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Jérôme Rose1,2

1CEREGE, CNRS, IRD, INRAE, Coll France, Aix Marseille Univ, Aix-En-Provence, France, 2Civil and Environmental Engineering,
Duke University, Durham, NC, United States, 3Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Saint Paul-Lez-Durance, France

Indoor aquatic mesocosms are increasingly used in nanosafety to assess the behavior, fate,
and impacts of engineered nanomaterials (ENMs) in aquatic environments using relevant
exposure scenarios. The robustness of 60 L freshwater mesocosm experimentation was
tested on the basis of the reusability of the data collected in a database namedMESOCOSM
regarding mesocosm experiments examining the environmental risks of CeO2 ENMs. We
observed high reliability of the measured variables across replicates. The sensitivity of this
mesocosm methodology was evidenced by the contrasted ecosystem responses revealed
by a multivariate analysis. We also observed that adding variables to the data set up to 15%
did not affect the outcome of the analysis of the results. This ability to buffer this variability
demonstrates that the indoor aquatic mesocosms are robust tools contributing to the
environmental risk assessment of ENMs, and stresses the benefit of reusing the data stored
in databases such as MESOCOSM adhering to the findable, accessible, interoperable,
reusable (FAIR) data principles.
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INTRODUCTION

The current strategies to assess the environmental safety of engineered nanomaterials (ENMs) are
often based on standardized hazard-driven nano-ecotoxicological approaches (Kahru and
Dubourguier, 2010; Skjolding et al., 2016; Lead et al., 2018). These standardized test conditions
are defined according to wide applicability and ease of use, rather than relevant scenarios (e.g.,
concentrations, duration, and lifecycle stage) (Holden et al., 2016). With such approaches, only little
attention is paid to the environmental exposure to ENMs, despite its pivotal role in the
understanding of the environmental risks. Exposure to ENMs is driven by physicochemical (e.g.,
aggregation, sorption of (in)organic substances, and redox transformations) and ecological
parameters (e.g., feeding type, trophic, and transgenerational transfers). There is abundant
literature about the effects of all these parameters taken separately. However, for a robust
characterization of the environmental risk, the complex interplay between these bio-
physicochemical parameters in natural ecosystems needs to be considered (Auffan et al., 2014;
Petersen et al., 2015; Holden et al., 2016; Schwirn et al., 2020).

In this regard, mesocosms provide an environmentally relevant testing strategy for ENMs since
they were designed to allow the simultaneous monitoring of a number of parameters (e.g.,
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aggregation, settling, mass balance, trophic transfer,
biotransformation, oxidative stress, and microbial diversity)
under environmentally meaningful conditions. A mesocosm is
defined as an experimental system that simulates real-life
conditions as closely as possible, while allowing the
manipulation of environmental factors (Chowdhury et al.,
2009). They combine the relevance of a field trial (exposure in
complex media, low dose tested, and mid- to long-term duration)
(Bradford et al., 2009; Mühling et al., 2009; Yeo and Nam, 2013)
with the ease of monitoring (Wohlers-Zöllner et al., 2012; Gall
et al., 2017; Båmstedt and Larsson, 2018; Velthuis et al., 2018).
Among all available designs, indoor aquatic mesocosm facilities
have been successfully used in these past few years to investigate
the risks of ENMs. This versatile tool can accommodate several
exposure scenarios to ENMs, that is, various ecosystems (such as
lotic, lentic, estuarine, or lagoon environments), at ENMs
concentrations close to the predicted environmental
concentrations (Auffan et al., 2019), and with ENMs at
different stages of the nanoproduct life cycle (production, use,
and end of life) (Masion et al., 2019).

Schwirn et al. (2020) recently pointed out that “although
knowledge on the peculiarities of testing and assessing fate
and effects of ENMs in the environment strongly increased in
the last years, uncertainties about how to perform a reliable and
robust environmental risk assessment for ENMs still remain”
(Schwirn et al., 2020). Despite the relevance of indoor aquatic
mesocosm setups, the main criticism regards their ability to detect
an effect and the important variability among replicates. This lack
of precision and variability stems from the complexity of natural
environments and the associated challenges to detect/measure
ENMs and their effects at low doses. Indeed, conventional testing
protocols circumvent the observed variability of biological
systems in standardized tests by performing a number of
replicates of these tests. Given the involved logistics and the
duration of an experimental run, multiplying replicates is not
always an option. However, a wider use of this methodology to
assess the environmental exposure and hazards of ENMs requires
addressing these apparent variabilities and limitations. This
requires naturally working with multiple mesocosm
experiments and their associated large data sets. This
methodology is facilitated by the so-called findable, accessible,
interoperable, reusable (FAIR) data initiative and the
implementation of the database adhering to these principles
(Wilkinson et al., 2016). The rationale is integrating data to
develop efficient and deeper data mining to enhance the
interdisciplinary vision of scientific results and to provide new
insights to improve the safety and properties of ENMs. To meet
the specific needs of environmental nanosafety, a dedicated
database (called MESOCOSM) and its associated management
system have been created recently (Ayadi et al., 2021).

Using the MESOCOSM database, our study aims at
determining to which extent currently used indoor aquatic
mesocosms produce reliable results and interpretations of the
environmental exposure to ENMs and their hazards and will
serve as an example of data reusability. In nanosafety, this touches
upon the robustness of this experimental approach, a concept for
which numerous definitions are available in the literature (Levins,

1966; Wimsatt, 2012) (Goodman et al., 2016; Munafò and Davey
Smith, 2018). Narrowing it down to the use of mesocosms in
nanosafety, the system dimensions and their reliability,
sensitivity, and buffering capacity are key issues. Regarding the
dimensioning of the setup, it has already been demonstrated that
even a mesocosm with a modest volume produces a response that
is characteristic of the simulated ecosystem and not its container
(Teuben and Verhoef, 1992). However, the sensitivity (i.e., the
ability to detect significant changes in the system response to
ENM contamination), the reliability (i.e., the ability to obtain
consistent results if an experiment is repeated exactly the same
way), and the buffering capacity (i.e., the capacity to smooth out
the system response to unexpected/unforeseeable experimental
variability) remain to be studied for a better use of mesocosms in
nanosafety.

To reach this goal, we used data stored in the MESOCOSM
database regarding two experiments performed in 60 L indoor
aquatic mesocosms examining the environmental risks of CeO2

ENMs within a pond ecosystem (Tella et al., 2014; Tella et al.,
2015). The current study is essentially an examination of the
relevance of data reanalysis or reusability in the parlance of the
FAIR principles, combining several data sources instead of the
single article. To do so, about ∼900 points regarding the bio-
physicochemical properties, (bio)distribution, speciation, and
biological impacts were gathered and analyzed using
multivariate analysis [principal component analysis (PCA) and
partial least squares regression (PLS-R)].

MATERIALS AND METHODS

Where Does the Data Come From?
The data selected for themultivariate analysis in this present work
regard experiments performed in freshwater indoor mesocosms
contaminated with CeO2 ENMs (Tella et al., 2014; Tella et al.,
2015) and were extracted from the publicly available
MESOCOSM database (Ayadi et al., 2021). In brief, sixteen
indoor mesocosms were set up to mimic a natural pond
ecosystem (Auffan et al., 2014). Natural sediments and
organisms (picobenthos and the invertebrate Planorbarius
corneus) were collected from a non-contaminated pond in the
preserved Natura 2000 reserve network in southern France
(43.34361°N, 6.259663°E, and altitude 107 m a.s.l.). Each
mesocosm consisted of a layer of artificial sediments made up
of 79% SiO2, 15% kaolinite, and 1% CaCO3 covered with 300 g of
water-saturated natural sediment containing primary producers
(e.g., algae and bacteria). The tanks were filled with 46 L of
Volvic® water with pH (pH ∼7.9) and conductivity values
(between 250 and 330 μS cm−1) close to those of the natural
pond water. After the first phase of mesocosm equilibration and
organism acclimation, 12 mesocosms were contaminated with
CeO2 ENMs, and four were kept as controls.

Two scenarios of CeO2 ENM contamination that can be
encountered in real life were simulated for a month: 1) single
pulse dosing (called the “mono” exposure scenario) of 69 mg of
ENMs to achieve a total concentration of 1.3 mg L−1 of CeO2

ENMs simulating ENMs from rain runoff or spills and 2) multiple
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dosing (called the “multi” exposure scenario) of 5.2 mg of ENMs
3 times per week to reach a concentration of 1.1 mg L−1 after
28 days. The latter contamination scenario corresponds to a
continuous point source discharge such as a wastewater
treatment plant or industrial discharge.

Mesocosms were contaminated with three types of
commercially available CeO2 ENMs. Citrate-coated CeO2 ENMs
(∼4 nm, Nanobyk®, Byk Additives & Instruments, Germany) were
used to contaminate a total of six mesocosms (three with the
mono- and three with the multi-exposure scenarios). Large bare
CeO2 ENMs (∼30 nm, NanoGrain®, Umicore, Germany) were
used to contaminate three mesocosms using the multi-exposure
scenario and small bare CeO2 ENMs (∼4 nm, Rhodia, France) to
contaminate three mesocosms using the mono exposure scenario.
Table 1 shows the main physicochemical characteristics of these
CeO2 ENMs. More information about the experimental design, the
physicochemical properties of the ENMs, the sampling, the
analysis, and the bio-physicochemical results obtained are
available in references (Tella et al., 2014; Tella et al., 2015).

Which Data Were Implemented in the
Dataset?
Multiple physicochemical, microbial, and biological measurements
are performed during the previously presented experiments to assess
the exposure and the impacts of ENMs in the mimicked ecosystem.
These measurements allow monitoring, among all the mechanisms
of toxicity at the individual and sub-individual scales on the micro-
andmacro-organisms, the (bio)distribution and (bio)transformation
of the metal between the different compartments. Some parameters
are monitored continuously with in situ probes (e.g., pH,
temperature, redox potential, conductivity, and dissolved oxygen),
while other parameters (e.g., metal concentrations, number of
natural colloids, picoplankton/picobenthos and algae
concentrations, and biomarkers) require sampling with a desired
periodicity and ex situ analysis.

Quantitative data obtained in these 16 indoor freshwater
mesocosms with CeO2 ENMs were defined in the data set as
quantitative environmental variables and quantitative response
variables. Six quantitative environmental variables were used:
total organic carbon (TOC) measured once a week, and pH,
oxidation–reduction potential (ORP) in the water column, ORP
in surficial sediments, conductivity (cond), and dissolved O2 (O2)
measured every 5 min in eachmesocosm. To get a symmetric data
set, mean values of pH, ORP, cond, and O2 were considered along
24 h on days 7, 14, 21, and 28. Four quantitative response
variables measured once per week on days 7, 14, 21, and 28 in

each mesocosm: cerium concentration in the water column
([Ce] tot water), cerium concentration in the surficial sediments
([Ce] tot sediment), a biomarker of total antioxidant capacity
(TAOC), and a biomarker of the oxidative stress level based
on lipid oxidation products (TBARS, thiobarbituric acid–reactive
substances) (Armstrong and Browne, 1994; Botsoglou et al.,
1994). TBARS and TAOC were measured on the digestive
gland of mollusks. (For more details about these measurements
see Tella et al. (2014).) Moreover, the data set also contained four
qualitative variables that describe the exposure scenario [single
pulse (mono) or multiple dosing (multi)], the surface coating (bare
or citrate), the size of ENMs (∼4 and ∼30 nm), and the sampling
time points (7, 14, 21, and 28 days).

Imputation of Missing Data
Due to the long experimentation period, sampling incidents and
probe failure caused ∼3.64% of the data to be missing from the data
set. Different ways for data imputation are usually proposed in the
literature: time series analysis, nonlinear iterative partial least squares
(NIPALS), Markov chain Monte Carlo (MCMC), analysis of
covariance (ANCOVA) (Ogbonnaya and Uzochukwu, 2016).
Procrustes analysis (Schneider and Borlund, 2007), which
estimates the similarity between two matrices, was used to select
themore efficient way for an a posteriori computation of themissing
data in our data set. This method gives a constant (m2) that tends
toward 0 when resemblance is 100%. Using Procrustes analysis, we
showed that data generated using ANCOVA better reproduced the
original measurements (m2 " 0.3) than those calculated by NIPALS
and MCMC, which generated less accurate data (m2 " 0.95).
Consequently, the 3.64% missing data were calculated through
multivariate linear regression based on ANCOVA.

Principle Component Analysis and Partial
Least Square Regression
PCA was used to assess the sensitivity of indoor aquatic
mesocosms experiments to contrasted CeO2 ENMs exposure
scenarios. PCA detects patterns in the data set and describes
linear relations between the quantitative variables (Abdi and
Williams, 2010). PLS-R was used to test the buffering capacity
of aquatic indoor mesocosms.

PLS-R is a good alternative to the classical multiple linear
regression and principal component regression methods (Wold
et al., 1984; Otto and Wegscheider, 1986). PLS aims at explaining
a set of response variables Y (a matrix of variables to be explained
and to be predicted) from a set of explanatory variables X (a
matrix of descriptors and predictive variables). The buffering

TABLE 1 | Main physicochemical characteristics of CeO2 ENMs used to contaminate the mesocosms.

Name Surface coating ENMs sizea

(nm)
Specific surface

area (m2/g)
Hydrodynamic diametera

(nm)
Isoelectric point References

Bare CeO2 ENMs Uncoated 30 ± 18 56 ± 10 ∼ 90 ∼7.8 Tella et al. (2015)
Bare CeO2 ENMs Uncoated 4 ± 1.8 271 ± 177 ∼ 8 ∼7.5 Tella et al. (2014)
Coated CeO2 ENMs Citrate 4 ± 1.8 271 ± 177 ∼ 8 >10 Auffan et al. (2014)

aSize measured by transmission electron microscopy, **measured in the stock suspensions.
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capacity was quantified by determining the threshold of variability
beyond which the data will no longer generate truthful bio-
physicochemical conclusions. Our approach consisted in
creating seven matrices artificially and randomly altered and
modeling through the PLS-R response variables for each matrix.
Each matrix is generated by adding some variability selected
among seven levels (Table 2) ranging from ±15% (level 1) to
±45% (level 7) of disturbance, with respect to the original matrix.
Each level comprises six percentages of disturbance (Table 2). For
each level of disturbance, one percentage among the six was
randomly selected using the programming language Python (the
function “choice ()” from the library “random”), then applied to
one observation only. Within one level of disturbance (from level
1: ± 15% to level 7: ± 45%), this was repeated for all 64 sampling
observations, thereby generating a new matrix with a variability
within the limits defined for that level. The entire procedure was
performed for each level of disturbance, producing seven new
matrices. The purpose of this approach was to define a threshold of
variability below which the PLS-R model remains truthful. PLS-R
models were evaluated according to three indicators:

(1) The coefficient of determination R2 (strength of the least
squares fit to the training data set). R2 provides a measure of
how well observed outcomes are reproduced by the PLS-R
models (Heinisch, 1962). According to Chin, (1998) and
Henseler et al., (2009), R2 > 0.67 indicates a high fit accuracy,
0.33 < R2 < 0.67 a moderated one, 0.19 < R2 < 0.33 a low fit
accuracy, and R2 < 0.19 corresponds to unacceptable fits.

(2) The predictive relevance Q2. Q2 indicates how well the data
collected experimentally can be reconstructed with the help
of a model and the PLS-R parameters (Akter et al., 2011). Q2

can be used as a criterion for the quality of the model. Indeed,
if Q2 is higher than 0.5, the model is regarded as predictive
(Chin, 2010).

(3) The convergence/divergence of R2 and Q2 values represented
by R2−Q2. If R2−Q2 > 0.3, the model is no longer considered
as truthful (Leach, 2001).

Coefficient of Variation and Intraclass
Correlation Coefficient
Coefficient of variation (CV, see Eq. 1) and intraclass correlation
coefficient [ICC, see Eq. 2 (Weir, 2005)] were used to quantify the
reliability of the mesocosms replicates.

CV values for each quantitative response variables correspond
to the means of replicates of CVs of all data points corresponding
to one type of contamination scenario at a given time point. In the
case of the quantitative environmental variables, all data points
that correspond to a given variable were considered in the
calculation of CV, regardless of the type of contamination
scenario or the sampling time point.

The ICC calculation was performed using two-way ANOVA
(analysis of variance) without replication. An ICC value above
0.70 is indicative of a suitable reliability (Baumgartner and
Chung, 2001). Here, we assess the physical reproducibility
(i.e., across mesocosm replicates) and not statistical replication
(i.e., repeated measurement of one variable in one mesocosm at a
given time point).

CV " Standard deviation × 100
Mean

(1)

ICC " Variance of interest
Variance of interest + Unwanted variance

(2)

RESULTS AND DISCUSSION

Sensitivity of Indoor Aquatic Mesocosm
Experiments to Contrasted CeO2 ENMs
Exposure Scenarios
As already applied to mesocosm data set (Dauda et al., 2020; Nassar
et al., 2020), PCAwas used to compare the global response of a lentic
ecosystem mimicked in indoor aquatic mesocosms following two
contrasted contamination scenarios. The first exposure scenario
(single pulse, called mono) simulates an acute CeO2 ENMs
release, for example, by a rain runoff or a spill, while the second
one (multiple doses, called multi) simulates a continuous point
source discharge such as a wastewater treatment plant. PCA is used
to examine the structure of the observations and the correlations
among the variables (Abdi andWilliams, 2010). In the current work,
the term observation refers to the measurement of all variables
generated within one mesocosm at a given time point.

The loading plot (F1, F2) presented in Figure 1 gathered 24
observations corresponding to 12 mesocosms sampled at short-term
(7 days) and medium-term (28 days) time points. The concentration
[Ce] tot water and biomarkers (TBARS and TAOC) were the main
drivers of the first principal component F1, while the second principal
component F2 is driven by the exposure scenario, size, and surface
coating, that is, qualitative variables. The main features are 1) the
clustering of the observations of themesocosms according to theCeO2

contamination scenario, namely, single pulse exposure scenario (light
and dark blue dots) and multiple doses (red and purple dots) and 2)
the different evolutions over time of the mono and multi-exposure
scenarios. This analysis is in agreement with previous findings (Auffan
et al., 2014; Tella et al., 2014; Tella et al., 2015; Nassar et al., 2020)
showing that for the single pulse scenario, the Ce concentration in the
water column decreases sharply within a week due to homo-and
hetero agglomeration phenomena, whereas [Ce]tot water remained
quasi-constant during the entire multiple doses experiment.

The main challenge in working with indoor aquatic
mesocosms under relevant exposure conditions (i.e., on the

TABLE 2 | Percentages of numerical disturbance within the seven disturbance
levels applied on the initial data set.

Level 1 2 3 4 5 6 7

% −15 −20 −25 −30 −35 −40 −45
% −13 −17 −23 −27 −33 −37 −43
% −10 −15 −20 −25 −30 −35 −40
% 10 15 20 25 30 35 40
% 13 17 23 27 33 37 43
% 15 20 25 30 35 40 45

The seven matrices generated are provided in supporting information (Supplementary
Table S2).
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medium/long-term, with different trophic levels, and at
concentrations close to the detection limits of analytic
instrumentation) is to detect contaminant-induced changes in
bio-physicochemical responses within the ecosystems. Herein, we
highlight that combining PCA with the mesocosm methodology
is sufficiently sensitive to detect scenario-specific or scenario-
dependent ecosystem responses to the presence of CeO2 ENMs.

Reliability of Indoor Aquatic Mesocosm
Exposed to CeO2 ENMs
Intersystem variability has frequently been considered as a critical
drawback of microcosm and mesocosm experiments. This is
especially the case in the context of environmental risk of
ENMs, where nature-like conditions and reliability are often
considered as diametrically opposed, and the low number of
replicates (if any) is an aggravating factor. To gain a better insight
into this issue, the CV (Cairns, 1988) and ICC (Baumgartner and
Chung, 2001) were used to quantify the reliability. The data set
used to this end is the one described above, where experiments
were performed in triplicate (Tella et al., 2014; Tella et al., 2015).

The CV values determined across triplicates for each quantitative
environmental variable were 2% for the pH, 6% for the conductivity,
21% for the ORP in the water column, 30% for the ORP in surficial
sediments, and 10% for the dissolved O2. For the response variables,
the CV values were 26% for [Ce]tot water, 23% for [Ce]tot sediment, 14%
for TBARS, and 11% for TAOC. All these CV values are in the range
considered as acceptable for response variables (i.e., CV < 30%)
(Isensee, 1976), and even more when considering the 45% value
suggested as threshold for mesocosm studies (Sanderson, 2002).

In addition to the CV, the ICC assesses the consistency or
conformity between two or more quantitative measurements. It
estimates the population variances based on the variability among
a given set ofmeasurements. An ICC≥ 0.70 indicates a good reliability

(Baumgartner and Chung, 2001). The ICC values calculated for the
environmental variables in both control and contaminated
mesocosms were larger than 0.95, which is well above the 0.70
threshold, thereby demonstrating an excellent reliability of the
physical-chemical parameters (Figure 2A). While less elevated, the
ICC obtained for the response variables ([Ce]tot water, [Ce]tot sediment,
TBARS, and TAOC) remained above the 0.7 value indicating good
reliability (Baumgartner and Chung, 2001) (ICC > 0.89 and ICC >
0.78 for bare-and coated CeO2 ENMs contamination, respectively,
Figure 2B). These CV and ICC estimations highlight that data
characterizing the exposure and hazards of ENMs in indoor
aquatic mesocosms are sufficiently reliable, despite the intersystem
variability often put forward regarding this experimental approach.

Buffer Capacity of Indoor Aquatic
Mesocosms Exposed to CeO2 ENMs
As already mentioned, working under environmentally relevant
exposure conditions over extended periods of time requires a
reliable monitoring-sampling-measuring setup. However, possible
experimental problems (e.g., probe failure) cause variability that adds
to the inherent variability of biological systems (e.g., algal bloom).
When the amplitude of this variability is modest, it might be difficult
to distinguish from the natural variability. A reliable methodology
needs to produce consistent conclusions, despite this variability
(Boyle and Fairchild, 1997). The purpose here was to determine
to which extent the variability can be buffered before conclusions are
affected. To this end, the random numerical data disturbance
described above was applied to the data set to simulate
experimental variability. The PLS-R modeling (Wold et al., 1984;
Otto and Wegscheider, 1986) was performed on [Ce]tot water and
TBARS, that is, the main driver variables.

Figure 3 shows the changes inR2 andQ2 over the different levels of
disturbance applied. Between 0 and±15% (level 1) of data disturbance,

FIGURE 1 | Loading plot (F1, F2) gathering 24 observations clustered for to the contamination scenarios. Red: multiple dosing (multi) of CeO2 ENMs. Blue: single
pulse (mono) of CeO2 ENMs. Dashed lines: after 7 days of exposure. Full lines: after 28 days of exposure.
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PLS-R modeled the variable [Ce]tot water with a high fitting accuracy
(R2 > 0.67) and predicted new accurate data (Q2 ∼ 0.66) (Figure 3A).
Beyond ±30% (level 4) of data disturbance, R2 and Q2 decreased to
0.62 and 0.43, respectively, and the R2 andQ2 values started to diverge
(R2−Q2∼ 0.2). The absolute values ofR2 andQ2 values associatedwith
the divergence between R2 and Q2 showed that PLS-R did not
accurately model [Ce]tot water beyond 30% of data degradation.

Below ±15% of data disturbance (level 1), PLS-R modeled the
variable TBARS with high R2 and Q2 (R2 > 0.67 and Q2 ∼ 0.49)
(Figure 3B). From level 2 of data disturbance (between ±15% and
±20%), R2 and Q2 values drastically decreased to 0.54 and 0.19,
respectively, and R2 andQ2 diverged (R2−Q2 ∼ 0.34), indicating that
PLS-R no longer modeled TBARS accurately. Interestingly, our
calculation shows that after a disturbance by ±20%, the
coefficient of variation for TBARS data is only about 15%, while
a Q2 value below 0.5 indicated a poor fit. This shows that the CV on
its own is not a sufficient indicator of the reliability of a data set.

The overall threshold to consider for the buffering capacity of a
mesocosm experiment is, of course, the lower of the two values

determined with the PLS-R models for [Ce]tot water and TBARS, viz.
±15%. While it is clear that this value obtained under the present
experimental conditions with ENMs cannot be applied tomesocosm
experimentation in general, it is an indication of the magnitude of
the buffering capacity of this methodology, and it demonstrates that
significant variability can be added to the data set before fitting
accuracy becomes inadequate. To the best of our knowledge, this is
the first report describing a multivariate analysis procedure giving a
(semi)quantitative estimate of the buffering capacity in the context of
environmental exposure and impacts of ENMs using mesocosms.

Robustness of Small Indoor Aquatic
Mesocosm in Nanosafety
There has been a great deal of discussion within the nanosafety
community these past few years around the best way to assess ENM
environmental safety and to generate relevant, useful, and FAIR data.
In this regard, mesocosm testing has gained popularity, but
criticisms regarding this methodology still exist. The most severe
ones are related to the statistical relevance and the variability of this
type of experimentation. In the present work, these two aspects and
sensitivity requirements were combined under the term robustness.

Our results demonstrate that indoor aquatic mesocosm is a robust
methodology since it produces reproducible results and is capable to
buffer a significant level of added/accidental variability, while
maintaining a sufficient sensitivity to account for changes in
contamination scenarios. Addressing sensitivity and reliability/
variability issues might appear as opposed concepts. However, in
the context of robustness, the sensitivity needs to be seen as the ability
of themesocosm to respond differently to different exposure scenarios.

Using PCA, we highlighted that indoor aquatic mesocosms are
sufficiently sensitive to detect scenario-specific or scenario-dependent
ecosystem responses to the presence of CeO2 ENMs. The variables
responsible for these different global responses were identified. Based on
CV and ICC determinations, the reliability across mesocosm triplicates
was found to be very satisfactory. It may be counterintuitive that
experiments with only three replicates can achieve a reliability score
normally attributed to experiments with larger numbers of replications.
We hypothesized that standardized tests performed with single species
exposed to ENMs in simplifiedmedia are less prone to buffer unwanted
experimental artifacts. On the opposite, a mesocosm experiment
encompasses as much as possible the bio-physicochemical complexity
of themimicked ecosystemand ismoreprone to buffer this experimental
variability across replicates. The PLS-R models performed corroborate
this hypothesis showing that the buffering capacity is still preserved
within approximately 15% of additional variability (under our
experimental conditions), that is , beyond the limit where many
experimental scientists would be tempted to discard the data.

To the best of our knowledge, this study is one of the first
assessing to which extent currently used indoor aquatic mesocosms
produce reliable results and interpretations of the environmental
exposure to ENMs and their hazards. Using a multivariate analysis
of a given data set, the robustness of such mesocosm
experiments could be demonstrated. Of course, the analysis
was conducted based on the limited data set obtained within 16
mesocosms mimicking a pond ecosystem contaminated with
CeO2 ENMs. This work needs to be extended to address larger

FIGURE 2 | (A) Intraclass correlation (ICC) obtained on the
environmental variables (pH, temperature, dissolved O2, ORP, and
conductivity) in all mesocosms either control or contaminated ones. (B) ICC
values based on the measurements of response variables (Ce
concentrations and biomarkers) obtained in mesocosms contaminated with
bare CeO2 NPs (blue) and coated CeO2 NPs (red).
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data sets, different types of ENMs (e.g., different chemistry,
surface properties, and aspect ratio), different ecosystems
mimicked (e.g., pond, river, lake, and estuary), and different
endpoints considered (e.g., populational, individual, sub-
individual, and molecular). The ongoing development and
implementation of FAIR compliant data sources (e.g.,
MESOCOSM database) are facilitating factors.
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