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Abstract

For the next generation of MeV range gamma–ray telescopes, position sensitive

calorimeters based on a monolithic scintillator coupled to a pixelated photode-

tector could be an important building block. In this paper, we present the

optimization of the position reconstruction algorithms using machine learning,

for a detector based on a 51 × 51 × 10 mm3 CeBr3 crystal. For that purpose,

we used an automated test bench and collimated radioactive sources to gener-

ate experimental data of known energy and position by irradiating the detector

with gamma rays. We found in these data different gamma–ray interaction mor-

phologies for which position reconstruction algorithms perform differently, and

we developed an algorithm to automatically classify them. We also conducted

an extensive optimization of the artificial neural networks that perform the 3D

position reconstruction using the Keras Python library with Theano backend.

We found that at 662 keV, 90% of events have a morphology that facilitates

position reconstruction. The optimised position reconstruction algorithms give

for those events a rms error in the plane of the detector of 1.8 mm on each axis.

The rms error in the depth of the crystal is found to be 2 mm.
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1. Introduction

Despite a large number of existing science topics, from nucleosynthesis and

nuclear spectroscopy to multi–messenger astronomy and the extreme universe,

gamma–ray astronomy in the 100 keV to 10 MeV energy range is understudied

due to the lack of sensitivity of current generation instruments. The best concept5

for next generation instruments is thought to be a space–borne Compton imager

(with pair production imaging capabilities up to 100 MeV) [1]. Constellations

of nano satellites are also envisioned, because that concept would allow all–sky

monitoring and provide a powerful insight in high–energy transient sources (see

e.g. [2] and references therein).10

Compton imaging relies on the kinematics of Compton scattering which is

the dominant process of interaction of gamma rays with matter in this energy

range. Imaging gamma–rays using this principle was first proposed

for astronomy in the MeV range [3] and nuclear medicine [4] in the

1970’s. In an instrument as proposed in [1], the incoming photon undergoes15

a scattering in one or several layers of position–sensitive silicon strip detector

before being absorbed in a position–sensitive calorimeter based on inorganic

scintillators. The measurement of both positions and energy deposits provides

information on the photon’s source direction [5].

The localization accuracy and detection sensitivity achievable with this tech-20

nique are also of interest for the localization of gamma–ray emitting radioactive

material on Earth. Thus our results are also relevant for the ComptonCAM

project [6], which aims at the development of an ultra sensitive, wide–field

gamma camera for localization and characterization of low–intensity radioac-

tive waste.25

This study follows [7] and [8] on the development of a position–sensitive

calorimeter module based on Cerium Bromide inorganic scintillator. In this

paper we first introduce the experimental setup used to perform this study. We

then present the characterization of the datasets, before explaining the methods

used to reconstruct the position of interaction and discuss the results.30
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2. Experimental setup and measurements

2.1. Cerium bromide calorimeter module

The calorimeter module used in this study is based on a square 51 × 51 ×

10 mm3 Cerium Bromide (CeBr3) inorganic crystal (manufactured by SCIONIX

company) coupled to a multi–anode photomultiplier tube (MAPMT). We then35

have with this setup a pixelated gamma–ray detector. Six calorimeter modules

of this type have been characterized.

Because of the hygroscopic nature of the scintillating crystal used, it is em-

bedded in an air–tight aluminium casing. One side of the crystal is coupled to a

1.5 mm thick quartz optical window, itself coupled to the MAPMT using40

optical grease. The other sides of the crystal are wrapped in an optically dif-

fusive layer of Teflon. The MAPMT used is a square, two–inches, 8× 8 anodes

Hamamatsu H12700A. Its photocathode side is 48.5 mm. It is read by

a self–triggered electronic system ROSMAP (developped by IDEAS company),

using four 16–channels ASICs and an FPGA to output the data in an Ethernet45

compatible format. Figure 1 shows a photography of the three components of

the module.

In order to use this calorimeter module for Compton imaging, we need both

a position and an energy measurement of each gamma–ray interacting in the

crystal. We define an event as one or several interactions of a single gamma ray50

that deposits enough energy to trigger the read–out electronics.

For each event, the MAPMT measures the scintillation light distribution

that enables the reconstruction of the gamma–ray’s position of first interaction.

The integral of the scintillation light distribution provides the energy deposit.

For the interaction position measurements, the key idea of this setup is to55

analyze the shape of the scintillation light distribution on the 64 pixels (64

charge values collected over the 64 anodes). Figure 2 shows an example of

recorded event. From the shape of the light distribution we expect to determine

the 3D coordinates (x,y (surface), z (depth)) of the gamma–ray first interaction

in the crystal. Position reconstruction is based on machine learning algorithms,60
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Figure 1: Photography (exploded view) of the calorimeter module. From left to right, we can

see the scintillating crystal, the MAPMT and the read–out electronics

and will be discussed extensively in this paper.

2.2. Test bench

To assess the position reconstruction ability of the calorimeter module, we

developed a test bench constituted of a radioactive source and a calorimeter

module. The radioactive source is collimated to generate a gamma–ray beam65

directed towards this module.

For this study we used a combination of two 7.6 MBq 137Cs sources emitting

662 keV gamma rays, and a 424 kBq 241Am source emitting 59.5 keV gamma

rays. In addition, we used two uncollimated sources, one 2.4 MBq 133Ba source

emitting 81 keV and 356 keV gamma–rays, and one 37 kBq 207Bi source emitting70

570 keV and 1064 keV gamma–rays. The 137Cs source is collimated using a 10 cm

outer diameter, 10 cm long tungsten collimator for which the inner diameter can

be changed. A good compromise between localization precision and detected

source activity has been found at 1.3 mm inner diameter. The 241Am source

is collimated using a 10 cm outer diameter, 1 mm inner diameter, 1 cm long75

copper collimator. The localization error associated with these collimators width

contribute marginally to the calculated position reconstruction errors. It will

be included in all results presented hereafter.

Background radioactivity measurements can be made by removing the source

4



Figure 2: Example of an event recorded by the calorimeter module. Both parts of the figure

shows the same data, one in parallel perspective and the other in colorscale. One can read on

the z axis or the color scale the quantity of light collected by each pixel of coordinates (x, y).

or by using a full tungsten cylinder instead of the collimator. In order to reduce80

the background activity, the test bench is shielded by 4 cm thick lead bricks

below it as well as on its four sides. A 5 mm copper plate can be added on the

top of the calorimeter module to further reduce background at low energy.

The calorimeter module can be moved automatically to any position in a

plan orthogonal to the beam direction by two worm gears driven by stepper85

motors controlled by an Arduino board. The Arduino is controlled through a

serial port emulation by a LabVIEW program that also record the data from

the calorimeter module. The module can also be rotated by 90° for the beam

to irradiate either its front or its side. Figure 3 shows both irradiation modes.

Figure 4 is a photography of the test bench in side irradiation configuration.90

These properties of the setup aims at providing events of known coordinates

and of known energy to perform the calibration of the calorimeter module. We

call hereafter the coordinates of the beam the “mechanical positions”. The

coordinates system used in this study sets the origin in the center of the crystal.

The xy plane spans the front of the detector, and the z axis represents the depth95

of interaction (see Fig. 3). These coordinates are defined in the frame of the

scanning bench by measuring the count rate in 0.5 mm steps to find the edges

of the crystal.
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Figure 3: Scheme of the calorimeter module. The gamma–ray interacts in the CeBr3 that emits

scintillation light. This light is detected by a pixelated photodetector optically coupled to the

scintillating crystal. The shape of the scintillation light distribution provides information on

the 3D position of the gamma–ray interaction. Top: front irradiation, z in unknown. Bottom:

side irradiation, x in unknown
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Figure 4: Photography of the automated test bench and collimated 137Cs source. Source is
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Figure 5: Spectrum of a 137Cs source (662 keV)

3. Data characterization

3.1. Spectra and energy selection100

Figure 5 shows a spectrum of a non collimated 137Cs source aquired with this

calorimeter module, obtained by simply summing the ADC values read by each

anode. On the spectrum we can see the full–energy peak near channel 150, 000

corresponding to 662 keV, the Compton front below channel 120, 000 and the

backscattering peak near channel 45, 000. Since we are designing a calorimeter,105

we will mostly be interested in the full–energy events for reference. However,

simply selecting events in a given energy window is not optimal for two reasons

� The maximum of full–energy peak can be noticeably shifted from a me-

chanical position to another, as shown in Figure 6

� A broader than necessary energy selection allows more background ra-110

dioactivity events in the datasets
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Figure 6: Spectra of a collimated 137Cs source at different mechanical positions, (0, 0) being

the center of the crystal, (14, 14) an intermediary position and (22, 22) a position close to a

corner.
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For these reasons, a finer energy selection, depending on the mechanical

position, has been performed on the datasets. For each mechanical position, a

gaussian function is fitted to the full–energy peak and events of energy inside a

2σ energy window are selected.115

3.2. Corrections to improve spectral resolution

The energy resolution obtained by simply summing the charge of the 64

anodes is about 8.3% at 662 keV. This unexpected high value for a CeBr3

scintillator is due to the position–dependent full energy peak spectral shift shown

in Figure 6.120

That effect has already been noticed at a smaller scale on smaller scintilla-

tors [9]. It can be explained by the loss of scintillation photons at the interface

between the crystal and the reflector. Because of absorption and diffusion (stud-

ied in detail in [8]), the collected charge is higher near the center than close to

the edges, and therefore the measured energy and energy resolution are lower125

there. This shift in measured energy can be quantified by fitting, for

each mechanical position, a gaussian function to the full–energy peak

and retrieving the position of the center of each fitted gaussian. These

fitted energy shifts are shown on Figure 7 for two different energies.

The gains differences between the 64 anodes of the multi–anode130

PMT can also explain part of these shifts, since those gains can vary

by a factor of 2. However, this effect is found to be less important

than the former, as shown on Figure 7, on which the spectral shifts

are represented before and after the gain correction. It shows that the

gains have a large influence on the asymetry of the detector response,135

but not on its non–uniformity. This correction will not be applied in

the following, unless it is explicitly stated.

Let’s now consider a reference mechanical position, the center of the crystal

for example, so that the spectral shift is defined as a shift with respect to this po-

sition’s spectrum. The shift can now be expressed as the ratio of the full–energy140

peak’s maximum at the reference position to the full–energy peak’s maximum
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Figure 7: Relative detector spectral response through its surface, as given by the position

of the center of a gaussian fitted to a spectral line, for 25×25 mechanical positions

with a 2 mm pitch. Top: measured for the 662 keV line of 137Cs. Bottom: measured for

the 59.5 keV line of 241Am. Left: before correction of the variable gain of the 64

anodes. Right: after correction. (colour online)

at another position. This quantification allows for an energy correction for

each event by a multiplicative factor, as long as the coordinates of the

event are reconstructed.

It should be noted that this method takes into account part of145

the anode gain differences, even though the correction is not applied.

Indeed, the scintillation light distribution can be modelled as a con-

tinuum and a peak (see Figure 2). The anode gain correction has no

effect on the contribution of the continuum to the measured energy,

and the peak position is largely determined by the position of inter-150
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Figure 8: Left: simple spectrum, with spectral resolution of 8.3% at 662 keV. Right: corrected

spectrum, with spectral resolution of 4.7% at 662 keV

action. Therefore, a correction based on the position of interaction

corrects part of the anode non–uniformity.

An example of this method’s results is shown on Figure 8, where the spectral

resolution improves from 8.3% to 4.7% at 662 keV. The same correction with

the same coefficient gives good results at other energies, see e. g. Figure 9 for155

the 570 keV and 1064 keV lines of 207Bi for which we had respectively 8.3% and

7.8% FWHM spectral resolution and attain respectively 4.8% and 4.4%. In this

last case, this method is probably limited by our ability to precisely reconstruct

the position of interaction at high energies (see Section 4.2).

3.3. Morphology of events160

Data analysis by visual examination of the events’ scintillation light distri-

butions showed a variety of morphologies. Those morphologies can be classified

in three main categories as illustrated in Fig. 10. The impact of these mor-

phologies on position reconstruction will be discussed in Section 4.2.5.

The first category presents a single, localised energy deposit. The second165

category presents two, identifiable and localised energy deposits. The third

category presents an energy deposit that is wide and continuous. It should be

noted that this classification discretizes a continuous physical phenomenon and

therefore that some events are borderline cases.
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Figure 9: Left: raw spectrum of the 570 keV (top) and 1064 keV (bottom) lines of a 207Bi

radioactive source. Right: corrected spectrum, showing the two lines with respectively 4.8%

and 4.4% FWHM spectral resolution.
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Figure 10: Three events with different morphologies. Data are represented twice, once in

parallel perspective (left) and once in colorscale (right). The red mark in the colorscale rep-

resentation indicates the mechanical position. Top: single, localised energy deposit. Center:

two energy deposits. Bottom: wide, continuous energy deposit.
14



A procedure to automatically recognise events of the first category has been170

developed. Its core idea is to assess if a significant amount of light is spread

or clustered. For that purpose we choose, amongst all pixels, those that have

received the most light. The number of pixels considered is a parameter of

this algorithm. This selection is made after applying to the pixels the

correction of the gains of the anodes. Then we define a shape (typically175

a square) that we consider acceptably clustered. This is also a parameter of

the algorithm. Finally, we check that the considered pixels can fit in the shape.

This check relies on a two–dimensional convolution of the scintillation light

distribution, masked with chosen pixels, by the shape. If such a position exists,

the event is selected.180

The event selection procedure uses this algorithm two times sequentially.

First, we select the events for which the 4 considered pixels are found in a 2× 2

pixels square. The events that are not selected by this first selection go through

a second round, during which are selected those for which the 5 considered pixels

can be found in a 3× 3 pixels square.185

This two–stage selection is necessary because the second round will select

events that have been rejected by the first one but have a shifted or truncated

scintillation light distribution, especially on the borders of the crystal. But

it should be noted that events selected during the first round could have been

rejected by the second. Indeed, choosing too many pixels includes in the analysis190

pixels from the light continuum that have the highest values because of photon

noise, discarding events that have an acceptable morphology.

This procedure selects between 89% and 94% of events (depending on the

calorimeter module characterized) in datasets recorded with a 137Cs source and

selected by the fine energy selection around 662 keV described in Section 3.1,195

and between 85% and 93% of events selected the same way around the 356 keV

line of a 133Ba source. This result shows that most of events at these energies

have a localised energy deposit in the crystal.

This procedure is meaningless for events below a certain energy because not

enough scintillation light is produced. At low energy, as shown on Figure 11 with200
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Figure 11: Event recorded from a 241Am radioactive source.

an event of energy 59.5 keV, most events will have scintillation light distribution

compatible with a single, localised energy deposit, because gamma–rays interact

in CeBr3 mostly via photoelectric absorption.

4. Position reconstruction

4.1. Artificial neural networks205

An artificial neural network (ANN) is a network of simple algorithms that

aims at mimicking the operation of a biological neuron. Those algorithms ex-

ecute a weighted sum of several inputs, and apply to this number an R → R

function called activation function. We use ANNs to reconstruct the position of

the first interaction of a gamma ray from the measured scintillation light dis-210

tribution. The general idea of this position reconstruction method has

been proposed in [10] for positron emission tomography scanners.

The machine learning used in this study is supervised learning. It means

that ANNs are first trained to output the correct answer, using input data with

known output, by minimizing an error function. For our case, the input data are215

the 64 channels of our MAPMT, the output is the real position of interaction

of the gamma ray in the crystal. The mechanical positions approximate the
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known outputs. We choose for our error function a mean square error. Once

the training is completed, reconstructing unknown events consists in executing

the neural network program with the parameters calculated during the training220

process. The weights of the neurons are free parameters adjusted during the

training of the ANN.

ANNs used in this work are multi–layer perceptrons: neurons are organised

into one or several layers, that are executed sequentially. Such non–cyclic

neural networks have been described in 1943 in [11]. The number of225

layers and their size (number of neurons) are the parameters of the ANN chosen

by the programmer. Layers outside of the input and output ones are called

“hidden layers”. The activation function is also such a parameter, as well as

the algorithm used for training. These parameters define the neural network’s

architecture.230

During training, the neurons weights are adjusted by iterations, called epochs [12],

to minimize the error from the reconstructed gamma–ray interaction coordi-

nates to the mechanical position. After a certain number of epochs, this error

decreases without improving the general ANN’s performance. This phenomenon

is called overlearning. In this case the neural network tends to reconstruct bet-235

ter the events from the training dataset, but looses performance for any other

event. To prevent overlearning, the error function is also calculated on a second

dataset, not used for the training and called validation dataset. The training

is stopped whenever this second error stops decreasing. All this work has been

done using the Python Keras framework [13] with Theano [14] backend.240

In this part we will present the effect of various event selection algorithms

and neural network architectures on the performance of position reconstruction,

first in 2D in the xy plane (see Fig. 3), and then in the depth of the crystal

along the z axis.

17



4.2. Optimization of 2D position reconstruction245

4.2.1. Datasets

The aim of this part is to investigate the performances attainable with ANN

based xy position reconstruction. For that purpose, datasets were acquired

with the automated test bench. A first dataset, used for training, contains

mechanical positions spanning the whole detector with a 2 mm step along both250

x and y axes. The validation dataset contains mechanical positions every 3 mm,

in order to have data at different mechanical positions.

Both datasets result from the fine energy selection discussed in Section 3.1.

Gamma rays interacting in the border of the crystal are more likely to escape

after a Compton diffusion. So, for a same number of triggers in the detector,255

the number of events selected by the fine energy selection can be twice less. In

that case, the weight evaluation procedure during the neural network training

would be biased, underestimating the importance of near–border events. This

would result in degraded position resolution near the borders of the detector.

Therefore, the datasets we used contain a fixed number of events per mechanical260

position, typically 50. This allows for a more uniform position reconstruction

performance as well as contained training durations. The morphology selection

described in Section 3.3 is only applied once the ANN has been trained and is

used for the position reconstruction, since we found that applying it before the

ANN training yielded no significant improvement to the ANN performance.265

4.2.2. Performance indicators

This study also investigates the effects of the ANN’s architecture on the po-

sition reconstruction performance. For the xy reconstruction, the performance

of an ANN is measured by way of its mean uncertainty σXY, defined as the

quadratic average on all mechanical positions p of the σXY,p,

σXY =

√
1

N

∑
p

Npσ2
XY,p (1)

where Np is the number of events at mechanical position p. The quantity

σXY,p is defined as the square root of the mean squared distance from the

18



reconstructed x and y coordinates (in the frame defined on Fig. 3) to the known

ones,270

σXY,p =

√√√√ 1

Np

Np∑
i=1

[
(xp − xreci )

2
+ (yp − yreci )

2
]
, (2)

where Np is the number of events at the mechanical position p, xp (respectively

yp) is the known x (resp. y) coordinate of the mechanical position p and xreci

(resp. yreci ) is the x (resp. y) coordinate of event i reconstructed using the

ANN.

In order to quantify any systematic offset between the known position and

the reconstructed position, an offset error σo
XY,p has been defined as

σo
XY,p =

√
(xp − x)

2
+ (yp − y)

2
, (3)

where x (resp. y) is the mean of the values of the xreci (resp. yreci ) of events at275

this mechanical position (see Section 2.2).

The σXY,p can be expressed as the quadratic sum of σo
XY,p and a

point spread error

σs
XY,p =

√√√√ 1

Np

Np∑
i=1

[
(xreci − x)

2
+ (yreci − y)

2
]
, (4)

4.2.3. Exploration of ANN’s architecture parameters space

The analysis has been performed for all combinations of the following archi-

tecture parameters:

� 0 to 4 hidden layers280

� 6 to 35 neurons per hidden layer

� 10 different activation functions [13]: sigmoid, hard sigmoid, tanh, elu,

relu, softplus, softmax, softsign, exponential, and linear

� 3 training algorithms: adam, nadam and adamax

19



Figure 12 shows an output example of such an analysis. Colorscale represents285

the value of σXY, in mm, attained after training, calculated on a set of N =

14450 events evenly distributed on the xy plane of the detector.

Such output has been studied also for the mean point spread error σs
XY (see

Eq. 4) and the mean offset error σo
XY (see Eq. 3) as shown on Figure 13. This

analysis shows that the offset error is systematically lower than the point spread290

error. Some architectures, using elu or softplus activation functions and more

than 16 neurons per hidden layer, perform better than the others on this test.

Moreover, some architectures such as those using the softsign display a point

spread error better than most, at the cost of a larger offset error. Architectures

using more neurons do not seem to overlearn because of the validation dataset295

monitoring. However, they require more calculations, wich may be of critical

importance depending on the application.

4.2.4. Energy dependency

This study has been performed in two different energy ranges, one around

the full–energy peak of a 137Cs source at 662 keV and one around the 59.5 keV300

line of a 241Am source. In this second energy range, the same fine energy

selection has been applied. No morphology selection was made as discussed in

Section 3.3.

To assess the energy dependency of neural networks, the same analysis has

been conducted with 50 events per mechanical position, recorded at energies305

near 662 keV and near 59.5 keV. This study showed that using two neural

networks, each trained with dataset from a single 59.5 keV or 662 keV energy

window, does not perform significantly better than using a single neural network

trained with a dataset composed with both energy windows.

Finally, we conclude that, for the xy position reconstruction and the set of310

architectures studied here, there is no significant improvement over 2 layers and

≈ 19 neuron per hidden layer (see Fig. 12). The best training algorithm for our

purpose appear to be adamax, and both elu and softplus activation functions

give good results. In the following, we use one ANN for all energies and the elu

20



Figure 12: Output example of a systematic ANN’s architecture parameter space exploration.

On the x axis is represented the number of neurons per layer. On the y axis are indicated

the number of hidden layers (HL), the activation function and the training algorithm used.

Colorscale represents the performance of the ANN σXY in mm (lower is better, see Eq. 1).

(colour online)
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Figure 13: Ouput of an exploration of some architectures for neural networks with 2 hidden

layers and adamax training algorithm. Left: colorscale represents σs
XY Right: colorscale

represents σo
XY (colour online)

activation function by default.315

4.2.5. Position resolution

An example of reconstructed dataset is shown on Fig. 14. That dataset

contains 200 events per mechanical position, that passed the fine energy cut

at 662 keV described in Section 3.1 and the morphology cut described in Sec-

tion 3.3.320

We see that most gamma rays are reconstructed within a short distance

of their associated mechanical position, and with a good consistency through-

out the detector. The events at mechanical positions near the border of the

scintillating material are harder to reconstruct because their scintillation light

distribution is truncated or misshapen. We still obtain σXY = 5.0 mm on that325

dataset.

Some events are reconstructed very far from their associated mechanical po-

sition. They are interpreted as background radioactivity. It should be noted

that all calculations of the ANN performance σXY (as well as σs
XY and σo

XY)

using Eq. 1 (respectively Eq. 4 and Eq. 3) include some events from the back-330

ground radioactivity. To assess its contribution to the position resolution,

we recorded a dataset with the 137Cs source at a single mechanical position

22



Figure 14: Example of a dataset’s position reconstruction by our ANN. Mechanical positions

change by steps of 4 mm along x and y axes, and 200 events of energy 662 keV were selected

for each mechanical position. Events were selected by energy and morphology. Mechanical

positions are indicated by the red markers, and gamma–rays reconstructed coordinates shown

as colored dots. A single (but not unique) color is associated to a mechanical position. Dotted

black lines show the borders of the pixels.
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Figure 15: 1D histograms of reconstructed x and y coordinates for a single me-

chanical position x = −3.3 mm, y = −2.6 mm. Left: projection along the x

axis. Right: projection along the y axis. The blue dotted lines represent the

reconstructed coordinates of events in the dataset acquired with the source. The

green solid lines represent the reconstructed coordinates of events from the same

dataset that have been selected for their morphology. The red dashed lines rep-

resent the reconstructed coordinates of events from the background radioactivity

dataset (source behind absorber). The black dashed–dotted vertical lines repre-

sent visually the known coordinates.

(x = −3.3 mm, y = −2.6 mm) with a 1 mm inner diameter collimator. The

background radioactivity has been estimated by placing a thick tungsten ab-

sorber between the source and the detector, as described in Section 2.2, and335

recording data for the same duration (two hours). Events were selected using a

large energy window between ≈ 580 keV and ≈ 700 keV. A histogram of the re-

constructed gamma–ray positions of interaction can be seen on Figure 15. The

blue lines represent the reconstructed coordinates of all events, the green lines

the reconstructed coordinates of morphologically selected events, and the red340

lines the background radioactivity. The blue and green lines meet the red

one at large distance from the position of interaction, which validates

the interpretation that the events that are reconstructed far enough

from the known position of interaction are background radioactivity.

When the background radioactivity is subtracted bin to bin to the data in

the histogram, a new estimation of the performance of the ANN σ
′

XY,p can be
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Morphology

selection

σX,p σY,p σXY,p σ
′

X,p σ
′

Y,p σ
′

XY,p

Not applied 3.6 mm 3.5 mm 5.0 mm 2.9 mm 2.6 mm 3.9 mm

Applied 3.0 mm 2.9 mm 4.2 mm 1.9 mm 1.7 mm 2.6 mm

Table 1: Summary of the position resolution measured at the position x = −3.3 mm, y =

−2.6 mm

calculated for a single mechanical position p as

σ
′

XY,p =

√√√√ 1

N

n∑
bin=1

Nbin ×
[
(xknown − xrecbin)

2
+ (yknown − yrecbin)

2
]

(5)

where N is the number of events in the dataset after subtraction, n the number345

of bins in the histogram, Nbin the number of events in a given bin, xknown and

yknown the mechanical position of the dataset (x = −3.3 mm, y = −2.6 mm),

xrecbin and yrecbin the coordinate of the center of the bin bin.

It gives, at this position p, σ
′

XY,p = 3.9 mm for all events and σ
′

XY,p =

2.6 mm for morphologically selected events. The results are presented in350

Table 1 for each axis. They point at an average localization error of

1.8 mm.

These σXY,p and σ
′

XY,p should not be interpreted as the standard deviation of

a gaussian distribution. Figure 16 shows the histograms of the difference

from the reconstructed to the known coordinates (as in Figure 15355

but in linear scale), in the dataset used to evaluate σXY, together

with a gaussian fit that provides a poor description of the data, and

especially of the distribution tails. The standard deviations of the

fitted gaussians are ≈ 1.55 mm at 662 keV and ≈ 1.7 mm at 59.5 keV

for both the x and y axes.360

As shown on Figure 17, the variations of the position resolution σXY,p (for

which background radioactivity has not been subtracted) is dominated by the

loss of performance in the ≈ 5 mm near the borders of the crystal.

25



Figure 16: 1D histograms of the difference between the reconstructed and known coordinates.

Left: x coordinates. Right: y coordinates. The blue solid lines represent the 662 keV dataset,

for which the selection on event morphology has been applied. The green dashed lines represent

the 59.5 keV dataset. The red dotted–dashed line show a gaussian fit of the distribution at

662 keV.

Figure 17: Position resolution estimator σXY,p uniformity through the detector x axis, cal-

culated using morphologically selected events at 662 keV with one data point every two mil-

limeters. Blue: at y = 0 mm. Green: at y = 14 mm
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4.3. Depth of interaction reconstruction

Depth of interaction reconstruction is the reconstruction of the position of365

interaction along the z axis (see Fig. 3). Since the depth of interaction is

unknown when irradiating the front of the crystal, acquiring data that allow

neural networks training requires new procedures, which will be presented in

Section 4.3.1. New performance indicators will be defined (Section 4.3.2) to be

used in the other architecture’s parameter space explorations that have been370

conducted, presented in Section 4.3.3. Finally, the results of artificial neural

networks will be compared against methods based on the known absorption

length of radiation in the crystal in Section 4.3.4.

4.3.1. Data acquisition and selection

For that part of the study, in order to know the z coordinate of the interac-375

tion, the detector is irradiated from the side (see Fig. 3 in Section 2.2).

We use 662 keV photons from the 137Cs source to be able to explore all the

crystal, since gamma rays below ≈ 300 keV do not penetrate enough in the

crystal. We then obtain data of different energies by selecting events in the

full–energy peak and in the Compton plateau (see Fig. 5). In the Compton380

plateau, events mostly result from a single interaction of a gamma ray in the

crystal. Therefore, selection on event morphology is not needed. Since the

gamma rays have an initial energy of 662 keV, absorption is no longer a prob-

lem. This method allows to probe all x, y and z positions in the crystal with

known z position at various energies. However, this method approximates the385

scintillation light distribution of a lower energy photon depositing all its energy

by the scintillation light distribution of a Comptonised electron of the same

energy. The difference should be negligeable, given that the mean free path

of the generated low energy electrons in the CeBr3 is < 0.1 mm and that the

photodetector pixels are 6 mm wide.390

Three energy ranges were defined in addition to the full–energy peak, around

300 keV between the Compton front and the backscattering peak, around 130 keV

below the backscattering peak, and near 50 keV. In those energy ranges, no fine
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energy selection (as defined in Section 3.1) could be applied because there is no

peak to fit. No selection on event morphology was performed because395

the selection on event energy already selects single interaction events.

For each of these energy ranges, the dataset used for training spans the

whole yz plane of the detector with a 1 mm step. The gamma–ray absorption in

CeBr3 at these energies is such that events may interact at any x coordinate for

each yz known coordinates. After the energy selection (and fine energy selection400

in the energy range near 662 keV), 200 events are selected for each mechanical

position, out of which 30% will be used for validation.

4.3.2. Performance indicators

To assess the performance of different methods on the position reconstruc-

tion along the z axis, a new performance indicator σZ has been defined as the405

quadratic mean on all mechanical position p of all σZ,p, themselves defined as

the one–dimensionnal square root of the mean squared distance,

σZ,p =

√√√√ 1

Np

Np∑
i=1

(zp − zreci )
2
, (6)

where zp is the known z coordinate of the mechanical position p and zreci is the

z coordinate reconstructed using a given method.

Just as σs
XY and σo

XY were defined in Section 4.2.2 (see Eq. 4 and Eq. 3), we410

define a mean point spread error σs
Z and a mean offset error σo

Z as the quadratic

mean on all mechanical positions p of the

σs
Z,p =

√√√√ 1

Np

Np∑
i=1

[
(zreci − z)2

]
(7)

σo
Z,p = |zp − z| (8)

where z is the mean of the zreci values for all events recorded at given me-

chanical position p (see Section 2.2).
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Even though the y coordinate is known for each of these events, it will not415

be reconstructed here. For the neural network, first investigations on the recon-

struction of the depth of interaction showed that asking for the reconstruction

of both y and z coordinates led to poor results in z reconstruction, because y

is both easier to reconstruct and spans a larger range of values, so the training

algorithm tends to prioritize that coordinate. Therefore, the y coordinate will420

not be used in this part.

4.3.3. Exploration of ANN’s architecture parameters space

Given the weak dependency of the performance of neural networks on the

total number of neurons, shown by preliminary tests, this part of the analysis

focused on the activation function and training algorithm optimization. The425

analysis has been performed for the following set of architecture parameters:

� 4 hidden layers

� 80 neurons per hidden layers

� 10 activation functions [13]: sigmoid, hard sigmoid, tanh, elu, relu,

softplus, softmax, softsign, exponential, and linear430

� 3 training algorithms: adam, nadam and adamax

For our purpose, the training algorithm that performed the best was adamax.

The most performing activation functions were elu and relu. We will use elu

in the following. The energies at which depth of interaction is best reconstructed

are around 662 keV and 300 keV, with σZ ≈ 2 mm. In the 130 keV energy range,435

ANNs are significantly worse with σZ ≈ 2.4 mm, and in the 50 keV energy do-

main they perform even worse with σZ ≈ 2.6 mm. This could be explained by

the lower number of scintillation photons generated by the interac-

tion, which gives a noisier measured scintillation light distribution,

as shown in Figure 11. One should also note the presence in selected events of440

source X–rays from the cesium Kα line at 31 keV, disturbing the ANN training.
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Figure 18: Histogram of reconstructed depths of interaction at 662 keV. Yellow dotted: at

y = 10 mm, z = −4 mm. Blue solid: at y = 0 mm, z = 0 mm. Green dashed: at y =

10 mm, z = 4 mm. Vertical lines show visually the known depth of interaction

As shown on Figure 18, some z coordinates near the edges of the crystal are

hard to reconstruct, namely z ∈ [−5,−4] and z ∈ [4, 5]. Figure 19 show the

values of σZ,p and σs
Z,p, represented in colorscale, for all y and z coordinates. It

confirms that the error is dominated by the poor reconstruction abilities near445

the edges of the crystal.

Finally, as for the 2D (x, y) position reconstruction, training ANNs with

all events from the 662 keV, 300 keV and 130 keV energy domains led to σZ

results similar to those obtained with specific ANNs trained with events from

each energy domain.450

Figure 20 shows the histograms of the difference between the re-

constructed and known z coordinate. As energy decreases, the recon-

struction of the depth of interaction becomes less precise and more

asymetric towards over–estimated depths.

The combination of the two optimised ANN allow 3D position reconstruc-455

tion, as shown on Figure 21.
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Figure 19: σZ,p (top) and σs
Z,p (bottom) represented in colorscale in mm throughout the yz

plane. (colour online)
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Figure 20: 1D histogram of the distance between the reconstructed and known depth of

interaction. The green solid line represents the results at 662 keV, the blue dashed line in the

300 keV range and the red dotted line in the 130 keV range

Figure 21: 3D position reconstruction using two optimised ANN for 5 xy mechanical positions.
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Figure 22: σZ (in mm) versus the energy of incoming gamma–ray for various methods. ANN’s

results are shown in blue. The black curve represents the error achieved when all events are

reconstructed at z = 0 mm. The green curve represents the error achieved when all events are

reconstructed at z = −5 mm. The red curve represents the error achieved when all events of

a given energy are reconstructed at their mean depth of interaction.

4.3.4. Depth of interaction reconstruction at low energies

At energies lower than 100 keV, the attenuation length of gamma rays in

CeBr3 is lower than 2 mm, therefore using a neural network that provides an

uncertainty on position reconstruction larger than 2 mm is subopti-460

mal. Instead, two main methods could be used: the simplest one consists in

assigning to every event, independently of its scintillation light distribution, a

fixed z coordinate. Below ≈ 100 keV, an appropriate coordinate is z = −5 mm,

that is the coordinate of the entry face of the crystal. A more complex method is

to assign to every event a depth of interaction that depends only on its measured465

energy, and equal to the mean of several simulated depth of interaction in the

crystal. This simulation approach allows to easily account for the finite size of

the crystal. Depths are calculated using the NIST XCOM photon cross–section

database data [15].

Figure 22 represents the σZ error (see Eq. 6) achieved with different depth470
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of interaction reconstruction methods. Apart from the ANN results, these data

are simulated with a Monte–Carlo method. The green and black curves show

the results of assigning to every event the coordinate z = −5 mm and z = 0 mm

(center of the crystal), respectively. The choice of z = 0 mm is better at high

energies because then the absorption is not dominant. The red line represents475

the error achieved by the “mean depth of interaction” method. At high energies,

since the mean goes to z = 0 mm, we find back the results of this method. At

low energies, it is always better than the z = −5 mm approach because it uses a

better model of the reality. We note that these methods rely on the assumption

that a low energy deposit is due to a gamma ray coming from the front of the480

detector and being absorbed, which may or may not be the case depending on

the situation. Finally, neural networks show a better performance than any

other method above ≈ 150 keV.

5. Results and discussion

We studied the performance of a gamma–ray detection module made of485

a CeBr3 monolithic scintillating crystal coupled to a 64–channels MAPMT.

We developed algorithms to optimize the spectral resolution and 3D position

resolution.

We obtain a spectral resolution ehancement down to 4.7% FWHM thanks

to a position–dependent energy correction, as presented in Section 3.2. This490

correction does not require a strict calibration of the ADC to charge relation

nor a correction for the different gains of the 64 anodes, and it is fairly

lightweight from a computational perspective once the gamma–ray position of

interaction is reconstructed.

The selection on event morphology allows a better position reconstruc-495

tion as shown on Figure 15. It also leads to a better understanding of the

data. A 662 keV gamma ray in CeBr3 will in most cases interact via Compton

scattering. However, at this energy, photons are mostly scattered in the for-

ward direction. This may explain why a majority of events shows a localised
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Module number 0 1 2 3 4 5

σXY at 59.5 keV 4.6 mm 4.5 mm 4.3 mm 5.1 mm 4.6 mm 4.9 mm

σXY at 662 keV 5.1 mm 4.0 mm 4.7 mm 4.2 mm 4.1 mm 4.1 mm

Fraction of events

selected at 662 keV

85% 90% 89% 93% 93% 94%

σXY at 662 keV

after morphology

selection

4.9 mm 3.7 mm 4.3 mm 3.8 mm 3.7 mm 3.7 mm

Table 2: Summary of results obtained in xy position reconstruction and morphology analysis

for the six modules characterised.

energy deposit resulting of several, closely packed gamma–ray interactions.500

It can also explain the large continuous energy deposits. The third identified

morphology, showing several distinct energy deposits, can then be interpreted

as several Compton interactions. The fractions of selected events at 662 keV

presented here varies between 89% and 94%, except for one module for which

85% of events were selected. At 356 keV, this fraction varies from 85% to 93%,505

and is 81% for this one module (detailed results are presented in Table 2).

The behavior of that module may be explained by a small anomaly in the opti-

cal coupling between the crystal housing and the PMT. The preferred forward

scattering depends on the energy, so this variation of the fraction of selected

events was expected. Future work could further investigate this variable. This510

event selection based on morphology allow a position resolution improvement

from σ
′

XY,p = 3.9 mm to σ
′

XY,p = 2.6 mm at 662 keV. It may or may not be used

in the context of a Compton space observatory, depending on the expected flux

of the source.

Investigations on the data that were discarded for their morphology shows515

that neural networks probably cannot reconstruct them correctly. Indeed, when

neural networks are trained using only these events, all tested architectures

output σXY > 7 mm. However, neural networks trained only with events

35



having that unaccepted morphology and a maximum of the scintillation light

distribution located near the mechanical position give great results, down to520

σXY = 4 mm (including background radioactivity events). This cannot be im-

plemented in an actual Compton imager, since the real position of interaction

is not known. But from that analysis, we can assume that neural networks re-

construct these events at the position of the highest energy deposit, which may

or may not be the position of first interaction.525

The position reconstruction in the xy plane has been optimised down to an

uncertainty of 1.8 mm for all tested energies. Following investigations showed

that this method can be generalized to other calorimeter modules with the same

geometry and electronics, even though the gain of individual PMT anodes may

vary by a factor 2. Quantitative results for the six modules that have530

been characterized are reported in Table 2. We found the same ANN

architecture to perform very well for all calorimeter modules: 2 hidden layers,

19 neurons per hidden layer using the elu activation function and trained using

the adamax algorithm. However, that requires a new neural network training

with data from that module.535

Preliminary investigations showed that a single neural network could also

be used with several calorimeter modules, if it has been trained with a combined

set of data from each of those modules, with minimal performance loss, even

though the individual anode gains of the PMT were not corrected in

this study. At 662 keV, the neural network dedicated to the module540

1 yielded σXY = 4.57 mm, and the one dedicated to the module 2,

σXY = 4.50 mm, while the neural network trained with data from

both modules gave for each module, respectively, σXY = 4.56 mm

and σXY = 4.52 mm. For comparison, neural networks that were

trained with a single module give consistently σXY > 6 mm on the545

data from other modules. Future work will investigate further this

result, as it may have a significant impact on the dataflow design of

future instruments. Future work could also investigate the ability of such

software to reconstruct the position of interaction in thicker crystals, since those
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crystals would have larger gamma–ray absorption ability, which may be useful550

in a low count rate application such as a space telescope.

The results obtained in position and spectral resolution fulfill the require-

ments of the calorimeter of next generation space–borne Compton telescopes.

Moreover, it has a position resolution noticeably finer than its pitch (1.8 mm for

6 mm square detectors), reducing the number of channels to read at the cost of555

some computation. The effect of this tradeoff should be discussed for embed-

ded applications such as space observatories and nano–satellites in which both

electrical power and computer resources for data management are limited.

The characteristics of the module we developed make it also an interesting

detector for a portable gamma camera aimed at locating and characterising560

radioactive waste following the dismantling of nuclear facilities [6].

Depth of interaction reconstruction is less critical than xy position recon-

struction in the context of a Compton telescope, and especially since our calorime-

ter modules are not very thick (10 mm). However, its importance increases as

the scattering detector and the calorimeter get closer. The neural network ap-565

proach yielded good results at the cost of an increase in ANN complexity for

the medium and high energy events (> 150 keV). The optimised z ANN ar-

chitecture uses 4 hidden layers and 80 neurons per hidden layer using the elu

activation function, and is trained using the adamax training algorithm. At low

energy, the simple method based on the interaction length of gamma rays in570

CeBr3 gives satisfactory results.

6. Conclusions

For the next generation of MeV range gamma–ray telescopes, position sen-

sitive CeBr3 scintillating detectors could be an important building block. We

studied six detectors using that technology and developed a position–dependent575

energy correction, an event selection procedure that recognises event morpholo-

gies and we optimised the position reconstruction algorithms. We attained an

energy resolution of 4.7% FWHM at 662 keV with the energy correction.
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The 3D position reconstruction of a gamma–ray interaction relies on two

artificial neural networks, one for the plane xy of the detector and one for its580

depth z. The optimised xy ANN architecture uses 2 hidden layers and 19 neu-

rons per hidden layer using the elu activation function. The optimised z ANN

architecture uses 4 hidden layers and 80 neurons per hidden layer using the elu

activation function. Both were trained using the adamax training algorithm. We

found the optimised ANN architectures to perform equally on different calorime-585

ter modules for a wide energy range (from 60 keV to 662 keV). The z position

can be reconstructed with a ≈ 2 mm error. The xy position resolution depends

on the morphology of events, but a 1.8 mm error has been attained for ≈ 90%

of events.

These results make that calorimeter module technology a very appealing590

choice for the next generation of MeV range gamma–ray space borne observa-

tories.
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banian, É. Simon, S. Spieckermann, S. Ramana Subramanyam, J. Syg-

nowski, J. Tanguay, G. van Tulder, J. Turian, S. Urban, P. Vincent,

F. Visin, H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson, K. Xu,

L. Xue, L. Yao, S. Zhang, Y. Zhang, Theano: A Python framework

for fast computation of mathematical expressions, arXiv e-prints (2016)680

arXiv:1605.02688arXiv:1605.02688.

[15] M. Berger, J. Hubbell, S. Seltzer, J. Chang, J. Coursey, R. Suku-

mar, D. Zucker, K. Olsen, Xcom: Photon cross section database

(version 1.5), http://physics.nist.gov/xcom, [Online] Available:

http://physics.nist.gov/xcom [2020, February 12] (2010).685

41

http://arxiv.org/abs/1605.02688
http://physics.nist.gov/xcom

	Introduction
	Experimental setup and measurements
	Cerium bromide calorimeter module
	Test bench

	Data characterization
	Spectra and energy selection
	Corrections to improve spectral resolution
	Morphology of events

	Position reconstruction
	Artificial neural networks
	Optimization of 2D position reconstruction
	Datasets
	Performance indicators
	Exploration of ANN's architecture parameters space
	Energy dependency
	Position resolution

	Depth of interaction reconstruction
	Data acquisition and selection
	Performance indicators
	Exploration of ANN's architecture parameters space
	Depth of interaction reconstruction at low energies


	Results and discussion
	Conclusions

