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A B S T R A C T   

Current theoretical frameworks suggest that human behaviors are based on strong and complex interactions 
between cognitive processes such as those underlying language and memory functions in normal and neuro
logical populations. We were interested in assessing the dynamic cerebral substrate of such interaction between 
language and declarative memory, as the composite function, in healthy controls (HC, N = 19) and patients with 
temporal lobe epilepsy (TLE, N = 16). Our assumption was that the language and declarative memory integration 
is based on a language-and-memory network (LMN) that is dynamic and reconfigures according to task demands 
and brain status. Therefore, we explored two types of LMN dynamics, a state reconfiguration (intrinsic resting- 
state compared to extrinsic state assessed with a sentence recall task) and a reorganization of state reconfigu
ration (TLE compared to HC). The dynamics was evaluated in terms of segregation (community or module 
detection) and integration (connector hubs). In HC, the level of segregation was the same in both states and the 
mechanism of LMN state reconfiguration was shown through module change of key language and declarative 
memory regions with integrative roles. In TLE patients, the reorganization of LMN state reconfiguration was 
reflected in segregation increase and extrinsic modules that were based on shorter-distance connections. While 
lateral and mesial temporal regions enabled state reconfiguration in HC, these regions showed reduced flexibility 
in TLE. We discuss our results in a connectomic perspective and propose a dynamic model of language and 
declarative memory functioning. We claim that complex and interactive cognitive functions, such as language 
and declarative memory, should be investigated dynamically, considering the interaction between cognitive 
networks.   

1. Introduction 

Recent neurocognitive frameworks suggest that human behaviors 
are enabled by complex interactions between cognitive functions, 
instead of isolated involvement of each of them (Kellermann et al., 2016; 
Roger et al., 2020b; Van Der Maas et al., 2006). The evidence of inte
gration can be found in everyday life such as recalling an old episode 
(Larsen et al., 2002; Park et al., 2011) or maintaining a conversation by 
relying on what is called the common ground (Clark & Marshall, 1981). 
When formulating an utterance during a conversation, interlocutors are 
relying on background information that they believe is shared by the 
participants in the conversation (Stalnaker, 2002). Hence, language 
must rely on the declarative memory and previous studies described a 

wide language-and-memory network (LMN) (Banjac et al., 2020; Roger 
et al., 2020a, 2020b). This perspective is in line with the current tran
sition towards new integrative and dynamic neurocognitive and con
nectomic models (Dick et al., 2014; Garcia-Ramos et al., 2016; Herbet & 
Duffau, 2020; Kellermann et al., 2016; Zamora-Lopez et al., 2011; Zhou 
et al., 2020). The connectomic perspective assumes that complex 
cognitive systems are shaped by the interactions between processes 
(Meunier et al., 2010) and functional integration and specialization are 
supported by the modular architecture (Bertolero et al., 2015; Fornito 
et al., 2016; Meunier et al., 2010; Park & Friston, 2013; Zamora-Lopez 
et al., 2011). Modularity enables the adaptation of a global network to 
environmental changes (Finc et al., 2017; Meunier et al., 2010) shaping 
it into local modules or specialized communities, composed of densely 
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intra-connected regions (nodes) that share common functions (segre
gation property). These modules are sparsely connected with other 
communities via inter-module connections that provide the integration 
property (Fornito et al., 2016; Guimerà & Amaral, 2005; Rubinov & 
Sporns, 2010). Nodes that are highly interconnected within their com
munities, but not so strongly to other communities are called provincial 
hubs and they support segregation (Bertolero et al., 2015; Meunier et al., 
2009; Schedlbauer & Ekstrom, 2019). The integration between modules 
is based on the connector nodes that are highly connected with other 
communities and can be divided into satellites and connector hubs 
depending on their status within their own community (Bertolero et al., 
2015; Bullmore & Sporns, 2012; Fornito et al., 2016; Guimerà & Amaral, 
2005; Meunier et al., 2010). The difference is that connector hubs are, 
unlike satellites, also highly interconnected within their communities 
(Bertolero et al., 2015; Meunier et al., 2009; Schedlbauer & Ekstrom, 
2019). 

To understand composite functions such as the language and 
declarative memory and its cerebral substrate, the language-and- 
declarative memory network (LMN), it is mandatory to focus on the 
communication or the dynamics between the interactive functions, 
within a connectomic perspective. Traditionally, the connectomic 
approach is based on examining resting-state correlations between 
spontaneous BOLD signals of regions which are functionally or 
anatomically connected (Bullmore & Sporns, 2012). This approach re
veals large hierarchical and distributed brain networks related to 
various functional domains (Power et al., 2011; Yeo et al., 2011), 
reflecting “intrinsic” activity intervening in the absence of any stimu
lation or task (Bolt et al., 2017; Fox & Raichle, 2007). Although these 
resting-state networks (RSN) are robust (De Luca et al., 2006; Yeo et al., 
2011) and were found to be associated with behavior (e.g. Arnemann 
et al., 2015; van den Heuvel et al., 2009), it is difficult to make 
comprehensive conclusions on network architecture and connectivity, 
without considering the brain activity during task (extrinsic brain ac
tivity). Studies exploring connectomic features of extrinsic or task- 
related networks have indeed found that they differ from intrinsic 
resting-state networks (Bolt et al., 2017; Cohen & D’Esposito, 2016; 
Keerativittayayut et al., 2018; Mennes et al., 2013; Spadone et al., 2015) 
although others found significant similarities between them (Cole et al., 
2014; Krienen et al., 2014). Therefore, intrinsic brain architecture does 
not provide a complete repertoire of extrinsic functional properties, such 
as flexible reconfiguration when facing changing environment and task 
demands (Mennes et al., 2013). The differences between intrinsic and 
extrinsic networks were reported for the cognitive control (Mennes 
et al., 2013; Tomasi et al., 2014), working memory (Rzucidlo et al., 
2013; Stanley et al., 2015) and semantic memory (DeSalvo et al., 2014). 
Modern connectomic approaches allow to assess this state-dependent 
reconfiguration of brain architecture (Cole et al., 2014; Fornito et al., 
2016; Sporns & Betzel, 2016) for specific cognitive functions and tasks 
(e.g. He et al., 2018; Hearne et al., 2017; Schedlbauer & Ekstrom, 2019). 
Task-induced changes of network modularity can predict behavioral 
outcomes (Finc et al., 2017). Indeed, decreased modularity was 
observed for high cognitive demands (Finc et al., 2017; Hearne et al., 
2017) and successful memory retrieval is associated with reconfigura
tion of modular structure (Schedlbauer & Ekstrom, 2019; Westphal 
et al., 2017). Overall, results suggest significant flexible reconfiguration 
of large-scale functional networks along rest and task-activity states for 
different cognitive functions (Bassett et al., 2011; Hearne et al., 2017; 
Yue et al., 2017). However, the majority of studies explored cognitive 
functions separately, without investigating possible interactions be
tween functions, such as a composite language and declarative memory 
function. A complete description of this composite function and under
lying LMN should thus be based on both extrinsic and intrinsic activities 
to capture flexibility and the dynamic architecture that underlies its 
complex links. 

Moreover, a more comprehensive understanding of functional 
interaction based on a specific LMN network can be provided by 

studying conditions showing the reorganization of language and mem
ory functions, such as temporal lobe epilepsy (TLE) (Tracy & Boswell, 
2008). This neurological condition is characterized by seizures induced 
by an epileptogenic network centered on medial temporal structures 
(Barr, 2015), associated or not with hippocampal atrophy (Thom and 
Bertram, 2012). The cognitive deficits of TLE patients suggest dynamic 
relationship between language and declarative memory (Alessio et al., 
2006; Bartha-Doering & Trinka, 2014; Zhao et al., 2014; Allone et al., 
2017; Bell et al., 2011; Tramoni-Negre et al., 2017). This relationship 
also supports the necessity of evaluating this composite function within 
a connectomic perspective instead of language and declarative memory 
separately (Waites et al., 2006). Significant reorganization of LMN oc
curs in TLE (Liao et al., 2010; Richardson, 2012) and results from 
complex interactions between neurophysiological activity (epileptic 
activity) and neuroplasticity (Dinkelacker et al., 2016). By neuro
cognitive plasticity we refer to reorganization of neurosynaptic maps 
that is related to efficient cognitive functioning (Duffau, 2006). 

Resting-state studies in TLE patients showed reduced functional 
connectivity (Bettus et al., 2009) within “high-level” RSN such as default 
mode network (DMN), dorsal attention network (DAN) and salience 
network (SAL) (Burianová et al., 2017; Liao et al., 2010; Zhang et al., 
2009b), as well as within “low-level” RSN such as auditory and senso
rimotor networks (Zhang et al., 2009a), and within language network 
(Waites et al., 2006). In addition, TLE patients showed reduced syn
chronization between multimodal “high-level” RSN (Burianová et al., 
2017), as well as between “high-level” and “low-level” RSN (sensori
motor, Yang et al., 2018). Increased connectivity within medial tem
poral lobes together with decreased connectivity between them and 
distal networks (Englot et al., 2016; Haneef et al., 2014; Liao et al., 2010; 
Roger et al., 2020a) were described in these patients and identified as 
dynamic diaschisis, a reorganization pattern based on hyper- and hypo- 
connected remotely-located regions (Cataldi et al., 2013; Roger et al., 
2020a). Using resting-state Liao et al., (2010) found that global topo
logical measures of TLE functional networks are disrupted showing 
reduced clustering. 

Similarly, studies focusing on extrinsic activity found global reduc
tion in connectivity within language network (Pravatà et al., 2011; 
Vlooswijk et al., 2010) and recruitment of additional networks located 
more posteriorly, due to anterior seizure activity (Protzner & McAn
drews, 2011). Recently, He et al. (2018) reported that left temporal and 
right frontal regions in TLE patients showed reduced flexibility and 
ability to dynamically adapt to demands of a verb generation task. These 
regions also showed reduced communication with a core left frontal 
subnetwork. Overall, these authors suggested that the effect of pathol
ogy on network dynamics is more likely to manifest during language 
operations than during resting-state (He et al., 2018). 

Given that the majority of studies in healthy individuals and patients 
explored cerebral networks based on either intrinsic or extrinsic activity, 
it is difficult to understand how are brain networks dynamically 
reconfigured between resting-state and task-based activity. Addition
ally, the majority of studies did not address directly the question of 
interaction between language and declarative memory, as mentioned 
above. This fMRI study is set to bridge this gap by evaluating both 
intrinsic and extrinsic LMN functional connectivity (FC) in healthy 
controls (HC) and TLE patients and describe the network properties by 
using a graph theory approach (Fornito, 2016; Rubinov & Sporns, 2010). 
This allows to understand the mechanisms supporting the language and 
declarative memory interaction on the basis of LMN dynamic reconfi
guration according to brain activity state (intrinsic, extrinsic) and 
physiological (health, epilepsy) condition. The intrinsic connectivity 
was assessed with a resting-state protocol, while the extrinsic task-based 
was assessed with a language-and-memory fMRI protocol that recruits 
LMN (Banjac et al., 2020). We first explored segregation property by 
testing how LMN separates into modules for each state (LMN configu
ration) using a data-driven community detection algorithm (Blondel 
et al., 2008; Rubinov & Sporns, 2010; Schedlbauer & Ekstrom, 2019) 
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and then analyzing the state reconfiguration (i.e. how the configuration 
changes between intrinsic and extrinsic state) in healthy participants. 
Then we explored the integration of LMN modules based on connector 
hubs first within each configuration and then comparing them in order 
to evaluate state reconfiguration. The reorganization of LMN configu
rations and state reconfiguration in terms of segregation and integration 
was tested using the same approach in TLE patients and comparing the 
results between the groups. We evaluated cognitive efficiency of reor
ganization in TLE patients, as an indication of neuroplasticity, by asso
ciating cognitive scores with several segregation and integration 
parameters. We finally attempted to describe a neurocognitive integra
tive model of language and declarative memory interaction that is 
supported by a flexible LMN. Based on the previous research, we ex
pected that brain modular structure in HC shows less segregation during 
the task, due to a more complex cerebral activity required by the task. In 
addition, regions showing more flexibility between states should be the 
ones that allow for functional integration. Furthermore, TLE patients 
should show alterations of the modular structure due to disruption of 
functional connectivity and reduced flexibility of temporal regions. The 
potential difference between HC and TLE in “connector” regions should 
reflect compensatory mechanisms used by patients. 

2. Material and methods 

A schematic illustration of the study design is presented in Fig. 1. 

2.1. Participants 

Nineteen healthy volunteers (age 21.2 ± 2.97; 9 females; all self- 
reported right-handed) and 16 TLE patients (11 left TLE and 5 right 
TLE, age 33.8 ± 10.5; 9 females; 14 right-handed) were included in the 
study. The handedness was determined according to The Edinburgh 
Handedness Inventory (Oldfield, 1971). The demographic and clinical 
features are presented in Tables 1 and 2. Participants were native French 
speakers and had normal or corrected-to-normal vision. Healthy par
ticipants received financial compensation for their participation. Pa
tients were diagnosed with drug-resistant temporal epilepsy between 
2017 and 2019. The diagnoses were made by neurologists based on the 
recommendations of the ILAE (International League Against Epilepsy) 
committee report (Wieser et al., 2001) and on a synthesis of several 
evaluations (clinical, scalp/depth-EEG, MRI/PETscan). Patients were 
candidates for a curative surgery and the fMRI evaluations were per
formed as a part of their presurgical assessment. Patients as well as 
healthy participants provided written informed consent for the study 
that was approved by the local ethic committee (CPP: 09-CHUG-14, 04/ 
06/2009 and 2017-A00384-49). 

Fig. 1. Schematic representation of study pipeline. Panel A: Schematic representation of methodology. Subpanel 1. Two groups of participants, healthy participants 
(N = 19) and TLE patients (N = 16), performed resting-state and sentence recall task. Subpanel 2. We focused on the language-and-memory ROIs defined in previous 
work (Roger et al., 2019). Subpanel 3. ROIs were separated based on the resting-state network (RSN) they belonged to. Subpanel 4. We performed community 
detection in two groups and two tasks to explore LMN configurations, state reconfiguration and their reorganization. Subpanel 5. We determined the role (connector 
hub, provincial hub, satellite or peripheral node) of each LMN region based on its connectivity within module (intra-modular connectivity) and with other modules 
(inter-modular connectivity). In order to explore LMN integration and its state reconfiguration we focused on the connector hubs. The roles are schematically 
presented on Subpanel 4 with numbers corresponding the role in Subpanel 5. Panel B: Schematic representation of main terms and analyses. Both segregation and 
integration of LMN were explored for each state, extrinsic and intrinsic (state LMN configuration) as well as its reconfiguration between the sates in healthy par
ticipants (green). LMN configurations and state reconfiguration in terms of segregation and integration were tested using the same approach in TLE patients (pink), as 
well as the differences in LMN configurations and state reconfiguration between healthy controls and TLE patients (dashed lines). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 
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2.2. Neuropsychological data in patients 

All patients underwent complete neuropsychological assessment 
including language and memory functions carried out by a neuropsy
chologist and a speech therapist. This general cognitive assessment was 
used in further analyses of the efficiency of LMN configurations and state 
reconfiguration in TLE patients. Specifically, the following cognitive 
scores were used in the analyses: (a) language scores: verbal compre
hension index (VCI; WAIS IV, Wechsler, 2008), naming (DO80; Deloche 
& Hannequin, 1997), semantic fluency (SFL) and phonological fluency 
(PFL; Godefroy, 2008); and (b) memory scores: auditory memory index 
(AMI), immediate memory index (IMI) and delayed memory index 
(DMI; WMS IV, Wechsler, 2009). Test scores were standardized by 
gender, age and sociocultural level. Detail data on patients’ cognitive 
performance is presented in Table 2. 

2.3. Experimental protocol 

Participants first performed the GE2REC protocol for interactive 
mapping of language and memory previously validated (Banjac et al., 
2020) that is composed of three runs, sentence generation (GE) and two 
retrieval tasks (2REC), a recognition of stimuli presented in the first run 
and a sentence recall task. In order to access brain networks that reflect 
language and declarative memory interaction, we focused on the sen
tence recall task (abbreviated RA). During RA, participants received the 
auditory words previously presented GE and were asked to recall and 
covertly repeat the sentences that they have previously generated. The 
recall run was designed as a block paradigm with 5 task (8 stimuli/ 
condition, 40 words in total) and 5 control (fixation cross displayed for 
10 s) conditions. The total duration of the run was 4.17 min (for other 
details see Banjac et al., 2020). Following the recall run, each participant 
underwent a resting-state for 13.20 min to measure cerebral intrinsic 
activity. Participants were required to lay down into the magnet, to rest 
with eyes open while fixating a cross centered on the screen during the 
entire duration of the acquisition period. 

2.4. MR acquisition 

Functional MRI experiments were performed at the MR facility. MR 

images were acquired with a whole-body 3 T MR Philips imager (Ach
ieva 3.0 T TX Philips, Philips Medical Systems, Best, NL) with a 32-chan
nel head coil for all of the participants. During the recall task, the 
manufacturer-provided gradient-echo/T2* weighted EPI method was 
used. Forty-two adjacent axial slices parallel to the bicommissural plane 
were acquired in sequential mode (3 mm thickness, TR = 2.5 s, TE = 30 
ms, flip angle = 82◦, in-plane voxel size = 3 × 3 mm; field of view = 240 
× 240 × 126 mm; data matrix = 80 × 80 pixels; reconstruction matrix =
80 × 80 pixels). During resting-state, four hundred cerebral rs-fMRI 
volumes were acquired using a gradient echo planar imaging sequence 
(FEEPI, 36 axial slices, 3.5 mm thickness, TR = 2.0 s, TE = 30 ms, flip 
angle = 75◦, field of view = 192 × 192 mm, in-plane voxel size = 3 × 3 
mm). In addition, a T1-weighted high-resolution three-dimensional 
anatomical volume (T1TFE, 128 sagittal slices, 1.37 mm thickness, 
field of view = 224x256 mm, in-plane voxel size = 0.89 × 0.89 mm) was 
acquired for each participant. 

2.5. Prior data analysis and data preprocessing 

2.5.1. Statistical analyses of demographic, clinical and neuropsychological 
characteristics 

We included TLE patients with left (LTLE) and right (RTLE) origin of 
seizures. Since previous studies showed that these patients can differ 
regarding cognitive functioning and neural organization (Besson et al., 
2014; de Campos et al., 2016; Phuong et al., 2021; Roger et al., 2020b), 
before conducting the main analyses planned in this study, we tested 
whether the LTLE and RTLE patients in our sample significantly differed 
regarding their clinical characteristics (age, epilepsy duration, number 
of AEDs, hippocampal atrophy and gender), hippocampal volume, 
neuropsychological performance. We did not flip the images of patients 
in the L-R direction in line with recommendations (Lee et al., 2018) since 
previous research found significant asymmetries in functional connec
tivity between two hemispheres mirrored over the longitudinal fissure 
(Raemaekers et al., 2018). Previous research showed that epilepsy pa
tients show more often atypical language lateralization than healthy 
participants (Baciu & Perrone-Bertolotti, 2015; Berl et al., 2014). A 
recent study also showed that language lateralization is related to 
functional connectivity of language system and whole-brain organiza
tion (Wang et al., 2019). Due to this, we controlled language laterali
zation by only including participants with left lateralization of language 
activation in frontal lobe and left to bilateral activation in temporal lobe. 
That way we wanted to exclude the possibility that the potential dif
ferences of LMN community structure between healthy participants and 
TLE patients are a result of differences in language lateralization. The 
lateralization indices (LI) were calculated on frontal activations during 
GE task using the bootstrap method of the SPM LI toolbox (Wilke & 
Lidzba, 2007). The differences between LTLE and RTLE patient groups 
on mentioned characteristics were tested using the Mann-Whitney U 
tests and Chi-square tests. 

2.5.1.1. Functional MRI preprocessing. The preprocessing was per
formed using SPM12 (Welcome Department of Imaging Neuroscience, 
London, UK, http://www.fil.ion.ucl.ac.uk/spm/) running under Matlab 
R2015b (Mathworks Inc., Sherborn, MA, USA) using the standard rou
tines. All images were realigned to correct the head motion, time- 
corrected with the mean image as the reference slice, spatially 
normalized to MNI (Montreal Neurological Institute) space and then 
spatially smoothed with an 8 mm FWHM (Full Width at Half Maximum) 
Gaussian kernel. The T1-weighted anatomical volume was co-registered 
to the mean image created by the realignment procedure and was 
normalized within the MNI (Montreal Neurological Institute) space. The 
anatomical normalization parameters were subsequently used for the 
normalization of functional volumes. Motion parameters from the 
realignment step were then analyzed using ART (Artifact Detection Tool, 
Gabrieli Lab, Massachusetts Institute of Technology, available at: 

Table 1 
Demographic and clinical data for healthy controls.   

Demographic information Clinical data  
Gender Age Handedness Vol hippo R Vol hippo L 

1 F 19 R  3.38  3.19 
2 M 19 R  3.61  3.42 
3 F 19 R  3.45  3.52 
4 M 21 R  3.78  3.53 
5 F 18 R  3.56  3.5 
6 F 18 R  3.59  3.8 
7 M 20 R  3.8  3.66 
8 M 23 R  3.99  3.93 
9 M 23 R  4.46  3.92 
10 F 19 R  3.67  3.47 
11 F 18 R  3.84  3.93 
12 F 29 R  3.9  3.79 
13 M 21 R  4.82  4.64 
14 F 25 R  3.55  3.63 
15 M 19 R  3.64  3.59 
16 M 21 R  4.44  4.44 
17 M 23 R  3.74  3.9 
18 M 25 R  4.22  4.28 
19 M 23 R  4.54  4.14 
Mean 8F/11 M 21 19R  3.89  3.80 

Note: F – female; M – male; Age – age at the time of examination; Hand. – self- 
reported handedness; R – right; EZ lat. – laterality of epileptogenic zone; Vol 
hippo R – volume of the right hippocampus in cm3; Vol hippo L – volume of the 
left hippocampus in cm3. 
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Table 2 
Demographic, clinical and neuropsychological data for TLE patients.   

Demographic information Clinical data Language and memory cognitive scores 

Sex Age Hand. EZ lat. HA Vol hippo R Vol hippo L Age onset Epilepsy duration AED VCI DO80 SFL PFL AMI IMI DMI 

P1 F 54 R (+90%) Left No 3.41 3.11 52 2 2 0.00 0.67 1.39 − 0.18 0.33 − 0.99 − 0.28 
P2 F 37 R (+100%) Left No 3.82 4.08 35 2 2 0.00 − 0.30 0.34 − 0.30 1.34 − 0.47 − 0.74 
P3 F 32 R (+90%) Left Yes 3.01 1.81 29 3 2 − 1.08 − 6.43 − 0.62 0.24 − 1.08 − 1.56 − 1.41 
P4 M 45 R (+20%) Left Yes 3.47 1.97 40 5 5 − 0.28 − 1.30 − 0.67 − 1.28 − 0.52 − 0.08 − 0.28 
P5 M 24 R (+100%) Left Yes 4.16 2.98 17 7 3 / − 1.30 − 0.34 − 1.65 / / / 
P6 M 24 L (-80%) Left Yes 2.04 2.35 16 9 3 − 0.41 − 2.20 − 2.17 − 0.97 − 2.33 − 1.88 − 2.33 
P7 M 27 R (+80%) Left No 3.99 4.19 21 6 3 0.00 − 0.03 − 0.34 − 0.34 1.34 0.13 0.00 
P8 F 43 R (+100%) Left No 3.92 4.10 12 31 3 0.28 − 1.30 − 1.65 − 1.44 0.09 − 0.08 − 1.13 
P9 F 38 R (+100%) Left Yes 3.95 2.58 10 29 3 − 1.56 − 5.30 − 0.93 − 0.32 0.47 0.41 0.08 
P10 M 24 R (+40%) Left Yes 5.10 3.56 20 4 4 − 0.13 − 4.30 1.66 − 0.17 0.61 0.47 − 0.08 
P11 M 28 R (+100%) Left Yes 3.37 2.39 1 27 4 0.28 0.70 − 0.24 − 1.03 0.67 1.08 1.34 
P12 F 43 R (+100%) Right Yes 2.24 3.71 3 40 6 0.13 − 2.30 − 1.51 − 2.02 − 1.08 − 2.33 − 2.05 
P13 F 19 L (-100%) Right No 3.48 3.46 14 5 3 − 1.28 − 0.39 − 0.37 − 0.40 0.67 0.08 − 0.61 
P14 M 38 R (+100%) Right No 3.54 3.82 8 30 2 0.13 − 4.30 − 1.65 − 1.75 0.08 − 0.08 − 0.28 
P15 F 45 R (+100%) Right No 3.39 3.18 40 5 2 0.13 − 0.30 0.34 − 0.30 1.18 1.28 − 0.15 
P16 M 20 R (+90%) Right Yes 4.72 4.80 16 4 3 0.00 − 3.30 − 1.73 − 1.82 0.33 1.08 0.33 
Mean 8F/8M 34 14R/2L 11L/5R 9 3.60 3.26 20.88 13.06 3.13 − 0.25 − 1.98 − 0.53 − 0.86 0.14 − 0.19 − 0.51 
Diff. 0.29 29.5 0.37 / 0.78 31 14 37 21.5 30 18.5 32 37 42.5 25.5 19.5 25 
p 1 0.82 1 / 0.593 0.692 0.126 0.281 0.495 0.764 0.42 0.609 0.281 0.089 0.951 0.499 1 

Note: F – female; M – male; Age – age at the time of examination; Hand. – handedness evaluated with Edinburgh quotient (Oldfield, 1971) ; L – left, R – right; EZ lat. – laterality of epileptogenic zone; HA – hippocampal 
atrophy; Vol hippo R – volume of the right hippocampus in cm3; Vol hippo L – volume of the left hippocampus in cm3; Age onset – age of onset of seizures; AED – number of epileptic drugs taken; VCI – standardized score of 
verbal comprehension index for verbal semantic memory (Wechsler, 2008); DO80 - standardized score for French version of naming task (Deloche & Hannequin, 1997); SFL – semantic fluency, z core of performance on the 
task of categorical word generation (Godefroy et al., 2008), PFL – phonological fluency, z score of performance on the task of alphabetical word generation (Godefroy et al., 2008); AMI – standardized score of auditory 
memory (Wechsler, 2009); IMI - standardized score of immediate memory (Wechsler, 2009); DMI – standardized score for delayed memory (Wechsler, 2009). Diff – difference between LTLE and RTLE patients: for 
variables sex, handedness and HA values of χ2 are presented and for all the others values of Mann-Whitney U test are provided with corresponding p value. 
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https://www.nitrc.org/projects/artifact_detect). We considered as out
liers those volumes that had more than 3 mm interscan movement of in 
translation, 0.02 rad in rotation and 3 SD global interscan signal in
tensity relative to the session mean. Participants who had more than 
15% of scans marked as outliers were excluded from the study. Healthy 
participants and TLE patients did not differ neither during the resting- 
state or sentence recall regarding the mean movement value nor num
ber of outliers (Supplementary Material, Table S1). 

2.5.1.2. Network analysis.  

• Language-and-memory network: parcellation & node definition 

ROIs of LMN explored in this study were previously defined and 
validated by Roger et al. (2020a) in the space of Atlas of Intrinsic Con
nectivity of Homotopic Areas (AICHA, Joliot et al., 2015). Despite 
standard left lateralization of language network, we tested the nodes 
across both hemispheres since language reorganization in TLE patients 
can be interhemispheric (Baciu & Perrone-Bertolotti, 2015) and given 
that language engages nondominant hemisphere in healthy subjects 
(Hickok & Poeppel, 2007; Vigneau et al., 2011). Additionally, we have 
separated the hippocampus into anterior and posterior parts since 
various reorganization patterns were found for the anterior and poste
rior hippocampal networks (Li et al., 2017). We also used specific ROIs 
for anterior and posterior hippocampi (left and right) for each partici
pant given that in patients, the hippocampal atrophy may have signifi
cant effects (Roger et al., 2020a). However, in order to avoid any 
artificial differences between two groups of participants subject-specific 
hippocampal ROIs for healthy participants were also used. Subject- 
specific hippocampal ROIs were generated from T1w anatomical im
ages with Vol-Brain processing pipeline (http://volbrain.upv.es). This 
pipeline provided subject-specific MNI registered hippocampal ROIs. 
The anterior and posterior parts of these subject-specific hippocampal 
ROIs were defined through their overlap with anterior and posterior 
hippocampal masks of the AICHA atlas (Joliot et al., 2015). The final 
LMN network comprised 74 ROIs (37 per hemisphere). Panel A, Sub
panel 2 of Fig. 1 shows the LMN on a brain template and a detailed 
description of ROIs is provided in the Table S2. 

ROIs were also classified according to their membership to a specific 
resting-state network. For this purpose we used the 7 resting-state net
works (RSN) atlas defined by Yeo and colleagues (2011). To precisely 
determine which RSN network each LMN region belonged to, the LMN 
was overlaid with the RSN map (Yeo et al., 2011). The number of 
overlapping voxels with each network was calculated for each region. A 
ROI was determined to belong to the RSN with which it had the largest 
percentage of overlapping voxels. Panel A, Subpanel 3 of Fig. 1 shows 
LMN ROIs according to the RSN they belong to.  

• Connectivity analyses 

The FC within the LMN was calculated based on the resting-state and 
the recall activity using a Graph theory (GT) analysis (Fornito, 2016; 
Rubinov & Sporns, 2010). The CONN toolbox (Functional Connectivity 
Toolbox, Gabrieli Lab, Massachusetts Institute of Technology) was used 
to obtain FC matrices and the Brain Connectivity Toolbox (BCT, Rubinov 
& Sporns, 2010, available at https://sites.google.com/site/bctnet/) and 
GraphVar toolbox (Kruschwitz et al., 2015, available at https://www. 
nitrc.org/projects/graphvar/) were used for graph theory analyses. 

The CONN Toolbox (Functional Connectivity Toolbox, Gabrieli Lab, 
Massachusetts Institute of Technology) provides ROI-to-ROI correlation 
analysis according to the temporal fluctuations of BOLD signals. The first 
step consisted of denoising the pre-processed unsmoothed data by 
regressing out the BOLD signal from the white matter, the CSF as well as 
outliers and movements obtained by ART and SPM. For the recall task, 
we also entered in the regression a separate regressor for the 

experimental condition, according to other previous studies validating 
this approach (Cao et al., 2014; Cole et al., 2014; Mohr et al., 2016). The 
resulting residual time series were temporally filtered to remove low- 
frequency scanner drifts and/or high-frequency physiological noise 
using band-pass filtered (0.008–0.09 Hz) for the resting-state and high- 
pass filter (0.008 Hz) for the recall task. Resting-state data processed in 
this way reflected intrinsic network, while that resulting from the recall 
task, reflected extrinsic network. Then the Z score of r-Pearson corre
lation coefficient was calculated for each participant by CONN toolbox 
for every possible pair of residual time series (2701 pairs of 74 ROIs of 
the LMN). In agreement with previous studies (Bolt et al., 2017; Cohen & 
D’Esposito, 2016; Finc et al., 2020) especially the one using similar 
community detection algorithm (Schedlbauer & Ekstrom, 2019), the 
negative correlations were set to zero. However, for validation purposes 
the algorithm was also run with preserved negative correlations and the 
main findings remained similar (see Figure S1). The resultant 74x74 
matrices were then used in the statistical analyses described hereinafter. 

2.6. Data analysis 

2.6.1. LMN segregation  

• LMN configurations and state reconfiguration 

Modularity or community detection enables a data-driven partition 
of a network into modules showing its segregation properties (Fornito 
et al., 2012). Community detection algorithm was performed in healthy 
participants to analyze LMN state configurations. Data-driven commu
nity structure was assessed by applying modularity maximization al
gorithm (Louvain greedy algorithm, Blondel et al., 2008; Rubinov & 
Sporns, 2010) to individual correlation matrices with positive, weighted 
edges, for each state separately. Given that the community partition can 
vary with each run of the algorithm (Rubinov & Sporns, 2010), we 
applied a consensus approach (Lancichinetti & Fortunato, 2012; Sporns 
& Betzel, 2016) similarly to prior studies (Dwyer et al., 2014; Hearne 
et al., 2017; Schedlbauer & Ekstrom, 2019). The applied approach was 
meant to estimate the most stable network partitions within a group not 
only across algorithm iterations, but also across the thresholds as pro
posed by Schedlbauer and Ekstrom (2019). The detailed explanation of 
the procedure is provided in the Supplementary Material. The commu
nity detection on group level provided the modular partition, or LMN 
configuration, for each state and its corresponding modularity index Q 
showing the degree to which the matrix was able to be subdivided into 
nonoverlapping modules (Rubinov & Sporns, 2010, 2011). The modules 
of the final network partitions were named based on the neuroana
tomical localization of regions that were forming them. To test state 
reconfiguration in terms of segregation we calculated the difference in 
the optimal group modular decomposition measured via the modularity 
index Q between states and the the variation of information (VIn) to see 
if the module partitions differ between the states. VIn quantifies the 
information that is intrinsic to the two partitions corrected by the in
formation that they share (Meilă, 2007). To test the statistical signifi
cance of index Q difference and VIn, we implemented repeated measure 
permutation procedure (Dwyer et al., 2014; Hearne et al., 2017) that is 
explained in detail in Supplementary Material. Using the group modular 
partitions, we identified the regions that altered their module alliance 
between the states, called “movers” (Schedlbauer & Ekstrom, 2019). The 
modular reconfiguration of modules was quantified by a proportion of 
reconfiguration (pr) obtained by dividing the number of regions within a 
resting-state module that change the module during the task with the 
number of regions within that resting-state module.  

• Reorganization of LMN configurations and state reconfiguration 

In order to test the reorganization of LMN configurations we per
formed the above-mentioned data-driven community detection 

S. Banjac et al.                                                                                                                                                                                                                                  

https://www.nitrc.org/projects/artifact_detect
http://volbrain.upv.es
https://sites.google.com/site/bctnet/
https://www.nitrc.org/projects/graphvar/
https://www.nitrc.org/projects/graphvar/


NeuroImage: Clinical 31 (2021) 102702

7

algorithm in TLE patients and we calculated the change of modularity 
index Q and VIn to explore the reorganization of state reconfiguration. 
Additionally, the community detection was performed on an individual- 
level for TLE patients providing for each patient the modular partition 
for each state and modularity index Q. Based on this, the state reconfi
guration on individual level was calculated as the difference between 
modularity index Q for two states and between the number of modules. 
The aim of these TLE individual-level analyses was to test the effec
tiveness of LMN configurations and state reconfiguration by relating 
them to clinical and neuropsychological characteristics of patients. 

We tested the significance of the difference between LMN configu
rations and state reconfiguration observed in healthy participants and 
the reorganization observed in TLE patients in three ways. First, we 
tested the significance of the difference between groups in segregation 
and modular partition of LMN configurations during each state using 
mentioned repeated measure permutation procedure for difference of 
group-level modularity index Q and VIn of group partitions. Second, to 
test the group differences in the ways that modules were segregated in 
LMN configurations, we analyzed physical distances within and between 
observed modules. Euclidian distance was calculated between the re
gions that composed one module as well between regions forming 
different modules (Alexander-Bloch et al., 2013). We compared mean 
within modules and between modules distances among groups for each 
state using the two-sample t-test. Third, since the epileptogenic zone of 
our patients is situated in temporal lobe we tested if TLE patients 
differed from healthy participants in terms of ability of these regions to 
change modules during state reconfiguration. This was done by 
comparing the number of “movers” in temporal and frontal lobe be
tween the groups using the Chi-square test. 

2.6.2. LMN integration  

• LMN configurations and state reconfiguration 

In order to analyze the integration in the observed LMN community 
structures, we calculated the roles of the regions within each LMN 
configuration in healthy participants. Topological roles were assigned to 
each node based on its intra- and inter- modular connections. To that 
end we calculated normalized intra-modular degree (z, Meunier et al., 
2009) whose value is higher if a node has a large number of intra- 
modular connections in comparison to other nodes in the same mod
ule. We measured inter-modular connectivity with the participation 
coefficient (Pc, Rubinov & Sporns, 2010). Due to the narrow distribution 
(Schedlbauer & Ekstrom, 2019) and dependency on the number of 
modules (Fornito et al., 2016), the Pc value was standardized within 
given community partition (Pcs). As in previous studies, the intra- and 
inter-modular plane was divided into four domains due to the smaller 
number of nodes within LMN (Meunier et al., 2009; Schedlbauer & 
Ekstrom, 2019). Nodes were considered as connector hubs if they had 
both high z (≥0) and Pcs (≥0) and as provincial hubs if they had high 
intra-modular connectivity (z ≥ 0), but low Pcs (<0). Nodes that had low 
z (<0) were considered as satellite nodes if they had high Pcs (≥0), or as 
peripheral nodes if their Pcs was low (<0) (Guimerà & Amaral, 2005; 
Meunier et al., 2009; Schedlbauer & Ekstrom, 2019). The roles were 
determined based on final group modular partition for each state and 
corresponding across-subjects mean FC matrices for group-level roles 
and corresponding individual FC matrices for individual-level roles. 
Nodes and their respective roles were grouped based on the RSN 
network nodes belonged to. State reconfiguration in terms of integration 
was tested by analyzing the number of connector hubs between two 
states in healthy participants using the Mann-Whitney for each network 
using the individual level data (i.e. number of connector hubs in each 
participant). We also analyzed the distribution of roles in the “mover” 
regions in each group using Chi-square Goodness of Fit test.  

• Reorganization of LMN configurations and state reconfiguration 

The same analysis was performed in TLE patients to test the reor
ganization of LMN configurations and state reconfiguration. Moreover, 
to test the difference between LMN state reconfiguration and its reor
ganization in terms of integration, we compared the change in the 
number of connector hubs within each RSN network between the 
groups. To this end, the change in the number of connector hubs was 
calculated as the difference between number of connector hubs during 
the rest and during the recall task for each network and each participant. 
Finally, the Mann–Whitney U test was used to test the differences in the 
connector hub change between the healthy participants and TLE pa
tients for each network separately. The results were FDR corrected for 
multiple comparisons. 

For the purpose of analyzing in more details a possible disorgani
zation of LMN integration in patients, we calculated a specific graph 
theory parameter, the hub disruption index (HDI, for details on calcu
lation of this index see Achard et al., 2012; Roger et al., 2020a) with Pcs 
values for LMN configurations. The HDI can indicate whether the inte
gration property of a specific region or node is increased or decreased. 
The HDI was first calculated on a group level using in order to compare 
groups and check if there is a general reorganization or disruption of 
inter-modular integration in TLE patients. The groups were compared 
with a two-sample t-test. Additionally, we calculated the HDI on 
regional level in order to identify regions that show the highest increase/ 
decrease of inter-modular connectivity between the groups. 

2.6.3. Efficiency of the reorganization of LMN configurations and state 
reconfiguration 

The efficiency of the reorganization of LMN configurations and state 
reconfiguration observed in TLE patients was tested in two ways. First, 
the Spearman correlation was calculated between standardized lan
guage and memory scores (Table 2) and a) individual modularity index 
Q and the number of modules for each state and their change between 
states and b) HDI values. Second, for each neuropsychological test TLE 
patients were divided into high or low performance group depending on 
whether their score was above or below the group median. Then the 
Mann-Whitney U test was used to analyze the differences between high 
and low performers on FC parameters. For these analyses, both uncor
rected and FDR corrected values are reported. The results that do not 
pass FDR correction are regarded as only exploratory. 

3. Results 

3.1. Statistical analyses of demographic, clinical and neuropsychological 
characteristics 

We first tested the similarity between left and right TLE patients 
before combining them in one group. There were no significant differ
ences in demographic and clinical data, and neuropsychological scores 
between left and right TLE subgroups (Table 2). There was no intra- 
group difference between left and right hippocampi in neither of the 
patient groups (LTLE: U = 39, p = .158; RTLE: U = 16, p = .465). When 
compared to healthy participants, the LTLE patients had smaller left 
hippocampus (U = 52, p = .024), while the volume of the right hippo
campus volume was not different (U = 86.5, p = .438). No significant 
differences were found between the RTLE patients and healthy partici
pants with respect to the volume of hippocampi (left: U = 41, p = .644; 
right: U = 23, p = .082). Activations during the language task were 
found to be consistently left lateralized (LI greater than 0.2) in the 
frontal lobe for all TLE patients (U = 39.5, p = .173) and they did not 
differ from healthy participants (U = 196.5, p = .140, Table S3 provides 
LIs of all participants). In addition, temporal lobe language activations 
were mostly left lateralized and there was no difference between TLE 
patients (U = 21.5, p = .496) or between patients and healthy (U =
158.5, p = .829). 

Since no significant differences between left and right TLE patients 
were found, we finally combined them and analyzed them as a single 
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patient group. Nevertheless, the descriptive statistics of the main 
network parameters for LTLE and RTLE are presented in Table S12. 

3.2. LMN segregation 

3.2.1. LMN configurations and state reconfiguration 
Based on a data-driven community detection algorithm we identified 

state configurations which show how LMN splits into separate modules 
(i.e. subset of highly interconnected regions) during each state (Bull
more & Sporns, 2012; Fornito et al., 2016; Meunier et al., 2010). Our 
results showed that resting-state and task LMN configurations in healthy 
participants were composed of the same number of modules with no 
significant difference between the modularity indexes Q (ΔQ = 0.02, p 
= .391). Although the number of modules was the same, their compo
sition (i.e. partition) was different between the states (VIn = 0.34, p <
.001). Module partitions and reconfigurations of resting-state modules 
in healthy participants are shown in Panel A of Fig. 2 and module 

affiliation of each region is provided in Table S4. 
The proportion of reconfiguration (pr) used to quantify the extent to 

which the resting-state modules changed compared to task are presented 
in the Panel A, Subpanel 1 of Fig. 2 and Table S4 provides details on 
movement of each region. The most reconfigured modules in healthy 
participants were the second DMN-DAN fronto-temporo-parietal (pr =
1) and the temporo-limbic module (pr = 0.526). 

3.2.2. Reorganization of LMN configurations and state reconfiguration 
In TLE patients, the transition between the states was accompanied 

by a change of the number of modules, as indicated by a significant 
difference between the modularity indexes Q (ΔQ = 0.05, p < .05) and 
the module partitions were significantly different between two states 
(VIn = 0.22, p < .001). The extrinsic configuration of LMN in TLE pa
tients was found to be more modular and to be comprised of a higher 
number of modules in comparison to healthy participants (ΔQ = 0.07, p 
< 0.01), while the difference was not significant between intrinsic 

Fig. 2. Segregation of LMN in terms of community structures found in healthy participants (Panel A) and TLE patients (Panel B) during the two states. The alluvial 
diagrams present the dynamics of state reconfiguration of modules from resting-state (Subpanel 1) to sentence recall (Subpanel 2) in healthy participants (Panel A) 
and its reorganization it TLE patients (Panel B). For each module, the composition is indicated in percentages of networks that form a given module. For each resting- 
state module the proportion of reconfiguration (pr) is indicated. The architectures of modules are presented in the templates (Subpanels 3 and 4). Subpanels 5 shows 
the “core” regions of healthy participants and TLE patients that remain in the same module from rest to task (dark blue) and “movers” that change their module (light 
green). F-T-P = Fronto-temporo-parietal module, REST = resting-state, RECALL = sentence recall task. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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configurations (ΔQ = 0.004, p = 0.727). In addition, both resting-state 
(VIn = 0.31, p < .001) and task (VIn = 0.33, p < .001) modular parti
tions were significantly different between two groups. Module partitions 
and reconfigurations of resting-state modules in TLE patients are shown 
in Panel B of Fig. 2 and module affiliation of each region is presented in 
Table S4. 

Additionally, our results indicated that the anatomical (i.e. 
Euclidean) distance of the regions within modules was significantly 
smaller in TLE patients than in healthy participants during the task (t =
2.562, p < 0.05). In other words, regions within modules of TLE patients 

were anatomically closer to each other than in controls. 
Furthermore, the temporo-limbic (pr = 0.071) and temporal lateral 

module (pr = 0.154) in TLE patients showed the smallest change. 
Consistent with this result, a Chi-square test showed that that mesial and 
lateral temporal regions were less flexible (i.e. having less “movers”) in 
TLE patients compared to healthy participants (χ2(1, N = 56) = 7.29, p 
< .01), while the flexibility of frontal regions was not different between 
the groups (χ2(1, N = 48) = 0.1, p = .755). 

Fig. 3. The integration of LMN assessed via distribution of connector hubs between groups and tasks. Panel A: Topography of the most common connector hubs 
according to groups and tasks. We present the regions that were connector hubs in more than half of the group (10/19 in healthy and 9/16 in TLE patients). Colors of 
the regions represent their network affiliation. Panel B: Distribution of connector hubs according to groups and tasks for each network showing LMN state recon
figuration and LMN reorganization in terms of integration. Significant differences at p < 0.01 threshold with FDR correction are marked with ** and those at p < 0.05 
are marked with *. HC = healthy controls, REST = resting-state, RECALL = sentence recall task. 
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3.3. LMN integration 

3.3.1. LMN configurations and state reconfiguration 
The integration properties were explored via connector hubs, espe

cially their reconfiguration between the tasks. Panel A of Fig. 3 shows 
the regions that were connector hubs in more than 50% of participants 
of both groups across the states and Table S5 presents the roles of LMN 
regions based on their normalized intra-modular degree and standard
ized participation coefficient obtained with the across-subjects mean FC 
matrices. Our analyses showed that in healthy participants (Fig. 3, Panel 
B), less regions belonging to DAN (U = 78.5, pFDR < 0.05) and FPN (U =
99.5, pFDR < 0.05) were connector hubs during recall compared to rest. 

Additionally, to explore the regions that changed modules between 
the states (i.e. “movers”), we analyzed the distribution of their roles 
across states. Our analyses showed that “movers” were more often 
connector hubs and satellite nodes during both states in healthy par
ticipants (REST: χ2(3, N = 532) = 116.72, pFDR < 0.05; RA: χ2(3, N =
532) = 125.79, pFDR < 0.05) having thus primarily the connecting roles. 
Table S6 provides the role distribution of “movers” across states and 
groups. 

3.3.2. Reorganization of LMN configurations and state reconfiguration 
In TLE patients, higher number of DAN regions were connector hubs 

during recall than during task (U = 227.5, pFDR < 0.01). Interestingly 
this variation was different between groups for DAN (U = 16.5, pFDR <

0.01). Detailed results are presented in Tables S7 and S8. Moreover, the 
“movers” in TLE patients were also more often connector hubs and 
satellite nodes during both states (REST: χ2(3, N = 400) = 14.12, pFDR <

0.05; RA: χ2(3, N = 400) = 147.02, pFDR = 0.543). 
Our HDI results (Fig. 4) indicated that TLE patients showed signifi

cant disruption of inter-modular connectivity in both states compared to 
healthy participants (REST: t = -11.65, pFDR < 0.01; RA: t = -3.86, pFDR 
< 0.01). We further explored this inter-modular connectivity disruption 
on a regional level. The biggest disruption of inter-modular connectivity 
in patients during resting-state was found within FPN and DAN (bilateral 
intraparietal sulci), while the increase was observed within DMN 
(bilateral hippocampal gyri, right fusiform, bilateral parahippocampus 
and left posterior cingulate gyrus). Conversely, the biggest disruption of 
inter-modular connectivity during the task in patients was identified 
within DMN (bilateral anterior hippocampus, left posterior hippocam
pus, bilateral amygdala and left parahippocampus). The HDI results are 
presented in Fig. 4. 

3.4. Efficiency of the reorganization of LMN configurations and state 
reconfiguration 

The efficiency of the reorganization of LMN configurations and state 
reconfiguration found in TLE patients was tested using the Spearman 
rank correlation and the Mann-Whitney U test. The obtained results 
were not significant after FDR correction. The results are presented in 
Tables S9 and S10. 

Since there was a significant age difference between healthy partic
ipants and TLE patients (U = 269, p < .001), we tested if the main 
network parameters are age-related and for potential effect of age. No 
significant effect was obtained. Detailed results are presented in 
Table S11. 

4. Discussion 

In the present study, we were interested to describe the LMN (see 
Roger et al., 2020a) underlying the language and declarative memory 
composite function. Our hypotheses were that the LMN configuration is 
dynamic so that it reconfigures according to brain activity (intrinsic, 
resting-state; extrinsic, task-induced) and condition (normal, HC; 
neurological, TLE patients). LMN configurations, dynamics of state 
reconfiguration and their reorganization were assessed by measuring 

the segregation (community detection) and the integration (connector 
hubs and inter-modular connectivity) properties. Our objective was to 
determine how LMN reconfigures across states (resting vs. task-induced) 
and groups (healthy vs. TLE patients) to support language and declar
ative memory interaction. 

Analyses were first performed for HC to assess LMN configurations 
and state reconfiguration. Contrary to our expectations, the segregation 
did not vary across intrinsic and extrinsic states in terms of number of 
modules. However, rest and task differed in modular compositions of 
LMN configurations in line with the idea that task-related reconfigura
tions are necessary to adapt to task-demands (Cohen & D’Esposito, 
2016). More specifically, LMN-intrinsic configuration included the 
following five modules (see Fig. 2, Panel A, Subpanel 1): fronto-parietal, 
frontal, temporo-limbic and two fronto-temporo-parietal. The second 
fronto-temporo-parietal module includes language key regions (left tri
angularis and orbitalis, left superior and middle temporal, supra
marginal gyri) which is in agreement with previous results revealing 
correlated activity of language systems during rest (Alavash et al., 2019; 
Muller & Meyer, 2014). The segregation of LMN extrinsic configuration, 
illustrated in in Fig. 2 (Panel A, Subpanel 2), shows five modules: fronto- 
parietal, frontal, temporo-limbic, fronto-temporo-parietal and temporo- 
mesial. There were two main segregation changes in task compared to 
rest in HC: (a) language key–regions from second fronto-temporo- 
parietal module migrated to other modules; (b) the hippocampus and 
amygdalae of temporo-limbic module migrated into a separate temporo- 
mesial module (Fig. 2, Panel A). The temporo-mesial module in sentence 
recall task could be engaged in the episodic retrieval and simultaneous 
encoding processes, as well as in the binding of retrieved episodes and 
lexico-semantic information into a coherent experience (Cooper & 
Ritchey, 2020; Ranganath & Ritchey, 2012). Therefore, the temporo- 
mesial (hippocampo-amygdalar) module and its dynamics across 
states may serve as a specialized interface between language and 
memory, as suggested by Duff & Brown-Schmidt (2012). This module 
that emerges during the task, could be supporting language and 
declarative memory based on its flexible interactions with various 
cortical networks enabling both episodic retrieval (Geib et al., 2017; 
Westphal et al., 2017) and language processing (Covington & Duff, 
2016; Piai et al., 2016). The composition of the first fronto-temporo- 
parietal module changed in task compared to rest by including supple
mentary lateral temporal regions required by lexico-semantic and syn
tactic processes typically recruited during a sentence recall task 
(Menenti et al., 2012; Price, 2012). In conclusion, regions showing 
modular shift between states in HC (see Fig. 2, Panel A, Subpanel 5) were 
those regions described as key either for language (Price, 2012) or for 
memory (Duff & Brown-Schmidt, 2012; Ranganath & Ritchey, 2012). 
The synthetic representation of these findings is presented in Fig. 5 
through a model of language and declarative memory dynamic inter
action based on LMN. The more detailed description of the model is 
provided in Supplementary material. 

State reconfiguration of modular composition in HC concerned 
mainly regions having satellite or connector hub role (see Table 6S), as 
previously suggested (Schedlbauer & Ekstrom, 2019). Additionally, 
majority of “movers” that had connecting role (either as connector hub 
or satellite node) belonged to DMN such as the middle and posterior 
temporal, superior frontal and prefrontal regions that were proposed to 
connect DMN to other networks, especially language network, providing 
thus DMN with linguistic information (Gordon et al., 2020). Globally, 
the segregation and integration results suggest that LMN state reconfi
gurations described in HC are mainly based on modular flexibility of 
connector nodes when facing task requirement. 

The further objective of this study was to understand LMN configu
rations and state reconfigurations in patients with TLE. The state 
reconfiguration of LMN showed increase in segregation and significant 
changes in modular composition. LMN was composed of four modules in 
its intrinsic configuration during rest: fronto-parietal, frontal, temporo- 
limbic and temporal lateral (Fig. 2, Panel B, Subpanel 1) and six in its 

S. Banjac et al.                                                                                                                                                                                                                                  



NeuroImage: Clinical 31 (2021) 102702

11

Fig. 4. Reorganization of LMN state configurations in terms of integration 
(inter-modular connectivity) expressed via HDI (hub disruption index). Sub
panel A shows group differences between healthy participants and TLE pa
tients in terms of HDI for resting-state and sentence recall. Differences that are 
significant after the FDR correction on the p < 0.01 level are marked with **. 
Subpanel B shows the differences in inter-modular connectivity on regional 
level observed when comparing two groups for each state. Colors of the re
gions represent their network affiliation. Template representations show re
gions with the greatest differences between the groups. Blue regions show the 
greatest decrease in inter-modular connectivity in patients compared to 
control and regions in red show the greatest increase. HC = healthy controls, 
REST = resting-state, RECALL = sentence recall task, HDI = hub disruption 
index. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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extrinsic configuration (Fig. 2, Panel B, Subpanel 2) during task: fronto- 
parietal, frontal, temporo-limbic, temporal lateral, insulo-cingulate and 
temporo-parietal. Compared to HC, TLE did not show specific modules 
composed of language key regions (second fronto-temporo-parietal in 
HC) during rest. Also, lateral superior and middle temporal regions 
merged into one specific temporal lateral module during both rest to 
task which was not the case for HC. Additionally, the temporo-limbic 
module composed of memory key regions was smaller and limited to 
antero-lateral temporal regions in patients compared to HC during rest, 
and temporal mesial module did not separate from temporo-limbic 
module during the task. Correspondingly, temporo-limbic and tempo
ral lateral modules showed reduced flexibility during state reconfigu
ration of LMN, as did temporal regions in general compared to HC 
(Fig. 2, Panel B). The reduced reconfiguration ability of these modules 
and regions in patients can be explained by the location of the epilep
togenic zones in temporal regions (Barr, 2015; Thom and Bertram, 
2012) so the epileptic discharges could be preventing normal reconfi
gurations of these regions. Furthermore, the segregation of insulo- 
cingulate module in TLE during the task can be related to the task de
mands for overt speech inhibition (Lœvenbruck et al., 2018; Oh et al., 
2014). Similarly, the temporo-parietal module composed exclusively of 
DAN and FPN regions in TLE patients during task can be explained by a 
supplementary requirement of control processes during the task (Dixon 
et al., 2017). Overall, difficulties in episodic retrieval (Rzezak et al., 

2017) and naming (Allone et al., 2017) usually observed in TLE patients, 
might be due to the absence of specialization of the hippocampo- 
amygdalar module and sharing of the already reduced resources with 
semantic memory. As a compensatory mechanism, insulo-cingulate and 
temporo-parietal segregate, suggesting that compared to HC, TLE need 
more effort to control covert speech and more cognitive control to 
perform the combined language-and-memory task. Furthermore, re
gions were grouped into modules more based on their physical prox
imity in TLE, contrary to what could be expected for complex cognitive 
tasks such as recall task, which generally rely on long-range integrative 
connections (Cohen & D’Esposito, 2016). This can be explained by the 
loss of distant connections as a result of epileptic discharges and their 
high metabolic cost, as previously suggested (Cohen & D’Esposito, 2016; 
Englot et al., 2016; Haneef et al., 2014; Lee et al., 2018; Liao et al., 2010; 
Roger et al., 2020a). The local organization of modules and their greater 
segregation, may be beneficial for patients since it can prevent from a 
dysfunction or damage propagation throughout the network (Fornito 
et al., 2016). 

LMN integration and its change between states was assessed via 
connector hubs in HC and TLE patients and the two groups were 
compared. Patients showed increased number of DAN connector hubs 
during task compared to rest (Fig. 3, Panel B), suggesting that patients 
rely more on DAN regions for enabling the communication and the 
cooperation between language and memory processes and networks due 

Fig. 5. Schematic representation of the model of language and declarative memory dynamic interaction based on LMN. Panel A shows state reconfiguration from 
intrinsic to extrinsic state during sentence recall. Only the regions that changed module (“movers”) are colored and the colors correspond to their modules for each 
state. Non-mobile regions (that remain in the same module) are presented in gray. Temporo-lateral module in rest divides into temporo-lateral and temporo-mesial 
modules in task that are engaged in semantic and episodic memory respectively. Fronto-temporo-parietal module found during rest includes language key-regions 
that separate during the task into modules that are engaged in lexico-semantic access, syntactic processing and sentence generation. Panel B shows cognitive 
processes recruited by the composite language and declarative memory function and the underlying LMN during the task. Within each subpanel we present language 
and declarative memory subprocesses and the corresponding modules presented in color. Fronto-temporo-parietal and temporo-limbic modules are engaged in lexico- 
semantic access while temporo-limbic module is also engaged in episodic retrieval (Subpanel 1). Hippocampo-amygdalar module is engaged in episodic retrieval and 
fronto-parietal module in concept access (Subpanel 2). Through the connection of hippocampo-amygdalar and fronto-parietal modules, the sentence is recalled and 
the information is transferred to working memory. Fronto-parietal and frontal modules are engaged in syntactic processing and sentence production (Subpanel 3). 
Hippocampo-amygdalar module can also access the information from all modules, combine it into a complete experience and perform encoding in parallel (Sub
panel 4). 
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to dysfunctions within DMN which generally assures this interface 
(Bettus et al., 2009; Duff & Brown-Schmidt, 2012; Waites et al., 2006). 
TLE patients indeed have difficulties in language and memory tasks 
performance (Alessio et al., 2006; Bartha-Doering & Trinka, 2014; Zhao 
et al., 2014; Allone et al., 2017; Bell et al., 2011; Tramoni-Negre et al., 
2017), which is probably the reason they need additional resources that 
are provided by DAN. 

Additional HDI analyses revealed that TLE patients show disruption 
of inter-modular integration (Fig. 4, Panel A). The regional HDI analyses 
demonstrated that DMN shows decrease, while DAN and FPN show in
crease of inter-modular connectivity in task compared to rest in TLE 
patients relative to HC. Hence, TLE patients may rely less on DMN and 
more on DAN and FPN to flexibly increase their integration property 
between states. In addition, we also found the “hippocampal paradox” 
(Fig. 4, Panel B) previously described in TLE (Roger et al., 2020a). 
Namely, even though global DMN connectivity is reduced in TLE, there 
are nodes, such as the hippocampus, that can show hyper-connectivity 
(Cataldi et al., 2013). We found increased inter-modular connectivity 
of mesial temporal structures only during rest in line with other studies 
(Haneef et al., 2014; Roger et al., 2020a). According to Englot et al. 
(2016), the increase in connectivity of these regions may be explained 
by the epileptic activity, without any compensatory role. This explana
tion is supported by the decrease of inter-modular connectivity of these 
regions during the task (Fig. 4, Panel B). Our results on LMN integration 
in TLE altogether suggest that classical language-and-memory in
teractions normally based on DMN regions as an interface (especially 
mesial temporal structures; see Duff & Brown-Schmidt, 2012) may be 
enabled in TLE patients, which is compensated by control networks, in 
particular, the DAN and FPN. The integrative dysfunction of DMN in TLE 
is due to the loss of long-range connections (Lee et al., 2018; Vaughan 
et al., 2016). 

Overall, our findings validated that intrinsic and extrinsic LMN 
configurations are neither entirely the same, nor completely different, 
but rather complementary, providing the justification for their joint 
exploration. Studying the differences between state-dependent LMN 
configurations revealed us what are the key language and declarative 
memory subprocesses the network is trying to support with its adapta
tion. On the other hand, studying the differences in network state 
reconfiguration between healthy and pathological condition allowed us 
to understand what are the additional processes language and declara
tive memory need when the standard interface is not functional and the 
corresponding LMN reorganization. 

Our study has several limitations. First of all, the low statistical 
power of the study made difficult to detect correlations with neuro
psychological performances. The efficiency of reorganization should be 
explored in larger samples. Also, larger sample of TLE patients might 
allow to separate left and right TLE patients and explore the effects of 
lateralization of epileptogenic zone on modularity. Second, although we 
aimed to describe the dynamics of reconfiguration, our results are 
limited by the temporal resolution of the fMRI technique. Future studies 
could deepen our findings and hypotheses of language and declarative 
memory model using dynamic functional connectivity or combination of 
fMRI with electrophysiological data. Furthermore, functional connec
tivity is based on correlation so we can only discuss association without 
concluding about causality, therefore dynamic causal modelling could 
be beneficial for exploring the direction of the interaction between DAN 
and FPN with DMN. Like previous studies (Bolt et al., 2017; Cohen & 
D’Esposito, 2016; Finc et al., 2020; Schedlbauer & Ekstrom, 2019; 
Stanley et al., 2015) we based our analyses only on positive connections 
and we implemented an algorithm aiming to get the most stable network 
partitions across algorithm iterations and thresholds. Nevertheless, since 
there is no consensus on graph theory decisions, the presented data and 
conclusions may not necessarily generalize to other studies using 
different network parameters. Finally, the order of task and resting-state 
could have influenced the results (Grigg et al., 2010; Tailby et al., 2015; 
Wang et al., 2012). Unfortunately, we were unable to change this aspect 

of our experimental procedure due to clinical practice. Future studies 
should examine the stability of modular structure with respect to order 
of tasks. 

5. Conclusion 

In this study we were interested in exploring the neural basis of a 
composite language and declarative memory function based on the 
dynamical state reconfiguration of LMN and its reorganization in the 
case of TLE patients. Although resting-state has been found to be pre
dictive of individual differences and various performances, our study 
joins others showing that it is also necessary to explore the network 
architecture during task performance in order to understand complex 
interactive functional networks that are the base of cognitive processing. 
By using a data driven approach we aimed to understand more fully the 
changes in main functional networks and regions of LMN that are 
required when the context explicitly demands their collaboration. Spe
cifically, we have identified flexible community reconfiguration that 
underlies interaction of these two functions in typical individuals and we 
have demonstrated how this vital flexibility is reduced in TLE patients, 
especially in the temporal regions that represent the integrative hubs or 
interface of language and declarative memory. Finally, a dynamic model 
of processes involved during language and memory integration has been 
proposed. 
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