells that there exists amultiplicative function

c : SEKV→ N such that CardW(X) = c(GR
s
(X)
)
for all gene X with X0 = O. Moreover,

it will follow from Theorem 4.2.6 of §4.2.2 below that c is also nondecreasing.

The easiest transformation considered in §4.1 consists in flipping the letters A and B. If F
is a fragment, we denote by F τ the fragment obtained by performing this transformation.
We have already said that GR

s
(F ) = GR

s
(F τ ). It turns out that the sets W(F ) and

W(F τ ) are also closely related. Precisely, if w = (w0, . . . , wℓ−1) ∈ {0, 1}
ℓ is a fragmentary

combinatorial weight, we set wτ = (1−w0, w1, . . . , wℓ−1). Similarly, if W is a subset of
{0, 1}ℓ, we define W τ as the subset of {0, 1}ℓ obtained by applying the transformation
w 7→ wτ to each element of W .

Lemma 4.2.3. — For any fragment F of length ℓ > 1, we have W(F τ ) =W(F )τ .

Proof. — We directly check from the definition (see Definition 2.1.4) that the set of as-
sociated fragmentary combinatorial weights is unaffected if we exchange the top row and
the bottom row of a fragment. Hence, we may assume without loss of generality that F
is top-reduced, i.e. F0 = O and F0 = A. Coming back to the definition of W(F ), we find:
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• W
(b,b)
1 (F ) =

{
(0, 0)

}

• W
(a,b)
1 (F ) =

{
(1, 0)

}
if F1 ∼ A

=
{
(0, 0)

}
otherwise

• W
(b,a)
1 (F ) =

{
(0, 0), (1, 0)

}
if F1 ∼ A

= ∅ otherwise

and similarly:

• W
(b,b)
1 (F τ ) =

{
(1, 0)

}

• W
(a,b)
1 (F τ ) =

{
(0, 0)

}
if F1 ∼ A

=
{
(1, 0)

}
otherwise

• W
(b,a)
1 (F τ ) =

{
(0, 0), (1, 0)

}
if F1 ∼ A

= ∅ otherwise.

Therefore, one checks that W�
1 (F τ ) = W�

1 (F )τ for any � ∈ {(a, b), (b, a), (b, b)}. By
induction, this equality extends to all indices i between 1 and ℓ−1 and the proposition
follows.

Remark 4.2.4. — If F is a fragment of length 1, one can verify by hand that W(F τ ) =
W(F ), i.e. the weights are not twisted in this case. In particular, in all cases, we conclude
that W(F ) and W(F τ ) have the same cardinality.

We now focus on the transformation reported at the end of §4.1.2.

Lemma 4.2.5. — Let F be a fragment of length ℓ > 1. We assume that F0 = O and

F0 = F1 = · · · = Fn−1 = A for some integer n ≤ ℓ. Let F ′ be the following truncated
fragment:

A

O

Fn

Fn

Fn+1

Fn+1

Fℓ−1

Fℓ−1

Then CardW(F ) = CardW(F ′).

Proof. — For � ∈ {(a, b), (b, a), (b, b)}, set c�i = CardW�

i (F ) and c′�i = CardW�

i (F
′).

Using the recursive formulas of §2.3.1, one checks by induction on i that c
(a,b)
i = 1, c

(b,a)
i =

0, c
(b,b)
i = 1 for i < n and then, that:

c(a,b)n = c′
(a,b)
1 = 1, c(b,b)n = c′

(b,b)
1 , c(b,b)n = c′

(b,b)
1 = 1.

(Note that the common value of c
(b,b)
n and c′

(b,b)
1 can be either 0 or 2 depending on Fn.)

By a second induction, we finally find that

c
(a,b)
i = c′

(a,b)
i−n+1, c

(b,b)
i = c′

(b,b)
i−n+1, c

(b,b)
i = c′

(b,b)
i−n+1

for all i < ℓ. After this, the lemma follows from Corollary 2.3.2.

Proof of Theorem 4.2.1. — If Vs is a shape-stratified subvariety of (P1)ℓ of the form

G̃R
s
(F ) for some reduced fragment F , let us set c(Vs) = CardW(F ). Proposition 4.1.6

ensures that this definition is nonambiguous. Let • be the Kisin variety of the unique
reduced fragment of length 1 (namely F0 = O and F0 = A). Concretely it is the subvariety{
[0 : 1]

}
of P1 with shape function equal to I. Moreover we obtain from the definition that

c(•) = 1.
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We fix a gene X with X0 = O. The Kisin variety associated to X decomposes as:

GR
s
(X) =

∏

F

GR
s
(F )

where the product runs over all the fragments of X. Besides, by Corollary 4.1.7, for each
such fragment F , we have a second decomposition:

GR
s
(F ) = •n × G̃R

s
(F red)

where n is an integer and F red is a reduced fragment canonically attached to F . Putting
together all the above decompositions, we end up with the decomposition of Eq. (23).
Moreover, we deduce from Lemmas 4.2.3 and 4.2.5 that F and F red share the same number
of weights. We can then write:

CardW(X) =
∏

F

CardW(F ) =
∏

F

CardW(F red) =
∏

F

c
(
G̃R

s
(F red)

)
.

As c(•) = 1, we obtain the product formula of Theorem 4.2.1.

4.2.2. A monotony result. — In the construction of [CDM2, §5.4], the candidate D(Vs)
for the rigid space associated to a Kisin variety Vs is obtained by taking the formal
completing of a certain space along Vs (which naturally appears as a subscheme of the
special fibre). Hence, one may expect to some extent that the deformation ring Rψ(t, ρ)
becomes more intricated as the underlying Kisin variety gets larger. Since, by the Breuil–
Mézard conjecture, the number of common Serre weights of t and ρ is a direct measure
of the complexity of Rψ(t, ρ), one may expect that this number increases when the Kisin
variery gets larger. It turns out that this rough intuition is indeed correct as shown by
the next theorem.
Theorem 4.2.6. — (1) Let F and F ′ be two fragments such that GR

s
(F ) ⊂ GR

s
(F ′).

Then CardW(F ) ≤ CardW(F ′).

(2) Let F 1, F 2 and F ′ be three fragments such that GR
s
(F 1)×GR

s
(F 2) ⊂ GR

s
(F ′). Then

CardW(F 1) · CardW(F 2) ≤ CardW(F ′).

In order to prove the theorem, we need some preparatory results. In what follows, for
� ∈ {(a, b), (b, a), (b, b)}, we will denote the cardinality of CardW�

i (F ) by c�i and that of

CardW�

i (F
′) by c′�i as we already did in the proof of Lemma 4.2.5.

Lemma 4.2.7. — Let F be a fragment of length ℓ.

(1) For all i in {0, . . . , ℓ−1}, we have
∣∣c(a,b)i − c

(b,a)
i

∣∣ ≤ c(b,b)i .

(2) We assume that there exists s and t with 0 < s < t ≤ ℓ and Fs = A, Fs = B,

{Fi , Fi } = {A, B} for s < i < t and Ft = Ft ∈ {A, AB}. Then there exist nonnegative
integers n and m such that:

c
(a,b)
t = c(a,b)s + n · c(b,b)s ,

c
(b,a)
t = c(a,b)s +m · c(b,b)s ,

and c
(b,b)
t = c(b,b)s .

Proof. — It is an easy checking using the recursive formulas of §2.3.1.

Proof of Theorem 4.2.6. — We first prove the statement (1) of the theorem under the
additional assumption that there exists an integer s such that:

– for 0 ≤ i < s−1, we have Fi = F ′
i and Fi = F ′

i ,

– Fs−1 = A, Fs−1 = B and F ′
s−1 = A, F ′

s−1 = A,
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– A is dominant in F at position s,

– for s ≤ i < ℓ, we have Fi = τ
(
F ′
i

)
and Fi = τ

(
F ′
i

)

where τ denotes the transposition exchanging the letters A and B. In this particular situa-
tion, the equations defining GR

s
(F ) are exactly those defining GR

s
(F ′) plus the equation

xs−1ys = 0. Moreover the shape functions agree on the smallest variety. Therefore, the
inclusion GR

s
(F ) ⊂ GR

s
(F ′) holds and we have to prove that CardW(F ) ≤ CardW(F ′).

Since the fragments F and F ′ agree up to position s−2, we have c�i = c′i
� for all

i < s−1 and all � ∈ {(a, b), (b, a), (b, b)}. Besides, one also checks that c
(a,b)
s−1 = c′

(a,b)
s−1

and c
(b,b)
s−1 = c′

(b,b)
s−1 . Now, we use the hypothesis that A is dominant in F at position s. It

implies that A ∈ {Fs , Fs}. Let us first assume that Fs = A and Fs = B. In this case, we
find:

c
(a,b)
s = c

(a,b)
s−1 ,

c
(b,b)
s = c

(b,b)
s−1 ,

c′s
(a,b) = c′

(a,b)
s−1 + c′

(b,b)
s−1 = c

(a,b)
s−1 + c

(b,b)
s−1 ,

c′s
(b,b) = max

(
c′
(a,b)
s−1 , c′

(b,a)
s−1

)
= max

(
c
(a,b)
s−1 + c

(b,a)
s−1

)
.

From the first part of Lemma 4.2.7, we deduce that c
(a,b)
s ≤ c′s

(a,b) and c
(b,b)
s ≤ c′s

(b,b).
Using again that A is dominant in F at position s, we deduce that there exists a position
t > s with the property that Ft = Ft ∈ {A, AB}. We can then apply the second part of

Lemma 4.2.7 with F and τ(F ′) and conclude that c�t ≤ c
′
t
� for all � ∈ {(a, b), (b, a), (b, b)}.

By induction, we finally find that c�i ≤ c′i
� for all i ≥ t and, in particular, for i = ℓ−1.

Corollary 2.3.2 allows us to conclude in this case. The other cases where (Fs , Fs ) is equal
to (A, A) or (B, A) are handled similarly.

We now consider general F and F ′. The assumption GR
s
(F ) ⊂ GR

s
(F ′) means that

the set of equations defining GR
s
(F ′) is included in the one defining GR

s
(F ). Besides, the

particular choices of fragments we have considered earlier correspond exactly to the case
where one equation is removed (up to exchanging rows and flipping letters). One can then
go from F to F ′ by applying these particular transformations and removing the equations
one by one. The first part of Theorem 4.2.6 then follows by transitivity of inequality.

The second part is proved in a similar fashion and left to the reader.

Corollary 4.2.8. — Let X and X′ be two genes such that GR
s
(X) ⊂ GR

s
(X′). Then

CardW(X) ⊂ CardW(X′).

Proof. — It follows from the assumption that if the i-th projection map pri : (P
1)f → P1

is constant on GR
s
(X′), it needs to be constant on GR

s
(X) as well. We can then conclude

by applying Theorem 4.2.6 to each reduced fragment F ′ of X′.

4.3. Effect of crosses. — We now discuss the second part of Conjecture 4.1.2. Follow-
ing [CDM2], when a fragment F and integer i are such that Fi = Fi = Domi+1(F ), we
will say that F exhibits a cross at position i. It turns out that the presence of crosses has
only a very limited impact on the associate candidate D(−). Precisely, if F is a fragment

exhibiting a cross at position i and F (i) is the fragment obtained by deleting the i-th
column in F , we have by construction:

D(F ) ≃ D(F (i)) [[T ]].

where T is a new variable. Nevertheless, we cannot expect that R(F ) ≃ R(F (i))[[T ]]

because, thanks to the Breuil–Mézard conjecture, this would imply that F and F (i) have
the same number of weights, which is not true in general.
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In what follows, we prove that when a cross is deleted, the number of weights always
decreases and, in most cases, it strictly decreases. Hence, it is minimal when the fragment
does not exhibit any crosses. This observation supports Conjecture 4.1.2 as the subring of
power-bounded functions is the integral model of D(F ) with the smallest Hilbert–Samuel
multiplicity.

Theorem 4.3.1. — Let F be a fragment on length ℓ and i be index at which F exhibits
a cross. We set δi−1 = 1 if Fi−1 ∼ Fi−1, and δi−1 = 0 otherwise.

(i) For all combinatorial weight w = (w0, . . . , wℓ−1) in W(F ), we have wi = 0.

(ii) For w0, . . . , wℓ−2 ∈ {0, 1}, we have (w0, . . . , wℓ−2) ∈ W(F (i)) if and only if
(w0, . . . , wi−1, 0, wi, . . . , wℓ−2) ∈ W(F ) and (wi−1, wi) 6= (δi−1, 1).

Proof. — Without loss of generality, we may assume Fi = Fi = Domi+1(F ) = A. First of
all, we observe that it follows directly from Definition 2.1.4 that the last coordinate of all

weights in W
(a,b)
i (F ) and in W

(b,a)
i (F ) is 0. Besides, we have:

W
(a,b)
i+1 (F ) =W

(a,b)
i (F )× {0} if Fi+1 = A,

W
(b,a)
i+1 (F ) =W

(b,a)
i (F )× {0} if Fi+1 = A,

W
(b,b)
i+1 (F ) =

(
W

(a,b)
i (F ) ∪W

(b,a)
i (F )

)
× {1}.

Hence, the i-th coordinate of the elements of W
(b,b)
i+1 (F ) is always equal to 0 and similarly,

the i-th coordinate of the elements of W
(a,b)
i+1 (F ) (resp. of W

(b,a)
i+1 (F )) is 0 provided that

Fi+1 = A (resp. Fi+1 = A). Moreover, a variant of Lemma 4.2.7.(2) shows that the map
(w0, . . . , wℓ−1) 7→ (w0, . . . , wi) takes W(F ) to

W̃
(a,b)
i+1 (F ) ∪ W̃

(b,a)
i+1 (F ) ∪ W

(b,b)
i+1 (F )

where W̃
(a,b)
i+1 (F ) = W

(a,b)
i+1 (F ) if Fi+1 = A and ∅ otherwise, and similarly W̃

(b,a)
i+1 (F ) =

W
(b,a)
i+1 (F ) if Fi+1 = A and ∅ otherwise. As a consequence, we conclude that the i-th

coordinate of the elements of W(F ) are all 0, which proves (i).

We now move to (ii). In order to save space, we only consider the case where Fi−1 =

Fi+1 = A and Fi−1 = Fi+1 = B (the other cases are treated similarly). Since F and

F (i) agree up to position i−1, we certainly have W�

i−1(F ) = W�

i−1(F
(i)) for all � ∈

{(a, b), (b, a), (b, b)}, so that we can use the shorter notation W�

i−1 to refer to this set. A
direct computation then gives:

W
(a,b)
i+1 (F ) =W

(a,b)
i−1 × {(0, 0)}

W
(b,b)
i+1 (F ) =

(
W

(a,b)
i−1 ∪ W

(b,b)
i−1

)
× {(0, 1)}

W
(a,b)
i (F (i)) =W

(a,b)
i−1 × {0}

W
(b,b)
i (F (i)) =W

(b,b)
i−1 × {1}

from what the assertion (ii) follows.

The second part of Theorem 4.3.1 tells us that there is an injection

ιi : W(F (i)) →֒ W(F )

(w0, . . . , wℓ−2) 7→ (w0, . . . , wi−1, 0, wi, . . . wℓ−2).

For the cardinalities, this implies that CardW(F (i)) ≤ CardW(F ), i.e. the number of
weights decreases when a cross is removed as we claimed earlier. In general, ιi is not
surjective, however. The next proposition shows that it actually occurs quite rarely.



44 X. CARUSO, A. DAVID & A. MÉZARD

Proposition 4.3.2. — We keep the above notations and assume that F is reduced (see
Definition 4.1.5). The mapping ιi is a bijection if and only if F exhibits another cross at
position i−1 or at position i+1 (or both).

Proof. — Throughout the proof, we assume that F is top-reduced, the bottom-reduced
case being totally similar.

If F exhibits a cross at position i+1, it follows from Theorem 4.3.1.(i) that the (i+1)-
th coordinate of the weights of F is always 0. The surjectivity of ιi then follows from
Theorem 4.3.1.(ii). A similar argument shows that ιi is surjective if F exhibits a cross at
position i−1.

We now assume that there is no crosses at position i−1 and i+1 and we want to prove
that ιi is not surjective. For this, it is enough to check that CardW(F ) > CardW(F (i)).

We first remark that, given that F is top-reduced, we have c
(a,b)
0 = 1 and c

(b,b)
0 = 1. By

induction, this implies that c
(a,b)
j and c

(b,b)
j are both strictly positive for all j. Regarding

c
(b,a)
j , the only possibility to make it vanish is to have F0 = F1 = · · · = Fj = A.
After these preparations, we need to distinguish between several cases according to the

values of Fj , Fj for j ∈ {i−1, i, i+1}. As in the proof of Theorem 4.3.1, we only treat

the case where Fi−1 = Fi+1 = Fi = Fi+1 = A and Fi−1 = Fi+1 = B, the other ones

being similar. In this case, we have c
(b,b)
i+1 (F ) = c

(b,b)
i (F (i)) + c

(a,b)
i−1 (F ) > c

(b,b)
i (F (i)). Using

Lemma 4.2.7.(2), we deduce that there exists t > i such that c�t+1(F ) > c�t (F
(i)) for

� ∈ {(a, b), (b, a), (b, b)}. By induction, these inequalities continue to hold for all j ≥ t,

which eventually implies that CardW(F ) > CardW(F (i)) as wanted.

Remark 4.3.3. — The hypothesis that F is reduced is necessary because there might
exist crosses in the initial “reducible” part of a fragment and, of course, those crosses have
no influence on the number of weights since it is the case of the whole reducible part.

In a more crude language, Proposition 4.3.2 says that the effect of two (or more) consec-
utive crosses is the same than that a unique cross. On the contrary, a unique cross cannot
be deleted innocently. This suggests that the second part of Conjecture 4.1.2 could be an
equivalence provided that we restrict ourselves to the crosses located in the nonreducible
parts of the gene.

5. Conclusion and perspectives

Let us start this concluding section by a brief summary. In [CDM2], we have associated
a combinatorial datum, the so-called gene, to any pair (t, ρ) and showed that it provides a

nice encoding of the equations of the associated Kisin variety GR
ψ
(t, ρ) and, conjecturally,

of the generic fibre of the deformation ring Rψ(t, ρ) as well. In the present paper, we prove
further that the gene also encodes the set of Serre weights D(t, ρ) (see Theorem 3.1.2) and
use these results to state more precise versions of the conjectures of [CDM2] and produce
new evidences towards them (§4).

What is the real nature of the gene?— After the results we have recalled above, the gene
really appears as a fundamental object that captures a lot of arithmetical information
about the pair (t, ρ). However, it looks enchantment that such a simple and ad hoc
construction could be so meaningful. According to us, this strongly suggests that the gene
cannot just be a convenient tool to carry out the computations and the combinatorial
arguments but should be the mirror of a more intrinsic object.
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After the results of §4, it appears that this intrinsic incarnation of the gene could simply
be the Kisin variety equipped with its shape function and its canonical embedding into
(P1)f . Theorem 4.2.1 shows that it captures at least the cardinality of D(t, ρ). Even better,
if we believe in Conjecture 4.1.2, it also captures the deformation ring Rψ(t, ρ).

Similarly, although it is definitely quite convenient, the notion of combinatorial weights
does not look quite deep. Conjecture 4.1.2 again could allow us to upgrade our viewpoint
by defining the set of weights of a Kisin variety Vs as the set of irreducible components
of the special fibre of R(Vs). Theorem 3.1.2 then asserts that there is a bijection between

D(t, ρ) and the set of weights of GR
ψ
(t, ρ). The latter definition is however not entirely

satisfying because we do not want the weights of GR
ψ
(t, ρ) to be irreducible components

of some deformation rings but actual weights, that are mod p representations of some
reductive group or, more probably, of some combinatorial data associated to it.

This leads us to our first vague question: can we attach to a Kisin variety Vs a set
of “nice combinatorial weights” W(Vs) and, given (t, ρ) as before, construct a canonical
bijection:

D(t, ρ)
∼
−→W

(
GR

ψ
(t, ρ)

)

in line with Theorem 3.1.2? Moreover, if the definitions and constructions are sufficiently
intrinsic, can we consider extending them in a more general framework (for wild ramified
types, larger Hodge–Tate weights and/or representations of higher dimensions)?

Uniformity in p.— Another striking fact, we think, is that most of the constructions and
arguments we have presented in this article are independant of p. Basically, the notion of
gene (see Defintion 1.4.1) does not involve any prime number.

This remark is already remarkable if we compare cardinalities. Indeed, the set of all
possibilities for (t, ρ) has asymptotic size 1

4p
3f , while the number of genes is obviously

bounded from above(3) by 16f . In other words, for a fixed f , the set of isomorphism
classes of possible Kisin varieties (and, conjecturally, possible deformation rings) remains
bounded while the set of possible pairs (t, ρ) gets bigger and bigger when p goes to infinity.
Therefore, if p is sufficiently large, there must be many different (t, ρ) sharing the same
Kisin variety and, conjecturally, the same deformation ring.

Beyond this observation, we also notice that the Kisin varieties themselves are mostly
independant of p, in the sense that the equations defining them are all of the form:

λixixi+f+1 = µixi+1xi+f (λi, µi ∈ {0, 1})

and they do not vary with p. This strong uniformity with respect to p suggests that, at
least in the particular case we are looking at (i.e. 2-dimensional potentially Barsotti–Tate
representations with tame inertial type), the combinatorial seeds of the p-adic Langlands
correspondence might be shared among all prime numbers. According to us, it could
be interesting to better isolate and eventually find a geometrical interpretation (e.g. in
the language of group theory or, more hypothetically, in the language of geometry in
characteristic one [Co]) of this phenomenon.

(3)This rough bound 16f is actually quite poor. One can be more precise and prove that the number of
genes of length f is exactly 4·Fib4f−1 − Fib4f−3 − 2f (where Fib is the Fibonacci sequence), which is

asymptotically equivalent to ϕ4f where ϕ = 1+
√
5

2
is the golden ratio.

One can also count the number of distinct Kisin varieties of the form GR
s
(X) where X is a gene of length

f with X0 = O: we find 2f ·Fib2f−1, whose order of magnitude is 2fϕ2f and then is even much smaller
than ϕ4f .
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Appendix A

Algorithms

In this appendix, we discuss algorithmical solutions for manipulating the mathematical
objects considered in this article: irreductible 2-dimensional mod p Galois representa-
tions, tamely ramified Galois types, Serre weights and, of course, genes and combinatorial
weights.

We always encode a Galois representation

ρ ≃ IndGFGF ′

(
ωh2f ⊗ nr′(θ)

)

by the tuple (p, f, h, θ) with 0 ≤ h < q2−1. Although the tuples (p, f, h, θ) and (p, f, pfh, θ)
correspond to isomorphic Galois representations, we make the distinction between them.
The main reason is that the definition of the gene is sensible to the choice of h. In what
follows, we shall always assume that h is given by its sequence of digits in base p.

In the same fashion, we encode a Galois type t = ωγf ⊕ω
γ′

f by the quadruple (p, f, γ, γ′).

Besides, as before, we make the distinction between (p, f, γ, γ′) and (p, f, γ′, γ) and we
assume that γ and γ′ are given by their sequence of digits in radix p.

In what follows, we estimate the efficiency of our algorithms by bounding their bit
complexity defined as the number of operations on bits they perform. For example, the
bit complexity of an addition on integers less than p is O(log p). For integers written in
base p with at most n digits, it is O(n log p).

A.1. About genes. — In this first subsection, we focus on genes. We give fast algo-
rithms for computing the gene associated to a pair (t, ρ) and conversely, given a gene X,
we design an algorithm that samples a uniformely distributed pair (t, ρ) having gene X.

A.1.1. Preliminaries. — We consider a coherent triple in the sense of Definition 1.1.1 and
denote by X = (Xi)i∈Z its associated gene. We also let (vi)i∈Z be the sequence introduced
at the end of §1.3. We recall that it is defined by the fact that it is (2f)-periodic, takes
values in {0, . . . , p−1} and makes the congruence (11) hold.

We have already seen in Lemma 1.3.3, that the vi’s are closely related to the gene X. In
what follows, we make these relationships even tighter. The forthcoming results are the
key for designing fast algorithms.

Lemma A.1.1. — For an integer i ∈ Z, we have Xi = O if and only if:

2f−1∑

j=0

p2f−1−jvi+j ≥
q2 − 1

p− 1
.

Proof. — From the definition of the vi’s and the αi’s, we derive that

αi =

 1

q + 1
·

2f−1∑

j=0

p2f−1−jvi+j

 .
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By definition, Xi = O if and only if αi ≥
q−1
p−1 . Plugging the value of αi and noticing that

q−1
p−1 is an integer, we find that Xi = O if and only if

1

q + 1
·

2f−1∑

j=0

p2f−1−jvi+j ≥
q − 1

p− 1

which proves the lemma.

Corollary A.1.2. — We assume that vi ∈ {0, 1} for all i. Then Xi 6= O for all i.

Proof. — We fix an index i. It follows from the assumption that:

(24)

2f−1∑

j=0

p2f−1−jvi+j ≤
q2 − 1

p− 1
.

Besides, the equality case occurs if and only if vi = 1 for all i. But this cannot happen
because if would imply that h is divisible by q+1, which is assumed to be false. Therefore,
the inequality (24) is always strict and we conclude by Lemma A.1.1.

Lemma A.1.3. — For any integer i in Z, the following holds:

(0a) if vi = 0 and Xi+1 = O, then Xi = AB;

(0b) if vi = 0 and Xi+1 6= O, then Xi = A;

(1a) if vi = 1 and Xi+1 = O, then Xi = O;

(1b) if vi = 1 and Xi+1 6= O, then Xi = B;

(2) if vi ≥ 2, then Xi = O.

Proof. — We first assume vi = 0. From Lemma 1.3.3, we deduce that Xi ∈ {A, AB}.
Moreover, if Xi+1 = O, we know that Xi ∈ {AB, O}; hence Xi = AB and we have proved (0a).
Conversely, from Xi = AB we deduce Xi+1 = O, which proves (0b).

We assume vi = 1 and Xi+1 = O. By Lemma 1.3.3, we find Xi ∈ {B, O}. However
Xi = B is not compatible with Xi+1 = O. Therefore Xi = O, which proves (1a).

We consider the case where vi = 1 and Xi+1 6= O. As before, we have Xi ∈ {B, O}.
Applying Lemma A.1.1 with i+1, we obtain:

2f−1∑

j=0

p2f−1−jvi+j+1 ≥
q2 − 1

p− 1
.

A simple computation using the fact that vi = 1 gives:

2f−1∑

j=0

p2f−1−jvi+j+1 = −q
2 + 1 + p

2f−1∑

j=0

p2f−1−jvi+j

≥ −q2 + 1 + p
q2 − 1

p− 1
=
q2 − 1

p− 1
.

Applying again Lemma A.1.1, we find Xi 6= O. Therefore Xi = B and (1b) is proved.
Finally, the last assertion follows directly from Lemma 1.3.3.

A.1.2. Computation of the gene. — As above, we consider a coherent triple (h, γ, γ′) and
aim at designing a fast algorithm for computing its associated gene. Before proceeding, let
us observe that the naive algorithm (consisting in computing the αi’s and spotting in which
intervals they fall) has quadratic p-complexity with respect to f . Indeed the computation
of a single αi requires O(f) operations (on integers less than p) and this calculation needs
to be repeated f times. However, after Lemma A.1.3, it becomes possible to significantly
speed up this computation.



48 X. CARUSO, A. DAVID & A. MÉZARD

Theorem A.1.4. — There exists an algorithm that takes as input a coherent triple
(h, γ, γ′) (with h, γ and γ′ written in base p) and outputs its gene (X0, . . . ,X2f−1) for
a cost of O(f log p) bit operations.

Remark A.1.5. — If the inputs h, γ and γ′ are not written in base p, it is of course always
possible to compute these writings as a preliminary. However this calculations requires a
number of bit operations which does not stay in O(f log p), although fast multiplication
techniques allow for quasi-linear algorithms in f log p.

Proof of Theorem A.1.4. — The main ingredients of our algorithm are the formulas of
Corollary A.1.2 and Lemma A.1.3, which connect the Xi’s to the values of the vi’s.

As a first step, we then compute the vi’s. For this, it is enough to compute

(h− qγ′ − γ′) mod q2 − 1

and observe its digits in base p. We claim that, if we put all operations in base p, the whole
computation can be achieved for a cost of O(f log p) bit operations. Indeed, additions can
be done with this complexity (using the naive algorithm), whereas reduction modulo q2−1
and multiplication boils down to reorganizing the digits.

Once the vi’s has been computed, the second step of our algorithm consists in checking
if all of them are in {0, 1} (which can be obviously done in the desired complexity). If this
occurs, we know from Corollary A.1.2, that the Xi’s are all different from O. Applying now
Lemma A.1.3, we find that Xi = A when vi = 0 and Xi = B when vi = 1. This completes
the computation of the gene.

To conclude with, we have to consider the case where we have found an index i0 with
vi0 ≥ 2. In this situation, it follows from Lemma A.1.3 that Xi0 = O. Then, applying
again Lemma A.1.3, we can deduce the value of Xi0−1: it is AB if vi0−1 vanished and O

otherwise. Repeating this procedure again and again, we find iteratively all the values of
the Xi’s for a cost which remains in O(f log p) bit operations.

Example A.1.6. — We use the algorithm described above to compute the gene of the
triple (h, γ, γ′) of Example 3.1.3. As seen in this example, the values of the vi’s are
(v0, . . . , v13) = (4, 0, 1, 0, 0, 3, 0, 1, 0, 0, 4, 2, 1, 0). We observe that there do exist an indices
i0 with vi0 ≥ 2, e.g. i0 = 0. We thus have X0 = O. Now, applying Lemma A.1.3 with
i = 13, we obtain X13 = AB. Continuing this way, we find X12 = B, X11 = O, X10 = O,
X9 = AB, X8 = A, etc. Finally, we discover the gene of (h, γ, γ′) which is:

B

O

A

A

AB

B

O

A

O

AB

B

O

AB

A

that is exactly the gene of Example 2.1.2 as we claimed.

A.1.3. Sampling (h, γ, γ′) with a prescribed gene. — Conversely, Lemmata 1.3.3 and A.1.3
allows for finding all the coherent triples (h, γ, γ′) associated to a given gene X. Indeed,
they together readily imply the following proposition.

Proposition A.1.7. — Let (h, γ, γ′) be a coherent triple and let (vi)i∈Z be its associated
sequence. Then, the gene of (h, γ, γ′) is X = (Xi)i∈Z if and only if the following conditions
hold for all i:

(a) if Xi = A, then vi = 0;

(ab) if Xi = AB, then vi = 0;

(b) if Xi = B, then vi = 1;
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(oo) if Xi = O and Xi+1 = O, then 1 ≤ vi ≤ p−1;
(o⋆) if Xi = O and Xi+1 6= O, then 2 ≤ vi ≤ p−1.

Theorem A.1.8. — There exists a Las Vegas algorithm that takes as input a gene X and
outputs a coherent triple (h, γ, γ′), uniformly distributed among all possibilities, with gene
X. This algorithm fails with probability at most 1

pf
+ min(12 ,

1
p−2) and performs at most

O(f log p) bit operations.

Proof. — We start by sampling a sequence v0, . . . , v2f−1 satisfying the requirements of
Proposition A.1.7. We then sample an integer γ′, uniformly distributed in the range
{0, 1, . . . , q − 2}, by sampling independently its f digits in base p and rejecting the value
if all digits are p−1.

If the integer v =
∑2f−1

i=0 vip
2f−1−i is divisible by q+1, we reject the value and the

algorithm fails, except if there was only one possibility for the vi’s in which case the
algorithm raises an error and answers that there is no coherent triple whose gene is X.
(By Proposition 1.3.2, this case can show up only when p = 3.)

If v is not divisible by q+1, the algorithm computes:

h = v − (q + 1)γ′ mod q2 − 1

and γ = (1 + p+ · · ·+ pf−1)− γ′ − h mod q − 1

and outputs (h, γ, γ′). All the previous computations can be done for a cost of O(f log p)
bit operations (by writing down all operations in base p). Moreover, it is clear after
Proposition A.1.7 that the output is a coherent triple with gene X and that it is uniformly
distributed.

It then only remains to bound the probability of failure of our algorithm. Note that
failures can happen in two places. First, it happens if all the digits of γ′ are p−1; this case
occurs with probability 1

pf
.

The second source of failure occurs when h is divisible by q+1, which is equivalent to the
fact that vi = vi+f for all i. Remember that, in this special situation, we know moreover
that there are multiple choices for the vi’s. This means that there exists a particular index
i0 for which vi0 can take at least multiple values. Coming back to the definition, we find
more precisely that it can take at least n values with n = max(2, p−2). Since modifying
the value of vi0 , while keeping the vi’s unchanged for all i 6= i0, leads to another acceptable
set of values of the vi’s, we conclude that the probability to have vi = vi+f for all i is at

most 1
n . The probability of rejection at this second place is then at most 1

n .
Adding to it the first probability of rejection we found, we deduce that our algorithm

fails with probability at most 1
pf

+ 1
n = 1

pf
+min(12 ,

1
p−2), as wanted.

A.2. About combinatorial weights. — In this subsection, we assume that we are
given a gene X and we aim at designing efficient algorithms for describing its set of com-
binatorial weights W(X). Combining this with Theorem A.1.4 and the recipe of §3.1, we
end up with fast algorithms for the computation of D(t, ρ).

A.2.1. Computing and enumerating weights. — The first question we address is the com-
plete computation of the set W(X). In what follows, we shall prove the following theorem.

Theorem A.2.1. — There exists an algorithm which takes as input a gene X of length f
and outputs the set W(X) for a cost of O

(
f + f · CardW(X)

)
bit operations.

Since the bit size of W(X) is obviously f ·CardW(X) (since each combinatorial weight
consists of f bits), the complexity announced in Theorem A.2.1 is optimal up to a constant
factor.
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We now concentrate on the proof of Theorem A.2.1 and the description of the underlying
algorithm. One first checks whether the input gene X is viable or not, which can obviously
be done in O(f) bit operations. If X is not viable we output the empty set. From now
on, we then assume that X is viable. For the sake of simplicity, we only consider the case
where X contains an occurrence of the letter O, the opposite case being similar (but more
technical). Keeping in mind the definition of W(X) (see Definition 2.1.6), it is enough to
explain how to compute W(F ) for a fragment F .

For this, we rely on the definitions and on Lemma 2.3.1 which guarantees that the

unions appearing in the definition of the W
(a,b)
i ’s and W

(b,a)
i ’s are all disjoint unions,

whereas the unions of type W
(a,b)
i ∪W

(b,a)
i are in fact supremums. Looking at the proof

of this lemma, one can even figure our for which indices i, one has W
(a,b)
i ⊂ W

(b,a)
i (and

so W
(a,b)
i ∪ W

(b,a)
i = W

(b,a)
i ) and for which indices i, the inclusion goes in the reverse

direction.

Translating these definitions and observations into algorithms, we end up with the
procedure combinatorial weights, which calls the recursive subroutines Wab, Wba, Wbb
presented in Algorithm 1. In this implementation, sets of weights are represented by lists
and the addition of lists actually means concatenation. The notation [ ] refers to the
empty list.

The correction of this algorithm is easily proved. Indeed, if ℓ denotes the length of
the fragment F , one checks by induction on i that a call to Wab(F , i) returns the set

W
(a,b)
i × {0}ℓ−i (represented by its list of elements), and similarly for Wba and Wbb.

Regarding the complexity, we first observe that the preparation part of the algorithm
combinatorial weights (consisting of the 9 first lines) requires no more than O(ℓ) bit
operations. Now, for i in {0, . . . , ℓ−1} and � in {(a, b), (b, a), (b, b)}, we set c�i = CardW�

i .
In order to bound the complexity of the recursive part of the algorithm, the key observation
is that there exists an absolute constant C such that the following holds: when they are
called on the input (F , i), the routines Wab, Wba and Wbb perform at most C · (ℓ+ i) · c�i bit
operations with � = (a, b), (b, a) and (b, b) respectively. This fact is proved by induction
on i without difficulty. Besides, it readily implies that the bit complexity of the recursive
part of combinatorial weights is bounded by 2C ·ℓ ·CardW(F ). This finally establishes
the complexity bound announced in Theorem A.2.1.

Remark A.2.2. — One can also design an iterative version of Algorithm 1 by running
over the integers i between 0 and ℓ−1 and computing, for each new value of i, the sets

W
(a,b)
i , W

(b,a)
i and W

(b,b)
i taking advantage of the previous calculations.

However, proceeding this way, it is quite possible to perform useless computations. For

example, if Fi−1 = Fi = Fi−1 = Fi , we observe that W
(a,b)
i , W

(b,a)
i and W

(b,b)
i depend

only on W
(a,b)
i−1 and W

(b,a)
i−1 but not on W

(b,b)
i−1 ; therefore, the computation of W

(b,b)
i−1 is not

needed in this case. Algorithm 1 does see this fact, while its iterative counterpart does
not. Nevertheless, it is true that the bit complexity of the iterative version of Algorithm 1
stays within O(ℓ+ ℓ · CardW(X)). This result is obtained by noticing that, for each i, at

most one set among W
(a,b)
i , W

(b,a)
i and W

(b,b)
i can be discarded and then by proving by

induction on i that the three inequalities

c
(a,b)
i ≤ c

(b,a)
i + c

(b,b)
i ; c

(b,a)
i ≤ c

(a,b)
i + c

(b,b)
i ; c

(b,b)
i ≤ c

(a,b)
i + c

(b,a)
i

hold for all i in {0, . . . , ℓ−1}.
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Algorithm 1: Computation of combinatorial weights

Global variable: Wxy

combinatorial weights (F )

Input :A fragment F
Output :The set W(F )

ℓ← length of F

if F0 = O then Wxy← [ Wab ]

if F0 = O then Wxy← [ Wba ]

for i = 1, 2, . . . , ℓ− 1 do

if Fi−1 ∼ Fi and Fi−1 ∼ Fi then Wxy[i]← Wxy[i−1]

if Fi−1 ∼ Fi and Fi−1 6∼ Fi then Wxy[i]← Wba

if Fi−1 6∼ Fi and Fi−1 ∼ Fi then Wxy[i]← Wab

if Fi−1 6∼ Fi and Fi−1 6∼ Fi then
if Wxy[i−1] = Wab then Wxy[i]← Wba else Wxy[i]← Wab

if Fℓ−1 = AB then return Wab(F , ℓ−1) + Wbb(F, ℓ−1)

if Fℓ−1 = AB then return Wba(F , ℓ−1) + Wbb(F, ℓ−1)
return [ (0) ]

Wab (F , i)
if i = 0 then

if F0 = O then return [ ]

else return [ (0, 0, . . . , 0) ]

if Fi−1 ∼ Fi then return Wab(F, i−1)

if Fi−1 6∼ Fi then return Wba(F, i−1) + Wbb(F , i−1)

Wba (F , i)
if i = 0 then

if F0 = O then return [ ]

else return [ (0, 0, . . . , 0) ]

if Fi−1 ∼ Fi then return Wba(F , i−1)

if Fi−1 6∼ Fi then return Wab(F , i−1) + Wbb(F , i−1)

Wbb (F , i)
if i = 0 then return [ (1, 0, . . . , 0) ]

if Fi−1 ∼ Fi−1 then W ← Wxy[i−1](F , i−1)

if Fi−1 6∼ Fi−1 then W ← Wbb(F , i−1)
for w ∈W do w[i]← 1
return W

Remark A.2.3. — A slight modification of Algorithm 1 provides an algorithm that enu-
merates the elements of W(X) in such a way that each new weight is generated for a cost
of O(f) bit operations. This modification can be interesting when W(X) is large but we
are only interested in computing a small number of weights.

A.2.2. Counting weights. — Another related interesting question is the calculation of the
cardinality ofW(X). A naive solution for this consists in generating the setW(X) and then
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counting its elements. However, this is far for being optimal for W(X). In this subsection,
we rely on the techniques introduced in §2.3 to design fast algorithms for performing this
task. Precisely, we shall prove the following theorem.

Theorem A.2.4. — There exists an algorithm which takes as input a gene X of length f
and outputs the cardinality of W(X) for a cost of O(f2) bit operations.

Since the cardinality of W(X) is generally much bigger than f (it could even be 2f ),
the complexity announced in Theorem A.2.4 is in general much better than that of The-
orem A.2.1: counting weights can be done more efficiently that enumerating them, which
is of course not a big surprise.

We move to the proof of Theorem A.2.4. Again, we give it only in the case where
the gene X is viable and contains at least an occurrence of the letter O. In the opposite
case, the proof follows the same pattern but it is more technical as it uses all the material
introduced in §2.3.2.

Algorithm 2: Computation of the number of combinatorial weights

number of combinatorial weights (F )

Input :A fragment F
Output :The cardinality of W(F )

if F0 = O then cab[0]← 0 else cab[0]← 1

if F0 = O then cba[0]← 0 else cba[0]← 1

cbb[0]← 1

ℓ← length of F

for i = 1, . . . , ℓ−1 do

if Fi−1 ∼ Fi then cab[i]← cab[i−1]

if Fi−1 6∼ Fi then cab[i]← cba[i−1] + cbb[i−1]

if Fi−1 ∼ Fi then cba[i]← cba[i−1]

if Fi−1 6∼ Fi then cba[i]← cab[i−1] + cbb[i−1]

if Fi−1 ∼ Fi−1 then cbb[i]← max(cab[i−1], cba[i−1])

if Fi−1 6∼ Fi−1 then cbb[i]← cbb[i−1]

if Fℓ−1 = AB then return cab[ℓ−1] + cbb[ℓ−1]

if Fℓ−1 = AB then return cba[ℓ−1] + cbb[ℓ−1]
return 1

To begin with, we present an algorithm that takes as input a fragment of length ℓ and
computes the cardinality of W(F ) for a cost of O(ℓ2) bit operations; see Algorithm 2. It
actually follows closely the formulas of §2.3. We notice that, contrary to what we did in
§A.2.1, it is more pleasant here to work iteratively (otherwise, we have to implement a
cache in order to guarantee that the complexity is the correct one).

The fact that Algorithm 2 is correct is clear after the results of §2.3. Moreover, we
readily see that it performs O(ℓ) additions and comparisons on integers of the form cab[i],
cba[i] or cbb[i]. Besides, we now from Theorem 2.3.3 and its proof that cab[i] ≤ Fibi+2,
cba[i] ≤ Fibi+2 and cbb[i] ≤ Fibi+1. Consequently cab[i], cba[i] and cbb[i] have at most
O(ℓ) digits in their writings in base 2. Adding and comparing them can then be achieved
for a cost of O(ℓ) bit operations. Putting all together, we find that the bit complexity of
Algorithm 2 is within O(ℓ2) as wanted.



COMBINATORICS OF SERRE WEIGHTS 53

To complete the computation of the cardinality of W(X), it only remains to combine
all the contributions of the fragments. If ℓ1, . . . , ℓm denote the respective lengths, this
amounts to multiply integers whose bitsizes are O(ℓi). Using the naive multiplication
algorithm, this can be done for a cost of O

(∑
i 6=j ℓiℓj

)
bit operations. Adding to this the

cost of the computation of the cardinality of the fragments, which is O
(∑

i ℓ
2
i

)
, we find

that the complete algorithm runs within

O
(∑m

i=1

∑m
j=1 ℓiℓj

)
⊂ O

((∑m
i=1 ℓi

)2)
⊂ O(f2)

bit operations. Theorem A.2.4 is then proved.

A.3. About Serre weights. — After Theorem 3.1.2, the results of the previous sub-
section have direct consequences on the enumeration and the counting of common Serre
weights.

Theorem A.3.1. —

(1) There exists an algorithm that takes as input a coherent triple (h, γ, γ′) with h, γ and
γ′ written in base p and outputs the set D(t, ρ) for a cost of

O
(
f log p+ f · CardD(t, ρ) · log p

)

bit operations.

(2) There exists an algorithm that takes as input a coherent triple (h, γ, γ′) with h, γ
and γ′ written in base p and outputs the cardinality of the set D(t, ρ) for a cost of
O(f log p+ f2) bit operations.

Proof. — Given a coherent triple (h, γ, γ′), one can compute its gene X using the algorithm
of Theorem A.1.4 for a cost of O(f log p) bit operations. After this, one can use Algorithm 1
to compute the set W(X) of combinatorial weights of X for a supplementary cost of:

O
(
f + f · CardW(X)

)
= O

(
f + f · CardD(t, ρ)

)

bit operations. It then remains to transform those combinatorial weights into actual Serre
weights using the recipe of §3.1. Looking at it, we find that each such transformation
requires O(f) operations on integers less than p, corresponding then to O(f log p) bit
operations. Since this operation has to be repeated for each combinatorial weight, the
total complexity of this part amounts to

O
(
f · CardW(X) · log p

)
= O

(
f · CardD(t, ρ) · log p

)

bit operations. Putting all these inputs together, we deduce the first point of the theorem.
The second point is proved in a similar fashion except that we refer to Algorithm 2

instead of Algorithm 1 (and Theorem A.2.4 instead of Theorem A.2.1 for the complexity
analysis).

A.4. Implementation. — All the algorithms presented in the previous subsections
have been implemented in the SageMath package pbtdef [CDM3]. Below, we present an
overview of the capabilities of this package. First of all, we need to import the package.
This is done as follows (after having installed the package, of course):

In [1]: from pbtdef.all import *

We can now create a 2-dimensional absolutely irreducible Galois representation by pass-
ing in the relevant parameters:
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In [2]: p = 5; f = 7

h = 4865171564

rhobar = IrreducibleRepresentation(p, f, h); rhobar

Out[2]: Ind(ω4865171564
14 )

The method weights returns the set of weights of ρ (in order to save space, the out-
put has been voluntarily truncated in the cell below; the complete set of weights has 96
elements):

In [3]: rhobar.weights()

Out[3]:
{

Sym[3,3,3,4,3,3,2] ⊗ det46544, Sym[0,2,0,3,0,4,0] ⊗ det61648, . . . ,

Sym[4,0,1,3,3,0,2] ⊗ det12264, Sym[3,0,1,0,4,3,0] ⊗ det62139
}

Similarly, one can manipulate types:

In [4]: gamma = 58923; gammap = 77258

t = Type(p, f, gamma, gammap); t

Out[4]: ω58923
7 ⊕ ω77258

7

In [5]: t.weights()

Out[5]:
{

Sym[0,2,0,3,0,4,0] ⊗ det61648, Sym[3,1,0,3,3,3,0] ⊗ det62274, . . . ,

Sym[0,2,0,0,4,0,1] ⊗ det59023, Sym[3,1,0,3,3,0,1] ⊗ det59149
}

One can easily compute the gene associated to the above inputs, by using the constructor
Gene as follows:

In [6]: G = Gene(rhobar,t); G

Out[6]:

B

O

A

A

AB

B

O

A

O

AB

B

O

AB

A

The colors in the output indicate the dominant letter at each position (blue for A and
red for B), while the lines drawn between the nucleotides above correspond to the so-called
decorations; they has been introduced in [CDM2] and are useful to read the equation of
the associated Kisin variety and those of its shape stratification.

We can now ask for the combinatorial weights of the gene using the method weights:

In [7]: G.weights()

Out[7]:
{

(0, 0, 1, 0, 1, 0, 1) , (1, 0, 0, 0, 0, 1, 0) , (1, 0, 1, 0, 0, 0, 1) , (0, 1, 0, 0, 1, 0, 1) ,
(0, 0, 1, 0, 0, 1, 0) , (1, 0, 0, 0, 1, 1, 0) , (0, 0, 0, 0, 0, 0, 1) , (1, 0, 1, 0, 1, 1, 0) ,
(0, 1, 0, 0, 0, 1, 0) , (0, 0, 1, 0, 1, 1, 0) , (1, 0, 0, 0, 0, 0, 1) , (0, 0, 0, 0, 1, 1, 0) ,
(1, 0, 1, 0, 0, 1, 0) , (0, 1, 0, 0, 1, 1, 0) , (0, 0, 1, 0, 0, 0, 1) , (0, 0, 0, 0, 0, 1, 0) ,
(1, 0, 1, 0, 1, 0, 1) , (0, 1, 0, 0, 0, 0, 1) , (1, 0, 0, 0, 1, 0, 1) , (0, 0, 0, 0, 1, 0, 1)

}
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We can verify that the weights computed by the software are exactly those we computed
by hand in Example 2.1.7 (except that they do not appear in the same order).

If we are only interested in the number of combinatorial weights of a given gene, one
should use preferably the method number of weights, which implements Algorithm 2 and
is then much faster than computing the set of weights in full.

In [8]: G.number_of_weights()

Out[8]: 20

One can also ask for the computation of the set of common Serre weights of ρ and t as
follows:

In [9]: rhobar.weights(t) # or equivalently t.weights(rhobar)

Out[9]:
{

Sym[0,2,0,3,0,4,0] ⊗ det61648, Sym[0,1,1,0,4,3,0] ⊗ det62138, . . . ,

Sym[4,2,1,0,4,3,3] ⊗ det77758, Sym[0,2,0,0,4,0,1] ⊗ det59023
}

It is also possible to create a gene by passing it its sequence of nucleotides. For example,
the following creates the “Fibonacci gene” which appears in Theorem 2.3.3:

In [10]: FibG = Gene([ 'O', 'A', 'B', 'A', 'B', 'A', 'B', 'A', 'B',

'B', 'A', 'B', 'A', 'B', 'A', 'B', 'A', 'AB' ])

FibG

Out[10]:

B

O

A

A

B

B

A

A

B

B

A

A

B

B

A

A

AB

B

We can compute its number of combinatorial weights and check that it is indeed in the
Fibonacci sequence:

In [11]: FibG.number_of_weights()

Out[11]: 89

Finally, one can generate a pair (t, ρ) exhibiting this particular gene using the method
random individual (and providing a value of p):

In [12]: FibG.random_individual(p=5)

Out[12]:
(
Ind(ω1136706441368

18 ), ω500613
9 ⊕ ω956342

9

)

Notice that the output is not deterministic; more precisely, it is uniformly distributing
among all possibilities.

In [13]: FibG.random_individual(p=5)

Out[13]:
(
Ind(ω654399553802

18 ), ω253672
9 ⊕ ω709401

9

)
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