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Abstract. The Nagaev-Guivarc’h operator perturbation method is well known to provide
various probabilistic limit theorems for Markov random walks. A natural conjecture is that this
method should provide these limit theorems under the same moment assumptions as the optimal
ones in the case of sums of independent and identically distributed random variables. In the
past decades, assumptions have been weakened, without achieving fully this purpose (achieving
it either with the help of an extra proof of the central limit theorem, or with an additional ε in
the moment assumptions). The aim of this article is to give a positive answer to this conjecture
via the Keller-Liverani theorem. We present here an approach allowing the establishment of
limit theorems (including higher order ones) under optimal moment assumptions. Our method
is based on Taylor expansions obtained via the perturbation operator method, combined with
a new weak compacity argument without the use of any other extra tool (such as Martingale
decomposition method, etc.).

1. Introduction

Let (Xn)n≥0 be a Markov chain with values in Ω, with transition operator P and with sta-
tionary measure µ and f : Ω × Ω ×E → R be a measurable function. Let ν be the distribution
of X0 (i.e. the initial distribution of the Markov chain). We set Pν for the Markov distribution
with transition operator P and initial probability measure ν. We are interested in the study of
the Markov random walk (Sn)n≥1 given by1

Sn :=
n∑

k=1
Yk with Yk := f(Xk−1Xk, Zk) ,

where Zi are independent and identically distributed (i.i.d.) random variables independent of
(Xk)k and with common distribution P. We assume moreover throughout this article that Y1
is centered with respect to Pµ ⊗ P. Our goal is to establish probabilistic limit theorems for
(Sn)n≥1 under moment assumptions known to be optimal in the case of sums of independent
and identically distributed (i.i.d.) random variables. Recall that if (Yk)k≥1 were a sequence of
centered i.i.d. random variables:

• If Y1 ∈ L2(µ), then the usual central limit theorem (CLT) holds true : (Sn/
√
n)n≥1

converges in distribution to a centered Gaussian random variable W with variance E[Y 2
1 ],

with density hW .
• If Y1 ∈ L2(µ) is Z-valued and satisfies some non-lattice condition, then the usual local

limit theorem (LLT) holds true: P(Sn = k) ∼ hW(k/
√
n)n− 1

2 , uniformly in k ∈ Z.
• If Y1 ∈ L3(µ) and satisfies some non-lattice condition, then there is a first order Edge-

worth expansion: P
(

Sn√
n

≤ x
)

= P (W ≤ x) + B1(x)
n

1
2
hW(x) + o(n− 1

2 ), uniformly in x ∈ R,
where B1 is a polynomial function.

• If Y1 ∈ Lr+2(µ) is Z-valued and satisfies some non-lattice condition, then there is an
expansion of order r in the LLT: P (Sn = k) = hW(0)n− 1

2 +
∑⌊r/2⌋

j=1
Aj(k)
n

1
2 +j

+ o(n− 1+r
2 ),

where Aj is a polynomial function.
• If Y1 ∈ Lr+2(µ) satisfies some non-lattice condition as well as some diophantine condition

of the form E[eisY1 ] < e−Ĉ|s|−α for all s large enough (see [8]), then there is an Edgeworth
expansion of order r: P

(
Sn√

n
≤ x

)
= P (W ≤ x) +hW(x)

∑r
j=1

Bj(x)

n
j
2

+ o(n− r
2 ), uniformly

in x ∈ R, for some polynomial functions Bj .
1We explain in appendix that this notion includes the discrete-time Markov additive processes considered

in [24].
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We will establish such results for Markov random walks. We will also investigate other results
such as

• convergence to a stable distribution in the multi-dimensional setting,
• local limit theorem for observables with values in Zd, including the case of convergence

to stable distributions,
• expansions in the LLT for non Z-valued random variables.

We will state general results in the context of geometrically ergodic Markov chains and will
illustrate all of them on a toy model of Knudsen gas. Let us recall that the Markov chain
(Xn)n≥0 (or equivalently its transition operator P ) is said to be geometrically ergodic on some
complex Banach space of functions B1 if its transition operator P satisfies

∃ϑ ∈]0, 1[, ∥Pn − Eµ[·]∥L(B1) = O(ϑn) . (1)

As a consequence of our general results, we will prove limit theorems under optimal moment
assumptions. We illustrate our results on classical families of Markov random walks (for ρ-
mixing, V -geometrically ergodic Markov chains or Lipschitz iterative Markov chains) and obtain
in particular the following result.

Theorem 1.1. Let m ≥ 2 and κ > 0. Assume one of the following conditions holds true:

• either P is ρ-mixing, ν = µ and Y1 ∈ Lm(Pµ ⊗ P) centered;
• or there exists ϑ ∈]0, 1[, C > 0 and an unbounded continuous function V : Ω →

[1,+∞[ such that Eµ[V ] + Eν [V
κ
m ] < ∞ and

∥∥∥P n(·)−Eµ[·]
V

∥∥∥
∞

≤ Cϑn∥ · /V ∥∞. Assume
sup(x,y)∈Ω2 E [|f(x, y, Z1)|m] /(V (x) + V (y)) < ∞, Y1 is centered with respect to Pµ ⊗ P.

• or (Ω, d) is a non-compact metric space, P (g) = E[g(F (x, θ))] with θ a random variable
and2 with F (·, θ) : Ω → Ω strictly contracting, f : Ω → R is Lipschitz continuous (we
consider here Yn = f(Xn)) and E

[
d (x0, F (x0, θ))(r+1)

]
+ Eν [d(x0, ·)κ] < ∞ (for some

fix x0 ∈ Ω).

Then (Sn/
√
n)n≥1 converges in distribution to a centered Gaussian random variable with vari-

ance matrix
∑

n∈Z Covµ⊗P⊗N

(
Y1, Y|n|+1

)
.3 Assume moreover that f is non-lattice (either in Zd

if we precise that f takes its values in Zd or in Rd otherwise). Then

(i) If f is Zd-valued, then (Sn)n≥1 satisfies the local limit theorem (LLT).
(ii) if d = 1, κ ≥ m−1, and m ≥ 3, then (Sn)n≥1 satisfies a first order Edgeworth expansion.
(iii) if d = 1, κ ≥ m− 1, m ≥ r + 2 and if f is Z-valued, then (Sn)n≥1 satisfies a LLT with

expansion of order r.
(iv) if d = 1, κ ≥ m− 1 and m ≥ r + 2, and if some diophantine condition is satisfied, then

there is an Edgeworth expansion of order r and also an expansion of order r in the LLT.

A simple case in which the diophantine condition holds true is if E[eisY1 |X0, X1] < e−Ĉ|s|−α

for all s large enough and for some α > 0 (with the additional assumption that r < α−1 + 1
2 for

r-order Edgeworth expansion). Let us indicate that other examples in compact situations are
given in [9].

This result will appear as an application of general results for Markov random walks, that
are consequences of Taylor expansions for eigenprojectors and for the dominating eigenvalue of

2Actually, we state a much more general result (Theorem 7.9) under weaker assumptions on F and f .
3In this manuscript, given two d-dimensional square integrable random variables A = (A1, ..., Ad) and B =

(B1, ..., Bd), we write Cov(A, B) for the symmetric matrix
(

Cov(Ai,Bj )+Cov(Aj ,Bi)
2

)
i,j=1,...,d

.
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the operators Pt obtained from the transition operator P by Fourier perturbation (P and Pt

acting on some complex Banach space B1). The use of operator perturbation techniques to prove
probabilistic limit theorem is usually called the Nagaev-Guivarc’h method in reference to the
seminal works by these two mathematicians [35, 36, 16] (see also [30] and [19]). This method
was first implemented in the case of nice bounded observables so that t 7→ Pt ∈ L(B1) is smooth
(continuous, Ck, analytic) implying the smoothness of the eigenprojectors. The Keller-Liverani
theorem [31] strenghen this approach making possible the study of the case of unbounded ob-
servables for which t 7→ Pt ∈ L(B1) is not continuous (see also [11] for a presentation of this
method in french). The idea consists in considering two Banach spaces B1 ⊂ B2 (with continuous
inclusion) and then in using the continuity of t 7→ Pt ∈ L(B1,B2) to prove the continuity of the
eigenprojectors as elements of L(B1,B2).

In [22, 23], Hervé proved a local limit theorem and a Berry-Esséen estimate (i.e. an edge-
worth expansion with error in O(n− 1

2 )) for geometrically ergodic Markov chains (including
V -geometrically ergodic) under the optimal assumption by proceeding in two steps: he first
establishes the central limit theorem (CLT) using another method (using a martingale approx-
imation, à la Gordin [13]) and then deduces from this result an expansion for the dominating
eigenvalue, the continuity of the eigenprojectors being ensured by the Keller and Liverani the-
orem. This argument was reused in [26]. This method relies on the fact that we both have the
continuity of the eigenprojectors and a proof of the CLT by another argument. Note also that
it can only work for limit theorems using only the first non null derivative of the dominating
eigenvalue λt of Pt, that is the dominating term of λt − 1 as t goes to 0 (remind that the geo-
metrically ergodicity implies that λ0 = 1 is the single dominating eigenvalue of P and that it is
simple with only constant eigenvectors). As soon as we need more derivatives, we have to find
another way.

The idea that continuity of the eigenprojectors and the first order term of λt −1 as t goes to 0
are enough to prove convergence in distribution as well as local limit theorems has been imple-
mented to prove convergence to stable distribution or gaussian distribution with non standard
normalization in [1, 39] in the context of dynamical systems (chaotic billiards) and in [17] in the
context affine random walks.

In [26], motivated by the establishment of further probabilistic limit theorems in Markovian
context under the weakest possible moment assumptions, with Hervé, we extended the continuity
statement of Keller and Liverani in a Cr-smoothness result. This approach enabled us to prove
some limit theorems under suboptimal assumptions, with an additional ε in the moment-type
assumptions. In particular, we proved the first order Edgeworth expansion under the suboptimal
moment assumption m > 3. The general Cr-perturbation theorem of [26] was later used again
in [24] and [25] in the context of Markov random walks and M -estimators, respectively.

In the present paper, using carefully a new weak compacity argument, we obtain the limit
theorems under the optimal moment assumptions without requiring an extra probabilistic argu-
ment (such as martingale approximation). In Section 2 we present the key ideas with a focus on
our new argument. We state in Sections 3 and 4 general results on quasi-compactness and Taylor
expansions (in t) of the resolvant and so of eigenprojectors for general families (Pt)t of continuous
linear operators. The last sections are devoted to the general context of Markov random walks.
In Section 5, we establish Taylor expansions for the dominating eigenvalue. Probabilistic limit
theorems are then infered in Section 6 (CLT, LLT, higher order expansions in the Berry-Esseén
theorem as well as in the local limit theorem) with the use of the general results of [10]. In
Section 7, we state probabilistic limit theorems in a general context of Markov chains and apply
it to examples, proving in particular Theorem 1.1. Actually, Section 7 contains more general
results (especially for Lipschitz iterative models). We end this article with an appendix, in which
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we explain how the Markov additive processes studied in e.g. [24] are in the scope of the present
work.

2. Overview of the key ideas of the proofs

The key idea of the Nagaev-Guivarc’h method [35, 36, 16] consists in

• noticing that
EPµ⊗P⊗N [eitSn ] = Eµ[Pn

t (1)] ,
and more generally that

EPν⊗P⊗N

[
g(X0) eitSn h(Xn)

]
= Eν [g Pn

t (h)] ,

with

Pt(h)(x) =
∫

E
P (eitf(x,·,ω)h(·))(x) dP(ω) = E

[
eitY1h(X1)

∣∣∣X0 = x
]
,

• using the fact that the geometric ergodicity of the Markov chain (see (1)), i.e. the quasi-
compactness with single simple dominating eigenvalue 1 of P on some Banach space
B1:

∃ϑ ∈]0, 1[, ∥Pn − Eµ[·]∥L(B1) = O(ϑn)
will imply the one of Pt, for small |t| with a uniform bound:

∃ϑ1 ∈]0, 1[, sup
|t|<b

∥Pn
t − λn

t Πt∥L(B1) = O(ϑn
1 ) , (2)

with λt ∈ C the dominating eigenvalue of Pt and with Πt ∈ L(B1) the corresponding
eigenprojector,

• in proving the smoothness of t 7→ λt and of t 7→ Πt,
• infering the probabilistic limit theorems using characteristic functions as in the case of

sums of i.i.d. random variables.

In this whole paper, we will work with different Banach spaces satisfying some continuous
embedding property that we introduce now. For two Banach spaces (Bj , ∥ · ∥(j)), j ∈ {1, 2}, the
notation B1 ↪→ B2 will mean that B1 ⊂ B2 and ∥ · ∥(2) ≤ ∥ · ∥(1).
In [31], Keller and Liverani proved that when t 7→ Pt ∈ L(B1) is not continuous but only
t 7→ Pt ∈ L(B1,B2) is continuous with B1 ↪→ B2, it may still be possible to implement this
method to get (2) and the continuity of t 7→ Πt ∈ L(B1,B2).
This idea has been extended in [26] to prove the Cr-smoothness of t 7→ Πt ∈ L(B1,B2) and
of t 7→ λt ∈ C. To this end, assuming Y1 ∈ Lr+1 and exploiting actually only the fact that
Y1 ∈ Lr+ε, we worked with a double chain of Banach spaces:

B0 ↪→ B̃0 ↪→ B1 ↪→ B̃1 ↪→ ... ↪→ Br ↪→ B̃r ↪→ L1

such that t 7→ Pt ∈ L(Bj , B̃j) is continuous and such that t 7→ Pt ∈ L(B̃j ,Bj+m) is Cm with Pt

acting quasi-compactly on each Bj and B̃j . It is proved in [26] that the resolvant and so the
eigenprojectors are Cr as elements of L(Bj , B̃j+m) and that t 7→ λt is also Cr.
This way of proceeding allowed us to prove limit theorems under suboptimal hypotheses (typi-
cally Y1 ∈ Lr+ε when the optimal condition in the i.i.d. case was Y1 ∈ Lr). This was already a
great improvement, but was not totally satisfactory because of the additional ε in the moment
assumptions.
We present here an approach that allows to obtain the optimal moment assumptions. Before
entering deaplier in the presentation of the operator method used here, we explain the key ideas
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making this adaptation possible (in particular a new key weak compacity argument in Lp com-
bined with tailored adaptations of the chain of Banach spaces). Assuming Y1 ∈ Lr+1, we work
with a single chain of Banach spaces:

B0 ↪→ B1 ↪→ B2 ↪→ ... ↪→ Br+1 ↪→ L1

such that the operators Pt are quasi-compact on B1, ...,Br and such that t 7→ Pt admits a Taylor
expansion with error in O(tm) in L(Br−m,Br), and with an error in o(tm) in L(Br−m,Br+1).
Compared to [26], we establish (see Proposition 4.1, Theorem 5.5 and Corollary 5.6):

• Taylor expansions for eigenprojectors
– take the first space B0 to be the space of constant functions which is preserved just

by P , we do not assume that Pt acts on B0 (gain of space at the begining of the
chain),

– replace Cr-smoothness of t 7→ Pt and t 7→ Πt by Taylor expansions with error in
O(tr) in L(B0,Br), and with an error in o(tr) in L(B0,Br+1) (gain of space all along
the chain, gain of space at the end of the chain for the estimate in O(tr)), 4

– choose the spaces Bj so that Bj ↪→ L
r+1

j ,
• Taylor expansion for the dominating eigenvalue by a key weak compacity argument

– The o(tr+1)-Taylor expansion of the dominating eigenvalue will follow from an o(tr)-
Taylor expansion of Eµ[Πt(1)] and from o(tr+1) Taylor expansions of Eµ[(eitf − 1)]
and of Eµ[(eitf − 1)(Πt − Π0)(1)] (Fact 3.2). The main issue is to prove this last
expansion. But, to this end, only r-order Taylor expansions of eitf − 1 and (Πt −
Π0)(1) will be needed.

– o(tr+1)-Taylor expansion of Eµ[(eitf − 1)(Πt − Π0)(1)]: make an o(tr)-Taylor ex-
pansion of (eitf − 1) and study individually each term Eµ[ (itf)k

k! (Πt − Π0)(1)], for
k = 1, ..., r.

– o(tr+1)-Taylor expansion of Eµ[ (itf)k

k! (Πt − Π0)(1)]: first use an O(tr+1−k)-Taylor
expansion of (Πt − Π0)(1) ∈ Br+1−k to prove weak compacity in the reflexive space
L

r+1
r+1−k , second use o(tr+1−k)-Taylor expansions in Br+1 ↪→ L1(µ) to identify the

weak limit. Conclude.
– gather the terms and conclude the desired o(tr+1)-Taylor expansion of Eµ[(eitf −

1)(Πt − Π0)(1)].
– The o(tr+1)-Taylor expansion of Eµ[(eitf − 1)] and the o(tr)-Taylor expansion of

Eµ[Πt(1)] follow directly from the corresponding Taylor expansions of respectively
(eitf − 1) in L1(µ) and Πt(1) in Br+1 ↪→ L1(µ).

3. Quasi-compactness and perturbation

Let B1 be complex Banach space. We write L(B1) for the set of continuous linear operators
on B1. For any continuous linear operator P ∈ B1, we write ρ(P ) for its spectral radius and
ρess(P ) for its essential spectral radius. Recall that the operator P is said to be quasi-compact
if ρess(P ) < ρ(P ).

Theorem 3.1 (Browder [4]). Let P ∈ L(B1) be quasi-compact. Let r ∈]ρess(P ), ρ(P )[. Then
the spectrum of P outside B(0, r) consists in a finite number of eigenvalues λ1, ..., λs (isolated

4Let us indicate for completness that, in our examples, it has been proved in [26] that t 7→ Pt ∈ L(B0, Br+1) is
Cr. Indeed, in these situations, there is a continuum of Banach spaces and so the space between Br and Br+1 (to
get o(tr)) can be spread along the chain to add spaces B̃j , up to slightly moving the spaces B0, ..., Br. Nevertheless
we do not need this smoothness but just the Taylor expansion with error in o(tr).
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in the spectrum of P ) and there exist positive integers m1, ...,ms such that

B1 = ⊕s
j=0Ej , with P (Ej) ⊂ Ej and ∥Pn

|E0
∥ = O(rn) ,

with, for all j = 1, ..., s, Ej := ker(P − λj Id)mj and dim(Ej) < ∞. For every j = 0, ..., s, there
exists a continuous linear projection Π[j] : B1 → Ej such that

s∑
j=0

Π[j] = Id, PΠ[j] = Π[j]P, Π[j]Π[ℓ] = δj,ℓΠ[j]

and
∀n ≥ 0, PnΠ[j] = 1

2iπ

∫
Γj

zn(z Id −P )−1 dz , (3)

with Γ0 an oriented circle C(0, r0) containing no λj and with r0 < r, and with, for j = 1, ..., s,
Γj an oriented circle C(λi, ri) ⊂ C such that λj is the only spectral value of P contained in the
closed disk D(λi, ri].
If moreover mj = 1 for every j = 1, ..., s, then

Pn =
s∑

j=1
λn

j Π[j] + PnΠ[0], with ∥PnΠ[0]∥ = O(rn) .

We consider now a quasi-compact operator P ∈ L(B) with simple peripherical spectrum and
a family of quasi-compact operators (Pt)|t|<δ such that P0 = P and admitting the same type of
decomposition as P :

Pn
t =

s∑
j=1

λn
j,tΠ[j],t +Nn

t , with ∥Nn
t ∥ = O(rn) ,

with λj,t contained in the open disk D(λj , rj [. We will use the Keller-Liverani perturbation
theorem recalled at the end of this section to prove that the family of operators we are considering
satisfies this property.
Due to Theorem 3.1, the regularity in t of the eigenelements Π[j],t of Pt will follow from the
regularity in t of the resolvant (z Id −Pt)−1 uniformly on z ∈

⋃s
j=0 Γj . Such results will be stated

in Proposition 4.1 thanks to Theorem 3.3 (Keller-Liverani perturbation theorem).
As explained in Section 2, we will deduce from this an higher order Taylor expansion for the

dominating eigenvalues due to the following key formula.

Fact 3.2 (see [1], or [21]). In this context (assuming mj = 1), if vj ∈ ker(P − λj Id) and
φj ∈ ker(P ∗ − λj Id) are such that φj(vj) = 1 and that t 7→ φj ◦ Π[j],t(vj) is continuous, then
Pt(Π[j],t(vj)) = λj,t(Π[j],t(vj)) and, for t small enough, φj(Π[j],t(vj)) ̸= 0, and so

λj,t − λj =
φj

(
(Pt − P )(Π[j],t(vj))

)
φj

(
Π[j],t(vj)

) ,

where we used the fact that φj ◦ P = λjφj. Since Π[j] = φj(·)vj, it follows also that

λj,t − λj = φj ((Pt − P )vj) +
φj

(
(Pt − P )

(
Π[j],t(vj) − Π[j](Π[j],t(vj))

))
φj

(
Π[j],t(vj)

)
= φj ((Pt − P )vj) +

φj

(
(Pt − P )(Id −Π[j])(Π[j],t − Π[j])(vj)

)
φj

(
Π[j],t(vj)

) .
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In Theorem 3.3 below, an auxiliary space B2 is used to study the spectral properties of a
family of continuous linear operators acting on B1.

Theorem 3.3 (Keller-Liverani perturbation theorem, see [31] and [11]). Let V be a neighbour-
hood of 0 in Rd. Let (Pt)t∈V be a family of continuous linear operators on a Banach space
(B1, ∥ · ∥(1)). Let (B2, ∥ · ∥(2)) be a Banach space such that B1 ↪→ B2. Assume that there exist
positive real numbers C > 0, R > ρ(P0) and r ∈]ρess(P0), R[ such that (Pt)t∈V satisfies the
following uniform Doeblin-Fortet type inequality 5

∀t ∈ V, ∀f ∈ B1, ∀n ≥ 0 ∥Pn
t f∥(1) ≤ Crn∥f∥(1) +Rn∥f∥(2) . (4)

Assume moreover that P0 ∈ L(B2). Let ε ∈]0, R − r/2[. Assume P0 ∈ L(B1) has eigenvalues
λ[1], ..., λ[m] of modulus strictly larger than r + 2ε (here the eigenvalues are repeted with their
multiplicities), and with no other eigenvalues of modulus larger than or equal to r + ε. Assume
moreover that t 7→ Pt ∈ L(B1,B2) is continuous at 0. Then there exists a neighbourhood U of 0
contained in V such that, for any t ∈ U , Pt ∈ L(B1) is quasi-compact with ρess(Pt) < r + ε and
with eigenvalues λ[1],t, ..., λ[m],t of modulus strictly larger that r + ε and such that, furthermore,

sup
t∈U, z∈C : r+ε<|z|<R+ε, infj |z−λ[j]|>ε

∥(z Id −Pt)−1∥L(B1) < +∞ ,

lim
t→0

sup
z∈C : r+ε<|z|<R+ε, infj |z−λ[j]|>ε

∥∥∥(z Id −Pt)−1 − (z Id −P0)−1
∥∥∥

L(B1,B2)
= 0 ,

and, for all j=1,...,m,

lim
t→0

λ[j],t = λj ,

∀t ∈ U, dim
∑

i:λi=λj

⋃
k≥0

ker(Pt − λi,t Id)k = dim
⋃
k≥0

ker(Pt − λ[j] Id)k ,

lim
t→0

∥∥∥Π[0] − Π[0],t

∥∥∥
L(B1,B2)

= 0 and lim
t→0

∥∥∥∥∥∥Π[j] −
∑

i : λi=λj

Π[i],t

∥∥∥∥∥∥
L(B1,B2)

= 0 ,

where Π[i],t are the projectors associated to Pt ∈ L(B1) and λi,t as considered in Theorem 3.1.

This theorem ensures that

Pn
t =

 m∑
j=1

Pn
t Π[j],t

+Nn
t ,

with Nt := Pt ◦ Π[0],t satisfies supt ∥Nn
t ∥L(B1) = O ((r + ε)n). It will be crucial to notice that

in the particular case where all the characteristic spaces
⋃

k≥0 ker(Pt − λi,t Id)k consist only of
eigenvectors, then this decomposition can be simplified in

Pn
t =

 m∑
j=1

λn
[j],tΠ[j],t

+Nn
t .

5We call it Doeblin-Fortet type inequality in reference to [6].



LIMIT THEOREMS UNDER OPTIMAL MOMENT ASSUMPTIONS 9

4. Taylor expansions for the resolvant and eigenprojectors

The continuity in t ∈ Rd of the eigenprojectors stated in Theorem 3.3 appears as a consequence
of the continuity in t of the Resolvant Rz,t := (z Id −Pt)−1 of Pt, due to Formula (3) (taken with
n = 0) providing an expression of Π[j],t as an integral of (z Id −Pt)−1. In the present section,
we establish higher order Taylor expansions for the Resolvant t 7→ Rz,t = (z Id −Pt)−1, that will
imply immediately the corresponding Taylor expansions for t 7→ Π[j],t thanks to (3). This section
is devoted to the proof of the next result providing Taylor expansions of the resolvant. This result
contains estimates of orders 0 and 1 (useful to establish the convergence in distribution to stable
distributions for non square integrable observables) but also higher order Taylor expansions for
the resolvant. Since our result holds true in multi-dimension, we need to introduce some different
notions related to the multilinear forms appearing in multi-dimensional Taylor expansions.
We write Bd

1 = (B1)d for the set of d-dimensional vectors with entries in B1, and more generally
Bd⊗k

ℓ for the set of k-linear maps on (Rd)k with values in Bℓ, and we identify its elements H with
H = (hi1,...,ik

)i1,...,ik=1,...,d. We write t⊗m for (ti1 ...tim)i1,...,im=1,...,d and . for the scalar product.
Finally, for any H(1) ∈ L(Bi,Bd⊗m

j ) and H(2) ∈ L(Bj ,Bd⊗k

ℓ ), we write

H(2) ⊗ H(1) :=

 1
(m+ k)!

∑
σ∈Sm+k

H(2)
iσ(1),...,iσ(m)

H
(1)
iσ(m+1),...,iσ(m+k)


i1,...,im+k=1,...,d

,

where we write as usual Sm+k for the set of permutations of {1, ...,m+k}. Note that, with these
notations, H(2) ⊗ H(1) ∈ L(Bi,Bd⊗m+k

ℓ ) and that (H(2) ⊗ H(1)).t⊗(k+m) = (H(2).t⊗k)(H(1).t⊗m).
In dimension 1 (when d = 1), ⊗ as well as . both correspond to the usual product, t⊗m simply
to tm and Bd⊗k

ℓ to Bℓ.

Proposition 4.1. Let δ > 0, Γ ⊂ C and r be a nonnegative integer. Let (Bj , ∥ · ∥(j)), j ∈
{0, ..., r+ 1} be a chain of (r+ 2) Banach spaces, increasing in the sense that Bj ↪→ Bj+1 for all
j = 0, ..., r. Let (Pt)t be a family of linear operators acting continuously on B1, ...,Br+1 (for all
t ∈ Rd such that |t| < δ). Assume P = P0 acts continuously on B0 and that

K0 := sup
j=1,...,r+1

sup
|t|<δ

sup
z∈Γ

(
∥(z Id −Pt)−1∥L(Bj) + ∥(z Id −P )−1∥L(B0)

)
< ∞ . (5)

Let (P (k)
0 )k=0,...,r be a family of operators such that, for all k = 0, ..., r, P (k)

0 ∈
⋂r−k

j=0 L(Bj ,Bd⊗k

j+k)
and such that P (0)

0 = P0. Then

(A) for all j = 0, ..., r,∥∥∥(z Id −Pt)−1 − (z Id −P )−1
∥∥∥

L(Bj ,Bj+1)
≤ K2

0 ∥Pt − P∥L(Bj ,Bj+1) . (6)

(B) If r = 1 then, setting P ′
0 = P

(1)
0 ,∥∥∥(z Id −Pt)−1 − (z Id −P )−1 − (z Id −P )−1(P ′

0.t)(z Id −P )−1
∥∥∥

L(B0,B2)

≤ K2
0
∥∥Pt − P − P ′

0.t
∥∥

L(B0,B2) + |t|K3
0∥Pt − P∥L(B1,B2)∥P ′

0∥L(B0,Bd
1) . (7)

(C) If 6

∀j = 0, ..., r,

∥∥∥∥∥∥Pt −
r−j∑
k=0

P
(k)
0
k! .t⊗k

∥∥∥∥∥∥
L(Bj ,Br)

≤ K1|t|r−j ,

6Note that Br+1 does not play any role in this result and thus we can take Br+1 = Br.
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then there exists a constant K̃r which is given by a polynomial expression in K0,K1 such
that ∥∥∥∥∥∥(z Id −Pt)−1 − (z Id −P )−1 −

r∑
j=1

R
(j)
z,0.t

⊗j

∥∥∥∥∥∥
L(B0,Br)

≤ K̃r|t|r ,

for all |t| < δ and all z ∈ Γ, with

R
(j)
z,0 := (z Id −P )−1 ∑

ℓ≥1,k1,...,kℓ≥1 : k1+...+kℓ=j

Akℓ
⊗ · · · ⊗ Ak1 ,

and Aℓ := P
(ℓ)
0
ℓ! (z Id −P )−1 ∈

⋂r−ℓ
j=0 L(Bj ,Bd⊗ℓ

j+ℓ).

(D) If for all j = 0, ..., r,
∥∥∥∥Pt −

∑r−j
k=0

P
(k)
0
k! .t

⊗k

∥∥∥∥
L(Bj ,Br+1)

= o(|t|r−j), then, on L(B0,Br+1),

(z Id −Pt)−1 − (z Id −P )−1 −
r∑

j=1
R

(j)
z,0.t

⊗j = o(|t|r) ,

uniformly in |t| < δ and z ∈ Γ, with the same notations as in the previous item.

It may be worthwhile to note that

R
(j)
z,0.t

⊗j = (z Id −P )−1 ∑
ℓ≥1,k1,...,kℓ≥1 : k1+...+kℓ=j

(Akℓ
.t⊗kℓ) · · · (Ak1 .t

⊗k1) .

Since, in our examples, Pt will have the form P (eit.f ·), the Taylor expansions of t 7→ Pt ∈
L(Bj ,Bj+m) will be proved using Taylor expansions in t of t 7→ (eit.f ·) ∈ L(Bj ,Bj+m) and the
operators P (ℓ)

0 will have the form P
(ℓ)
0 = P ((if)⊗ℓ·).

Remark 4.2. In practice we will prove the first part of Assumption (5) (about the control
of ∥(z Id −Pt)−1∥L(Bj)) by applying Theorem 3.3 with Banach spaces Bj ↪→ Bj+1 for all j =
1, ..., r+1 and thus we will need a (r+3)-th Banach space Br+2. For the second part of Assump-
tion (5) (control of ∥(z Id −P )−1∥L(B0)), a useful idea (used several times in applications) will
be to take the eigenspace associated to the dominating eigenvalue (in our applications, it will be
the space of constant functions).

We could have stated the previous lemma in a much more general way by replacing P (k)
0 .t⊗k

by ak,t and Ak.t
⊗k by ak,t

k! (z Id −P )−1 ∈
⋂r−ℓ

j=0 L(Bj ,Bj+ℓ). We have not chosen this presentation
since we do not have application in mind, except maybe the case of convergence to stable distri-
bution, but for which in practice Item (A) is enough (see Proposition 5.11 and Example 5.12).

Proof of Proposition 4.1. We will use the following key identity
(z Id −Pt)−1 − (z Id −P )−1 = (z Id −Pt)−1(Pt − P )(z Id −P )−1 .

Observe that Item (A) is a direct consequence of this identity. Analogously
(z Id −Pt)−1 − (z Id −P )−1 − (z Id −P )−1(P ′

0.t)(z Id −P )−1

= (z Id −Pt)−1(Pt − P )(z Id −P )−1 − (z Id −P )−1(P ′
0.t)(z Id −P )−1

= (z Id −Pt)−1(Pt − P − P ′
0.t)(z Id −P )−1 +

[
(z Id −Pt)−1 − (z Id −P )−1

]
(P ′

0.t)(z Id −P )−1

The first term has norm less than K2
0 ∥Pt − P − P ′

0.t∥L(B0,B2) in L(B0,B2) and the second one
can be rewritten

(z Id −Pt)−1(Pt − P )(z Id −P )−1(P ′
0.t)(z Id −P )−1 ,
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which ends the proof of (B).
To establish (C), we prove by induction on m = 1, ..., r that∥∥∥∥∥∥Rz,t −Rz,0 −

m−1∑
j=1

R
(j)
z,0.t

⊗j

∥∥∥∥∥∥
L(Br−m,Br)

≤ K̃m|t|m , (8)

for all |t| < δ and z ∈ Γ. Due to Item (A) applied with j = r− 1, (8) holds true for m = 1 with
K̃1 = K1K

2
0 . for all |t| < δ and z ∈ Γ.

Let N = 2, ..., r. Assume (8) holds true for all m = 0, ..., N − 1, and let us prove it holds also
true for m = N . Observe that

Rz,t −Rz,0 = Rz,t(Pt − P )Rz,0

= Rz,t

N−1∑
k=1

P
(k)
0
k! .t⊗kRz,0 + O(|t|N )

=
N−1∑
k=1

(Rz,t −Rz,0) Ak.t
⊗k +Rz,0

N−1∑
k=1

Ak.t
⊗k + O(|t|N ) , (9)

in L(Br−N ,Br), with O(|t|N ) bounded byK2
0K1 (uniformly in t, z). Recall that Ak ∈ L(Br−N ,Bd⊗k

r−N+k).
It follows from the inductive hypothesis that, for any k = 1, ..., N − 1,

Rz,t −Rz,0 =
∑

ℓ≥1,k1,...,kℓ≥1 : k1+...+kℓ≤N−k−1
Rz,0(Akℓ

.t⊗kℓ) · · · (Ak1 .t
⊗k1) + O(|t|N−k)

in L(Br−N+k,Br) uniformly in t, z. Using this formula in the first sum in the right hand side of
(9) ends the induction and so the proof of Item (C).
It remains finally to prove Item (D). To this end, it is enough to prove by induction onm = 0, ..., r
that, on L(Br−m,Br+1),

Rz,t −Rz,0 −
∑

ℓ≥1,k1,...,kℓ≥1 : k1+...+kℓ≤m

(z Id −P )−1(Akℓ
.t⊗kℓ) · · · (Ak1t

⊗k1) = o(|t|m) (10)

uniformly in |t| < δ and z ∈ Γ. This is true for m = 0 since

Rz,t −Rz,0 = Rz,t(Pt − P )Rz,0 = o(1) ,

on L(Br,Br+1) uniformly in t, z. Fix N = 2, ..., r. Assume (10) for all m = 0, ..., N − 1 and let
us prove it holds also true for m = N . Observe that

Rz,t −Rz,0 = Rz,t(Pt − P )Rz,0

= Rz,t

N∑
k=1

P
(k)
0
k! .t⊗kRz,0 + o

(
|t|N

)

=
N∑

k=1
(Rz,t −Rz,0) Ak.t

⊗k +Rz,0

N∑
k=1

Ak.t
⊗k + o

(
|t|N

)
,

in L(Br−N ,Br+1) uniformly in t, z. Recall that Ak ∈ L(Br−N ,Bd⊗k

r−N+k). It follows from the
inductive hypothesis that

Rz,t −Rz,0 =
∑

ℓ≥1,k1,...,kℓ≥1 : k1+...+kℓ≤N−k

Rz,0(Akℓ
.t⊗kℓ) · · · (Ak1 .t

⊗k1) + o(|t|N−k)

in L(Br−N+k,Br+1) uniformly in t, z. This ends the proof of Item (D) and so of Proposition 4.1.
□
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To make easier the comparison with previous works, let us recall the result of [26, Appendix
A] about Cr-smoothness.

Proposition 4.3 ([26]). Assume there exists a double chain of Banach spaces

B0 ↪→ B̃0 ↪→ B1 ↪→ B̃1 ↪→ ... ↪→ Br ↪→ B̃r .

Assume (Pt)t∈U is a family of linear operators acting continuously on all these Banach spaces
(with U an open subset of Rd) such that

sup
j=0,...,r

sup
t∈U

sup
z∈Γ

(
∥(z Id −Pt)−1∥L(Bj) + ∥(z Id −Pt)−1∥L(B̃j)

)
< ∞ ,

and such that t 7→ Pt ∈
⋂r

j=0 L
(
Bj , B̃j

)
is continuous on U ⊂ Rd and such that t 7→ Pt ∈⋂r−m

j=0 L(B̃j ,Bj+m) is Cm. Then t 7→ (z Id −Pt)−1 ∈ L(B0, B̃r) is Cr, with derivatives at 0 given
by the Taylor expansion established in Proposition 4.1.

Proof. This result follows directly [26, Proposition A] applied with I =
⋃m

j=1{Bj , B̃j}, T0(Bj) =
B̃j , T1(B̃j) = Bj+1 (up to identify I with a subset of R). □

5. Expansions of Fourier eigenprojectors and eigenvalues in Markovian or
dynamical contexts

5.1. General context and toy model. In this section, we will see how the general results of
Section 4 can be implemented to study dynamical or markovian random walks (Sn)n≥1 defined
as follows.

Hypothesis 5.1. Let (Ω,F , µ) and (E, T ,P) be two probability spaces.

(I) either Xn = Tn where T : Ω → Ω is a µ-preserving transformation, with transfer
operator P and f : Ω × E → Rd is a measurable µ ⊗ P-centered function. We consider
ν a probability measure on Ω absolutely continuous with density h with respect to µ. To
unify notations with the markovian setting, we also set Pµ = µ and f(x, y, ω) := f(y, ω).

(II) or (Xn)n≥0 is a Markov chain (identified with the canonical Markov chain) with values
in Ω and with stationary measure µ and f : Ω × Ω × E → Rd is a measurable function.
Let ν be the distribution of X0 (i.e. the initial distribution of the Markov chain). We set
Pν for the Markov distribution with transition operator P and initial probability measure
ν. We assume that ((xk)k, ω) 7→ f(x0, x1, ω) is Pµ ⊗ P-centered.

We set
Pt(h)(x) =

∫
E
P
(
eit.f(x,·,ω)h(·)

)
(x) dP(ω) ,

and Sn :=
∑n

k=1 Yk with Yk := f(Xk−1, Xk, Zk) where Zi are i.i.d. random variables independent
of (Xk)k≥0 and with common distribution P. 7

In the dynamical setting (I), identifying H(x, ω) with H(x):

Eµ [g Pn
t (hG)] = Eµ⊗P⊗N

[
(g ◦ Tn)eit.Sn .hG

]
= Eν⊗P⊗N

[
(g ◦ Tn)eit.SnG

]
. (11)

7Let us indicate for completness that Markov random walks are usually defined as a Markov chain (Xn, S̃n)n≥0
satisfying

E
[

h(Xn, S̃n)
∣∣Xn−1 = x, S̃n−1 = y

]
= E

[
h(Xn, y + S̃n)

∣∣Xn−1 = x, S̃n−1 = 0
]

.

and that we aprove in appendix that these two definitions are equivalent.



LIMIT THEOREMS UNDER OPTIMAL MOMENT ASSUMPTIONS 13

In the Markovian setting (II), Pt(h)(x) = E
[
eit.Y1h(X1)

∣∣∣X0 = x
]
, and so

Eν [g Pn
t (h)] = EPν⊗P⊗N

[
g(X0)eit.Snh(Xn)

]
. (12)

Before considering applications seen in Theorem 1.1, we will state results in the general dy-
namical or markovian context and will illustrate them on the following toy model of Knudsen
gas considered in [3], which is one of the simplest example of uniformly geometrically ergodic
Markov chains (i.e. satisfying (1) with B1 = L∞ the set of uniformly bounded complex-valued
functions on Ω).

Example 5.2 (a Toy model of Knudsen gas). Let r be a nonnegative integer. Let (Ω,F , µ) be a
probability space and α ∈]0, 1[. Consider the Markov chain (Xn)n with transition operator given
by

P (h) = αh+ (1 − α)Eµ[h] , i.e. P (h− Eµ[h]) = α(h− Eµ[h]) .
This Markov chain describes the evolution of a process which, at each step, remains the same
with probability α and changes to an independent copy of distribution µ with probability 1 − α.
We consider also Yn = f(Xn), with f : Ω → Rd centered and admitting moments of order (r+1)
with respect both to the invariant distribution µ and to the initial distribution ν. Then Pt is
given by

Pt(h)(x) = αeitf(x)h(x) + (1 − α)Eµ[eitfh] .

More generally, we will consider the context described in the following:

Remark 5.3. Assume Hypothesis 5.1 and that P is geometrically ergodic on some Banach
space B1 ↪→ L1(µ) containing the constant functions, so that ∥Pn −Eµ∥L(B1) = O(ϑn) (for some
ϑ ∈]0, 1[). Let ϑ1 ∈]ϑ, 1[. Assume moreover that the assumptions of Theorem 3.3 are satisfied
for this choice of (Pt,B1) and for some B2. Then there exists δ0 > 0 such that, in L(B1),

∀|t| < δ0, Pn
t = λn

t Πt +Nn
t , with sup

|t|<δ0

∥Nn
t ∥B1 = O(ϑn

1 ) , (13)

with t 7→ Πt ∈ L(B1,B2) and t 7→ λt ∈ C continuous and Π0 = Eµ[·]1 and λ0 = 1. Moreover
Theorems 3.1 and 3.3 ensure that Πt and Nt are given by the following formulas

Πt := 1
2iπ

∫
Γ1

(z Id −Pt)−1 dz, Nn
t := 1

2iπ

∫
Γ0
zn(z Id −Pt)−1 dz , (14)

with Γ1 the oriented circle C(1, δ) and Γ0 the oriented circle C(0, a), with ϑ1 < a < a + δ < 1
and that

sup
|t|<δ0, z∈Γ1∪Γ0

∥(z Id −Pt)−1∥L(B1) < ∞ ,

with t 7→ Rz,t = (z Id −Pt)−1 ∈ L(B1,B2) continuous on {t ∈ Rd : |t| < δ0} (uniformly in
z ∈ Γ1 ∪ Γ0).

Example 5.4 (Knudsen gas). We consider again the Knudsen gas introduced in Example 5.2.
Note that

∀p ∈ [1,+∞], ∥Pn(h) − Eµ[h]∥Lp(µ) = αn∥h− Eµ[h]∥Lp(µ) ,

and if ν ̸= µ, it is worthwhile to notice that we also have

∀γ ∈ [0,+∞[,
∥∥∥∥Pn(h) − Eµ[h]

(1 + |f |)γ

∥∥∥∥
∞

= αn

∥∥∥∥h− Eµ[h]
(1 + |f |)γ

∥∥∥∥
∞

≤ (1 + Eµ[(1 + |f |)γ ])αn

∥∥∥∥ h

(1 + |f |)γ

∥∥∥∥
∞
.

Thus, since |Pn
t (h)| ≤ Pn(|h|), Theorem 3.3 applies with

• Bi := Lpi(µ) for all p1, p2 such that 1 ≤ p2 < p1 ≤ +∞,
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• and also (useful when ν ̸= µ) with Bi = (1 + |f |)γiL∞ for all γ1, γ2 such that 0 ≤ γ1 <
γ2 < ∞ and E [|f |γ2 ] < ∞, where we write again L∞ for the set of bounded measurable
complex valued functions on Ω and Bi being endowed with the norm

∥∥∥ ·
(1+|f |)γi

∥∥∥
∞

.

In the general context of Remark 5.3, Item (C) (resp. Item (D)) of Proposition 4.1 applied
to this context will provide the following expansions for Π and Nn:∥∥∥∥∥Πt −

r−1∑
k=0

Π(k)
0
k! .t⊗k

∥∥∥∥∥
L(B0,Br)

= O(|t|r) and
∥∥∥∥∥Nn

t −
r−1∑
k=0

(Nn)(k)
0

k! .t⊗k

∥∥∥∥∥
L(B0,Br)

≤ O(an)O(|t|r) ,

(resp. with (O(tr),Br) being replaced by (o(tr),Br+1)) with Π(k)
0 , (Nn)(k)

0 ∈
⋂r−k

j=0 L(Bj ,Bd⊗k

j+k)
given by

Π(k)
0
k! := 1

2iπ

∫
Γ1

∑
ℓ≥1,k1,...,kℓ≥1 : k1+...+kℓ=k

(z Id −P )−1Akℓ
⊗ · · · ⊗Ak1 dz (15)

and
(Nn)(k)

0
k! := 1

2iπ

∫
Γ0
zn

∑
ℓ≥1,k1,...,kℓ≥1 : k1+...+kℓ=k

(z Id −P )−1Akℓ
⊗ · · · ⊗ Ak1 dz , (16)

with Aℓ = P (ℓ)

ℓ! (z Id −P )−1 ∈
⋂r−ℓ

j=0 L(Bj ,Bd⊗ℓ

j+ℓ).

5.2. Square integrable observables.

Theorem 5.5 (Key result for probabilistic limit theorems). Let δ0 > 0. Assume Hypothesis 5.1.
Let r be a nonnegative integer and Y1 ∈ Lr+1(Pµ ⊗ P). Let (Bj , ∥ · ∥(j)), j = 0, ..., r + 1 be a
chain of (r + 2) Banach spaces such that, for all j = 1, ..., r + 1, Bj−1 ↪→ Bj, Bj ↪→ L

r+1
j (µ).

Assume that Pt (for |t| < δ0) acts continuously on B1, ...,Br+1 and that P0 acts continuously on
B0. Assume moreover that h,1 ∈ B0 and that g : Ω → R is such that Eν [g·] defines a continuous
linear form on Br. We also assume that (13) with (14) hold true on B1 and that

sup
j=1,...,r+1

sup
|t|<δ0

sup
z∈Γ0∪Γ1

(
∥(z Id −Pt)−1∥Bj + ∥(z Id −P )−1∥B0

)
< ∞ , (17)

and that, for all m = 0, ..., r, Pt −
∑m

k=0
P

(k)
0
k! .t

⊗k is both in O(tm) in
⋂r−m

j=0 L(Bj ,Bj+m) and in
o(tm) in L(Br−m,Br+1), with

P
(k)
0 (h)(x) = ikQk(h) :=

∫
E
P
(
(if(x, ·, ω))⊗kh(·)

)
(x) dP(ω) ∈

r−k⋂
j=0

L(Bj ,Bd⊗k

j+k) .

Then

Eν [g Pn
t (h)] = λn

t

(
r∑

ℓ=0

t⊗ℓ

ℓ! .Eν

[
gΠ(ℓ)

0 (h)
]

+ O(tr)
)

+
r∑

ℓ=0

t⊗ℓ

ℓ! .Eν

[
g (Nn)(ℓ)

0 (h)
]
+O(an|t|r) , (18)

with Π(ℓ)
0 and (Nn)(ℓ)

0 given by (15) given by (16).
If moreover Eν [g·] defines a continuous linear form on Br+1, then

Eν [g Pn
t (h)] = λn

t

(
r∑

ℓ=0

t⊗ℓ

ℓ! .Eν

[
gΠ(ℓ)

0 (h)
]

+ o(tr)
)

+
r∑

ℓ=0

t⊗ℓ

ℓ! .Eν

[
g (Nn)(ℓ)

0 (h)
]

+ O(ano(|t|r)) .

(19)
Moreover

λt − 1 =
r+1∑
k=2

EPµ⊗P[(it.Y1)k]
k! +

∑r
k=1

∑r+1−k
ℓ=1

t⊗(k+ℓ)

k!ℓ! Eµ[P (k)
0 (Π(ℓ)

0 (1) − Eµ[Π(ℓ)
0 (1)])]

1 +
∑r−1

ℓ=1
t⊗ℓ

ℓ! Eµ[Π(ℓ)
0 (1)]

+ o(|t|r+1) .
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Note that, in the Markovian context,

t⊗(k+ℓ).Eµ[P (k)
0 (Π(ℓ)

0 (g) − Eµ[Π(ℓ)
0 (g)])] = CovPµ⊗P

(
(it.Y1)k,Π(ℓ)

0 (1)(X1).t⊗ℓ
)
.

In particular, if f(x, y, z) = f(y) ∈ R, then

Eµ[P (k)
0 (Π(ℓ)

0 (g) − Eµ[Π(ℓ)
0 (g)])] = ikCovµ

(
f⊗k,Π(ℓ)

0 (1)
)
.

Before proving Theorem 5.5, we state a corollary and apply it to our Knudsen gas model.

Corollary 5.6. Let δ0 > 0, ϑ ∈]0, 1[, R > 0 and r be a nonnegative integer. Assume Hypothe-
sis 5.1 with Y1 ∈ Lr+1(Pµ ⊗ P). Let (Bj , ∥ · ∥(j))j=0,...,r+2 be a chain of (r + 3) Banach spaces
such that:

• for all j = 0, ..., r + 1, Bj ↪→ Bj+1, and for all j = 1, ..., r + 1, Bj ↪→ L
r+1

j (µ),
• for all j = 1, ..., r + 1, P is geometrically ergodic on Bj: ∥Pn − Eµ∥L(B1) = O(ϑn),
• 1 ∈ B0, P ∈ L(B0) and supz∈Γ0∪Γ1 ∥(z Id −P )−1∥B0 < ∞,

• for all m = 0, ..., r, Pt −
∑m

k=0
P

(k)
0
k! .t

⊗k is both in O(tm) in
⋂r−m

j=0 L(Bj ,Bj+m) and in
o(tm) in L(Br−m,Br+1), with

P
(k)
0 (h)(x) = ikQk(h) :=

∫
E
P
(
(if(x, ·, ω))⊗kh(·)

)
(x) dP(ω) ∈

r−k⋂
j=0

L(Bj ,Bd⊗k

j+k) ,

• t 7→ Pt ∈ L(Br+1,Br+2) is continuous at 0, P ∈ L(Br+2),
• for all |t| < δ0 and all j = 1, ..., r + 1,

∀f ∈ Bj , ∀n ≥ 0 ∥Pn
t f∥(j) ≤ ϑn∥f∥(j) +Rn∥f∥(j+1) . (20)

Assume that h ∈ B0 and that g : Ω → R is such that Eν [g·] defines a continuous linear form on
Br. Then the assumptions of Theorem 5.5 are satisfied (except maybe the fact that Eν [g·] is a
linear form on Br+1) and

Eν [g Pn
t (h)] = λn

t

(
r∑

ℓ=0

t⊗ℓ

ℓ! .Eν

[
gΠ(ℓ)

0 (h)
]

+ O(tr)
)

+
r∑

ℓ=0

t⊗ℓ

ℓ! .Eν

[
g (Nn)(ℓ)

0 (h)
]
+O(an|t|r) , (21)

with Π(ℓ)
0 and (Nn)(ℓ)

0 given by (15) given by (16) and

λt − 1 =
r+1∑
k=2

EPµ⊗P[(it.Y1)k]
k! +

∑r
k=1

∑r+1−k
ℓ=1

t⊗(k+ℓ)

k!ℓ! Eµ[P (k)
0 (Π(ℓ)

0 (g) − Eµ[Π(ℓ)
0 (g)])]

1 +
∑r−1

ℓ=1
t⊗ℓ

ℓ! Eµ[Π(ℓ)
0 (1)]

+ o(|t|r+1) .

Proof. Observe that, given ϑ1 ∈]ϑ, 1[, up to reduce the value of δ0, Theorem 3.3 applied with
Bj ,Bj+1 for j = 1, ..., r + 1 ensures that (13), (14) and the first part of (17). We conclude by
Theorem 5.5. □

Example 5.7 (Knudsen gas). Let Q ∈]r, r + 1[. Since Y1 ∈ Lr+1(Pµ ⊗ P) and since |Pt(H)| ≤
P (|H|), Example 5.2 satisfies the assumptions of Corollary 5.6 for g ∈ V1 for (18) and for
g ∈ Vr+1−Q for (19) with Bj = Vj for j = 0, ..., r, Br+1 = VQ and Br+2 = Vr+1, with

• either, if ν = µ, Vj := L
r+1

j (µ) (with convention r+1
0 = ∞),

• or, in the general case, Vj = (1 + |f |)jL∞.

This follows from Example 5.4 and from the two following facts∥∥∥∥∥Pt −
m∑

k=0

P ((it.f)k·)
k!

∥∥∥∥∥
L(Vj ,Vj+m)

≤ ∥P∥Vj+m

∥∥∥∥∥eit.f −
m∑

k=0

(it.f)k

k!

∥∥∥∥∥
Vm

≤ ∥P∥Vj+m

∥∥∥∥ |tf |m

m!

∥∥∥∥
Vm

= O(|t|m) ,
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and analogously∥∥∥∥∥∥Pt −
r−j∑
k=0

P ((it.f)k·)
k!

∥∥∥∥∥∥
L(Vj ,VQ)

≤ ∥P∥VQ

∥∥∥∥∥∥eitf −
r−j∑
k=0

(itf)k

k!

∥∥∥∥∥∥
VQ−j

≤ ∥P∥VQ

∥∥∥|tf |Q−j
∥∥∥

VQ−j

= O(tQ−j) .

Proof of Theorem 5.5. Items (C) and (D) of Proposition 4.1 apply, so that∥∥∥∥∥Nn
t −

r∑
ℓ=0

t⊗ℓ

ℓ! .(N
n)(ℓ)

0

∥∥∥∥∥
L(B0,Br)

= O(an|t|r),
∥∥∥∥∥Πt −

r∑
ℓ=0

t⊗ℓ

ℓ! .Π
(ℓ)
0

∥∥∥∥∥
L(B0,Br)

= O(|t|r) (22)

and∥∥∥∥∥Nn
t −

r∑
ℓ=0

t⊗ℓ

ℓ! .(N
n)(ℓ)

0

∥∥∥∥∥
L(B0,Br+1)

= O(ano(|t|r)),
∥∥∥∥∥Πt −

r∑
ℓ=0

t⊗ℓ

ℓ! .Π
(ℓ)
0

∥∥∥∥∥
L(B0,Br+1)

= o(|t|r) ,

(23)
with Π(ℓ)

0 , (Nn)(ℓ)
0 ∈

⋂r−ℓ
j=0 L(Bj ,Bd⊗ℓ

j+ℓ) given by (15) and (16). This ends the proof of (18)
and (19).

Due to Fact 3.2 with v0 = 1 and φ0 = Eµ[·],

λt − 1 = Eµ[(Pt − P )(1)] + Eµ [(Pt − P )(Id −Π0)(Πt − Π0)(1)]
Eµ[Πt(1)] .

The first expectation of the above right hand side is in
∑r+1

k=1
EPµ⊗P[(it.Y1)k]

k! + o(|t|r+1) since Y1
is (r + 1) times integrable and EPµ⊗P[Y1] = 0. Moreover, since 1 ∈ B0 and Br+1 ↪→ L1(µ), we
also know that

Eµ[Πt(1)] =
r∑

ℓ=0

t⊗ℓ

ℓ! .Eµ[Π(ℓ)
0 (1)] + o(tr) .

It remains to study
Eµ [(Pt − P )(Πt − Π0)(1)] .

Due to the dominated convergence theorem, since Y1 is (r + 1) times integrable,∥∥∥∥∥eit.Y1 −
r∑

k=0

(it.Y1)k

k!

∥∥∥∥∥
L

r+1
r (Pµ×P)

= o(tr) .

Thus, since B1 ↪→ Lr+1(Pµ ⊗ P), in case (I):

Eµ[(Pt − P )(Πt − Π0)(1)] = Eµ⊗P
[
(eit.f − 1)(Πt − Π0)(1)

]
=

r∑
k=1

Eµ⊗P[(it.f)k(Πt − Π0)(1)]
k! + o

(
|t|r∥(Πt − Π0)(1)∥(1)

)
. (24)

and, in case (II):

Eµ[(Pt − P )(Πt − Π0)(1)] = EPµ⊗P
[
(eit.Y1 − 1)(Πt − Π0)(1)(X1)

]
=

r∑
k=1

EPµ⊗P[(it.Y1)k(Πt − Π0)(1)(X1)]
k! + o

(
|t|r∥(Πt − Π0)(1)∥(1)

)
. (25)
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Fix k = 1, ..., r. Note that Y k
1 ∈ L

r+1
k (Pµ × P). Due to Proposition 4.1, we know that the

quantity Ψr+1−k,t(1) := Πt(1)−
∑r+1−k

ℓ=0
t⊗ℓ

ℓ! .Π
(ℓ)
0 (1) is in O(tr+1−k) in Br+1−k ↪→ L

r+1
r+1−k (µ) and

is in o(tr+1−k) in Br+1 ↪→ L1(µ). We will deduce that

Eµ⊗P
[
f⊗k.Ψr+1−k,t(1)

]
= o(|t|r+1−k), resp. EPµ⊗P

[
Y ⊗k

1 .Ψr+1−k,t(1)(X1)
]

= o(|t|r+1−k) .
(26)

Indeed, since
(
Ψr+1−k,t(1)/|t|r+1−k

)
t

is bounded in L
r+1

r+1−k , it is contained in a relative com-
pact set for the weak topology. Let h be one of its weak limits as t → 0. Recall that(
Ψr+1−k,t(1)/|t|r+1−k

)
t

converges to 0 in L1(µ). This implies that, for any bounded measurable
function H,

Eµ⊗P [H.h] = lim
t→0

|t|−(r+1−k)Eµ⊗P [H.Ψr+1−k,t(1)] = 0 ,

resp. EPµ⊗P[H.h] = lim
t→0

|t|−(r+1−k)EPµ⊗P
[
H⊗k.Ψr+1−k,t(1)(X1)

]
= 0 .

We conclude that h = 0, and so that
(
Ψr+1−k,t(1)/|t|r+1−k

)
t

converges weakly in L
r+1

r+1−k to 0.

This ends the proof of (26) since Y k
1 ∈ L

r+1
k (Pµ ⊗ P). We conclude by combining this with (24)

and (25) respectively (and using the fact that ∥(Πt − Π0)(1)∥(1) = O(t) since 1 ∈ B0). □

We now study the consequences on the smoothness of λ.
Proposition 5.8. Assume Assumptions of Theorem 5.5 and r ≥ 1. Then λt = 1− a

2 .t
⊗2+o(|t|2),

with
a.t⊗2 = Eµ[(t.Y1)2] + 2

∑
n≥0

Eµ[(t.Q1)(Pn(t.Q1(1)))] =
∑
n∈Z

EPµ⊗P⊗N [(t.Y1)(t.Y|n|+1)] .

Proof of Proposition 5.8. We write Π′
0 for Π(1)

0 . We study the term of order t2 of λt −1. Observe
that Eµ[P ′

0(1)] = 0 since Y1 is centered. Due to (14) and to Item (B) of Proposition 4.1,

Eµ
[
Π′

0(1)
]

= 1
2iπ

∫
Γ1

Eµ

[
(z Id −P )−1P ′

0(z Id −P )−1(1)
]
dz

= 1
2iπ

∫
Γ1

(z − 1)−2Eµ
[
P ′

0(1)
]
dz = 0 ,

since Eµ[P (h)] = Eµ[h] and P (1) = 1. Thus Eµ[Π′
0(1)] = 0. Therefore, it follows from Theo-

rem 5.5 that

λt − 1 = −
EPµ⊗P⊗N [(t.Y1)2]

2 + t⊗2.Eµ
[
P ′

0(Π′
0(1))

]
+ o(|t|2)

= −
EPµ⊗P⊗N [(t.Y1)2]

2 + iEµ
[
(t.Q1)(t.Π′

0(1))
]

+ o(|t|2) .

It follows from (15) combined with (z Id −P )−1(1) = (z − 1)−11 that

Π′
0(1) = 1

2iπ

∫
Γ1

(z Id −P )−1P ′
0(z Id −P )−1(1) dz

= i

2iπ

∫
Γ1

(z Id −P )−1Q1(1)(z − 1)−1 dz

= i

2iπ

∫
Γ1

(z − 1)−1 ∑
n≥0

z−n−1Pn(Q1(1)) dz

= i
∑
n≥0

Pn(Q1(1)) , (27)
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where we used the fact that ∥z−nPn(Q1(1))∥L(B1) ≤ (1−δ)−nan∥Q1(1)∥(1) (since Eµ[Q1(1)] = 0
and recalling that a < 1 − δ). This ends the proof of the expression of a. □

Example 5.9 (Knudsen gas, normal case). Due to Example 5.7, Example 5.2 with r ≥ 1 satisfies
the assumptions of Proposition 5.8 and so λt − 1 = − a

2 .t
⊗2 + o(|t|2), with

a.t⊗2 =
∑
n∈Z

EPµ

[
(t.f(X1)).(t.f(X|n|+1))

]
=
∑
n∈Z

α|n|Eµ[(t.f)2] = 1 + α

1 − α
Eµ[(t.f)2] .

If moreover r ≥ 2, then the next proposition (Proposition 5.10) also applies, with

b = E[f⊗3]

1 + 6
∑

n,m≥1
αn+m + 3

∑
n≥1

2αn

 = α2 + 4α+ 1
(1 − α)2 E[f⊗3] .

Let us compute now the term of order 3 in the Taylor expansion of t 7→ λt.

Proposition 5.10. Assume the Assumptions of Theorem 5.5 with r ≥ 2. Then λt = 1− a
2 .t

⊗2 −
ib
6 .t

⊗3 + o(|t|3), with a as in Proposition 5.8 and with

b.t⊗3 =
∑

n,m≥0
a0,n,n+mEPµ⊗P⊗N [(t.Y1)(t.Y1+n)(t.Y1+n+m)] ,

with a0,n,n+m = #{(p, q, r) ∈ Z3 : {p, q, r} = {0, n, n+m}}.

Proof. It follows from Theorem 5.5 that

λt − 1 = −a.t⊗2

2 − i

6EPµ⊗P[(t.Y1)3] + it⊗3

2 .Eµ
[
Q1(Π′′

0(1))
]

− t⊗3

2 .Eµ
[
Q2(Π′

0(1))
]

+ o(|t|3) .

Recall that, due to (27), Π′
0(1) = i

∑
n≥0 P

n(Q1(1)). It follows moreover from (15) that

Π′′
0(1) := 1

2iπ

∫
Γ1

(z Id −P )−1(P ′′
0 + 2P ′

0(z Id −P )−1P ′
0)(z − 1)−1(1) dz

= 1
2iπ

∫
Γ1

(z − 1)−1(z Id −P )−1(−Q2 + 2iQ1(z Id −P )−1iQ1)(1) dz

= − 1
2iπ

∫
Γ1
I1(z) + I2(z) dz ,

with

I1(z) := (z − 1)−2

Eµ[Q2(1)] + 2Eµ

Q1

∑
m≥0

z−m−1Pm(Q1(1))


I2(z) := (z − 1)−1 ∑

n≥0
z−n−1Pn

(
Q2(1) − Eµ[Q2(1)]

+2Q1

∑
m≥0

z−m−1Pm(Q1(1))

− 2Eµ

Q1

∑
m≥0

z−m−1Pm(Q1(1))

 .

It follows that
−Π′′

0(1) := −2
∑
m≥0

(m+ 1)Eµ [Q1 (Pm(Q1(1)))] +
∑
n≥0

(Pn(Q2(1)) − Eµ[Q2(1)])

+ 2
∑
n≥0

Pn

Q1
∑
m≥0

(PmQ1(1)) −
∑
m≥0

Eµ [Q1 (Pm(Q1(1)))]

 .

This ends the proof of the lemma. □
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5.3. Non square integrable observable. In view of establishing results of convergence to
a stable random variable, we consider now a less smooth situation. If we assume that the
distribution of Y1 is in the standard domain of attraction of an α0-stable distribution with
α0 ∈]1, 2[ (so that P(|Y | > s) ∼ |s|−α0 as s → +∞), then we expect that λt − 1 ∼ −c|t|α0 . But,
unlike in Theorem 5.5, we cannot use an argument of weak convergence to conclude, since we do
not have convergence of Pt−P0−tP ′

0
tα0 and thus we cannot hope the convergence of Πt−Π0−tΠ′

0
tα0 . The

next general statement can be seen as a first step to convergence to stable random variables.
We will apply it immediatly on our easy Knudsen gas model.

Proposition 5.11 (d = 1). Let δ > 0. Assume Hypothesis 5.1 with d = 1 and that there exist
two Banach spaces B1,B2 such that 1 ∈ B1 ↪→ B2 ↪→ L1(µ), and such that Pt (for any |t| < δ)
acts continuously on B1. Assume that P is geometrically ergodic on B1 and B2: ∥Pn − Eµ[·] =
Ñn

0 ∥L(Bj) = O (ϑn) and that Theorem 3.3 holds true for (Pt)t with this couple of spaces (B1,B2).
Assume moreover that Pt − P0 is in O(t) in L(B1,B2) and in o(1) in L(B2,L1(µ)). Let ϑ1 > ϑ,
γ ∈]0, 1[. We assume that ∥Ñn

0 ∥L(B2) + sup|t|<δ ∥Ñn
t ∥L(B1) = O(ϑn

1 ), that
∥∥∥Ñt − Ñ0

∥∥∥
L(B1,B2)

=

O(t), where Ñt := Pt − Ψt(·)1 with Ψ0(1) = γ + o(t) in C. Then

λt − 1 = γEµ

[
(Pt − P )(Id −Ñt)−1(1)

]
+ o(|t|2)

= γ
∑
n≥0

Eµ

[
(Pt − P )Ñn

t (1)
]

+ o(|t|2) .

Example 5.12 (Knudsen gas, stable case). Let α0 ∈]1, 2] and p ∈]1, α0[ be such that ∥f∥Lp(µ) <
∞. Consider the Knudsen gas introduced in Example 5.2 with r = 0 and d = 1. Assume that
the characteristic function φf of f with respect to µ satisfies

φf (t) − 1 = Eµ[eitf ] − 1 = −|t|α0(1 − iβ sgn(t))L0(|t|−1) , (28)

with |β| < tan(α0π/2), c > 0 and with L0 slowly varying at infinity. Then

λt − 1 ∼ (φf (t) − 1)(1 − α)2 ∑
n≥0

αn(n+ 1)α0 = (φf (t) − 1)(1 − α)E[Gα0 ]

∼ (1 − α)
(
E
[
eitGf

]
− 1

)
∼
(
E
[
ei(1−α)

1
α0 tGf

]
− 1

)
. (29)

as t → 0, where G is a geometric random variable with parameter 1−α (i.e. P(G = n) = (1−α)αn

for all positive integer n) independent of f (up to enlarge the probability space).

The toy Knudsen gas model considered here can also be studied by induction, considering the
successive "renewal times" Tj at which XTj is chosen independently of XTj−1. The increments
Tj − Tj−1 of these times are independent with the same distribution as G and the sums YTj−1 +
...+Y(Tj)−1 = (Tj −Tj−1)YTj−1 between these times are independent with the same distribution
as Gf . Furthermore the number Nn of j’s such that tj ≤ n is a sum of n independent Bernoulli
random variables with parameter (1 − α), and so Nn ∼ n(1 − α) almost surely. Thus it will not
be surprising that

∑n
k=1 Yk will "behave asymptotically" as

∑Nn
j=1 Zj and as

∑(1−α)n
j=1 Zj , where

Zj are independent random variables with the same distribution as Gf . This is coherent with
(29) (via the arguments of Section 6.1).

Proof of Example 5.12. We apply Proposition 5.11 with B1 = L∞(µ) and B2 = Lp(µ). We have
already seen in Example 5.4 that P is geometrically ergodic on B1 and on B2 and that Pt acts
continuously on both these spaces. Moreover

∥Pt − P∥L(B1,B2) ≤ ∥eitf − 1∥Lp(µ) = ∥tf∥Lp(µ) = O(|t|) ,
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since f ∈ Lp(µ) and, setting q ∈]1,+∞[ such that 1
p + 1

q = 1 and using the dominated convergence
theorem, we also obtain that

∥Pt − P∥L(B2,L1(µ)) ≤ ∥eitf − 1∥Lq(µ) = o(1) ,

Here we take Ñt(h) := αeitfh (taking γ = 1 − α and Ψt = (1 − α)Eµ[Pt(·)]). Observe that
Ñt − Ñ0 is in O(t) in L(B1,B2) and in o(1) in L(B2,L1(µ)). It follows from Proposition 5.11
that

λt − 1 = (1 − α)Eµ

[
(Pt − P )(Id −Ñt)−1(1)

]
+ o(|t|2)

= (1 − α)Eµ

[
(eitf − 1)(Id −αeitf ·)−1(1)

]
+ o(|t|2)

= (1 − α)Eµ

[
eitf − 1

1 − αeitf

]
+ o(|t|2) . (30)

But

Eµ

[
eitf − 1

1 − αeitf

]
=
∑
n≥0

Eµ

[
(eitf − 1)(αeitf )n

]
=
∑
n≥0

αnEµ

[
eit(n+1)f − eitnf

]
. (31)

Recall that Karamata proved that there exists u0 > 0 and two functions c, ε0 such that

lims→+∞ c(s) > 0 and lims→+∞ ε0(s) = 0 such that L0(u) = c(u)e
∫ u

u0
ε0(s)

s
ds. Set Nt = ⌊u0/

√
t⌋

and let us control (31) as follows

∑
n≥0

αnE
[
ei(n+1)tf − eintf

]
= E

[
(eitf − 1)(αeitf )Nt+1

1 − αeitf

]
+

Nt∑
n=0

αnE
[
ei(n+1)tf − eintf

]

= O
(
αu0/

√
t

1 − α

∥∥∥eitf − 1
∥∥∥
L1

)
+ φf (t) − 1 −

Nt∑
n=1

αn ((φf ((n+ 1)t) − 1) − (φf (nt) − 1))

∼ (φf (t) − 1)
[
1 +

Nt∑
n=1

αn ((n+ 1)α0 − |n|α0)
]

∼ (φf (t) − 1)
[
1 + (αNt+1(Nt + 1)α0 − α) −

Nt∑
n=1

(n+ 1)α0(αn+1 − αn)
]

∼ (φf (t) − 1)(1 − α)

∑
n≥0

(n+ 1)α0αn

 , (32)

due to the dominated convergence theorem since, for all n ≥ 1, L0(|nt|−1) ∼ L0(|t|−1) as t → 0
and, for all n = 1, ..., Nt,

L0(|nt|−1)
L0(|t|−1) = c(|nt|−1)

c(|t|−1) e
−
∫ |t|−1

|nt|−1
ε0(s)

s
ds = O

(
n

sup|s|>|
√

tu0|−1 |ε0(s)|
)
.

Combining (30), (31), and (32), we obtain the first equivalent. The others follow since E[Gα0 ] =
(1 − α)

∑
n≥0 α

n(n + 1)α0 , since E
[
eitGf

]
= E[φf (Gt)] and since φf (ut) − 1 ∼ uα0(φf (t) − 1)

(using the Lebesgue dominated convergence theorem and again the Karamata representation of
slowly varying functions). □
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Proof of Proposition 5.11. Observe that Ñ0(1) = (1 − γ)1. It follows from Theorem 3.3 applied
to (Pt)t that, for ϑ2 ∈]ϑ1, 1[, up to reduce δ if necessary, Formulas (13) and (14) hold true (with
δ0 = δ) on B1 and that

Πt = 1
2iπ

∫
Γ1

(z Id −Pt)−1 dz (33)

is continuous from ] − δ, δ[ to L(B1,B2) and assuming moreover that Γ1 ⊂ {z ∈ C : |z| > ϑ2}.
Furthermore, sup|t|<δ ∥Ñn

t ∥L(B1) = O(ϑn
1 ) ensures that (z Id −Ñt)−1 =

∑
n≥0 z

−n−1Ñn
t ∈ L(B1)

is uniformly bounded in |z| ≥ ϑ2 (and thus in z ∈ Γ1) and that (z Id −Ñ0)−1 =
∑

n≥0 z
−n−1Ñn

0 ∈
L(B2) uniformly in |z| ≥ ϑ2. Due to Fact 3.2, since B2 ↪→ L1(µ),

λt − 1 = Eµ [(Pt − P )(Πt(1))]
Eµ [Πt(1)] = Eµ [(Pt − P )Πt(1)] (1 + O(t)) , as t → 0 .

Let us observe that

(z Id − Pt)−1(h) =
(
z Id −Ñt

)−1
h+

Ψt

(
z Id −Ñt)−1(h)

)
1 − Ψt

(
(z Id −Ñt)−1(1)

)1

 . (34)

Indeed g := (z Id −Pt)−1(h) satisfies

(z Id −Ñt)(g) = (z Id −Pt)(g) + Ψt(g)wt = h+ ct(h)1 ,
with

ct(h) = Ψt(g) = Ψt

(
(z Id −Ñt)−1 (h+ ct(h)1)

)
,

from which we infer that ct(h) = Ψt

(
(z Id −Ñt)−1(h)

)
1−Ψt

(
(z Id −Ñt)−1(1)

) and so (34). Thus, applying (34) to h = 1,
we obtain that

(z Id −Pt)−1(1) = (z Id −Ñt)−1(1)bt(z), with bt(z) := 1
1 − Ψt

(
(z Id −Ñt)−1(1)

) . (35)

Note that we can recover the fact that (z Id −P )−1(1) = (z−1)−1. Moreover, we will prove that
sup
z∈Γ1

|bt(z) − b0(z)| = O(|t|) . (36)

To this end, we first notice that Ψt = Eµ

[
(Pt − Ñt)(·)

]
and so

sup
z∈Γ1

(Ψt − Ψ0)(z Id −Ñt)−1(1) = O(t) (37)

since supz∈Γ1 ∥(z Id −Ñt)−1∥L(B1) < ∞, since B2 ↪→ L1(µ) and since

∥Pt − P∥L(B1,B2) + ∥Ñt − Ñ0∥L(B1,B2) = O(t) . (38)

Second, it follows from (38) and

sup
|t|<δ

sup
z∈Γ1

(
∥(z Id −Ñ0)−1∥L(B2) + ∥(z Id −Ñt)−1∥L(B1)

)
< ∞ ,

that (
(z Id −Ñt)−1 − (z Id −Ñ0)−1

)
= (z Id −Ñ0)−1(Ñt − Ñ0)

(
z Id −Ñt

)−1
= O(t) (39)

in L(B1,B2) uniformly in z ∈ Γ1 and so that

ψ0
((

(z Id −Ñt)−1 − (z Id −Ñ0)−1
)

(1)
)

= O(t) (40)

since B2 ↪→ L1(µ). Combining (37) and (40), we have proved (36).
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It follows also from (39), that (z Id −Ñt)−1(1) = (z− 1 + γ)−11 + O(t) in B2. Since moreover
Pt − P = o(1) in L(B2,L1(µ)) and Eµ[(Pt − P )(1)] = φf (t) − 1 = o(t) (since Y1 is centered),

sup
z∈Γ1

∣∣∣Eµ

[
(Pt − P )(z Id −Ñt)−1(1)

]∣∣∣ = sup
z∈Γ1

∣∣∣Eµ

[
(Pt − P )(z − 1 + γ)−11)

]∣∣∣+ o(t) = o(t) .

Combining this with (33), (35) and (36), we infer that

Eµ [(Pt − P )Πt(1)] = 1
2iπ

∫
Γ1

Eµ

[
(Pt − P )(z Id −Ñt)−1(1)

]
b0(z) dz

+ O
(
o(t) sup

z∈Γ1

|bt(z) − b0(z)|
)

= γEµ

[
(Pt − P )(Id −Ñt)−1(1)

]
+ o(t2) , as t → 0 ,

where we used the fact that b0(z) = z−1+γ
z−1 . □

6. Probabilistic limit theorems

Let δ0 > 0. Let (Sn)n≥1 be a sequence of X-valued random variables with X = Rd or Zd

defined on a probability space (M,P) such that

∀n ∈ N, ∀t ∈ Rd, |t| < δ0, E[eit.Sn ] = λn
t Φt +Mt,n . (41)

We set X∗ := Rd if X = Rd and X∗ := [−π, π]d if X = Zd.

Remark 6.1. In Remark 5.3, we have seen general situations in which E[eit.Sn ] = Eν [Pn
t (h0)]

(see (11) and (12)) for some h0 and some family of operators (Pt)t such that (41) holds true with
λ and Φt = Eν [Πt(h0)] continuous in t and with sup|t|<δ0 |Mt,n| = O

(
sup|t|<δ0 ∥|Nn

t (h0)∥|B2

)
decaying exponentially fast in n. Recall moreover that further Taylor expansions have been
studied in Theorem 5.5.

The goal of this section is to establish probabilistic limit theorems for (Sn)n≥1. More precisely,
we will study situations in which (Sn)n≥1 satisfies the same kind of limit theorems as sums of
independent identically distributed random variables with characteristic function behaving at 0
as t 7→ λt.

6.1. Central and local limit theorems. Let W be a Rd-valued random variable.

Theorem 6.2 (Central Limit Theorem (CLT)). Let (An)n≥1 be a sequence of (normalizing)
d × d matrices converging to 0. Assume that limt→0 Φt = 1, that limn→+∞ sup|t|<δ0 |Mt,n| = 0
and that limn→+∞ λn

A∗
nt = E[eit.W ] for all t ∈ Rd (writing A∗

n for the transpose matrix of An).
Then (AnSn)n≥1 converges in distribution to W.

Proof of Theorem 6.2. We prove the convergence of the characteristic functions. We fix t ∈ Rd

and write

E
[
eit.(AnSn)

]
− E[eit.W ] = λn

A∗
ntΦA∗

nt +MA∗
nt,n − E[eit.W ] = o(1) ,

since limn→+∞ ΦA∗
nt = 1, limn→+∞ λn

A∗
nt = E[eit.W ] and since

lim
n→+∞

MA∗
nt,n ≤ lim

n→+∞
sup

|u|<δ0

|Mu,n| = 0 .

Thus (AnSn)n≥1 converges in distribution to W. □
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The condition limn→+∞ λn
A∗

nt = E[eit.W ] means that λt behaves at 0 as the characteristic
function of a distribution belonging to the domain of attraction of the stable distribution of
W. In particular, if λt − 1 ∼ −a|Σt|αα as t → 0 with |s|αα =

∑d
i=1 |si|α and with B an invertible

matrix, then, setting An = n− 1
α Id and considering W such that E[eit.W ] = e−a|Bt|αα , the following

estimate holds true for any t ∈ Rd∣∣∣λn
A∗

nt − E[eit.W ]
∣∣∣ =

∣∣∣∣λn

t/n
1
α

− e−an|Bt/n
1
α |αα
∣∣∣∣

≤ n

∣∣∣∣λt/n
1
α

− e−a|Bt/n
1
α |αα
∣∣∣∣ ≤ n o

(∣∣∣Bt/n 1
α

∣∣∣α
α

)
= o(1) ,

as n goes to infinity.

Remark 6.3. We consider again the context of Remark 5.3. We recall that the fact that (41)
holds with limt→0 Φt = 1 and limn→+∞ sup|t|<δ0 |Mt,n| = 0 follows from Remark 6.1. Further-
more,

(a) Under the assumptions of Theorem 5.5 for r ≥ 1 (and so of Proposition 5.8), Theo-
rem 6.2 holds true with An = Id /

√
n and W a centered Gaussian random variable with

variance
Σ :=

∑
n∈Z

CovPµ⊗P⊗N(Y1, Y|n|+1) .

Indeed, Proposition 5.8 ensures8 that λt − 1 = 1
2 |Σ

1
2 .t|22 + o(|t|2), whence we infer that,

for every fixed t ∈ Rd,∣∣∣λn
t/

√
n − E[eit.W ]

∣∣∣ =
∣∣∣∣λn

t/n
1
α

− e− 1
2 n|Σ

1
2 t/

√
n|22
∣∣∣∣

≤ n

∣∣∣∣λt/
√

n − e− 1
2 |Σ

1
2 t/

√
n|22
∣∣∣∣ ≤ n o

(∣∣t/√n∣∣22) = o(1) .

(b) If Proposition 5.11 allows to prove that λt − 1 ∼ E[eit.W1 ] − 1, where (Wn)n≥1 is a
sequence of i.i.d. random variables such that (An

∑n
k=1Wk)n converges in distribution

to W, then Theorem 6.2 applies.
This assumption ensures (see e.g. [27, Theorem 2.6.5]) the existence of α0 ∈ [1, 2] and
of |β| < tan(α0π/2) such that

E[eitW ] = e−c0|t|α0 (1−iβ sgn(t)), λt − 1 ∼ c0|t|α0(1 − iβ sgn(t))L0(|t|−1)

as t → 0, with L1 slowly varying at infinity, An → 0 and limn→+∞ n|An|α0L0(A−1
n ) = 1.

Indeed, proceeding as previously, we observe that, for every t ∈ R,∣∣∣λn
Ant − E

[
eit.W

]∣∣∣ =
∣∣∣∣λn

Ant − E[ein
− 1

α0 tW ]n
∣∣∣∣

≤ n

∣∣∣∣λAnt − E[ein
− 1

α0 t.W ]
∣∣∣∣ = n|t|α0 |c0(1 − iβ sgn(t))|

∣∣∣Aα0
n L0(|t|/An) − n−1

∣∣∣
≤ |t|α0 |c0(1 − iβ sgn(t))| |nAα0

n L0(|t|/An) − 1|

≤ |t|α0 |c0(1 − iβ sgn(t))|
∣∣∣∣∣L0(|t|/An)
L0(A−1

n )
(1 + o(1)) − 1

∣∣∣∣∣ = o(1) ,

since L0 is slowly varying.

8setting Σ 1
2 for the nonnegative symmetric matrix the square of which is Σ.
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Example 6.4 (Knudsen gas, convergence to gaussian or stable distributions). Consider the
simple Knudsen gas model introduced in Example 5.2. The continuity of t 7→ Φt = Eµ[Πt(1)] as
well as the fact that sup|t|<δ Eµ[Nn

t (1)] decays exponentially fast as n → +∞ have been proved
in Example 5.4 thanks to Theorem 3.3 and Remark 6.1.
Furthermore

• If r ≥ 1, then (
∑n−1

k=0 f(Xk)/
√
n)n≥1 converges in distribution to a centered Gaussian

random variable W with variance matrix Σ = 1+α
1−αE[f⊗2].

This follows from Theorem 6.2 combined with the first item of Remark 6.3, the desired
second order expansion being proved in Example 5.9.

• Consider now the situation of Example 5.12, that is r = 0, d = 1 and there exists α0 ∈
]1, 2] and a function L0 slowly varying at infinity such that the characteristic function
φf of f with respect to µ satisfies

φf (t) − 1 ∼ |t|α0(1 − iβ sgn(t))L0(|t|−1) ,

as t → 0, for some |β| < tan(α0π/2). Then (An
∑n−1

k=0 f(Xk))n≥1 converges in distri-
bution to the stable random variable W with characteristic function given by E[eitW ] =
e−c|t|α0 (1−iβ sgn(t)), for c = (1 − α)

∑
n≥0 α

n(n + 1)α0 and where An → 0 is so that
limn→+∞ n|An|α0L0(A−1

n ) = 1.
Indeed, due to Example 5.12, λt − 1 ∼ c|t|α0L0(|t|−1)(1 − iβ sgn(t)) and Theorem 6.2
applies with the second item of Remark 6.3.

Theorem 6.5 (Local Limit Theorem). Assume Assumptions of Theorem 6.2 with An invertible,
sup|t|<δ0 |Φ(t)| < ∞, sup|t|<δ0 |Mt,n| = o (detAn) and |λn

A∗
nt| ≤ g(t) if |A∗

nt| < δ0, with g inte-
grable on Rd. Assume moreover that W has density hW and integrable characteristic function,
that f takes its values in Zd and that supt∈[−π,π]d\B(0,δ0)

∣∣∣E[eit.Sn ]
∣∣∣ = o (detAn). Then

sup
k∈Z

|P(Sn = k) − det(An)hW(Ank)| = o(det(An)) .

Proof of Theorem 6.5. Observe that

P(Sn = k) = E
[
1{Sn−k=0}

]
= E

[
1

(2π)d

∫
[−π,π]d

eit.(Sn−k) dt

]

= 1
(2π)d

∫
[−π,π]d

e−itkE[eit.Sn ] dt

= 1
(2π)d

∫
B(0,δ0)

e−itkλn
t Φt dt+ o (detAn) ,

where we used the Fubini theorem for integrable functions and the fact that sup|t|<δ0 |Mt,n| =
o (detAn) and that supt∈[−π,π]d\B(0,δ0)

∣∣∣E[eit.Sn ]
∣∣∣ = o (detAn). Now, making the change of vari-

able t = A∗
ns, we obtain

P(Sn = k) = det(An)
(2π)d

∫
(A∗

n)−1B(0,δ0)
e−iA∗

ns.kλn
A∗

nsΦA∗
ns ds+ o (detAn) ,

and

sup
k∈Z

∣∣∣∣∣
∫

(A∗
n)−1B(0,δ0)

e−iA∗
ns.kλn

A∗
nsΦA∗

ns ds−
∫
Rd
e−is.AnkE[eis.W ] ds

∣∣∣∣∣
≤
∫
Rd

∣∣∣1(A∗
n)−1B(0,δ0)λ

n
A∗

nsΦA∗
ns − E[eis.W ]

∣∣∣ ds = o(1) ,
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due to the dominated convergence theorem since g and s 7→ E[e−isW ] are integrable. We end
the proof by using hW(u) = 1

(2π)d

∫
Rd e−is.uE[eis.W ] ds. □

Remark 6.6. Consider the context of Remark 6.3 with (det(An))n subexponential in n. We
have already seen in Remark 6.1that sup|t|<δ0 |Φ(t)| < ∞ and sup|t|<δ0 |Mt,n| = o (detAn) for
some δ0 > 0.
The integrability of t 7→ supn |λn

A∗
nt1|A∗

nt|<δ0 | follows in practice from the control of |λt − 1| (e.g.

in case (a) of Remark 6.3, if a is invertible, |λt| ≤ e− a.t⊗2
4 as soon as |t| is small enough).

Finally, the condition supt∈[−π,π]d\B(0,δ0)

∣∣∣E[eit.Sn ]
∣∣∣ = o (detAn) is usually a consequence of the

fact that, for t ̸∈ 2πZ, ρess(Pt) < 1, ρ(Pt) ≤ 1 and that Pt admits no eigenvalue of modulus
1, which implies that ∥Pnt

t ∥ < 1 (for some nt) which, combined with a continuity argument
of t 7→ ∥Pt∥ on the compact [−π, π]d, leads to the existence of a positive integer n′ such that
supt∈[−π,π]d\B(0,δ0) ∥Pn′

t ∥ < 1 and implies the exponential decay of supt∈[−π,π]d\B(0,δ0)

∣∣∣E[eit.Sn ]
∣∣∣

as n → +∞.

To complete this remark, let us indicate that, under the assumptions of Theorem 3.3 (Keller
and Liverani theorem), it has been proved in [26, Propositions 5.3 and 5.4] that the nonlattice
property together with an additional reasonnable condition imply the exponential decay of
supt∈[−π,π]d\B(0,δ0)

∣∣∣E[eit.Sn ]
∣∣∣ as n goes to infinity.

Example 6.7 (Knudsen gas, LLT). Theorem 6.5 applies in the situation considered in Exam-
ple 6.4, provided f takes its values in Zd but is not supported by a sublattice of Zd.

Proof of Example 6.7. The fact that the assumptions of Theorem 6.2 hold has already been
proved in Example 6.4 with the use of Remarks 6.1 and 6.3. First, we observe that, either
An = Id /

√
n (if r ≥ 1) or An = n

1
α0 L̃(n) with L̃ slowly varying at infinity (in the situation

of Example 5.12. The fact that limn→+∞ λn
A∗

nt = E[eit.W ] with either W as in Example 6.4 has
been proved in this example using Theorem 6.2 and Remark 6.3. Let us prove the domination
of |λn

A∗
nt| using the expansion of λt around t = 0.

If r ≥ 1. The nonlattice assumption ensures the invertibility of the matrix Σ. Example 5.9
ensures that λt − 1 ∼ −Σ

2 .t
⊗2 + o(|t|2). Thus, there exists δ > 0, such that, for all |t| < δ,

|λt| ≤ g(t) := e− 1
4 Σ.t⊗2 , and so |λn

t/
√

n
| ≤ (g(t/

√
n))n = g(t) and g is integrable.

Assume now that λt − 1 ∼ c|t|α0L0(|t|−1)(1 − iβ sgn(t)) with α0 ∈]1, 2] and with L0 slowly
varying at infinity. Then

∀t ∈ R, λn
Ant = e−nc|Ant|α0 (1−iβ sgn(t))L0(|Ant|−1)) = e

−c|t|α0 (1−iβ sgn(t)) L0(|Ant|−1)
L0(A−1

n )
)
.

Due to Karamata’s representation theorem, there exists u0 > 0 and two functions c, ε0 such that

lims→+∞ c(s) > 0, lims→+∞ ε0(s) = 0 and such that L0(u) = c(u)e
∫ u

u0
ε0(s)

s
ds. Let δ0 be such

that λu is well defined for all u satisfying |u| < δ0. Thus, if |Ant| < δ0 < 1 and |An| < δ0,

L0(|Ant|−1)
L0(A−1

n )
= c(|Ant|−1)

c(|An|−1) e
∫ |Ant|−1

A−1
n

ε0(s)
s

ds
≥

inf |s|>δ−1 c(s)
sup|s|>δ−1 c(s)

min(|t|, |t|−1)inf|s|>|δ−1 |ε0(s)|
.

We can choose δ0 < 1, such that this quantity is larger than 1
2 min(|t|

α0
2 , |t|−

α0
2 ) and so, for every

t and n such that |Ant| < δ0 and |An| < δ0,

∣∣λn
Ant

∣∣ ≤ g(t) := e
− c

2 min
(

|t|
α0
2 ,|t|

3α0
2
)
.
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It remains to prove that supt∈[−π,π]d\B(0,δ0)

∣∣∣E[eit.Sn ]
]

| = o(detAn). To this end, we follow the
strategy explained in Remark 6.6. Let t ∈ R \ 2πZ and p ∈]1,+∞[. Since ∥Pt∥Lp(µ) ≤ α∥h∥ +
(1 − α)∥h∥L1(µ), it follows by standard arguments (see e.g. [28, 18]) that the essential spectral
radius of Pt is strictly smaller than 1. Consider now h ∈ Lp(µ) and λ = eid ∈ C with d ∈ R and
λh = Pt(h) = αeit.fh+(1−α)Eµ[eit.fh]. Then Eµ[|h|] ≤ Eµ[|αeit.fh|]+|(1−α)Eµ[eit.fh]| ≤ Eµ[|h|]
and we conclude that λh = eit.fh = Eµ[eit.fh] µ-a.e., thus h = e−ideit.fh is constant. So either
h = 0 or eid = eit.f . But eid = eit.f would mean that t.f ∈ d+ 2πZ, which would contradict the
fact that f is not contained in a sublattice of Zd. Thus h = 0.
Since Pt has an essential spectral radius strictly smaller than 1 and does not admit any eigenvalue
of modulus 1, we conclude that its spectral radius is strictly smaller than 1. So there exists nt ≥ 1
such that |EPµ [eitSnt ]| ≤ ∥Pnt

t 1∥Lp(µ) < 1. But u 7→ EPµ [eiuSnt ] = Eµ[Pnt
u (1)] is continuous at

t (since u 7→ Pu ∈ L(La′(µ),Lb′(µ)) is continuous, for all a′ > b′ ≥ 1, using also the fact that
supu ∥Pu∥L(La(µ)) ≤ 1). We conclude by compacity. □

6.2. Edgeworth expansions (d = 1). We assume d = 1 throughout this section. We recall
now some general Edgeworth expansions results coming from [10]. We first introduce some
assumptions.
Assumption (α′)[r̂] (Smoothness): Assume λ, Φ and M enjoys the following Taylor expan-
sions

λt = 1 − σ2t2

2 +
r̂+2∑
k=3

αkt
k + o(tr̂+2), Φt =

r̂∑
k=0

Bkt
k + O

(
|t|r̂+1

)
,

∃δ > 0, ∀t ∈ [−δ, δ],

∣∣∣∣∣∣λ−n
t Mt,n −

r̂∑
k=0

Ck,nt
k

∣∣∣∣∣∣ ≤ Knλ
− n

2
t |t|r̂+1 ,

with σ2 > 0, supk,n (|Ck,n|) = O(n−p) and Kn = O(np) for all p > 0.

Remark 6.8. In the Markovian context of Section 5, Assumption (α′)[r̂] will follow from The-
orem 5.5 and Corollary 5.6 with r := r̂+ 1 (up to assume the positivity of σ2, the expression of
which is given by a of Proposition 5.8). Indeed the Taylor expansion of Mt,n combined with the
one of λt coming from Theorem 5.5 leads to a Taylor expansion of order r + 1 of λ−n

t Mt,n with
coefficients Ck,n = O(nkan) and with error term in O(λ−n

t nr+1|t|r̂+1an).

Assumption (β′) (Non-arithmeticity): For any compact K of X∗ \ {0},

∀p > 0, sup
s∈K

∣∣∣E [eisSn

]∣∣∣ = O(n−p) ,

As already mentioned in Remark 6.6, in the Markovian context of Section 5, Assumption (β′)
will follow from the fact that ρess(Pt) < 1 (which can be established by using (4) if B1 ↪→ B2 is
compact, due to a Theorem by Hennion [18]), combined with the fact that ρ(Pt) ≤ 1 and that
Pt admits no eigenvalue of modulus 1 (for t in the compact K).

Assumption (γ′)[α′
1, α1]: Either X = Z, or there exist δ̂ such that, for all p,

∀|s| > K,
∣∣∣E [eisSn

]∣∣∣ = O
(
n−p + |s|1+α′

1e−nα1 δ̂|s|−α′
1
)
.

Assumption (δ′)[r′]: X = R and for any B > 0, there exists K > 0 such that∫
K<|s|<Bn

r′−1
2

∣∣∣Eµ

(
eisSn

)∣∣∣
|s|

ds = o(n−r′/2) .
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Remark 6.9. Note that, both Conditions (γ′)(α′
1, 1) and (δ′)[r′] hold true provided there exist

positive s0, n0, Ĉ > 0, such that r′ < 2α′
1

−1 + 1 and such that

∀|s| > s0, ∀n ≥ n0,
∣∣∣E[eisSn ]

∣∣∣ < e−nĈ|s|−α′
1 . (42)

In the context of Section 5 with E
[
eitSn

]
= Eν [gPn

t (h)], (42) holds true if there exist Banach
spaces B1 ↪→ B2 containing h and the duals of which contains Eν [g·] such that

∀n ≥ n0, ∀|s| > s1, ∥Pn
s ∥L(B1,B2) ≤ Ce−Cn|s|−α′

1 .

(see [10, Lemma 4.7]). Note that this holds true if ∥Pn0
s ∥B1 < 1− C

|s|α
′
1
. This condition generalizes

the α−Diophantine property of supp X: E[eisY1 ] < 1 − Ĉ

|s|α
′
1

of the i.i.d. case (see [8]).

Example 6.10 (Knudsen gas). Consider again Example 5.2. Recall that P (h− Eµ[h]) = α(h−
Eµ[h]) with α ∈]0, 1[ and that Yn = f(Xn), with f : Ω → R centered. Assume f admits moments
of order (r̂ + 2) with respect to ν = µ.
The fact that Assumption (α′)[r̂] holds true follows from Theorem 5.5 and Example 5.7.
Assumption (β′) will hold true if, for all t ∈ X∗ \ {0},

∣∣∣Eµ[eitf ]
∣∣∣ < 1. Indeed, as seen in

Example 6.7, it is enough to prove that Pt (for t ∈ X∗) admits no eigenvalue λ of modulus 1. If
it was the case, there would exist h ∈ B1 \ {0} such that λh = eitfh = Eµ[eitfh] µ-almost surely,
contradicting

∣∣∣Eµ[eitf ]
∣∣∣ < 1.

Finally, when X = R, Assumptions (γ′)[α′
1, 1] and (δ′)[⌈1 + 2α′

1
−1⌉ − 1] hold true as soon as

Eµ[eitf ] < 1 − Ĉ0

|t|α
′
1
. Indeed

P 2
t (h)(x) = α2ei2tf(x)h(x)+α(1−α)eitfEµ[eitfh]+α(1−α)Eµ[ei2tfh]+(1−α)2Eµ[eitf ]Eµ[eitfh] ,

and so, for all p ∈ [1,+∞], it follows that

∥P 2
t (h)∥Lp(µ) ≤

(
1 − (1 − α)2

)
∥h∥Lp(µ) + (1 − α)2

(
1 − Ĉ0

|t|α′
1

) ∣∣∣Eµ[eitfh]
∣∣∣

≤
(

1 − (1 − α)2 Ĉ0

|t|α′
1

)
∥h∥Lp(µ) .

Set ĝ(s) :=
∫
X e

−isxg(x) dλ(x) for s ∈ X∗, where λ is the Lebesgue measure if X = R and
where λ is the counting measure if X = Z. If X = R, we say g ∈ Fm

k if g : R → R is continuous,
λ-integrable and if ĝ : X∗ → C is k times continuously differentiable with

Cm
k (g) := Cm(g) + Ck(g). < ∞ ,

with Cm(g) := sup
s∈X∗

|ĝ(s)|
min(1, |s|−m) and Ck(g) := ∥ĝ(k)∥∞ .

If X = Z, Fm
k = F0

k is the set of functions g : Z → C satisfying the following summability
condition ∑

n∈Z
|n|k|g(n)| < ∞ .

Note that Ck(g) ≤ max0≤j≤k

∫
X |x|j |g(x)| dλ(x). When X = R, Cm(g) ≤ max0≤j≤m ∥g(j)∥L1(R).

Under our assumptions, we set N for the distribution function of a centered Gaussian random
variable with variance σ2 and n for the corresponding probability density function (that is n is
the derivative of N). Let us recall now the general results of [10].
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Theorem 6.11. [10, Theorem 1.1] Let r̂ be a nonnegative integer, α′
1 ≥ 0, α1 > 0 and q >

α′
1
(
1 + r̂

2α1

)
. Assume (α′)[r̂], (β′) and (γ′)[α′

1, α1] hold. Then there exist polynomials Rj such
that, for all g ∈ Fq+2

0 ,

E [g(Sn)] =
r̂∑

j=0

1
n(j−1)/2

∫
X

(Rj · n)(x/
√
n)g(x) dλ(x) + Cq+2(g) · o(n−r̂/2) .

Theorem 6.12. [10, Theorem 1.2] Let r̂ be a nonnegative integer, α′
1 ≥ 0, α1 > 0. Let

q > α′
1
(
1 + r̂+1

2α1

)
. Assume (α′)[r̂], (β′) and (γ′)[α′

1, α1] hold. Then there exist polynomials Qj

such that, for all g ∈ Fq+2
r̂+1,

√
nE [g(Sn)] =

⌊r̂/2⌋∑
j=0

1
nj

∫
X
g(x)Qj(x) dλ(x) + Cq+2

r̂+1 (g) · o(n−r̂/2) .

Theorem 6.13. [10, Theorem 1.7] Let r̂ be a positive integer and r′ ∈ [1, r̂] be a real number.
Assume (α′)[r̂], (β′) and (δ′)[r′] hold. Then there exist polynomials Pk such that

sup
x∈R

∣∣∣∣∣∣P
(
Sn√
n

≤ x

)
− N(x) − n(x)

⌊r′⌋∑
k=1

Pk(x)
nk/2

∣∣∣∣∣∣ = o(n−r′/2) .

Corollary 6.14. [10, Corollary 1.8] Assume (α′)[1] and (β′) hold with X = R. Then

sup
x∈R

∣∣∣∣P( Sn√
n

≤ x

)
− N(x) − P1(x)

n1/2 n(x)
∣∣∣∣ = o(n−1/2) .

Corollary 6.15. [10, Corollary 1.9] Assume (α′)[2], (β′) and (δ′)[r0] hold for some real number
r0 ∈ (1, 2). Then

sup
x∈R

∣∣∣∣P( Sn√
n

≤ x

)
− N(x) − P1(x)√

n
n(x)

∣∣∣∣ = o
(
n−r0/2

)
.

Example 6.16 (Knudsen gas, Edgeworth expansions in CLT, LLT). Consider Example 5.2.
Recall that Assumptions (α′), (β′), (γ′) and (δ′) have been checked in Example 6.10. Assume f
admits moments of order (r̂+2) with respect to ν = µ and that

∣∣∣Eµ[eitf ]
∣∣∣ < 1 for all t ∈ X∗ \{0}.

• (Expansions of order r̂ − 1 and r̂ in the LLT) Assume either X = Z or |Eµ[eitf ]| <
1 − Ĉ0

|t|α
′
1

for some α′
1 > 0, then the conclusions of Theorems 6.11 and 6.12 hold true with

respectively q > α′
1(1 + r̂

2) and q > α′
1(1 + r̂+1

2 ).
• (Edgeworth expansion of order r̂) Assume X = R and |Eµ[eitf ]| < 1 − Ĉ0

|t|α
′
1

for some

α′
1 <

(
r′−1

2

)−1
. Then the conclusion of Theorem 6.13 holds true.

• (First order Edgeworth expansion) Assume X = R and r̂ = 1. Then the conclusion of
Theorem 6.14 holds true.

• (Edgeworth expansion of order r0 ∈]1, 2[) Assume X = R, r̂ = 2 and that |Eµ[eitf ]| <
1 − Ĉ0

|t|α
′
1

for some α′
1 < ( r0−1

2 )−1. Then the conclusion of Corollary 6.15 holds true.

7. Limit theorems for Markov random walks

We focus again in this section on the context of Markov random walks, that is the general
Markovian setting of Section 5. Recall that (Xn)n≥0 is a Markov chain with states space Ω and
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with invariant distribution µ and initial distribution ν and that (Zk)k≥1 is a sequence of inde-
pendent identically distributed random variables with common distribution P and independent
of the Markov chain (Xn)n≥0. Recall that we are interested in the behaviour of Sn :=

∑n
k=1 Yk,

with Yk = f(Xk−1, Xk, Zk).
In a first subsection, we establish probabilistic limit theorems in the general context as a direct

consequence of the results of Section 6. In the three following subsections, we apply our approach
for classical families of Markov chains: the ρ-mixing Markov chains, the V -geometrically ergodic
Markov chains and Lipschitz iterative model. More precisely, we prove Theorem 1.1 in these
three last subsections.

7.1. General results. We set Pν for the Markov distribution with transition operator P and
initial probability measure ν. We assume that ((xk)k≥0, ω) 7→ f(x0, x1, ω) is Pµ ⊗ P-centered.
We set

Pt(h)(x) = E
[
eit.Y1h(X1)|X0

]
.

We establish probabilistic limit theorems under the assumptions of Theorem 5.5 that we recall
in the following statement for reader’s convenience.

Theorem 7.1. Let δ0 > 0. Let r be a positive integer and Y1 ∈ Lr+1(Pµ ⊗ P). Let (Bj , ∥ · ∥(j)),
j = 0, ..., r+1 be a chain of (r+2) Banach spaces such that 1 ∈ B0 and that for all j = 1, ..., r+1,
Bj−1 ↪→ Bj, Bj ↪→ L

r+1
j (µ). Assume that Pt (for |t| < δ0) acts continuously on B1, ...,Br+1 and

that P0 acts continuously on B0 and that, for all m = 0, ..., r, Pt −
∑m

k=0
P

(k)
0
k! .t

⊗k is both O(tm)
in
⋂r−m

j=0 L(Bj ,Bj+m) and o(tm) in L(Br−m,Br+1), with

P
(k)
0 (h)(x) = ikQk(h)(x) :=

∫
E
P
(
(if(x, ·, ω))⊗kh(·)

)
(x) dP(ω) ∈

r−k⋂
j=0

L(Bj ,Bd⊗k

j+k) .

Finally we assume that, in L(B1),
∃ϑ1 ∈]0, 1[, ∀n ∈ N∗, ∀|t| < δ0, Pn

t = λn
t Πt +Nn

t , with sup
|t|<δ0

∥Nn
t ∥B1 = O(ϑn

1 ) , (43)

with Π0 = Eµ[·]1, λ0 = 1 and

Πt := 1
2iπ

∫
Γ1

(z Id −Pt)−1 dz, Nn
t := 1

2iπ

∫
Γ0
zn(z Id −Pt)−1 dz , (44)

with Γ1 the oriented circle C(1, δ) and Γ0 the oriented circle C(0, a), with ϑ1 < a < a + δ < 1
and that9

sup
j=1,...,r+1

sup
|t|<δ0

sup
z∈Γ0∪Γ1

(
∥(z Id −Pt)−1∥Bj + ∥(z Id −P )−1∥B0

)
< ∞ . (45)

Assume either Eν ∈ B∗
1 or, more generally, that there exists some Banach space B̃0 (that can be

intermediate between B0 and B1) such that and Eν ∈ B̃∗
0 and such that t 7→ Πt ∈ L(B0, B̃0) is

continuous at 0 (using e.g. Theorem 3.3) , then

(i) Theorem 6.2 (CLT) applies and we conclude that (Sn/
√
n)n≥1 converges in distribution to

a centered Gaussian random variable with variance matrix
∑

n∈Z Covµ⊗P⊗N

(
Y1, Y|n|+1

)
.

(ii) Theorem 6.5 (LLT) applies if Y1 is Zd valued and if the non-arithmetic condition (β′) is
satisfied.

If moreover Eν ∈ B∗
r , then Assumption (α′)[r̂ := r − 1] is satisfied. In particular:

9recall that, in practice, (43), (44) and the first part of (45) follow from the Keller-Liverani theorem (Theo-
rem 3.3) applied with the Banach spaces Bj ↪→ Bj+1 up to consider an additional Banach space Br+2.
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(iii) (d = 1) Theorems 6.11 and 6.12 (Expansions of order r̂− 1 = r− 2 and r̂ = r− 1 in the
LLT) apply if Y1 is Z-valued and if the non-arithmetic condition (β′) is satisfied.

(iii’) (d = 1) Theorems 6.11 and 6.12 (Expansions of order r̂ − 1 = r − 2 and r̂ = r − 1 in
the LLT) apply if conditions (β′) (non-arithmeticity) and (γ′)[α′

1, α1] (Diophantine-type
condition) are satisfied.

(iv) (d = 1) Corollary 6.14 (First order Edgeworth expansion) holds true if r ≥ 2 and if
conditions (β′) (non-arithmeticity) is satisfied on X = R.

(v) (d = 1) Theorem 6.13 (Edgeworth expansion of order r̂ = r − 1) applies if r ≥ 2 and if
the non-arithmetic condition (β′) and Condition (δ′)[r′] hold true.

7.2. ρ-mixing Markov chains. We consider here the case of Markov chains that are ρ-mixing,
i.e. i.e. when the transfer operator P is geometrically ergodic on L2(µ), that is satisfies

∃C > 0, ∃ϑ ∈]0, 1[, ∀g ∈ L2(µ), ∥Pn(g) − Eµ[g]1∥L2(µ) ≤ Cϑn∥g∥L2(µ) .

Recall that this also implies the geometric ergodicity on each Lp(µ) for p ∈]1,+∞[ (see [38]).
Let us observe that the study of Markov random walks driven by a ρ-mixing Markov chain (Xk)k

can be simplified in an additive function of a ρ-mixing Markov chain.10

Proposition 7.2. If (Xk)k≥0 is ρ-mixing, then the Markov chain (X̃k := (Xk−1, Xk, Zk))k≥0
with invariant probability measure µ̃ the distribution of (X0, X1, Z0) with respect to Pµ, which is
given by

µ̃(A×B × C) = Eµ [P (1B)1A] P(C)
is also ρ-mixing, with same rate.

Proof. Let P̃ be the transfer operator of X̃. Then, for all n ≥ 1,

P̃n(G)(x, y, z) = E [G(Xn−1, Xn, Zn)|X0 = y]

=
∫

E
(Pn−1(H(·, z)))(y) dP(z) ,

where H(x, z) = E [G(X0, X1, z)|X0 = x], and so

∥P̃n(G) − Eµ̃[G]∥2
L2(µ̃) =

∫
Ω

∣∣∣∣∫
E

(
Pn−1(H(·, z))(y) − Eµ[H(·, z)]

)
dP(z)

∣∣∣∣2 dµ(y)

≤
∫

Ω

∫
E

∣∣∣Pn−1(H(·, z))(y) − Eµ[H(·, z)]
∣∣∣2 dP(z) dµ(y)

≤
∫

E

∥∥∥Pn−1(H(·, z))(y) − Eµ[H(·, z)]
∥∥∥2

L2(µ)
dP(z)

≤
∫

E
C2ϑ2(n−1)∥H(·, z)∥2

L2(µ) dP(z)

=
∫

E
C2ϑ2(n−1)∥E [G(X0, X1, z)|X0] ∥2

L2(µ) dP(z) ≤ C2ϑ2(n−1)∥G∥2
L2(µ̃) .

□

Thus, without any loss of generality, from now on, in this subsection, we replace f(x, y, z) by
f(y) (up to replace the Markov chain X by the Markov chain X̃). Note that this replacement
changes the notion of non-lattice, which can be corrected by using [24].

10Note that this change induces a change in the definition of non-lattice.
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Theorem 7.3. Assume P is geometrically ergodic on L2. Assume the initial measure ν is the
stationary measure µ and Yk = f(Xk), with f : Ω → Rd. Let r be a positive integer. Assume
f is µ-centered and in Lr+1(µ). Then the assumptions of Theorem 7.1 hold true with B0 = C.1
endowed with the infinite norm and with Bj = L

r+1
j (µ) for all j ∈ {1, ..., r} and Br+1 = L

2r+1
2r (µ)

(note that 1 < 2r+1
2r < r+1

r ). In particular

(i) Theorem 6.2 (CLT) applies and we conclude that (Sn/
√
n)n≥1 converges in distribution

to a centered Gaussian random variable with variance matrix
∑

n∈Z CovPµ

(
Y1, Y|n|+1

)
.

(ii) Theorem 6.5 (LLT) applies if Y1 is Zd-valued and non-lattice in Zd.11

(iii) (d = 1) Theorems 6.11 and 6.12 (Expansions of order r̂− 1 = r− 2 and r̂ = r− 1 in the
LLT) apply if Y1 is Z-valued and non-lattice in Z.

(iii’) (d = 1) Theorems 6.11 and 6.12 (Expansions of order r̂− 1 = r− 2 and r̂ = r− 1 in the
LLT) apply if Assumption (γ′)[α′

1, α1] holds true and if Y1 is non-lattice in R.12

(iv) (d = 1) Corollary 6.14 (First order Edgeworth expansion) holds true if r ≥ 2 and if Y1
is non-lattice in R.

(v) (d = 1) Theorem 6.13 (Edgeworth expansion of order r′ ∈ [1, r̂ = r− 1]) applies if r ≥ 2,
if Y1 is non-lattice in R and if Assumption (δ′)[r′] holds true.

Proof. Since P = Id on B0, 1 is the single spectral value of P|B0 and ∥(z Id −P )−1∥L(B0) =
|z − 1|−1. We know that for all p ∈]1,+∞[, ∥Pn − Eµ[·]1∥L(Lp) decreases exponentially fast.
This implies in particular that P is quasi-compact on B1 and on B2 with a single dominating
eigenvalue 1, which is simple and also that

∥Pn
t (g)∥Lp(µ) ≤ ∥Pn(|g|)∥Lp(µ) ≤ ∥Pn − Eµ[·]1∥L(Lp) ∥g∥Lp(µ) + ∥g∥L1(µ) ,

implying the uniform Doeblin-Fortet inequality (4) for Bj ↪→ Bj+1. Moreover, for all j = 0, ..., r
and m ∈ {1, ..., r − j},∥∥∥∥∥Pt(g) −

m∑
k=0

P ((if)kg)
k! tk

∥∥∥∥∥
Bj+m

≤
∥∥∥∥∥P

((
eitf −

m∑
k=0

(if)k

k! tk
)
g

)∥∥∥∥∥
Bj+m

≤
∥∥∥∥∥eitf −

m∑
k=0

(if)k

k! tk
∥∥∥∥∥

Bm

∥g∥Bj ≤ o(tm)∥g∥Bj ,

due to the dominated convergence theorem. Note that this last inequality implies in particular
the continuity assumption of t 7→ Pt ∈ L(Bj ,Bj+1) required in Theorem 3.3. Moreover P (k)

0 =
P ((if)k·) ∈

⋂r−k
j=0 L(Bj ,Bj+k). We also apply Theorem 3.3 with Br ↪→ Br+1 and with Br+1 ↪→

L1(µ). The above inequalities combined with the Keller and Liverani perturbation theorem
(Theorem 3.3) ensure that the assumptions of Items (C) and (D) of Proposition 4.1. Thus
Corollary 5.6 with ν = µ and Proposition 5.8 apply. For (i), we apply Theorem 6.2 thanks to
the previous facts and we identify the variance matrix of the limit using Proposition 5.8.
Condition (P) of [26] is satisfied since the Lp(µ) are contained and dense in L1(µ). Condition (K̂)
of [26] follows from the ρ-mixing. Thus, due to [26, Proposition 5.4], the non-lattice property
implies the non-arithmeticity (exponential decay of supt∈[−π,π]d\B(0,δ0)

∣∣∣E[eit.Sn ]
]

| as n → +∞).
We conclude by applying Theorem 7.1. □

11non-latticity for Zd-valued observables means that there exist no triple (a, H, θ) with a ∈ Zd, H ̸= Zd a
closed subgroup in Zd and θ : Ω → Zd such that Y1 + θ(X1) − θ(X0) ∈ a + H Pµ × P-a.s.

12non-latticity in R means that there exist no triple a, b ∈ R and θ : Ω → R such that Y1+θ(X1)−θ(X0) ∈ a+bZ
Pµ × P-a.s..
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We illustrate the previous theorem with the following explicit example with a smooth transi-
tion density and an observable that does not admit moment of every order.

Example 7.4. Let κ > 0. We consider the following von Mises Markov chain (Xn)n≥0 on
Ω = [−1

2 ,
1
2 ] endowed with the Lebesgue measure µ (we also take ν = µ). We assume that

conditionally to Xk, Xk+1 has von Mises distribution with mean Xk and with concentration κ.
Let r be a positive integer and γ ∈]r + 1, r + 2[. We consider Sn =

∑n
k=1 Yk, with Yk = f(Xk)

and f(y) := sgn(y)|y|−
1
γ . Then Yk = f(Xk) ∈ Lr+1 \ Lr+2 and

(i) Theorem 6.2 (CLT) applies and so (Sn/
√
n)n≥1 converges in distribution to a centered

Gaussian random variable with variance matrix
∑

n∈Z CovPµ

(
Y1, Y|n|+1

)
.

(ii) Theorem 6.5 (LLT) applies.
(iii’) Theorems 6.11 and 6.12 (Expansions of order r̂ − 1 = r − 2 and r̂ = r − 1 in the LLT)

apply (for any α1 and α′
1).

(iv) Corollary 6.14 (First order Edgeworth expansion) holds true if r ≥ 2.
(v) Theorem 6.13 (Edgeworth expansion of order r̂ = r − 1) applies if r ≥ 2 (for r′ = r̂ =

r − 1).

Proof. We apply Theorem 7.3. This Markov chain has a smooth transition density. The family
of Fourier-perturbed operators (Pt)t is given by

∀t ∈ R, Pt(u)(x) =
∫

Ω
p(x, y)eitf(y)u(y) dy ,

with p(x, y) = eκ cos(2π(y−x))

I0(κ) , where I0 is the modified Bessel function of order 0.

• We first observe that the Lebesgue measure µ on Ω := [−1
2 ,

1
2 ] is invariant. This follows

from the fact that
∫

Ω p(x, y) dx = 1.
• We observe that

∀|t| > 2
1
γ , µ(|f |k > t) = µ(|f |k > t

1
k ) = µ(| Id | < t−

γ
k ) = 2t−

γ
k .

Thus ∫
Ω

|f |k dµ =
∫ +∞

0
µ(|f |k > t) dt

is finite if and only if γ > k. This ensures that f ∈ Lr+1(µ) \ Lr+2(µ).
• Now let us prove that the Markov chain (Xn)n is ρ-mixing. To this end, we establish

a Doeblin-Fortet inequality and study the peripherical spectrum. For any n ∈ N and
x ∈ Ω, the following inequalities hold true:

Pn(u)(x) ≤
∫

Ωn

(
n−1∏
i=0

p(xi, xi+1)
)

|u(xn)| dx1...dxn

≤ eκ

I0(κ)∥u∥L1(µ) ,

with the convention x0 = x, where we used the fact that p(xn−1, xn) ≤ eκ

I0(κ) and that,
for all i = 0, ..., n − 2, p(xi, ·) are probability density functions. Thus we have proved
that, for any p ∈ [1,+∞] and any n ∈ N,

∥Pn(u)∥Lp(µ) ≤ eκ

I0(κ)∥u∥L1(µ) . (46)

This Doeblin-Fortet inequality combined with e.g. Hennion’s theorem [18] ensures the
quasi-compactness of P on Lp(µ) for all p ∈]1,+∞[ and the nullity of its spectral radius.
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Furthermore P1 = 1 and if h ∈ Lp(µ) and λ ∈ C of modulus one are such that Ph = λh,
then

|h(x)| ≤
∫

Ω
p(x, y) |h(y)| dy .

But ∫
Ω

|h(x)| dx =
∫

Ω2
p(x, y) |h(y)| dydx ,

since µ is invariant. Since p(x, y) > 0, this implies that |h| is almost surely constant,
and the relation

λh(x) =
∫

Ω
p(x, y)h(y) dy

then implies that h is constant and so also that λ = 1. Hence 1 is the only eigenvalue of
modulus one of P and its eigenspace consists in constant functions.
Finally (46) ensures the that supn ∥Pn∥L2(µ) < ∞ and so that the generalized eigenspace
of P associated to 1 coincide with its eigenspace, ending the proof of the simplicity of 1
as an eigenvalue of P . Thus we ave proved that the Markov chain (Xn)n is ρ-mixing.

• Now let us prove Assumptions (β′), (γ′) and (δ′). To this end we will prove that
limt→+∞ ∥P 2

t ∥∞ = 0. Observe that P 2
t (u)(x) =

∫
Ω qt(x, z)eitf(z)u(z) dz, with

qt(x, z) =
∫

Ω
p(x, y)p(y, z)eitf(y) dy =

∫
|y|>2

1
γ
p(x, y−γ)p(y−γ , z)eityγ|y|−γ−1 dy .

The Riemann-Lebesgue theorem ensures that limt→+∞ qt(x, z) = 0. By uniform continu-
ity of p and since Ω is compact, (x, z) 7→ qt(x, z) is also uniformly continuous (uniformly
in (x, z, t)). Since Ω is compact, we conclude that qt(x, z) converges to 0 uniformly
in (x, z), as t → +∞. Thus limt→+∞ ∥P 2

t ∥∞ = 0, ensuring (42) and so Assumptions
(γ′)[α′

1, α1] for any α1, α
′
1 and (δ′)[r′] for any r′ and also Assumption (β′) (noticing

that the lattice condition f(y) + θ(y) − θ(x) ∈ a + bZ (with b ̸= 0) would imply that
P 2πk

b
(e

2iπk
b

θ) = e
2iπak

b e
2iπk

b
θ).

We conclude by applying 7.3. □

7.3. V -geometrically ergodic Markov chains. Let V : Ω → [1,+∞[ be an unbounded
measurable function. The random walk (Xn)n, or equivalently its transition operator P , is said
to be V -geometrically ergodic if there exist C > 0 and ϑ ∈]0, 1[ such that

∀n ≥ 1,
∥∥∥∥Pn(·) − Eπ[·]

V

∥∥∥∥
∞

≤ Cϑn∥ · /V ∥∞ .

Again the study of Markov random walks driven by a V -geometrically ergodic random walk
(Xk)k≥0 can be reduced to an additive function of a V -geometrically ergodic Markov chain.

Proposition 7.5. If the Markov chain (Xk)k≥1 is V -geometrically ergodic, then the Markov
chain (X̃k = (Xk−1, Xk, Zk))k≥0 with invariant measure µ̃ defined in Proposition 7.2 is Ṽ -
geometrically ergodic with same rate, with Ṽ (x, y, z) = V (x) + V (y).

Proof. Let G : Ω2 × E → C be a bounded measurable function. We have seen in the proof of
Proposition 7.2 that the transfer operator P̃ of X̃ satisfies

∀n ≥ 2, P̃n((GṼ )(x, y, z)) =
∫

E
(Pn−1(H(·, z)))(y) dP(z) ,
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where H(x, z) = E [G(X0, X1, z)(V (x) + V (X1))|X0 = x] =: K(x, z)V (x). Moreover

∥K∥∞ ≤ E [∥G∥∞(V (X0) + V (X1))|X0 = x]
V (x)

≤ ∥G∥∞ (1 + ∥P (V )/V ∥∞) .
Thus ∥∥∥∥∥∥ P̃

n(GṼ ) − Eµ̃[GṼ ]
Ṽ

∥∥∥∥∥∥
∞

=
∥∥∥∥ 1
Ṽ

∫
E

(
Pn−1(K(·, z)V ) − Eµ[K(·, z)V ]

)
dP(z)

∥∥∥∥
∞

≤ Cϑn−1
∫

E
∥K(·, z)∥∞ dP(z) ≤ Cϑn−1∥G∥∞ (1 + ∥P (V )/V ∥∞) .

This ends the proof of the proposition since P acts continuously on the space V.L∞ endowed
with the norm ∥ · /V ∥∞. □

Thus, without any loss of restriction, from now on, in this subsection, we replace f(x, y, z) by
f(y) (again this complicates the notion of non-lattice, see [25] for a simple one).

Theorem 7.6. Let r be a positive integer, r′ ∈]r, r + 1] be a real number and f : Ω → Rd be
a µ-centered function belonging to Lr+1(µ). Let V : Ω → [1,+∞[ be an unbounded measurable
function such that Eµ[V ] < ∞. Assume that P is V -geometrically ergodic and that

max
u∈{0,r′−r}

sup
j=0,...,r

sup
m=1,...,r−j

∥∥∥∥V − j+m+u
r+1 P

(
|f |m+uV

j
r+1

)∥∥∥∥
∞
< ∞ , (47)

then the conclusions of Items (C) and (D) of Propositions 4.1, of Corollary 5.6 (for ν = µ) and of
Proposition 5.8 hold true with B0 = C.1 endowed with the infinite norm and with, for j = 1, ..., r,
Bj := V

j
r+1 .L∞ and Br+1 := V

r′
r+1 .L∞ endowed with the respective norms ∥ · ∥(j) := ∥ · /V

j
r+1 ∥∞

and ∥ · ∥(r+1) := ∥ · /V
r′

r+1 ∥∞.
If Eν [V ε] < ∞ for some ε > 0, then

(i) Theorem 6.2 (CLT) applies and we conclude that (Sn/
√
n)n≥1 converges in distribution to

a centered Gaussian random variable with variance matrix
∑

n∈Z Covµ⊗P⊗N

(
Y1, Y|n|+1

)
.

(ii) Theorem 6.5 (LLT) applies if Y1 is Zd valued and non-lattice in Zd.

If moreover Eν [V
r

r+1 ] < ∞, then

(iii) (d = 1) Theorems 6.11 and 6.12 apply with r̂ = r− 1 if f is Z-valued and non-lattice in
Z.

(iii’) (d = 1) Theorems 6.11 and 6.12 (Expansions of order r′ in the LLT) apply with r̂ = r−1
if Assumption (γ′)[α′

1, α1] holds true for EPν [eisSn ] and if Y1 is non-lattice in R.
(iv) (d = 1) Corollary 6.14 (First order Edgeworth expansion) holds true if r = 2 and f is

non-lattice in R.
(v) (d = 1) Theorem 6.13 (Edgeworth expansion of order r′ ∈ [1, r̂ = r − 1]) applies if Y1 is

non-lattice in R and if Assumption (δ′)[r′] holds true for EPν [eisSn ] .

Proof. Recall that P is also V γ-geometrically ergodic for any γ ∈]0, 1] and that Theorem 3.3
applies with the Banach spaces V γL∞ ↪→ L1(µ) (see e.g. [26, Lemma 10.1]). If V ∈ L1(m), then
Bj ⊂ L

r+1
j (m) since

∥h∥
L

r+1
j (m)

=
∥∥∥∥∥V j

r+1
h

V
j

r+1

∥∥∥∥∥
L

r+1
j (m)

≤
∥∥∥∥V j

r+1

∥∥∥∥
L

r+1
j (m)

∥∥∥∥∥ h

V
j

r+1

∥∥∥∥∥
∞

= ∥V ∥
j

r+1
L1(m) ∥h∥Bj

.



LIMIT THEOREMS UNDER OPTIMAL MOMENT ASSUMPTIONS 35

In particular, if V ∈ L1(ν), then ν defines a linear continuous form on Br+1. The fact that
Bj ↪→ Bj+1 follows from V − j+1

r ≤ V − j
r . There exist C > 0 and ϑ ∈]0, 1[ such that, for any

j ∈ {1, ..., r + 1},

∥Pn(g) − Eπ[g]∥(j) ≤ Cϑn∥g∥(j) ,

∥Pn
t (g)∥(j) ≤ ∥Pn(|g|)∥(j) ≤ Cϑn∥g∥(j) + ∥g∥1 ,

ensuring the Doeblin-Fortet estimate (4) for Bj ↪→ Bj+1 for j = 1, ..., r. For k = 0, ..., r,
P

(k)
0 := P ((if)k·) ∈ ∩r−k

j=0L(Bj ,Bj+k) since

∥∥∥P (k)
0 (h)

∥∥∥
(j+k)

≤
∥∥∥∥V − j+k

r+1P (|f |k|h|)
∥∥∥∥

∞

≤
∥∥∥∥V − j+k

r+1P (|f |kV
j

r+1 )
∥∥∥∥

∞
∥h∥(j)

and due to (47). It remains to check the regularity assumptions. For all j = 0, ..., r and
m ∈ {1, ..., r − j},∥∥∥∥∥Pt(g) −

m∑
k=0

P ((if)kg)
k! tk

∥∥∥∥∥
(j+m)

≤
∥∥∥∥∥P

((
eitf −

m∑
k=0

(if)k

k! tk
)
g

)∥∥∥∥∥
(j+m)

≤
∥∥∥∥V − j+m

r+1 P

(
|tf |m∥g∥(j)V

j
r+1

)∥∥∥∥
∞

≤ O(tm) ∥g∥(j) ,

and ∥∥∥∥∥Pt(g) −
m∑

k=0

P ((if)kg)
k! tk

∥∥∥∥∥
(r+1)

≤
∥∥∥∥P (|tf |m+r′−rV

j
r+1

)
V − j+m+r′−r

r+1

∥∥∥∥
∞

∥g∥(j)

≤ O(tm+r′−r) ∥g∥(j) = o(tm) ∥g∥(j) .

Condition (P) of [26] is satisfied since the Banach spaces are stables under complex modulus and
Condition (K̂) of [26] follows from the V -geometric ergodicity. Thus, due to [26, Proposition
5.4], the non-lattice property implies the exponential decay of supt∈[−π,π]d\B(0,δ0)

∣∣∣E[eit.Sn ]
]

|
as n → +∞. We end the proof by applying Theorem 7.1 with B̃0 := V ε.L∞ for (applying
Theorem 3.3 for V

ε
2 .L∞ ↪→ B̃0 = V ε.L∞). □

Remark 7.7. Assume ν = µ. Observe that (47) is satisfied as soon as ∥f r+1/V ∥∞ < ∞ (which
also ensures that f ∈ Lr+1(µ)) with r ≥ 1, since for j +m ≤ r and u ∈ {0, r′ − r}:

∥∥∥∥V − j+m+u
r+1 P

(
|f |m+uV

j
r+1

)∥∥∥∥
∞

≤
∥∥∥∥V − j+m+u

r+1 P

(
V

j+m+u
r+1

)∥∥∥∥
∞

∥∥∥f r+1/V
∥∥∥m+u

r+1

∞
< ∞ .

Moreover, for the Markov chain (Xk−1, Xk, Zk) considered in Proposition 7.5 with the reference
function Ṽ , (47) holds true if

∥∥∥∫E |f(·, ·, ω)|r+1 dP(ω)/Ṽ
∥∥∥

∞
< ∞. Indeed, setting g(x, y) =
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E

|f(x,y,ω)|r+1 dP(ω)
V (x)+V (y) ,∣∣∣∣P̃ (|f |m+uṼ

j
r+1

)
(x)
∣∣∣∣ =

∣∣∣∣P (∫
E

|f(x, ·, ω)|m+u dP(ω)(V (x) + V (·))
j

r+1

)
(x)
∣∣∣∣

≤
∣∣∣∣∣P
((∫

E
|f(x, ·, ω)|r+1 dP(ω)

)m+u
r+1

(V (x) + V (·))
j

r+1

)
(x)
∣∣∣∣∣

≤
∣∣∣∣P ((g(x, ·))

m+u
r+1 (V (x) + V (·))

j+m+u
r+1

)
(x)
∣∣∣∣

≤ ∥g∥
m+u
r+1

∞

(
1 +

∥∥∥∥V − j+m+u
r+1 P (V

j+m+u
r+1 )

∥∥∥∥
∞

)
V (x)

j+m+u
r+1 ,

since P is V
j+m+u

r+1 -geometrically ergodic.

7.4. Lipschitz iterative models. We consider a non-compact metric space (E, d) in which
every closed ball is compact, and endow it with its Borel σ-algebra E . Let (G,G) be a measur-
able space, let (θn)n≥1 be a sequence of independent identically distributed G-valued random
variables. Let F : E × G → E be a measurable function such that, for all g ∈ G, Fg := F (·, g)
is Lipschitz continuous with Lipschitz constant Cg. We consider the random walk defined by

∀n ≥ 1, Xn = F (Xn−1, θn) ,

the sequence (θn)n≥1 being independent of the initial value X0 of the random walk. This random
walk is called an iterative Lipschitz model [5] [7] and has transition operator

P (g)(x) = E[ g(F (x, θ1))] .

Note that this context includes the autoregressive chains on Rd of the form

∀n ≥ 1, Xn = AnXn−1 + θn ,

where (An, θn)n≥1 is an i.i.d. sequence of r.v. taking values in Md(R) × Rd, independent of X0
(Md(R) denotes the set of real d× d-matrices.) with e.g. |A1| < 1 (| · | being a matrix norm).
For one-dimensional autoregressive chains, convergence to stable laws has been investigated in
[17] for f(x) = x. Let x0 be a fixed point in E. For x ∈ E, we set p(x) = 1 + d(x, x0). We
set, for all g ∈ G, Mg := Cg + p(F (x0, g)). We are interested in the asymptotic behaviour of
Sn =

∑n
k=1 f(Xk), with f : Ω → Rd satisfying the following condition for some C1, s ≥ 0:

∀(x, y) ∈ E × E, |f(x) − f(y)| ≤ C1 d(x, y) (p(x) + p(y))s . (48)

Recall that the case f is Lipschitz continuous (i.e. s = 0 in (48)) has been studied e.g. in
[7] and in [2]. Fix α ∈]0, 1]. We set B̃(0)

α,b,a for the set of functions g : E → C such that
|f |(0)

a +m
(0)
α,b(f) < ∞, with

|f |(0)
a := ∥f/pa∥∞ and m

(0)
α,b(f) := sup

x,y∈E, x ̸=y

|f(x) − f(y)|
d(x, y)α max(p(x), p(y))b

.

Remark 7.8. Observe that (48) means that the coordinates of f belong to B̃(0)
1,s,s+1 ⊂ B̃(0)

α,s+1−α,s+1.

In the sequel, we set M := Mθ1 and C := Cθ1 . Recall that it has been proved in [20, Th. I]
that if

E
[
Mα(s+1)

]
< ∞ and E [Cα max{C, 1}αs] < 1 ,

then the Markov chain (Xn)n admits a unique stationary distribution µ and p ∈ Lα(s+1)(µ) (see
also e.g [5] [7]), which implies in particular that f ∈ Lα(µ).
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Theorem 7.9. Let r be a positive integer and a real number r′ ∈]r, r+ 1]. Let ν be a probability
measure on Ω. Assume that p ∈ L(s+1)(r+1)(µ) and α ∈]0, s+1

s+2 ]. Assume that f is µ-centered,
satisfies (48) and that13

E
[

M(s+1)(r+1) + Cα M(s+1)r′+sα
]
< +∞ (49)

and
E
[
Cα max{C, 1}(s+1)r′+sα

]
< 1 . (50)

If p ∈ Lε(ν) for some ε > 0, then

(i) Theorem 6.2 (CLT) applies and we conclude that (Sn/
√
n)n≥1 converges in distribution to

a centered Gaussian random variable with variance matrix
∑

n∈Z Covµ⊗P⊗N

(
Y1, Y|n|+1

)
.

(ii) Theorem 6.5 (LLT) applies if Y1 is Zd valued and non-lattice in Zd.

If moreover p ∈ L(s+1)r(ν), then

(iii) (d = 1) Theorems 6.11 and 6.12 apply with r̂ = r− 1 if f is Z-valued and non-lattice in
Z.

(iii’) (d = 1) Theorems 6.11 and 6.12 (Expansions of order r in the LLT) apply with r̂ = r−1
if Assumption (γ′) holds true for Eν [eisSn ] and if Y1 is non-lattice in R.

(iv) (d = 1) Corollary 6.14 (First order Edgeworth expansion) holds true if r ≥ 2 and if f is
non-lattice in R.

(v) (d = 1) Theorem 6.13 (Edgeworth expansion of order r′ ∈ [1, r̂ = r− 1]) applies if r ≥ 2,
if Y1 is non-lattice in R and if Assumption (δ′)[r′] holds true for Eν [eisSn ] .

Let us prove this result. We consider the following notion of weighted Hölder-type spaces due
to D. Guibourg [14] and used in [26] generalizing those introduced [32] (used also in [34, 37]).
For positive real numbers β, γ such that 0 < β ≤ γ and for (x, y) ∈ E2, we set

∆α,β,γ(x, y) := p(x)αγ p(y)αβ + p(x)αβ p(y)αγ .

Then Bα,β,γ denotes the space of C-valued functions g on E satisfying the following condition

mα,β,γ(g) := sup
{ |g(x) − g(y)|
d(x, y)α ∆α,β,γ(x, y) , x, y ∈ E, x ̸= y

}
< +∞.

Set |g|α,γ := sup
x∈E

|g(x)|
p(x)α(γ+1) and ∥g∥α,β,γ := mα,β,γ(g) + |g|α,γ . Then (Bα,β,γ , ∥ · ∥α,β,γ) is a

Banach space. Moreover
γ ≤ γ′ ⇒ Bα,β,γ ↪→ Bα,β,γ′ , (51)

and Bα,β,γ ↪→ L
K

γ+1 (µ) if p ∈ LαK(µ). Theorem 7.9 relies on the following propositions combined
with Theorem 7.1

Proposition 7.10. Assume the Assumptions of Theorem 7.9. Then the assumptions of Corol-
lary 5.6 are satisfied with B0 = C.1, Bj = B

α,s+1,
j(s+1)

α
−1 for j = 1, ..., r, Br+1 = B

α,s+1,
r′(s+1)

α
−1,

Br+2 = L1(µ).

Proof. Since α ∈]0, s+1
s+2 ], s+ 1 ≤ s+1

α − 1. Due to Lemmas 7.11 and 7.12, we know that, for all
for j = 1, ..., r + 1, P is geometrically ergodic on Bj and that (Pt)t satisfies the Doeblin Fortet
assumption of Theorem 3.3 for the Banach spaces Bj ↪→ L1(µ). Moreover 1 ∈ B0, and P coincide

with Id on B0 and so (z Id −P )−1 = (z − 1)−1 Id on B0. Due to Lemma 7.13, Pt −
∑k

j=0
P

(j)
0 .t⊗j

j!

13Observe that these assumptions ensure that p ∈ L(s+1)(r+1)(µ), thus that f ∈ Lr+1(µ).
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is in O(|t|k) in L(Bi,Bi+k) for all i = 0, ..., r − k and in O(|t|k+r′−r) = o(tk) in L(Br−k,Br+1),
with P

(j)
0 := P

(
(if)⊗j ·

)
.

Moreover Bj ↪→ p(s+1)jL∞ ↪→ L
r+1

j (µ) since p(s+1)(r+1) ∈ L1(µ); and t 7→ Pt ∈ L(Br+1,Br+2)
is continuous (we can use e.g. Lemma 7.13). □

Lemma 7.11. ([26, Lemma B.1]) Let a ≥ α and b ∈ [0, a+ αγ] and 0 ≤ β ≤ γ. Assume

E
[
Ma+α(γ+1) + CαMa+α(γ+β) + CαMb+α(γ+1)

]
< ∞ .

Then there exists C ′ > 0 such that, for all g ∈ B̃(0)
α,a,b,

∥P (g·)∥L(Bα,β,γ ,B
α,max(β, b−a+α

α ),γ+ a
α

) ≤ C ′∥g∥B̃(0)
α,b,a

,

and
∥P (g·)∥L(C.1,B̃(0)

α,b,a
) ≤ C ′∥g∥B̃(0)

α,b,a

.

More precisely
|P (gh)|α,γ+ a

α
≤ E[Ma+α(γ+1)]|g|(0)

a |h|α,γ (52)
and

mα,max(β, b−a+α
α

),γ+ a
α

(gh) ≤ E[CαCa+α(γ+β)
1 ]|g|(0)

a mα,β,γ(h)+E[CαMb+α(γ+1)]m(0)
α,b(g)|h|α,γ , (53)

with C1 := max(C, 1) + d(F (x0, θ1), x0) ≤ M.

Proof. The fact that C1 ≤ M follows from [20, p.1945]. We start from [26, Lemma B.1] which
states that

|P (gh)| ≤ E[Ma+α(γ+1)]|g|(0)
a |h|α,γp

a+α(γ+1)

(ensuring (52)) and that
|P (gh)(x) − P (gh)(y)|

d(x, y)α
≤ E[CαCa+α(γ+β)

1 ]|g|(0)
a mα,β,γ(h)p(x)a∆α,β,γ(x, y)

+ E[CαMb+α(γ+1)]m(0)
α,b(g)|h|α,γp(x)bp(y)α(γ+1) ,

if p(y) ≤ p(x). Still assuming that p(y) ≤ p(x), we conclude by noticing that

p(x)a∆α,β,γ(x, y) = p(x)a(p(x)αβp(y)αγ + p(y)αβp(x)αγ)
≤ p(x)a+αγp(y)αβ + p(y)αβp(x)a+αγ

since β ≤ γ and
p(x)bp(y)α(γ+1) ≤ p(x)a+αγp(y)α+b−a

since α(γ + 1) ≥ α+ b− a. □

Lemma 7.12. ([20, Theorem 11.5], [26, Propositions 11.2 and 11.4]) Assume s + 1 ≤ β ≤ γ
and

E
[

Mα(γ+1) + Cα Mα(γ+β)
]
< +∞ and E

[
Cα max{C, 1}α(γ+β)

]
< 1 . (54)

Then P is geometrically ergodic on Bα,β,γ: ∥Pn − Eµ∥L(Bα,β,γ) = O(ϑn) and (Pt)t satisfies the
assumptions of Theorem 3.3 with B1 = Bα,β,γ and B2 = L1(µ).

We prove the following result (generalizing [26, Proposition 11.6], see also ([26, Propositions
11.5 and 11.7] for Cm-smoothness).
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Lemma 7.13. If s+ 1 ≤ β ≤ γ < γ′ satisfies α(γ′ − γ) ≤ s+ 1 and

E[Mα(γ′+1) + CαMα(γ′+β)] < ∞ ,

then t 7→ Pt ∈ L(Bα,β,γ ,Bα,β,γ′) is continuous at 0.
If m is a positive integer, if m′ ∈ [m,m+ 1] and if β, γ are such that 0 ≤ β ≤ γ and

E
[
Mm′(s+1)+α(γ+1) + CαMm′(s+1)+α(γ+β) + CαMm′(s+1)+αγ

]
< ∞ .

Then

Pt −
m∑

k=0

P
(k)
0 .t⊗k

k! = O
(
tm

′)
in L

(
Bα,β,γ ,Bα,β,γ+ m′(s+1)

α

)
and in L

(
C.1, B̃(0)

α,m′(s+1)−α,m′(s+1) = B
α,0,

m′(s+1)
α

−1

)
, with P (k)

0 :=

P
(
(if)⊗k·

)
.

Proof. Due to Lemma 7.11, the continuity at 0 of t 7→ Pt ∈ L(Bα,β,γ ,Bα,β,γ′) will follow from
the control of ∥eit.f − 1∥B̃(0)

α,sα,a=α(γ′−γ)
(since sα−a+α

α ≤ s+ 1 ≤ β and 0 ≤ sα ≤ a+ αγ = αγ′).

We conclude by noticing, on the first hand (using a
s+1 ≤ 1), that

|eit.f − 1| ≤ min(2, |t|.|f |) ≤ min
(
2, |t|.

(
|f(x0)| + C1p

s+1
))

≤ 21− a
s+1 |t|

a
s+1 (|f(x0)| + C1)

a
s+1 p

a
s+1 (s+1) ,

which implies that |eit.f − 1|(0)
a = O

(
|t|min( a

s+1 ,α)
)

and, on the second hand, that

|eit.f(x) − eit.f(y)| ≤ min (2, |t|.|f(x) − f(y)|) ≤ 21−α|t|αCα
1 d(x, y)α(p(x) + p(y))sα ,

ensuring that m(0)
b (eitf − 1) = O

(
|t|min( a

s+1 ,α)
)

This ends the proof of the first point. Let us
prove the second point. To this end, we first observe that

Pt −
m∑

k=0

P
(k)
0 .t⊗k

k! = P

((
eit.f −

m∑
k=0

(it.f)k

k!

)
·
)
.

Due to Lemma 7.11, it is enough to prove that
∥∥∥eit.f −

∑m
k=0

(it.f)k

k!

∥∥∥
B̃(0)

α,m′(s+1)−α,m′(s+1)

= O(|t|m′).

We set h(u) := eiu −
∑m

k=0
(iu)k

k! and notice that

|h(t.f)| ≤ 2 |t.f |m′

m! ≤
2|t|m′

(
|f |(0)

s+1

)m′

m! p(s+1)m′
.

Observe that there exists C ′
0 > 0 such that |h′(iu)| =

∣∣∣i (eiu −
∑m−1

k=0
(iu)k

k!

)∣∣∣ ≤ C ′
0|u|m′−1 for all

u ∈ R. Thus

|h(t.f(x)) − h(t.f(y))| ≤ C ′
0 max (|t.f(x)|, |t.f(y)|)m′−1 |t.(f(x) − f(y))|

≤ C ′′
1 |t|m′−1 max

(
p(x)s+1, p(y)s+1

)m′−1
|t|d(x, y)α max(p(x), p(y))s+1−α

≤ |t|m′
d(x, y)α max(p(x), p(y))m′(s+1)−α .

□
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Proof of Theorem 7.9. Proposition 7.10 ensures that assumptions of Theorem 7.1 (except maybe
those on ν) are satisfied. Observe that the condition p ∈ L(s+1)r(ν) ensures that Eν ∈ B∗

r since
Br ↪→ pr(s+1).L∞.
For Items (i)-(ii) (TCL and LLT), assuming ε < 1/3 and ε < α(2s + 2), we take B̃0 :=
B ε

2s+2 ,s+1,2s+1 and apply Theorem 3.3 for B ε
2s+2 ,s+1,s+1 ↪→ B̃0 = B ε

2s+2 ,s+1,2s+1. This will en-
sure the continuity of t 7→ Πt ∈ L(B0, B̃0). The fact that B̃0 := B ε

2s+2 ,s+1,2s+1 ↪→ L1(ν) will
follow from B̃0 ↪→ pε.L∞ and pε ∈ L1(ν). Let us check that the assumptions of Theorem 3.3
are satisfied for B ε

2s+2 ,s+1,s+1 ↪→ B̃0. The continuity assumption of Theorem 3.3 is ensured by
Lemma 7.13 (the integrability conditions follows from ε < 1/3). The other assumptions follow
from Lemma 7.12. Indeed Conditions (49) and (50) imply (54) for β = γ = s+1 since α ∈]0, s+1

s+2 ]
implies α(2s+ 2) ≤ (s+ 1)r′ + sα and α(s+ 2) ≤ (s+ 1)(r+ 1); and moreover (54) implies that
(54) holds also true with α being replaced by ε/(2s+ 2) < α (due to the Hölder inequality).
Finally it has been proved in [26, Proposition 11.8] that the non-lattice property implies the
exponential decay of maxj=1,...,r+1 supt∈[−π,π]d\B(0,δ0) ∥Pn

t ∥Bj
as n → +∞. □

Appendix A. Markov Additive processes

In [24], the authors considered Markov processes (Xn, S̃n)n on Ω × Rd such that

E
[
h(Xn, S̃n)

∣∣∣Xn−1 = x, S̃n−1 = y
]

= E
[
h(Xn, y + S̃n)

∣∣∣Xn−1 = x, S̃n−1 = 0
]
. (55)

They also considered a continuous version of this form. We concentrate here on the discrete
time process. The first coordinate (Xn)n≥0 of this process is also a Markov process (driving the
process (S̃n)n≥1).
We explain here how, starting with the process (X, S̃) and using an independent sequence
(Zk)k≥1 of i.i.d. random variables, we can construct a process (Sn)n≥0 with

Sn :=
n∑

k=1
Yk, Yk := f (Xk−1, Xk, Zk)

such that (Xn, S̃0 + Sn)n≥0 is Markov with the same transition operator as (Xn, S̃n)n≥0. Let(
Zn =

(
Z

(1)
n , ..., Z

(d)
n

))
n≥1

be a sequence of i.i.d. random variables uniformly distributed on
]0, 1[d and independent of (S̃0, (Xn)n≥0). Let Fk(x, x′, s1, ..., sk−1, ·) be the distribution function
of S̃(k)

1 |(X0 = x,X1 = x′, S̃0 = 0, S̃(1)
1 = s1, ..., S̃

(k−1)
1 = sk−1) (Jirina’s desintegration theorem

ensures it is well defined). Consider fk(x, x′, s1, ..., sk−1, ·) its inverse, i.e.

fk(x, x′, s1, ..., sk−1, u) = inf
{
z ∈ R|Fk(x, x′, s1, ..., sk−1, z) ≥ u

}
.

Then we define the coordinates Y (k)
n of Yn =

(
Y

(1)
n , ..., Y

(d)
n

)
inductively on k by setting, for all

k = 1, ..., d,
Y (k)

n := fk

(
Xn−1, Xn, Y

(1)
n , ..., Y (k−1)

n , Z(k)
n

)
.

A crucial well known fact is that fk(..., z) ≤ u ⇔ z ≤ Fk(..., u). In particular

Y (k)
n ≤ uk ⇔ Z(k)

n ≤ Fk(Xn−1, Xn, Y
(1)

n , ..., Y (k−1)
n , uk) .

This ensures that the distribution of Y (k)
n given

(
Xn−1, Xn, Sm−1, (Y (j)

n )j=1,...,k−1
)

is the same as

the one of S̃(k)
n given

(
Xn−1, Xn, S̃n−1 = 0, (S̃(j)

n = Y
(j)

n )j=1,...,k−1
)
. Thus, we prove by induction

that, for all k = 1, ..., d, the distribution of (Y (1)
n , ..., Y

(k)
n ) given Xn−1, Xn, Sn−1 coincides with
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the one of (S̃(1)
n , ..., S̃

(k)
n ) given (Xn−1, Xn, S̃n−1 = 0). Indeed this holds true for k = 1 and,

moreover assuming the result holds true at some rank k ∈ {1, ..., d− 1}, it follows that

E

k+1∏
j=1

1]−∞,uj ](Y (j)
n )

∣∣∣∣∣∣Xn−1, Xn, Sn−1


= E

 k∏
j=1

1]−∞,uj ](Y (j)
n )1{Z

(k+1)
n ≤Fk+1(Xn−1,Xn,Y

(1)
n ,...,Y

(k)
n ,uk+1)}

∣∣∣∣∣∣Xn−1, Xn, Sn−1


= E

 k∏
j=1

1]−∞,uj ](Y (j)
n )Fk+1(Xn−1, Xn, Y

(1)
n , ..., Y (k)

n , uk+1)

∣∣∣∣∣∣Xn−1, Xn, Sn−1


= E

 k∏
j=1

1]−∞,uj ](S̃(j)
n )Fk+1(Xn−1, Xn, S̃

(1)
n , ..., S̃(k)

n , uk+1)

∣∣∣∣∣∣Xn−1, Xn, S̃n−1 = 0


= E

k+1∏
j=1

1]−∞,uj ](S̃(j)
n )

∣∣∣∣∣∣Xn−1, Xn, Sn−1

 ,
and thus the result holds also at rank k+1. Therefore the distribution of Yn given Xn−1, Xn, Sn−1
coincides with the one of S̃n given (Xn−1, Xn, S̃n−1 = 0). Moreover (Xn, Sn)n is a Markov
process.
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