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Université Rennes 1, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France

(Dated: November 21, 2021)

Ionic liquids have remarkable properties and are commonly harnessed for green chemistry, lu-
brication and energy applications. In this paper, we study a thermo-responsive Ionic Liquid (IL)
solution which has the property of phase separating above a critical temperature, an interesting
feature for the recovery of the IL-rich phase. For this purpose, we generate a temperature gradient
in a microfluidic cavity where the confinement strengthens wetting effects and enhances the demix-
ing. In this experimental configuration, we report the separation patterns along the phase diagram
of the binary mixture composition. Three separation dynamics regime are identified that may dis-
play complex three-dimensional flows. In spite of this complexity, we rationalize all the observed
regimes. Only two regimes lead to a complete spatial separation of the two phases. Interestingly,
one is reminiscent of a Marangoni instability in radial geometry, even at confinement below 100 µm.
We believe this work will find applications in the recycling of ionic liquids.

INTRODUCTION

Since the 2010s, thermoresponsive binary systems made of water and ionic liquids (IL) have proved useful for several
applications such as protein stabilisation [1–3], catalytic synthesis [4], metal and rare-earth extraction [5–7], forward
osmosis water desalination [8–10] and low grade heat valorization [11, 12]. For all these techniques the temperature
is used as a control parameter to trigger the phase separation and recover on demand the IL-rich phase of interest.
This separation can be managed in bulk using commercial centrifugation techniques or more simply by letting the
two liquids separate by density [13]. Yet ionic liquids are still costly and generally available in limited volumes, thus
the aforementioned macroscopic techniques may not be adapted for the extraction of the IL-rich phase. For that
purpose, microfluidics-based liquid-liquid separation is a promising alternative since wetting effects, which are marked
in binary mixtures [14–16], are known to boost the phase-separation kinetics of binary systems [17–23].
It has been demonstrated that a confinement gradient helps to segregate two immiscible liquids according to their
respective affinities for the walls of the cavity: the most wetting phase is dragged toward the wedge, i.e. toward
the thinner part of the cavity [24]. Another possibility lies in the temperature-induced interfacial tension gradients,
which are known to cause an interfacial stress generating thin film flow [25–28] and droplets or colloids motion
[29–36], thereby affecting the phase separation pattern, as demonstrated by Beysens et. al. in 2002 with pure CO2

[37] [38]. More recently, we showed with a binary mixture how the use of a temperature gradient allows to selectively
accumulate the entire wetting phase at the warmer side of the cavity by taking advantage of Marangoni effects at
small scales [39].
In this paper, by heating locally the center of a cylindrical cavity, we report the separation patterns along the phase
diagram of a binary mixture composition. More precisely, using a mixture composed of water and ionic liquid,
the coupling of Marangoni strains and selective wetting leads to three caracteristic separation patterns. As for the
dynamics of binary mixtures under homogeneous temperature, the initial composition of the solution imposes the
phase separation pattern [40, 41]. Each pattern is obtained for a certain range of composition and interestingly two
of them yield a selective accumulation of the IL-rich phase at the hotter part of the cavity. We present successively
the three separation patterns in ascending order of IL mass fraction. The first regime, in which water is the main
component, has been reported and rationalized in a previous work and for sake of clarity the main mechanisms
are briefly recalled [39]. The second regime, beyond the consolute point of the mixture, generates an unexpected
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Bénard-Marangoni-like periodic pattern. We interprate this regime as a thermocapillary driven instability, whose
mechanisms involved are actually different from the classical Bénard-Marangoni instability. This regime is analyzed
in details and constitutes the main part of the paper. The third regime, far beyond the consolute point of the mixture,
is quickly explained as it presents less interest for the selective separation. In the end we discuss the pertinence of
the three regimes for IL recovery applications.

MATERIAL & METHODS
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FIG. 1. (a) Phase diagram of the IL-water mixture. The weight fractions in IL of both water-rich and IL-rich phases obtained
after separation at 32oC and 45oC are indicated. (b) Sketch of the binary mixtures samples in bulk at different temperatures.
The interfacial tension γ between the two phases increases with the temperature as our system is LCST. ILW indicates the
IL-rich phase, WIL the water-rich phase. The IL-rich phase is dyed in blue.

The thermosensitive binary system of interest is a mixture of MilliQ water with the ionic liquid tetrabutylphos-
phonium trifluoroacetate (P4444CF3CO2) [42, 43] already used in different applications [9–11], at an IL mass fraction
comprised between 15% and 60% (separation temperature Tsep = 30 to 39oC). This system is known as a Lower
Critical Solution Temperature (LCST) binary solution, i.e. it phase separates above a critical temperature. Fig-
ure 1(a) displays the phase diagram of this binary mixture. In order to understand how flows can be generated by
a temperature gradient in such a binary system, it is necessary to understand the physico-chemical response of the
system to two different temperatures T1 < T2, see figure 1. At the temperature T1, e.g. T1 = 32 oC, the binary
system is composed of two phases, one rich in ionic liquid with a mass fraction of 56% and the other rich in water
with a mass fraction in ionic liquid of 21%. We thus obtain two phases more or less rich in ionic liquid, but not pure
in either of the two components. The surface tension between these two solutions is noted γ1. Let us now consider
that the temperature of the system is increased to T2, e.g. T2 = 45 oC. At this temperature, the binary system is
composed of a phase rich in ionic liquid with a mass fraction of 67% and the other phase rich in water has a mass
fraction in ionic liquid of 12%. Thus the two phases are now respectively richer in ionic liquid and in water. This
results in a surface tension γ2 > γ1. The interfacial tension of LCST mixtures thus increases with temperature, see
figure 2(c). Note that the surface tension is 0 at the consolute point, see figure 2(c). Such interface placed in a
temperature gradient generates a Marangoni stress ∂γ/∂τ , where τ is the dimensional unit element along the tangent
to the interface, oriented from cold to hot.
The microfluidic system that is used to generate a temperature gradient is sketched in Figure 2(a). The polydimethyl-
siloxane (PDMS) cavity is replicated from a micromilled brass mold, and bonded on a glass coverslip with oxygen
plasma treatment. The most wetting phase is the IL-rich phase, an important consequence in the following is that
the IL-rich phase can form a wetting film while the water phase will display non-wetting droplets. The cavity is a
cylinder of diameter 1 cm whose height ranges from 20 to 200 µm. The bottom surface is sealed onto a glass wafer
with micropatterned resistance (50×500 µm2), electrically isolated by spincoating a 30 µm PDMS layer [44]. The
potential applied to the heating resistor can be tuned up to 10 Volts. The temperature profile generated by the local
resistance is isotropic and its radial dependency is shown in figure 2(b), the methodology allowing to measure this
profile is reported in our previous work [39]. This gradient is well modelled by a 1/r decrease as shown in insert of
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FIG. 2. (a) Top view of the microfluidic cavity 1 cm in diameter. The gold connectors are in dark grey, and the chromium
resistor in red (50x500 µm2). (b) Radial cut of the temperature profile in the cavity around t = 70 s. Inset: temperature
gradient derived from the temperature profile fitted with 1/r. (c) Interfacial tension between the two separated phases versus
temperature, measured by rising drop method. (d) Viscosity of the IL solution as a function of its concentration at 25oC.

Figure 2(b). By increasing locally the temperature, we expect the mixture to phase separate, whose consequence is
the generation of interfaces. Placed in a temperature gradient, these interfaces will be subjected to an interfacial stress
proportional to the temperature gradient. Thus, the thermocapillary stress is radial, directed toward the warmer
region, i.e. toward the center of the cavity. Finally, the last physicochemical parameter characterizing the system is
the viscosity which is displayed as a function of the IL mass fraction on Figure 2(d) at 25oC.
Once the voltage is applied, the temperature suddenly increases at the resistor location and diffuses radially along
the cavity. This diffusion triggers the phase separation which propagates from the center towards the edges, which
is observed using bright-field transmitted light video microscopy. The signature of the separation temperature (Tsep)
isotherm can be captured typically on figures 4 and 5, at the front of the dark cloud stemming from the light scattering
of the dense two phase system, whose droplets sizes are much smaller than the cavity thickness. The temperature
steady state is reached after 5 to 10 minutes depending on room temperature.

PATTERNS OF SEPARATION

By scanning the dynamics of separation as a function of composition, different patterns are observed, that can
be brought together in three different regimes summarized in Figure 3. The dynamics of these three regimes are
qualitatively described below, see Supplemental Movie 1 showing the phase separation in both three regimes [46].

• Below 35 wt% of IL (consolute point), the dynamics is associated with a complex three-dimensional flow gener-
ated by the combination of thermocapillary effects and sedimentation (see regime A on Fig. 3 and supplementary
movie 1). This regime was published in [39] and is summarized in section IV.

• Between 35 wt% and 55 wt%, the flow turns to an instability pattern driven by thermocapillarity (see regime
B on Fig. 3 and supplementary movie 1). This regime is rationalized using a linear stability analysis in section
V and is the core of the paper.
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• Above ∼ 55 wt%, the solution is composed essentially of ionic liquid. There is therefore a dispersed phase of
water in ionic liquid in the form of drops which are expelled outwards by thermocapillary migration (see regime
C on Fig. 3 and supplementary movie 1). This regime is described in section VI.
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FIG. 3. Phase diagram of the IL - water mixture with the three phase separation patterns observed experimentally. The
transition from first to second regime is indicated by the vertical dashed line centered on the consolute point. These two
regimes selectively accumulate the wetting phase (IL-rich here) above the heating resistor. The transition from second to third
regime is given by the dark grey area, when the composition is between 55 and 60 wt% in IL. The third regime does not yield
a selective separation.

The transition from regime 1 to 2 is governed by the transition of composition at the critical point of the binary
mixture at 35 wt% in ionic liquid. On the left of this point, i.e. for lower ionic liquid mass fraction, the emulsion is
composed of IL droplets into water and water is the continuous phase. On the right of this point, i.e. for higher IL
mass fraction, the emulsion is inversed, we thus obtain water droplets and the ionic liquid is the continuous phase.
Since both phases have similar dynamical properties, the separation line between the two demixing regimes is almost
vertical [45].
Transition from regime 2 to 3 is less obvious because in both cases water droplets are produced in a continuous ionic
liquid solution. We notice experimentally a transition of the separation pattern from a flower shape to a fireworks-like
around 55-60 wt% in ionic liquid. Qualitatively, this corresponds to the transition from a regime within which water
droplets coalescence are observed, to a regime in which such events are not observed anymore. This is in agreement
with what is observed in static experiments for which there is no coalescence events above this concentration [41].
In the prospect of separating a water-rich phase and a phase rich in ionic liquid, only the first two regimes were able
to achieve this objective.

IONIC LIQUID MASS FRACTION BELOW 35%

For sake of clarity, we describe shortly in this section the first separation regime already reported in [39]. This
separation pattern is witnessed for an IL mass fraction range of 10 to 35 wt%, i.e. when the IL phase is the minority
phase in volume. Hence, during the separation the IL-rich phase is the dispersed phase while the water-rich phase is
the continuous phase.
Figure 4(a) displays a temporal evolution of the separation pattern. When the heating resistor is switched on, the
temperature increases in the cavity and expands radially producing an opaque cloud of IL-rich droplets. The front of
this cloud indicates the position of the phase separation isotherm (31oC at 25 wt%). Surprisingly, the cloud opens
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FIG. 4. (a) Top view of the separation dynamics at 7 Volts (80 mW) at different times. The mass fraction in IL is 25% and
the cavity height is H = 60 µm. The separation dynamics can be divided into four regions, clearly visible at t = 5 s in the
top view: I) IL-water non-separated mixture, II) separation of the two phases, the droplets are mostly pushed outwards, III)
some IL-rich droplets are dragged inward across the water-rich phase, IV) IL-rich sessile drop. At t = 60 s when steady-state is
reached, an IL-rich drop is accumulated above the heating resistor. (b) Cross-section sketch of the phase separation dynamics.
The tread-milling wetting film induces a radial Couette-Poiseuille flow. Inset: within region III, domain 1 indicates the IL-rich
wetting film and domain 2 the water-rich phase above. The orange arrows indicate the interfacial stresses.

up in its center to reveal an IL-rich drop. Moreover, a fraction of droplets emanating from the cloud are coming back
to the center in an accelerated radial motion. This behavior results from the existence of a micrometer-thick wetting
film covering the bottom of the cavity, as sketched on Figure 4(b). This film is a consequence of the sedimentation
from the cloud’s droplets (the IL is denser than water) which spread completely when impacting the bottom wall.
The free interface of the film is submitted to thermocapillary stresses directed toward the center of the cavity, hence
the IL within the film is drained toward the center where it accumulates to produce a bigger drop. Above the film
the momentum diffusion drags along the water-rich phase and the neighbouring droplets from the cloud. The water
phase converging to the center is sent back outwards by mass conservation and pushes away the cloud of droplets.
This complexe three-dimensional flow has been rationalized and reported in [39]. In the end we recover an IL-rich
drop in the center of the cavity surrounded by a water-rich liquid as seen at t = 60 s on figure 4 (a).

IONIC LIQUID MASS FRACTION INBETWEEN 35% AND 55%

Description of the phase separation pattern

Beyond the consolute point (35 wt% in IL), the IL-rich phase becomes the continuous phase while the water-rich
phase is the dispersed one. Figure 5 represents the typical dynamics of phase separation. At early time water droplets
nucleate in the center and form an opaque cloud that expands isotropically in the horizonthal plane with the Tsep
isotherm diffusion. These water droplets grow under coalescence events and are submitted to two moving mechanisms
both driving the droplets outward : thermocapillary and thermomechanical migration. We recall briefly that the
thermomechanical effect is associated to the propulsion of droplets, squeezed by both the bottom and top walls of a
cavity, towards the cooler region due to a thinning of the cavity height in the warmer region [47]. The pattern of
figure 5 is also observed in additional experiments performed in glass microcavities, in which the thermomechanical
deformation is negligible. This observation thus allows us to disregard the thermomechanical mechanism in the
following. Once the droplets reach the Tsep isotherm, their migration ceases and they sit on the isotherm circular
line forming a flower-like pattern, recalling similar experiments involving Marangoni effects [48–52]. This crown of
non-wetting water-rich drops delimits a central wetting drop enriched in Ionic Liquid. When steady state is reached,
we end up with an IL-rich drop in the hot central region surrounded by a water-rich phase, similarly as in previous
section.
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FIG. 5. Time lapse of the IL-water phase separation for 7 Volts (80 mW). The IL mass fraction is 45% and the cavity height is
H = 80 µm. Water droplets nucleate, coalesce and get expelled outward. Once they cross the separation temperature isotherm
(spotted as the outer radius of the darker circular zone) they stop and sit still on the periphery forming a crown of drops. This
crown is delimited by its inner radius rc and its outer diameter R. Due to high enough water fraction, those drops remain side
by side and their adjoining interfaces oriented radially are submitted to thermal interfacial gradients. Thus, these interfaces
drain the outer liquid inward, making the central drop (rich in IL) to expand over time.

The initial shape of the flower-like pattern is governed by the initial water droplets that form the external crown.
Inbetween drops, the liquid is drained from the outer unseparated region towards the center IL-rich region, and its
gradual opacification is a result of the phase separation. We call those fingers ”Marangoni jets”, as we assume their
active pumping coming from the thermocapillary stress sustains the expansion of the pattern. Inside the water drops,
this flow induces convection cells that are made visible by the swirling plumes of small IL-rich droplets produced by
the double phase-separation (see inset of Figure 5 at t = 15 s) [53, 54]. We believe that the very low interfacial tension
inherent to near-critical binary mixtures is a key to the formation of such pattern [55–57].

Interestingly, the initial flower-like pattern evolves thanks to the spontaneous formation of jets during the expansion
of the global pattern thus increasing the total number of petals. These jets usually appear when the inter-jet distance
is much bigger than the recirculating plumes width (in other words when the water drop’s azimuthal extent is at
least twice as big as the jets length), see Figure 6 and Supplemental Movie 2 for a movie showing the spontaneous
generation of new jets [58]. We believe that this digitation mechanism plays a major role in the regularity of the
pattern. This observation leads us to rationalize this problem through an instability approach. After discussing the
instability mechanism we propose two approaches to model this instability. First, we derive a scaling analysis that
recovers the general trend of wavelength as a function the geometrical and physico-chemical parameters. In a second
approach, a stability analysis inspired by the work of Nagel and Gallaire [59] is performed.

In order to look at the effect of wetting properties, additional measurements are made with a lutidine-water mixture
which is also an LCST system. We recover the same demixing patterns proving that this behavior is not specific to
ionic liquids. More details are given in Appendix A.
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FIG. 6. (a) Spontaneous formation of Marangoni jets resulting from the thermocapillary runaway of small instabilities devel-
opping on the outer interface of the water drops. The initial positions of the perturbations are indicated by red arrows. (b)
Zoom on the black dashed box of the picture t = 5 s. The temperature gradient as well as the interfacial tension gradient are
indicated along the finger interface.

Instability mechanism

We consider first the interface formed by the water-rich phase with the binary mixture placed at r = R. For a
perfectly circular interface, the temperature field being radial, the surface tension is constant along the interface and
is therefore stable. Let us now consider a radial fluctuation of this interface such that r′ = R−δr. The temperature is
higher in r′ than in r, and so is the surface tension. This results in a surface tension gradient δγ = γ+ − γ− oriented
from the larger r to the smaller r, see figure 6(b). In this way, the fluctuation is amplified and leads to the formation
of what we have called the Marangoni jets. By conservation of momentum, these jets generate a flow within the water
phase, visible as recirculating zones in inset of Figure 5. The driving mechanism is thus mediated by the viscous
dissipation in the water phase.
At first sight, it could be legitimate to associate this pattern to the Bénard-Marangoni instability. This instability
is due to temperature fluctuations of the interface, at a given constant radius, which is maintained by the generated
interfacial flow. The existence of this instability is in general conditioned by the Marangoni number which describes
the ratio between the thermal diffusion time tκ = d2/κ, where d is a characteristic length scale, and a transport
time linked to the Marangoni stress tM = µ/(∂γ/∂r). The instability is generally observed for Marangoni numbers
Ma & 102 [? ]. The difference with our experiment is that our Marangoni number is small, Ma . 20, so the
temperature fluctuations at a given r are negligible. Strictly speaking, what we observe is not a Bénard-Marangoni
instability. Indeed, in our system it is a radial flow stemming from the interface radius fluctuations, thus exploring
isothermal lines, that are amplified by the Marangoni stress, and not an orthoradial one as it would be the case in
a Bénard-Marangoni instability. The fact that diffusion of heat does not come into play is reinforced by comparing
the transport of heat by advection and diffusion, i.e. by estimating the thermal Péclet number in the water phase
given by Pe = ((R − rc)vr)/κ . 0.5 with R − rc . 500 µm the characteristic crown extent, κ = 1.5.10−7 m2.s−1 the
water thermal conductivity and vr = 150 µm.s−1 the typical fluid velocity induced by thermocapillary forces [39].
As such, the temperature profile in a cross-section of the cavity is thus little affected by the flow. Consequently, the
temperature fluctuations will not be considered in the following as we consider that heat is released faster by diffusion
than by advection.

Wavelength of the pattern

In this subsection we study the influence of both the geometrical and the physico-chemical parameters on the
pattern’s wavelength and extension. We propose a scaling analysis rationalizing the observed dependency of the
pattern wavelength.

Figure 7 displays snapshots of the phase separation pattern at t = 70 s for three cavity heights and three compo-
sitions. Qualitatively, the wavelength seems to increase with the thickness of the cavity at a given composition; on
the other hand, it decreases when the composition increases in ionic liquid at a given cavity height. At 20 µm, we
see that the patterns begin to be less well defined. This probably results from the important confinement which may
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FIG. 7. Phase separation pattern at t = 50 s, for three heights of cavity H = 20, 80, and 150 µm (from left to right) and three
compositions 40, 45 and 50 wt% (from top to bottom). The voltage is 7 Volts (80 mW).

limits the velocity field and promote the stability of the filament, as evidenced by the absence of recirculation in the
drops forming the crown. For the other confinements, the Marangoni jets show a well-defined periodic distribution
which depends at a given time on the cavity height H and on the mixture composition which signature is the crown
extent R− rc.
The number of jets nj are plotted as a function of 1/H in Figure 8(a) and displays a linear-like behavior (excluding
the data at H = 20µm), for the different compositions. More interestingly all the data collapse on a single curve by
plotting the cell wavelength λ ∝ 1/nj as a function of the cross-section of the pattern H× (R−rc). We now propose a
qualitative description of this instability in order to recover this dependency, based on a similar approach as described
in [60]. First, due to the confinement, two length scales have to be considered: H and R − rc. The destabilizing
thermocapillary action across a cell writes as a force per unit length:

Fγ ≈
dγ

dr
(R− rc) (1)

This force is mediated by a stabilizing one stemming from viscous dissipation along the smallest lengthscale of the
cavity: the height H. Hence, introducing λ the wavelength instability (azimuthal length of a recirculating cell), the
viscous force per unit length writes:

Fµ = µ1
vθ
H2

(R− rc)λ (2)

Incompressibility of the flow yields vθ(R− rc) ∝ vrλ, and using the thermal Péclet number, this leads to:

Fµ = µ1
κPeλ2

H2(R− rc)
(3)

The threshold of the instability is estimated at Fγ & Fµ, yielding:

λ2 ∝ 1

µ1κPe

dγ

dr
(R− rc)2H2 (4)

This simple analysis allows to recover the correct scalings. The experiments using lutidine confirm this approach
as shown by the black cross and black star on Figure 8 collapsing on the same curve. We will now check the order of
magnitude of the prefactor of this scaling law. Equation 4 can be written in term of nj :
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FIG. 8. (a) Number of jets nj measured at t = 70 s for six heights H = 20, 40, 60, 80, 150, 200 µm and three compositions:
40, 45 and 50 wt% in ionic liquid. The dark cross and the dark star symbols are the number of jets from the lutidine-water
experiments (see Figure 12 in Appendix A). (b) 1/nj (proportional to the wavelength) versus H(R− rc).

1

nj
∝ 1

2πR

(
1

µ1κPe

dγ

dr

)1/2

(R− rc)H (5)

Assuming that R = 1, 5.10−3 m, µ1 = 1.10−3 Pa.s, κ = 1, 5.10−7 m2.s−1 and dγ/dr = dγ/dT × dT/dr ≈ 2.10−1

N.m−2, the prefactor of equation 5 is of order:

1

2πR

(
1

µ1κPe

dγ

dr

)1/2

∼ 6.10−6µm−2 (6)

This value is of the same order than the slope obtained from figure 8(b) of value 10−6 µm−2. This fair agreement
between our scaling and the experimental observations makes one confident in the analysis that has been done.

Thermocapillary driven fingering instability

In this section, we present an analytical model for the growth rate of the thermocapillary instability. Rather than
using a Darcy-type approach typical of these confined systems, we have been inspired by the work of Nagel and Gallaire
based on Brinkman’s approach which takes into account in-plane shear stress [59]. The main difference between their
model and our situation is that we replace a bulk driving mechanism by an interfacial driving mechanism (thermo-
capillary pumping).
A sinusoidal perturbation of the interface is considered, which is amplified by the radial interfacial tension gradients
(see Figure 9). A linear stability analysis is performed in polar coordinates (O,−→er ,−→eθ ,−→ez). We assume that the liquid
composition is at equilibrium regarding the temperature at all time and that the volume variation due to the phase
transition is negligible. The full calculation is provided in Appendix B, only the main steps and results are provided
in this section.

The interface position is given by R(θ, t) and the sinusoidal perturbation writes:

R(θ, t) = R0(t) + εζ(θ, t) (7)

where

ζ(θ, t) = ζ0e
βteinθ (8)

with β the growth rate that depends on nj . In practice, R0 varies slowly in time compared to ζ.
The interfacial tension depends on the perturbation as follow:

γ = γ0 + αζ (9)

with α = dγ
dT

dT
dr < 0 the interfacial tension gradient. γ0 ≈ 10−4 N.m−1. The value of γ0 is estimated from our

interfacial tension measurements from Figure 2(d). However, we acknowledge that the position of the interface in
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FIG. 9. Sinusoidal perturbation of the circular interface in r = R. The amplitude of the perturbation is ζ. The central drop is
the light blue disk of radius rc.

r = R regarding the separation temperature isotherm is not obvious and that the existence and the value of an
interfacial tension in this zone can be subject to discussion. Furthermore, the interface driven toward the center sees
its temperature rising up and so its interfacial tension, such that ζ < 0 implies ∆γ = αζ > 0.

Following Nagel & Gallaire [59] methodology, we solve the dimensionless Brinkman equation to get a dispersion
relation of the instability. This equation is obtained provided a typical length scale R, a typical velocity U and a
typical pressure P are introduced with P = µ2U/R where µ2 the viscosity of the outer fluid. The dimensionless
Brinkman equation writes:

ηj(∆
−→uj − k2−→uj)−

−→
∇pj = 0 (10)

with j = 1 for the inner fluid (the water-rich phase) and j = 2 for the outer fluid (the homogeneous phase). The
viscosity ratio ηj is defined as η1 = µ1/µ2 = η and η2 = 1. The parameter k2 = 12R2/H2, linked to the aspect ratio,
comes from depth averaging (along z direction). In this framework, the velocity −→uj and the pressure pj fields are
two-dimensional.
By introducing the stream function ψ and by taking the curl of equation (10), the authors derive a more compact
form: (

∂

r∂r
r
∂

∂r
+

1

r2
∂2

∂θ2

)(
∂

r∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
− k2

)
ψ = 0 (11)

The stream function is expanded as ψj = ψ0j + εψ1j . The general solution for equation 11 gives:

ψ11 = i

(
an
In(kr)

In(k)
+ bnr

n

)
einθ (12)

ψ12 = i

(
cn
Kn(kr)

Kn(k)
+ dnr

−n
)
einθ (13)

with In and Kn the modified Bessel functions of first and second kind, which decay exponentially away from the
interface. The parameters an, bn, cn, and dn have to be determined from the boundary conditions at the interface:
impermeability, continuity of the normal and tangential velocity, and continuity of the normal and tangential stress.

As already discussed, the driving mechanism stems from the surface tension gradient which is the key difference
with Nagel and Gallaire model. Under this assumption, the dimensionless normal and tangential boundary conditions
of the interfacial stress are respectively:

[−→n · T ·−→n ]
2
1 =

(
1

Ca
+

αζ

µ2U

)
RC (14)



11[−→
t · T ·−→n

]2
1

=
−→
t ·
−→
∇γ R

µ2U
(15)

where Ca = µ2U/γ0 is the capillary number, C is the curvature of the interface,
−→
t ·
−→
∇γ = α 1

R
∂ζ
∂θ is the linearised

thermocapillary stress and T is the stress tensor. At first order in ε, the tangential stress continuity equation becomes
similar to the one of Nagel and Gallaire with an additional term on the right-hand side:

η

(
2ann

2 + 2bnn
2 + ank

2 − 2ank
In+1(k)

In(k)
− 2ann− 2bnn

)
−2cnn

2 − 2dnn
2 − cnk2 − 2cnk

Kn+1(k)

Kn(k)
+ 2cnn− 2dnn = n

α

µ2U
ζ

(16)

In the same way, the normal stress jump at first order in ε writes:

η

(
bnk

2 − 2ann− 2bnn+ 2annk
In+1(k)

In(k)
+ 2ann

2 + 2bnn
2

)
+ dnk

2 + 2cnn

+2dnn+ 2cnnk
Kn+1(k)

Kn(k)
− 2cnn

2 + 2dnn
2 =

π

4Ca
ζ(n2 − 1) +

αR

µ2U
ζ

(
π

4
+

2R

h

) (17)

Considering the full problem, the unknowns an, bn, cn and dn are calculated and β = 1
ζ
∂ζ
∂t can thus be determined,

assuming that the aspect ratio k and the capillary number Ca do not change significantly with time. The growth
rate β is given at the end of Appendix B.
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FIG. 10. (a) Mean interfacial tension along a jet for the three compositions. (b) Viscosity ratio between the two phases:
the water-rich µ1 and the non-separated mixture µ2. (c) Growth rate β calculated with the Brinkman model for all three
compositions at six cavity heights: 20, 40, 60, 80 150 and 200 µm. We use drT = 3000 K.m−1 and the values of γm and η from
Figures 10(a) and (b). (d) Comparison between the number of jets measured and the prediction given by the Brinkman model.
The shaded areas include all wavenumbers of the model where the growth rate is within 1% of the maximal growth rate.

The growth rate can be computed using the experimental values (temperature gradient, both surface tension gradient
and viscosity as a function of IL mass fraction and temperature) detailed in Material & Methods. For the compositions
of the solutions used in this section it is necessary to determine the values of the surface tension and viscosity to
calculate the growth rate. Since the length of the Marangoni jets varies with the composition of the mixture, we
evaluate a mean interfacial tension experienced by the jets in the temperature gradient. From the position of the
jets a mean temperature can be extracted and a mean interfacial tension is deduced, plotted on Figure 10(a). The
viscosity ratios of the two phases are plotted in Figure 10(b). These values are injected to numerically solve β.
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Figure 10(c) shows the growth rates for six cavity heights and three IL mass fraction with drT = 3 K.mm−1.
Remarkably, whatever the H value and the mass fraction, the growth rate displays a range of unstable modes at
large wavelength (small n). The only effect of the composition is a decreasing of the growth rate with increasing
the IL mass fraction. From these curves the wavenumber of highest growth rate is extracted allowing to build this
wavenumber as a function of the cavity height for different IL mass fraction. The sensitivity of the result is evidenced
by varying β by 1% as highlighted by the shaded area around the numerical value plotted in the figure 10(d). We
recover qualitatively the right tendencies yet the model overestimates the number of jets by a factor of two.
In fact, the linear stability analysis allows to obtain the wavelength at the very beginning of the instability process,
i.e. the wavelength of the perturbation that can be observed at the interface in Figure 6 (red arrows at 3 s). This
wavelength can differ from the one of the fully developed pattern, which is stabilized by nonlinear effects that are
not taken into account in the perturbation analysis. As the measurements are done on the fully developed pattern,
discrepancies between measurements and prediction of the linear analysis can be expected. In particular, the radial
extension of the cells R−rc appearing in the fully developed pattern does not emerge from the linear stability analysis.
Considering this limitation, it is quite remarkable that we only have a factor of two difference if we take into account
the extreme sensitivity of the model.
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FIG. 11. (a) Time lapse of the phase separation dynamic for an IL mass fraction of 60%. Above 55 wt% in IL, the water droplets
nucleate and migrate radially outward because of thermocapillary actuation. As they go down the temperature gradient, their
size shrinks as they redissolve and eventually vanish. The inset highlights the clear trails left behind the moving droplets as
they release water-rich material in the IL-rich matrix. The voltage is 7 Volts (80 mW) and the cavity height is H = 80 µm. (b)
Motion of a water drop in the temperature gradient. The drop is initially stuck at a surface. The black crosses give respectively
the drop’s front (+) and rear (×). Inset: temporal evolution of the drop’s radius. (c) Calculated and measured drop velocity
versus time. We inject the temperature gradient values from Figure 2(b)inset in equation 18. The grey shaded area gives a
20% variation in the value of drT .

Above the IL weight fraction of 55% to 60% in IL, the water droplets become so scarce that the flower-like pattern
is lost. The nucleating water droplets are sufficiently distant not to coalesce during their journey and they migrate
outward in a radial motion under thermocapillary actuation, see Figure 11(a). The increasing speed of the drops with
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size is a noticeable feature of this effect. We emphasize that in this regime the water droplets are smaller than the
cavity thickness, hence they do not experience any thermomechanical effect. Some drops may get pinned on surface
defects, grow in size as the temperature rises in the cavity, and eventually detach when the thermocapillary forcing is
strong enough. Their pace is slowing down as the gradient’s slope flattens far from the hot point and their run ends
shortly after crossing the critical temperature isotherm Tc ≈ 29oC.
The drops also leave a clear trail behind them: their composition equilibrates as the temperature decreases and the
excess of water released by the drops is conveyed at their rear by the interfacial convection, see inset in Figure 11(a).
The nucleation events fade away after a few minutes as the temperature profile reaches steady state.

The thermocapillary motion of an initially pinned water droplet is shown on Figure 11(b). The droplet grows in
size and detaches around t = 23.5 s. Its radius, plotted on the inset, increases until t = 25 s and then decreases as
the drop gets carried down the temperature gradient, away from the center. In order to validate the thermocapillary
forcing, we compare on Figure 11(c) the velocity of the water drop to the prediction given by the following equation
[62] (note here that the drop is considered in an infinite medium, that the Marangoni gradient is purely thermal and
that the thermal conductivity of both phases are supposed equal):

vTcap =
RdropdT γdrT

3ηIL(1 + 3ηw/2ηIL)
(18)

The drop moves slightly slower than the predicted velocity, however we recover the right trend and order of magni-
tude. Since this thermocapillary migration phenomena has been largely documented [63–65] and does not lead to a
macroscopic phase separation of the binary mixture in our cavity, we do not further develop the analysis.

CONCLUSION

To conclude, we investigated the temperature gradient influence on the phase separation kinetics of LCST binary
mixtures under confinement in which the volume fraction and wetting behavior of both constituents drive the dynamics.
The thermal interfacial tension gradients are responsible for the flows, that oriented along the temperature gradient,
drives the thin film drainage, the water droplet migration or the spontaneous digitation of one phase into the other.
In all cases the resulting Marangoni strains behave as a pump accumulating the wetting phase in the warmer region
and expelling the non-wetting phase in the cooler region. Thus, tuning the wall surface energy allows to select which
component is concentrated in the center.
Three regimes are observed as summarized in the diagram of Figure 3 and have been rationalized. Briefly, concerning
the possibility to separate the two phases, we observe that for IL mass fractions between 10 and 55 wt% the IL-rich
phase is concentrated in the warmer area, beyond 55 wt% none of the two phases are selectively isolated.
In this article the regime that has attracted the most interest is the regime for which the IL mass fraction is between
35% and 55%. In this regime, an instability develops that we have been able to explain as a Marangoni mechanism. A
scaling analysis allows us to find the dependence of the number of jets nj with H × (R− rc). We also derived a model
based on Brinkman equations and we were able to find an agreement with the experimental results. In perspective,
it would be interesting to look at the role of spatial wetting patterning [66–69]. We hope that this work will open the
possibility of an alternative technique to the recycling of ionic liquids.
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APPENDIX A: LUTIDINE-WATER SYSTEM

In order to tackle the reproducibility of the demixing pattern regarding the role of the wetting phase, we performed
experiments using another LCST binary mixture widely employed in the literature: the lutidine-water system. The
water-rich phase is expected to play the role of the wetting phase in a hydrophilic cavity, while the lutidine-rich
phase wets preferentially a hydrophobic cavity [70]. Thus we performed the same experiments as previously with two
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layouts: a 20 wt% lutidine solution in a hydrophilic cavity and a 40 wt% lutidine solution in a hydrophobic cavity
(the consolute point is around 28 wt% in lutidine). Figure 12 displays the temporal evolution of the phase separation
pattern for both cases, the lutidine-rich phase is made slightly darker by adding a dye. In the hydrophilic cavity the
water-rich phase is accumulated in the central wetting drop whereas the lutidine-rich drops distributed around the
perimeter give birth to the Marangoni jets. In the hydrophobic cavity the roles are swapped.

𝒉𝒚𝒅𝒓𝒐𝒑𝒉𝒊𝒍𝒊𝒄

t = 1 s t = 2 s t = 5 s

t = 10 s t = 55 s t = 80 s

𝟓𝟎𝟎 𝝁𝒎

𝒉𝒚𝒅𝒓𝒐𝒑𝒉𝒐𝒃𝒊𝒄

FIG. 12. Time lapse of the phase separation dynamic for two lutidine-water mixtures in two different cavities: 20wt% in
lutidine for the hydrophilic cavity (oxygen plasma treated) and 40wt% in lutidine for the hydrophobic one (pristine PDMS
cured at 130oC at least two hours). The lutidine-rich phase is slightly darker than the water-rich one. We recover the flower
pattern formed by the periodic digitation. In the hydrophilic cavity the water-rich phase is accumulated at the center and the
lutidine-rich phase gives the petals, while in the hydrophobic cavity roles are swapped. The voltage is 9.2 Volts (135 mW) and
the cavity height is H = 60 µm. Insets: zoom on the Marangoni jets.

APPENDIX B: STABILITY ANALYSIS

Details on the stability analysis calculus are provided in this section. We recall that all the quantities are dimen-
sionless.
The tangential

−→
t and normal −→n vectors to the interface (see Figure 9) write:

−→
t =

(
1 +

(
1

R

∂ζ

∂θ

)2
)−1/2(

1

R

∂ζ

∂θ
−→er +−→eθ

)
≈ 1

R

∂ζ

∂θ
−→er +−→eθ (19)

−→n =

(
1 +

(
1

R

∂ζ

∂θ

)2
)−1/2(

−→er −
1

R

∂ζ

∂θ
−→eθ
)
≈ −→er −

1

R

∂ζ

∂θ
−→eθ (20)
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In our configuration, the radius of the interface in the absence of perturbation R0 grows slowly compared to the
characteristic time of evolution of the perturbation ζ. Consequently the unperturbed solution of our problem writes:

u0j = v0j = 0, ψ0j = 0 and , p0j = Pj , (21)

with

P1 − P2 =
RC
Ca

=
1

Ca

(
π

4
+

2R

H

)
.

At the order ε, the first terms ψ1j of the expansion of the stream functions are given by eqs. (12) and (13) in which
the constants an, bn, cn, dn need to be determined. Continuity of radial and tangential velocity at the interface write:

∂ψ11

∂θ
=
∂ψ12

∂θ
and

∂ψ11

∂r
=
∂ψ12

∂r
(22)

leading respectively to:

an + bn − cn − dn = 0 (23)

and to:

ank
In+1(k)

In(k)
+ cnk

Kn+1(k)

Kn(k)
+ n(an + bn − cn + dn) = 0 (24)

At first order in ε, the tangential stress continuity equation (eq. (15) of section ) becomes for ψ1j :[
ηj

(
r
∂

∂r

(
∂

r∂r
ψ1j

)
− ∂2

r2∂θ2
ψ1j

)]2
1

= in
α

µ2U
ζ (25)

yielding eq. (16):

η

(
2ann

2 + 2bnn
2 + ank

2 − 2ank
In+1(k)

In(k)
− 2ann− 2bnn

)
−2cnn

2 − 2dnn
2 − cnk2 − 2cnk

Kn+1(k)

Kn(k)
+ 2cnn− 2dnn = n

α

µ2U
ζ̃

where ζ̃ = ζ0e
βt.

Taking into account the additional term due to thermocapillary stress, the normal stress jump writes:

[−→n · T ·−→n ]
2
1 =

(
1

Ca
+

αζ

µ2U

)(
2R

H
+
π

4

(
1− (1− n2)ζ

))
where the π/4 factor in the curvature term comes from the correction to the in-plane curvature in the case of perfect
wetting [59]. At the first order in ε, we obtain:[

−p1j + 2ηj
∂

∂r

(
1

r

∂ψ1j

∂θ

)]2
1

= − π

4Ca
ζ(1− n2) +

αR

µ2U
ζ

(
π

4
+

2R

H

)
(26)

The pressure perturbation is integrated from the azimuthal part of the Brinkman equation as in [59]:

p11 = ηbnr
nk2einθ and p12 = −dnr−nk2einθ (27)

Finally, the normal stress jump leads to:

η

(
bnk

2 − 2ann− 2bnn+ 2annk
In+1(k)

In(k)
+ 2ann

2 + 2bnn
2

)
+ dnk

2 + 2cnn

+2dnn+ 2cnnk
Kn+1(k)

Kn(k)
− 2cnn

2 + 2dnn
2 =

π

4Ca
ζ̃(n2 − 1) +

αR

µ2U
ζ̃

(
π

4
+

2R

h

)
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Finally the kinematic condition at the interface (or impermeability condition) writes:

∂R

∂t
+ ε

∂ζ

∂t
= u01 + ε

∂u01
∂r

ζ + εu11 (28)

which yields at order ε:

n(an + bn) +
∂ζ̃

∂t
= 0 (29)

Combining the boundary condition equations 23, 24, 16, 17 and 29 the unknowns an, bn, cn, dn and β = 1
ζ̃

∂ζ̃
∂t can be

determined. We display here the growth rate β for wavenumber n depending on the parameters of our system:

β = −
(
n
(

8
∂γ

∂r

In+1

In
R2 k2 − 16

∂γ

∂r

In+1

In
H n3 − 32

∂γ

∂r

In+1

In
R2 n+ 4π

In+1

In
γH n+ 16

∂γ

∂r

In+1

In

Kn+1

Kn
R2 k

+ 32
∂γ

∂r

In+1

In
R2 η n+ 16

∂γ

∂r

In+1

In
ηH n3 − 4

∂γ

∂r

In+1

In
H k2 n− π In+1

In
γH k2 − 4π

In+1

In
γH n3 − 16

∂γ

∂r
R2 η k n

− 8
∂γ

∂r
ηH k n2 + 8

∂γ

∂r

Kn+1

Kn
R2 η k2 − 2π η γH k n3 + π

In+1

In
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∂γ

∂r

In+1

In
RH n

− 2π
In+1

In

Kn+1

Kn
γH k − 4π

In+1

In
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∂γ
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In+1
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In
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(30)
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