
HAL Id: hal-03248430
https://hal.science/hal-03248430

Submitted on 3 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An End-to-End Approach for Multi-Fault Attack
Vulnerability Assessment

Vincent Werner, Laurent Maingault, Marie-Laure Potet

To cite this version:
Vincent Werner, Laurent Maingault, Marie-Laure Potet. An End-to-End Approach for Multi-Fault
Attack Vulnerability Assessment. 2020 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC 2020), Sep 2020, Milan (virtuel), Italy. �10.1109/FDTC51366.2020.00009�. �hal-03248430�

https://hal.science/hal-03248430
https://hal.archives-ouvertes.fr


An End-to-End Approach for Multi-Fault Attack Vulnerability Assessment

Vincent Werner∗†, Laurent Maingault∗, Marie-Laure Potet†
∗ Univ. Grenoble Alpes, CEA, LETI, DSYS, CESTI, F-38000 Grenoble, first.last@cea.fr

† Univ. Grenoble Alpes, CNRS, VERIMAG, F-38000 Grenoble, first.last@univ-grenoble-alpes.fr

Abstract—Although multi-fault attacks are extremely power-
ful in defeating sophisticated hardware and software defences,
detecting and exploiting such attacks remains a difficult prob-
lem, especially without any prior knowledge of the target. Our
main contribution is an end-to-end approach for multi-fault
attack vulnerability assessment We take advantage of target
specific fault models rather than generic fault models to achieve
complex multi-fault attacks that can lead to critical vulnerabil-
ities. Target specific fault models are generated thanks to fault
models inference process, based on a fault injections simulation
and a characterization, in order to elaborate powerful multi-
fault attacks based on different fault models. Combining fault
models opens up new possible attack paths and adds flexibility
to design fault attacks that adapt to countermeasures. Hence,
the direct consequence of the increasing complexity of fault
attacks question the effectiveness of software countermeasures
based on generic fault models for sensitive applications.

Keywords-Multi-Fault Attack, Fault Injection Simulation,
Laser Fault Injection, Microcontroller

I. INTRODUCTION

Today secure embedded system are widespread and we
trust them to manipulate our sensitive private data. Such
devices rely on cryptographic algorithms to ensure confiden-
tiality and integrity properties. Although these algorithms
use strong mathematical concepts to provide provable se-
curity, their implementation can be insecure and attackers
exploit this fact to retrieve cryptographic information. Fault
attacks are one way to take advantage of implementation
weaknesses. The first theoretical fault attack based on
analysing incorrect cipher-texts was introduced by Boneh
et al. in 1997 [1] and referred to as the Bellcore attack. Five
years later, Aumuller et al. [2] proposed the first practical
investigation of the Bellcore attack using electrical glitches.
Since then, recent works have established that it is possible
to use focused light, electromagnetic injections or even
nanofocused X-rays to generate local environmental pertur-
bations in order to induce faults and cause computational
errors.

As a result, software and hardware defences have been
designed to mitigate fault attacks. But if countermeasures are
reliable against single fault injection, they are less effective
against multi-fault attacks since the countermeasure itself
can also be attacked. Kim and Quisquater [3] describe for the
first time a practical double fault attack on a CRT-RSA al-
gorithm implemented with first order fault countermeasures.
Nowadays, the multi-fault analysis is usually performed

manually, with generic fault models and without considering
combined fault attacks, leaving significant gaps in coverage.
As a consequence, some unnoticed potential weaknesses
can be exploited. The security evaluation process can be
improved by adopting an end-to-end approach for multi-
fault attack vulnerability assessment, from the fault analysis
to the fault injection to improve the overall target coverage.
However, to the best of our knowledge, this approach does
not exist yet.

Accordingly, our main contribution is an end-to-end tool-
assisted methodology that considers target specific fault
models as well as combined fault attacks. The methodology
we propose is divided into three parts; 1) infer target specific
fault models, 2) simulate realistic multi-fault attacks using
inferred fault models and 3) select the most efficient fault
injection settings to calibrate the fault injection equipment
to perform combined fault attacks.

The outline of the rest of the paper is as follows. In sec-
tion II, we present the context, as well as some preliminary
notions. Then, we detail the well-known challenges of multi-
fault attack vulnerability assessment and we discuss previous
related work, providing a brief overview of recent state-of-
the-art fault model inference approaches. Finally, we present
our contributions to address these challenges. In section III,
we explain our end-to-end approach, step by step, from the
fault inference to the selection of the most efficient fault
injection settings. In section IV, we evaluate our end-to-end
methodology on a VerifyPIN algorithm. In section V, we
discuss the limitations of our approach. Finally, we conclude
this article and give insights for future perspectives.

II. BACKGROUND

A. Security Evaluation Process

The evaluation process is part of the security certification
to identify weaknesses of the Target Of Evaluation (TOE).
The Information Technology Security Evaluation Facility
(ITSEF), a third party agreed by the certification body, is in
charge of evaluating the product robustness against various
attacks, and especially fault attacks. The evaluation is based
on a conformity analysis (not detailed in this document) and
a vulnerability analysis, which includes two main steps:
Fault analysis By detecting implementation weaknesses

that could lead to vulnerabilities, potential fault attacks
are identified.
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Fault exploitation Potential fault attacks are performed on
the target using the appropriate equipment according to
the fault injection technique.

B. Preliminary Notions

Fault: A fault is the cause of an error, that is an
incorrect program state. If the error caused by the fault does
not propagate and the program execution ends normally, the
fault is ineffective. On the contrary, the fault is effective if the
error affects the execution of the program, causing a failure,
that is, an observed behaviour different from that expected.
Although it is possible to exploit weak implementations
with ineffective faults, most successful fault attacks take
advantage of system failures to leak critical information.

Fault model: A fault model is an abstract description
of a supposed fault. These models are used during the
fault analysis to find potential implementation weaknesses.
As fault models are interpretations of observed behaviours,
the same fault can be formalized differently. The level of
abstraction of the model can be chosen according to the
analysis level considered. As the target binary is often
available during security evaluations, we perform a fault
analysis at the binary level. Accordingly, we use Instruction
Set Architecture (ISA) fault models.

Simulation-based fault injection tool: Simulation-based
fault injection tools inject modelled faults into simulated
hardware. These tools assist the fault analysis by inject-
ing automatically each fault according to the chosen fault
models, thus ensuring exhaustiveness and repeatability. Our
simulation-based fault injection tool CELTIC inject fault at
ISA level, based on the target architecture emulated, using
a micro-architectural simulator.

Fault injection settings: Fault injection settings de-
scribe the equipment configuration used during the fault
exploitation. These parameters depend on the injection tech-
nique chosen. For example, the position on the chip focused
by the laser, the peak power of the laser pulse or the laser
pulse duration are possible fault injection settings specific
to the LFI equipment. On the other hand, the injection
delay, which is the duration between the start of the target
application and the fault injection, is common to different
fault injection techniques. The success of a fault attack relies
on the experience of the evaluator in selecting the fault
injection settings to induce effective faults.

C. Challenges of Multi-fault Attack Vulnerability Assess-
ment

Due to the evolution of fault attack techniques and meth-
ods over the last decade, multi-fault attacks are now consid-
ered during security evaluation. However, fault analysis and
fault exploitation are more difficult for multi-fault attacks
than single-fault attacks.

Challenge n°1: Reducing the gap between the fault
analysis and fault exploitation: Most of the time, fault
analysis is performed with generic fault models (bit-set, bit-
reset, etc.) without any consideration of the actual behaviour
of the TOE during fault injection, resulting in:

• The fault attacks identified during fault analysis may
not be achievable during the fault exploitation, as there
is no evidence that the generic fault models will be
reproducible. As a result, using generic fault models
slow down the fault analysis and the fault exploitation.

• The fault analysis will miss potential implementation
weaknesses. Recent target specific fault models [4], [5],
[6], bypass software countermeasures in a single fault.

• This challenge becomes even more crucial for multi-
fault attacks analysis as there will be more unnoticed
vulnerabilities as well as more unexploitable attacks
because of the combinatorial explosion of possible
attack paths.
Challenge n°2: Considering combined fault attacks:

A combined fault attack is a multi-fault attack with dif-
ferent fault models. Considering different fault models for
multi-fault attacks significantly increases the coverage of
the security evaluation by detecting previously unnoticed
vulnerabilities. However, this makes the fault analysis even
more difficult to perform due to combinatorial explosion of
attack paths.

Challenge n°3: Improving fault injection settings se-
lection: Selecting optimal fault injection settings is decisive
for successful fault attacks. If manual selection of the best
parameters is still possible with single-fault attacks, this
approach is not possible with multi-fault attacks, because
of the combinatorial explosion of possible fault injection
settings to consider.

D. Contribution

Our main contribution is an end-to-end approach for
multi-fault attack vulnerability assessment. The basic idea
stems from a simple insight: restricting fault analysis to
target specific fault models improve the overall security eval-
uation process by reducing the gap between the fault analysis
and the fault exploitation. Also, target specific fault models
mitigate the well-known combinatorial explosion problem of
multi-fault attacks and combined fault attacks. The following
overviews the important steps of the methodology.

Step 1: Tool-assisted Fault Models Inference: The first
step of the methodology is an automated fault models
inference. The fault models inferred are target specific to
reduce the gap between the fault analysis and the fault
exploitation (Challenge n°1).

Step 2: Tool-assisted Fault Analysis: Then, the fault
analysis is automated with our simulation-based fault in-
jection tool, CELTIC. With the target specific fault models
previously inferred, this automated fault analysis can con-
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sider both multi-fault and combined fault attacks (Challenge
n°2).

Step 3: Tool-assisted Fault Exploitation: The last stage
selects the best fault injection settings for the fault exploita-
tion, for multi-fault and combined fault attacks, according to
the previous results (Challenge n°3). This step is automated
as well to speed up the overall process.

E. Related Work

Reducing the gap between fault analysis and fault ex-
ploitation has been initially addressed by Dureuil et al. [7].
They describe an end-to-end approach for vulnerability as-
sessment based on probabilistic fault models inference from
experimental results. With these probabilistic fault models
and a simulation-based fault injection tool, they estimate the
robustness of the TOE. However, one important step, the
fault model inference, remains manually performed. Also,
multi-fault attacks as well as combined fault attacks are not
considered in their approach. Similarly, Given-Wilson et al.
[8] et Rivière et al. [9] propose to combine hardware and
software approaches. But they do not consider combined-
fault attacks and they do not improve the selection of fault
injection settings. Finally, Laurent et al. [10] use Register-
Transfer Level (RTL) fault models, that closely match the
processor faulty behaviours, to assist in the fault analysis at
source code level by detecting previously unnoticed vulner-
abilities. Nevertheless, they do not optimize the selection of
fault injection settings and do not consider combined fault
attacks.

On the other hand, Carpi et al.[11], Wu et al.[12] and
Maldini et al.[13] propose fault injection settings search
strategies respectively for Voltage Fault Injection (VFI),
LFI and ElectroMagnetic Fault Injection (EMFI). Using
Genetic Algorithms or Deep Learning, they find the most
efficient fault injection settings, such as injection delays and
other parameters specific to the fault injection technique, to
speed up the fault exploitation. However, they do not infer
fault models from experimental results to improve the fault
analysis and they do not consider combined fault attacks.
Then, Endo et al. [14] present a methodology to find multi-
fault attacks that does not required a prior knowledge of the
TOE. However, this approach is limited to identical fault
models so combined fault attacks are not possible.

Although these works propose strategies to improve the
fault exploitation or the fault analysis process, multi-faults
attacks, and especially combined fault attacks, remain diffi-
cult to achieve due to the three challenges presented above.
Table I summarizes the related works presented, according
to these challenges. To the best of our knowledge, no tool-
assisted methodology has been proposed to effectively per-
form practical combined fault attacks from the fault analysis
to the fault exploitation. The following section overviews
each step of our end-to-end approach for multi-fault attack
vulnerability assessment.

Table I: Comparison of the related work according to the
challenges.

Challenge n°1 Challenge n°2 Challenge n°3

Our contribution 3 3 3
[7] 3 7 3
[8], [10], [9] 3 7 7
[11], [12], [13], [14] 7 7 3

III. OUR APPROACH

A. Step 1: Tool-Assisted Fault Models Inference

With a characterization and a fault injection simulation
performed simultaneously, we can infer fault models from
experimental results. An overview of our fault models infer-
ence process is depicted in Figure 1. Then, the fault models
and fault injection parameters are combined into Target
Specific Fault Model (TSFM). These TSFM are transferable
towards different samples of the same component, thereby
reducing the initial time investment of the fault model
inference step.

TSFM Generation

Fault Injection Simulation

Fault models

Faulty
outputs

16InstructionSkip

000068BE 00007A2C

Test Program + Target Device Simulation

Characterization

Fault injection settings

Faulty
outputs

x = 1150µm, y= 1200µm, ...

000068BE 00007A2C

Test Program + Target Device

Target Specific Fault Model

x = 1150µm, y= 1200µm, ... 16InstructionSkip
x = 1150µm, y= 1200µm, ... 16InstructionSkip

x = 1150µm, y= 1200µm, ... 16InstructionSkip

Figure 1: Overview of the tool-assisted fault model inference
step

Characterization: The characterization is a common
technique to help select the most efficient fault injection
settings for the evaluated component. The Flash memory
of the device must not be read or write protected, which
is often the case during security evaluation. Instead of the
target application, a program designed specifically for the
characterization, referred to as the test program, is used to
propagate most of the computational errors caused by the
faults, in order to produce more often faulty outputs. A faulty
output is detected by comparing the observed output with
the expected output of the test program. During this step,
a grid search (semi-exhaustive search on a predetermined
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and progressively refined range of values) for fault injection
settings is performed. The parameters that generate the most
faulty outputs are the most efficient. However, it is difficult
to diagnose the faults causing the observed faulty outputs.
Most of the time, the step of fault models generalisation
from the experimental results is performed manually, straight
after the characterization, which can be difficult and tedious,
especially when the data set of faulty outputs is large
(above 10000 faulty outputs). To circumvent this issue, we
perform a fault injection simulation to help fault models
generalisation.

Fault Injection Simulation: We performed simultane-
ously a fault injection simulation with CELTIC. The goal is
to quickly generate faulty outputs according to a set of state-
of-the art fault models at ISA level and the test program.
CELTIC injects faults according to the selected fault models
into the test program and keeps track of each faulty outputs,
detected by comparing the observed output with the expected
output.

TSFM Generation: The faulty outputs acquired during
fault injection simulation with CELTIC are automatically
compared with those obtained during the characterization.
When the same faulty output oi is obtained during both
characterization and simulation, we combine the fault in-
jection settings si inducing the fault output oi with the
fault model mi generating this same output oi, into a triplet
(si,mi, oi). This process is repeated for each identical faulty
output through characterization and simulation; so as to
generate a list of triplets (si,mi, oi). The pair (si,mi) is
referred to as Target Specific Fault Model. Similarly to the
probabilistic fault models proposed by Dureuil et al. [7], we
also estimate the probability of occurrence of each TSFM,
that is the probability of each fault model according to the
fault injection settings, Pr(M = m|s), by dividing the
number of faulty outputs according to the fault model m
with the fault injection settings s by the total number of
fault injected with fault injection settings s.

Example: Table II presents a list TSFM and the as-
sociated Pr(M = m|s), according to positions focused by
the laser on the evaluated component (a Cortex M4). In this
example, inferred fault models are similar to those detailed
by Dutertre et al. [4], referred to as the InstructionSkip fault
model. This model represents a fault that skips one or more
instructions. The prefix corresponds to the number of bytes
skipped (Ex: 16InstructionSkip ↔ 16 bytes skipped ↔ 4
32-bit instructions skipped). The faulty output coverage will
be discussed in subsection IV-C.

B. Step 2: Tool-Assisted Fault Analysis

The fault analysis is restricted to a limited set of TSFM.
The selected TSFM are those whose probability Pr(M =
m|s) is greater than an arbitrary threshold. The threshold
level influences both the fault analysis and the fault exploita-
tion. The lower the threshold, the more exhaustive the fault

Table II: Examples of Target Specific Fault models according
to positions focused by the laser on the evaluated component
(a Cortex M4), and the probability Pr(M = m|s) associ-
ated.

Target Specific Fault Model

Fault model Position Pr(M = m|s)

16InstructionSkip
x = 1080 µm
y = 1250 µm 0.65

... ...

32InstructionSkip
x = 1060 µm
y = 1240 µm 0.68

... ...

48InstructionSkip
x = 1050 µm
y = 1270 µm 0.72

... ...
... ... ...

analysis, but the longer it takes to simulate and the more
false positives (unexploitable fault attacks) it generates.

In this step, the target application, that is the binary
code embedded on the target device, is analysed. The fault
analysis is automated with CELTIC to find exhaustively all
the successful attacks with respect to the fault models. Multi-
fault attacks with different and identical fault models are
considered. At the end, CELTIC returns a list of all success-
ful attacks, with respect to the oracle (a boolean condition to
detect the successful attacks), and the selected fault models.
For each successful attack, the injection delays from the start
of the target application execution, expressed in clock cycle,
as well as the fault models are automatically computed. As
CELTIC does not simulate pipeline mechanisms, each clock
cycle corresponds to one instruction fetched, decoded and
executed. Algorithm 1 provides the CELTIC pseudocode to
find successful combined fault attacks. Finally, CELTIC can
be configured to simulate any state-of-the-art fault models
at ISA level.

First, CELTIC generates the reference execution trace,
that is an execution trace of the program without fault.
The reference execution trace will be used during the fault
generation to identify the potential injection sites and also
to detect abnormal behaviour. Then the function FindCFA
is called to find successful combined fault attacks. It takes
as inputs an execution trace X of the target application,
a set of fault models M , the attack order n (Ex: n = 2
for double-fault attacks), and the oracle Oracle. For each
saved program state of the execution trace Xi and for each
fault model m, CELTIC generates all the possible faults
according to m at Xi. Next, CELTIC injects each fault f
to produce a faulty execution trace Xfault. CELTIC saves
Xfault if it is a successful attack according to the oracle,
otherwise, CELTIC continues the process until all the faults
have been injected.
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Algorithm 1: FindCFA pseudocode

Function FindCFA(X,n) is
Input: An execution trace X , the set of fault

models M , the attack order n and the
oracle Oracle.

Result: The sucessful attacks S.

S ← ∅;
foreach Xi ∈ X do

foreach m ∈M do
foreach f ∈ FindAllFaults(Xi,m)
do

Xfault ← InjectFault(Xi, f);
if Oracle(Xfault) then

S ← S ∪Xfault;
else if n > 1 then

n← n− 1;
S ← S ∪ FindCFA(Xfault, n);

Example: The case study is a VerifyPIN embedded on
a Cortex-M4. The VerifyPIN has been hardened to mitigate
single fault attacks. A VerifyPIN is a simple authentication
program which verifies that the secret PIN entered is correct.
It allows PIN entering for at most 3 times. The target
microcontroller is the same as the previous step, so we can
use, for the fault analysis, the fault models from Table II. The
oracle is designed to detect a successful authentication with
an invalid PIN without triggering a countermeasure. The
VerifyPIN is robust to single-fault attacks, verified by ex-
periments and using CELTIC, thus following attacks found
are truly double-fault attacks. CELTIC find 417 successful
double-fault attacks, including 292 combined fault attacks,
as detailed in Table III. Figure 2a presents all the injection
delays (in cycles) of the 97 successful combined fault attacks
with 32InstructionSkip and 48InstructionSkip fault models.

Table III: Number of successful double fault attacks found
with CELTIC according to fault models.

2nd fault
1st fault 16Instruction

Skip
32Instruction

Skip
48Instruction

Skip
16InstructionSkip 30 25 30
32InstructionSkip 62 46 42
48InstructionSkip 78 55 49

C. Step 3: Tool-Assisted Fault Exploitation

In this step, we take advantage from previous results in
order to generate automatically the set of fault injection
settings according to the successful attacks found with
CELTIC.

Only the TSFM leading to successful simulated attacks
are considered and, as fault analysis has been limited to
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Figure 2: Injection delays of successful double fault attacks,
in clock cycles, with 32InstructionSkip and 48Instruction-
Skip fault models (Figure 2a). Injection delays of successful
double fault attacks, in microseconds, with 32InstructionSkip
and 48InstructionSkip fault models with a 10 clock cycles
margin of error. (Figure 2b).

the TSFM with the highest probability Pr(M = m|s),
optimal fault injection settings, specific to the FI technique
(positions, power of the laser, etc.), are already known.
Next, the injection delays of successful attacks simulated
by CELTIC, expressed in clock cycles, are converted into
microseconds with a linear relationship and then adding an
arbitrary margin of error, as depicted in Figure 2b. The
margin mitigates errors and inaccuracies in experimentation
and simulation. Finally, injection delays and fault injection
settings are combined to obtain a complete equipment con-
figuration for all the successful fault attacks.

Example: Table IV is the generated list of equipment
configurations to perform double combined fault attacks with
two independent laser sources, from previous results. Here,
two fault injection parameters vary at the same time: The
injection delay and the chip position targeted by the laser.
A 10 clock cycles margin has been chosen, thus from the
97 successful combined fault attacks with 32InstructionSkip
and 48InstructionSkip fault models in Figure 2a, 42777
injection delays in microseconds has been generated for two
independent laser sources in Figure 2b. The experimental
validation of the generated configurations is detailed in the
subsection IV-D.

Table IV: Generated list of equipment configurations for
double-fault attacks with two independent laser sources
according to previous results.

Laser n°1 Laser n°2

Position Injection delay Position Injection delay

Configuration n°1 x=1050µm
y=1270µm 17.7 µs x=1060µm

y=1240µm 21.2 µs

Configuration n°2 x=1050µm
y=1270µm 16.7 µs x=1080µm

y=1250µm 22.7 µs

... ... ... ... ...

5



IV. EXPERIMENTAL RESULTS

This section presents the experimental results of our
approach applied to a hardened VerifyPIN for a Cortex-
M4. First, the experimental setup and the target device is
described. Then, the faulty output coverage, an indicator
of the performance of the fault models inference step, is
detailed. Next, the generated configurations are validated
using an exhaustive search as a reference. Finally, the
performance of our end-to-end methodology is compared
to other different approaches.

A. Experimental Setup

To demonstrate combined fault attacks in both spatial and
time position, our LFI test bench consists in two similar and
independent laser diodes emitting around 1 µm wavelength.
The optical setup is depicted on Figure 3. Each laser beam
can be adjusted independently from each other; we can
tune the laser power, beam shape, and x, y spatial position.
Altough the field of view of the microscope limits the
fault models we can used, it is always possible to add
an independent fiber laser mount on a robotized arm if
necessary. Finally, the laser illumination is triggered by a
simple electrical signal which can be sent at the proper time.
Therefore, we can simultaneously inject two precise faults
at different time and spatial positions. For this experiment,
the laser pulse duration is set to one clock cycle (≈ 70 ns)
and does not vary, as the laser power.

Figure 3: Schematic view of the double laser testbench

B. Target Device

The target device is an ARM Cortex-M4 32-bit microcon-
troller, opened from the backside to preform the LFI. This is
the same device use in the example in step 1 (section III-A).
This Harvard architecture microcontroller includes a three-
stage pipeline, cache mechanisms and Thumb-2 instruction
set compatibility. The Flash memory logic of the chip has
been scanned, as shown in Figure 4. A grid search has
been performed to find the most sensitive area in the Flash
memory logic. Finally, the set P of targeted positions of the
chip’s Flash memory is a rectangle of 150 µm by 200 µm,
with a scan step of 10 µm, for a total of 336 positions.

C. Performance of the Fault Model Inference

The characterization in step 1 (section III-A) has been
performed using the set of positions P and varying the
injection delays over 1 µs range. Figure 4 presents the chip
sensitivity to LFI for this area. More than 50000 faults
have been injected during 6 hours using the laser diode 1.
During the characterization, more than 12000 faulty outputs
has been generated, i.e. 24% of all faults injected. The
rest of the faults injected (76%) cause fatal errors, that
is the test program either terminates prematurely with a
CPU exception or never terminates (timeout). The central
region of the focused area (x = 1070 µm, y = 1250 µm)
is the most sensitive to faults with more than 80% of the
fault injections resulting in faulty outputs. Then, using our
fault model inference method, 75% of the faulty outputs are
covered with fault models (i.e. 18% of all the faults injected).
The remaining faulty outputs (25%) have not been covered
by the fault injection simulation. Table V sums up the
previous results. The most common inferred fault models are
16InstructionSkip, 32InstructionSkip and 48InstructionSkip
that represent more than 70% of all the faulty outputs.
The probabilities of the other fault models given the fault
injection settings are low (i.e. Pr(M = m|s) < 0.01), thus
very difficult to predict, so they will not be considered during
the fault analysis.

Table V: Overview of model inference results.

Ratio (%) Count
Total 100 51172

Fatal Errors (mute,timeout,etc.) 76 39048
Faulty Outputs 24 12124

Faulty Outputs not Covered 25 3173
Faulty Outputs Covered 75 8951

16InstructionSkip 50 4497
48InstructionSkip 34 3025
32InstructionSkip 10 887
Other Fault Models 6 542

D. Validation of the Generated Configurations

To validate the generated configurations in step 3 (Ta-
ble VI), injection delays of successful attacks found with
exhaustive search (red) are compared to generated injection
delays with our approach (blue), as depicted in Figure 5a.
During the exhaustive search, the positions focused by the
two lasers are fixed, as shown in Figure 5b, while the
injection delays are those of the set D that ranges from
16 µs to 30 µs, corresponding to the start and the end of
the execution of VerifyPIN, with a scan step of 10 ns, for
a total of 1401 delays. Note the exhaustive search took one
week to complete. The generated delays with our approach
covers 894 out of 1744 possible injection delays leading to
successful attacks found with exhaustive search (i.e. 51%).
There is room for optimization, in particular to improve the
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Figure 4: Backside view of our ARM Cortex-M4 chip, with
the Flash logic memory highlighted in red, and the magnified
view of the positions P . The sensitivity to faults for each
positions P is given in the heatmap and ranges from 0 (not
sensitive) to 1 (very sensitive).
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Figure 5: Attacks found with exhaustive search and the
selected injection delays (Figure 5a). The positions focused
by the two lasers are fixed (Figure 5b) while the injection
delays range from 16 µs to 30 µs.

acquisition of the start and the end of the target application
which is critical to convert accurately the injection delays
of the simulated attacks.

E. Performance of our End-to-End Approach

1) Experiment Protocol: We evaluate the performance
of three different methodologies, by comparing the time
elapsed before a successful combined fault attack. The three
approaches considered are as follows:

• Approach A: naive approach, the evaluator has no prior
knowledge of the injection delays and the positions.

• Approach B: hybrid approach, the evaluator uses the
sensitivity heatmap (Figure 4) to find positions but has
no prior knowledge of the injection delays.

• Approach C: our approach, the evaluator has the gen-
erated list of equipment configurations (Table IV) with
delays and positions to perform double combined fault
attacks with two independent laser sources.

The target application is a VerifyPIN identical to the ex-
ample in step 2 (section III-B). The goal is to be successfully
authenticated with an incorrect PIN without triggering the
countermeasures of the VerifyPIN in a minimum of trial,
100 times in a row. Each trial consists in performing one
combined fault attack according to the set of delays and
positions of each methods.

2) Results: Table VI details the experiment results be-
tween approaches B and C. Naive approach (A) did not
pass the experiment within a reasonable time. Note that,
with respect to the set P of targeted positions and the set
of injection delays D, the exhaustive search of all possible
combined fault attacks would take P 2 ×D2 ≈ 1000 years
to complete, as an order of magnitude. Our approach (C) is
three times faster on average than the hybrid approach (B).
The VerifyPIN is a short program (execution trace around
200 clock cycles) and our approach will outperform even
more the hybrid approach on a real program application
(10,000 cycles or more).

Table VI: Performance comparison between the hybrid ap-
proach (B) and our approach (C).

B C

Avg Trials 1466 453

Avg Elapsed Time 13min58sec 4min18sec

Max Elapsed Time 2h35min59sec 31min4sec

V. DISCUSSION

In this study, we assume faults do not depend from the
executed code and only depend on the fault injection settings
and also that a multi-fault is a combination of multiple single
faults. This is theoretically true as soon as the injected faults
affect a visible state of the microcontroller. In our test-case
with ISA fault models, this means that the fault should
affect the program state considered in our simulator (namely
registers and memories). However the methodology can be
applied to any kind of faults given the faulty output can be
observed at step 1 and the simulation takes into account any
specific hidden states. These assumptions have been verified
in practice by other studies [6], [5], [15].

Then, we discuss different situations that may arise at
each step. First, it may be difficult to generate faulty
outputs during the characterization in step 1 because of
hardware countermeasures. To mitigate this issue, it should
be interesting either to follow smart search of fault injection
settings [11], [12] instead of the classical grid search or to try
different test programs. On the other hand, the faulty outputs
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coverage may be too low to continue the approach, even
considering all state-of-the-art fault models. The issue has
not been solved yet, and still remains a topic for future work.
A solution based on genetic algorithm to combine existing
models into new ones could significantly improve the overall
process. Then, CELTIC may not find any vulnerability in
step 2, and thus the target application is likely to be robust to
the TSFM considered. Finally, the generated configurations
in step 3 may not result in successful attacks during fault
exploitation. Indeed, as fault models are an abstraction
and the program test used in step 1 is different from the
target application, it is still possible that simulated fault
attacks cannot be exploited. Nevertheless, we have never
experienced this scenario so far.

VI. CONCLUSION

We presented an end-to-end approach for multi-fault
attack vulnerability assessment. Using target specific fault
models, we successfully exploit combined fault attacks,
opening up a new way to find powerful attack paths. Target
specific fault models are generated using a characterization
and a fault injection simulation performed simultaneously,
and they are transferable towards different samples of the
same TOE, thereby reducing the initial time investment.
Combined fault attacks are performed on a state-of-the-art
laser bench using two laser sources, in order to control
injection delays and positions focused on the chip indepen-
dently. As future work, we will generalize this methodology
to other devices such as secure components and we will
consider real-world applications which should lead to more
impressive results. Finally, combined fault attacks question
the dependability of generic software countermeasures alone
to protect a device against increasingly complex faults
attacks.
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