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Abstract 

Avalanche-like behavior reflected in power-law statistics is a ubiquitous property of extended 
systems addressed in a number of generic models. The paper presents an experimental investigation 
of the effect of thresholding on the statistics of durations and waiting times between avalanches 
using acoustic emission accompanying unstable plastic deformation. It is found that durations of 
acoustic events obey power-law statistical distributions robust against thresholding. The quiescent 
time distributions follow the Poisson law for low threshold values. Both these results corroborate 
the hypothesis that plastic deformation is akin to the phenomena associated with self-organized 
criticality (SOC), often advanced on the basis of power-law amplitude statistics. Increasing the 
threshold height enforces deviation from the Poisson distributions toward apparent power-law 
behavior. Such a thresholding effect may hinder the experimental determination of SOC-like 
dynamics because of the inevitable noise.   
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I. INTRODUCTION 

 

Many nonlinear dynamical systems display an intermittent response to smooth driving. Numerous 
examples include the Barkhausen noise in magnetic materials [1], vortex avalanches in 
superconductors [2], earthquakes [3], dry friction [4], crack growth [5], deformation of both 
crystalline [6] and non-crystalline solids [7,8], and others (see also reviews [9−12]). All these 
phenomena are characterized by avalanche-like relaxation processes complying with scale-free 
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power-law distributions of the avalanche sizes (energies) and durations. To explain the abundance 
of such behaviors in natural systems, the concept of self-organized criticality (SOC) is often 
appealed to [9,13]. It claims that a complex system slowly driven by an uncorrelated signal can self-
organize to a critical state without fine tuning of the order parameter. The assumption of 
uncorrelated loading at a vanishing rate implies independent avalanche nucleation and allows for 
avoiding superposition of avalanches. Therefore, a Poisson-like exponential law can be expected for 
the statistics of waiting times between consecutive avalanches. However, power-law distributions 
were found in many experiments, thus questioning the SOC mechanism, e.g., for the turbulent 
transport in the magnetically confined plasma, solar fluxes, earthquakes, or paper fracture 
experiments [14−17]. At the same time, numerous theoretical works showed that power-law 
statistics of quiescent times can appear in systems governed by the SOC dynamics. In particular, it 
can happen when the statistics of the avalanche returns is gathered locally [18,19], in the case of a 
correlated driving signal [20], or because of temporal variations of the activity rate [21]. 
Importantly, power-law distributions can also occur when only avalanches with size above some 
threshold are analyzed [22−24]. The last property suggests a general mechanism governing power-
law behavior of experimental data which are inevitably corrupted by noise and require thresholding 
to extract individual events [25]. In particular, numerical analysis of the effect of noise addition to 
models characterized by avalanche dynamics leads to prediction of a transition from the Poisson to 
power-law statistics [24]. The first experimental evidence for this prediction was found very 
recently by visualization of crack propagation [26].  
 This work reports on the first experimental investigation of the thresholding effect using 
acoustic emission (AE) accompanying plastic deformation of crystals. Governed by the motion of 
dislocations and their interaction with each other and with other crystal defects, plastic deformation 
is an inherently collective process often associated with power-law statistics. Remarkably, the 
collective nature of the dislocation dynamics sometimes leads to macroscopically unstable plastic 
flow giving rise to serrations of the applied force. Scale-free statistics of the force serrations were 
indeed detected under certain conditions for various mechanisms of plastic instability [6,27−29]. 
Even though plastic flow of most materials is macroscopically stable, so that smooth force-time 
curves are usually observed, ubiquitous power-law behaviors were found for both stable and 
unstable flow in a large range of mesoscopic scales accessible to experimental techniques based on 
the recording of electric [30,31] or, more recently, AE signals [32−37]. In the present work, AE is 
analyzed under conditions of plastic instability governed by the Portevin-Le Chatelier (PLC) effect 
[38]. This choice is justified by a high activity of AE during the PLC effect [36,37], which allows 
for varying the threshold in a relatively large range, while keeping enough events in each statistical 
sample. Moreover, it was found recently that the threshold height has a weak effect on the power-
law indices of the corresponding AE amplitude distributions [39]. It should be noted that most of 
the literature data on the AE statistics during plastic deformation concerned the AE events 
amplitudes (or energy). The analysis of temporal parameters remained marginal because they are 
more strongly affected by diverse factors, such as the avalanche overlapping, sound reflections, 
occurrence of aftershocks, or background noise. For this reason, the present work is devoted to the 
study of both durations and waiting times of AE events, in order to verify the hypothesis of SOC for 
the dislocation dynamics. 
 
II. EXPERIMENTAL TECHNIQUE AND DATA PROCESSING 
 
Polycrystalline Al-5 wt% Mg specimens with a gauge part 30 × 7 × 1 mm3 and an average grain 
size about 4-6 μm were deformed by tension at room temperature and constant grip velocity 
corresponding to the initial applied strain rate a  varied in the range of 2×10−5 s−1 to 6×10−3 s−1. 

Details of mechanical tests were reported elsewhere [36]. The specimens were deformed until 
fracture which is accompanied with an outstanding AE event used to synchronize the deformation 
curve with the AE signal. The AE was captured by a piezoelectric transducer clamped to the 
specimen surface just above the gauge part, so that it gathered the "global" AE signal as required in 
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SOC models. In contrast to the usual experimental scheme of real-time extraction of AE events 
using preset criteria, the signal was recorded continuously at a sampling rate of 2 MHz. Each record 
could then be processed to generate various series of acoustic events (“hits”) by varying the criteria 
which were chosen to be the same as in the standard real-time procedure [36,39]. Namely, the 
starting time ts fixes the instant when the absolute value of the signal surpasses the threshold voltage 
V0. The ending time te corresponds to the instant after which the signal remains below V0 longer 
than for the hit definition time (HDT). Then, no measurements are performed during a hit lockout 
time (HLT), or "dead time," in order to filter out sound reflections. It is obvious that HLT may 
result in a loss of a part of the useful signal, particularly, “aftershocks.” However, it was found 
earlier that the energy statistics of AE is rather robust against variation of various parameters 
including HLT [39]. For the purpose of this paper, all above-introduced parameters were chosen in 
the ranges corresponding to robust power-law energy distributions. The values HDT = 30 µs and 
HLT = 100 µs were taken as the basic set. Another set with overstated values, HDT = HLT = 300 
µs, was used in control calculations. 
 The effect of V0 variation on the determination of avalanches for the same choice of HDT 
and HLT is clarified in Fig. 1. For the sake of illustration, this scheme shows a portion of the signal 
where the AE is virtually continuous and the events only slightly exceed the noise background, in 
order to make visible the carrier oscillations. The real signal-to-noise ratio in the analyzed time 
spans exceeded at least two orders of magnitude (see, e.g., Fig. 2). The threshold of approximately 
1.2 mV was the lowest level below which individual events could not be extracted from the 
continuously recorded data stream because of the false connection by noise. Accordingly, the 
minimum threshold of 1.22 mV was used. This value corresponds to the noise level of 25 dB 
obtained in blank measurements and allowed for an additional check by comparing the statistical 
results with a similar analysis of events extracted in real time by the device operating on a 
logarithmic scale. Such verification revealed a very good identity of the calculation results. 
 The duration δ of the nth event is given by δ(n) = te(n) - ts(n). As far as the waiting time tw(n, 
n+1) is concerned, the following three definitions were suggested in the literature: tw =  ts(n+1) - 
ts(n), tw =  tp(n+1) - tp(n), and tw =  ts(n+1) - te(n), where tp corresponds to the event peak amplitude. 
Following the arguments [20], we adopted the last definition corresponding to the interval between 
the end of one hit and the beginning of the next one. This approach avoids mixing tw with δ, taking 
into account that δ is distributed according to a power law in the case of SOC and, therefore, may 
bias the results of the analysis of tw. It should be noted that the HLT determines the low limit of 
detection of the waiting time.  
 For the sake of an intuitively clear demonstration of the thresholding effect, the results of 
calculation of discrete frequency distributions of δ and tw will be presented in the next section. 
Previous studies [36,37,39] showed that with some precautions described below, this traditional 
method provides a reasonable evaluation of the power-law exponents for AE accompanying the 
PLC effect, consistent with those obtained by rigorous approaches such as maximum-likelihood 
estimation (MLE) methods with goodness-of-fit tests suggested recently [40,41]. For comparison, 
power-law exponents obtained by these methods will also be given. The frequency distributions 
were calculated using data rescaled by the average value of the studied quantity. This approach was 
applied in order to avoid arbitrariness in the choice of the bin size and utilize a unique bin for all 
calculations. The least statistical samples corresponding to the highest threshold comprised more 
than 700 data values. Similar to our previous works, linear binning was used [36,37]. Accordingly, 
to handle the statistics of rare large-scale events, the initial-size bins containing fewer events than a 
preset minimum were merged with the right-hand neighbors until this minimum number (five in the 
present work) was reached. The obtained numbers were then normalized by the resulting bin sizes 
to calculate the probability density functions (PDF).   

 
III. EXPERIMENTAL RESULTS AND DISCUSSION 

Figure 2 presents examples of a portion of a force-time deformation curve and the accompanying 
AE signal. Among other things, it illustrates a general difficulty associated with the investigations 
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of the collective dislocation dynamics. Namely, plastic flow is not a stationary process but implies 
strain hardening that is caused by the generation and storage of dislocations and the resulting 
evolution of the microstructure. Indeed, it can be seen that the applied force, the force serrations, 
and the acoustic signal evolve during deformation. Moreover, it has been shown that the AE 
statistics also evolve in the case of the PLC effect [36]. Namely, although the AE energy 
distributions manifest ubiquitous power-law behavior, the exponents found for short enough 
intervals where AE may be considered as quasi-stationary are generally not unique. For this reason, 
the strategy proposed in Refs. [36,39] was adapted for the present analysis. More specifically, the 
entire time interval was subdivided into short enough periods within which the power-law indices 
of energy and duration distributions remained unchanged upon further subdivision. The arrows 
traced in Fig. 2 indicate the time interval used to obtain the examples of analysis presented in Figs. 
3 and 4(c-d). Although relatively low at this stage of deformation, the maximum amplitudes of AE 
events reach 170 mV in this interval and exceed the maximum noise level by more than two orders 
of magnitude. It should be underlined that in spite of not obligatorily the same power-law 
exponents, the thresholding effect was similar for datasets selected on various deformation stages. 
This robustness justifies the approach adapted in view of the objective of the present work, that the 
calculations of the statistical  distributions  were performed using raw signals in order to avoid any 
effect of the signal pretreatment, even if denoising might improve the detection of authentic power 
laws (see, e.g. [42]).   
 Figure 3 represents examples of the effect of V0 on the distributions of event durations for 

a = 2×10−4 s−1 and two choices of time settings. Similar behavior of event duration distributions 

was found in all experimental conditions, even for the highest strain rate characterized by strong 
overlapping of AE events, which could have biased the analysis results [39]. It can be seen in the 
case of the relatively small HDT (left plot) that the PDF follows an accurate power-law dependence, 
P(δ/<δ>) ~ (δ/<δ>)-τ, over more than two orders of magnitude of the normalized duration. The 
dependences obtained for various V0 agree quite well with each other although the size of the 
statistical sample is reduced from N = 1.4×105 to 104 events, respectively, when V0 is increased 
from the least value to 3.05 mV. As discussed in [40], such robustness with regard to the number of 
events is characteristic of power-law statistics. The estimates of the slope τ are synthesized in Table 
I. The data obtained for intermediate threshold heights testify that τ lies approximately between 2.2 
and 2.3. It decreases because of either merging of individual avalanches, when V0 is too low, or 
removal of small avalanches at high V0, both factors causing higher probability of longer events. 
Table I also shows that the MLE method renders similar estimates. The comparison of data in the 
second and third columns confirms that the PDF method somewhat underestimates τ, in agreement 
with [40,41]. Indeed, τ(MLE) lies between 2.4 and 2.5 for the intermediate threshold heights. This 
difference is, however, much less significant than in the examples [40,41]. Overall, the results 
provided by MLE justify the qualitative conclusions following from the PDF evaluation. The 
quality of fitting by the MLE method was verified by goodness-of-fit tests which generate the so-
called p-value. As a thumb rule, a hypothesis is accepted if p ≥ 0.1 [40] (a softer condition of p ≥ 
0.05 is sometimes used [41]). The data presented in Table I corroborate the power-law hypothesis 
for the statistics of AE durations. 

The main effect of the increase in V0 is that the truncation of the low-amplitude signal 
component leads to separation of some events linked by this component and, therefore, splitting of a 
part of long events. As a matter of example, the maximum duration decreases from 200 to about 35 
ms when V0 is increased in the conditions of Fig. 3(a) (the minimum δ is determined by the HDT 
and is inferior to 0.1 ms for all V0). It is noteworthy that the dependences of Fig. 3 show some trend 
to a higher probability of large durations. Such a tendency may be due to aftershocks or, perhaps, 
overlapping of subsequent events because of the finite strain rate, as discussed below1. The analysis 
                                                           

1 Sound reflections correspond to very short time scales about 1 μs for an Al sample of this size [43] and must not 
influence the event individualization.   



5 

 

of the aftershocks (see., e.g., [21]) goes beyond the subject of the present paper. Their possible 
effect on the power-law exponent can be clarified by Fig. 3(b) where the same calculations were 
repeated for the high HDT aiming at including all aftershocks in the triggering event. The number 
of detected events is lower in this case but remains significant, evolving from 1.1×105 to 4×103 
when V0 is increased. It can be seen that the power-law dependences are deteriorated at large scales. 
Nevertheless, approximately the same power law is detected quite reliably thus confirming that the 
durations of the acoustic events obey a power-law scaling. The best fit is found for an intermediate 
threshold level of 1.52 mV: τ ≈ 2.11±0.03 (PDF) and τ ≈ 2.33 ± 0.15 (MLE) with p = 0.85. For 
clarity, unrounded errors are presented as obtained from calculations.   
 The second main result concerns the statistics of the waiting times between AE events. 
Figure 4 represents probability density functions P(tw/< tw >) for three values of strain rate and the 
same time settings as in Fig. 3. It should be noted that in all cases except for Fig. 4(f) corresponding 
to the highest a and HDT, N is gradually reduced by a factor between one and two orders of 

magnitude when V0 is increased from 1.22 to 3.05 mV. Like in the above example, this depletion is 
governed by the removal of low-amplitude avalanches. However, as the merging of avalanches is 
the strongest at the highest a , selection of a high HDT in Fig. 4(f) results in a very strong merging 

effect and an abrupt reduction in N. In this case, N comprises about 1400 events at 3.05 mV, grows 
to 6200 for 1.52 mV, and falls down to 1000 at 1.22 mV.  

Very good exponential behavior is found for the lowest V0 in the case of the low and 
intermediate strain rate, as can be seen in Figs. 4(a)-(d). For the set of small HDT/HLT, quite good 
agreement is obtained even at the highest strain rate, as shown in Fig. 4(e), although the statistical 
sample becomes too depleted to assure reliable analysis for the second set of time parameters in Fig. 
4(f). χhi-squared tests were performed for various choices of bin size in both cases. The tests 
confirmed the exponential fit with 95 % confidence level for all strain rates in the case of small 
HDT and HLT, provided that the bin size was taken below 0.2 (the value of 0.1 was used in the 
presented calculations). In the case of overstated time parameters, the exponential hypothesis was 
also confirmed for some datasets even if it could not be verified in general. The totality of data thus 
allows for concluding that the waiting times obey Poisson-like statistics.   
 At the same time, the increase in V0, indeed, progressively distorts the exponential 
dependences and results in an apparent trend to power-law behavior. Such tendencies can be 
recognized in all panels of Fig. 4. However, the degree of approach to a power law depends on the 
strain rate. The dashed line with a slope of 2 serving as a guide for the eye in Figs. 4(a) and 4(b) 
helps one see that neither curve obtained at the low strain rate fits a power law in an interval wider 
than half an order of magnitude of tw. The fact that no reliable fit can be found is consistent with the 
conjecture of weak overlapping of dislocation avalanches at low strain rates, so that thresholding 
does not strongly contribute to separation of the events. Nevertheless, the virtual power-law scaling 
is satisfactory for V0 = 2.14 mV at higher strain rates. Indeed, the corresponding interval exceeds 
one decade in Fig. 4(c) and almost reaches two orders of magnitude in Fig. 4(e). The slopes of the 
fitting lines, respectively, -1.46±0.06 and -1.87± 0.06, correspond well to the range of scaling 
exponents characterizing various experimental and modeled systems (see references in Sec. I). The 
further increase in V0 results in a degradation of the dependence in the small-scale range. However, 
the curve obtained for V0 = 3.05 mV at a = 6×10−3 s−1 still demonstrates a reasonably good fit over 

one order of magnitude of tw. Although less convincing, these trends are also confirmed by the 
results obtained using the overstated time parameters, as shown in the right-hand panels of Fig. 4. 
Moreover, due to additional separation of AE events, the increase in V0 results in an enrichment of 
the statistical sample and is associated with improved power-law dependences in Fig. 4(f). Finally, 
these data also corroborate the above suggestion that the effect of thresholding effect is caused by 
the splitting of individual events. Indeed, the scaling range found for the quiescent time 
distributions at high thresholds approaches the scaling range of the duration distributions at low 
thresholds. In the above example, the maximum tw increases from 40 ms to about 1 s when V0 is 
increased.  
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 The observed trend prevents the detection of Poisson-like behavior of waiting times when 
the threshold is not low enough. Such a false trend may be a common reason leading to rejection of 
the SOC hypothesis in real experiments corrupted by noise. Furthermore, it may lead to erroneous 
conclusions on power-law behaviors. Verification using the MLE method with goodness-of-fit tests 
was performed for the datasets used to calculate the histograms of Fig. 4. In all cases, the p-value 
was found to be equal to zero. This result allows for rejecting the power-law hypotheses for the AE 
data obtained in the present work. Nevertheless, it cannot be excluded that the successful 
invalidation of the apparent trend was aided by the narrow range of variation of waiting times in the 
studied phenomenon. It should be noted in this connection that the formal application of the MLE 
method provided estimates similar to those following from the PDF dependences.  

Two remarks on the apparent PDF dependences deserve attention. The curves in Fig. 4 
display imperfections in the form of bumps and depressions. As they change progressively with the 
V0 variation, such distortions seem to be intrinsic to the spurious power-law PDF dependences and 
may be indicative of the presence of the effect of thresholding in real experiments. Similar 
imperfections were detected in some modeling results (cf. [24]). Another noteworthy prediction of 
the existing models is that a transition between two power-law exponents can take place with an 
increase in the threshold [44]. Such a transition may indeed be suspected for the curves obtained at 
V0 = 1.52 and 2.14 mV in Fig. 4. However, the present experimental data do not allow for 
distinguishing between the presence of two power laws and a cut-off at a large scale.  

On the whole, the AE accompanying the PLC effect manifests various features of the SOC 
dynamics: power laws characterizing the statistics of energies [39] and durations of the hits, as well 
as Poisson-like behavior of quiescent times. Although the determination of the statistical 
distributions of the latter is less robust against the hit individualization criteria, as compared with 
the cases of amplitudes and durations of AE events, the results obtained agree well with various 
characteristic features of SOC dynamics. The PLC effect provides, perhaps, one of the most 
convincing examples of SOC in real experiments. Moreover, quantitative evidence of SOC was also 
found for the time series of force serrations [6,27−29]. A difference between behaviors on the scale 
of the deformation curve and that of AE should, however, be clarified. Power-law statistics of the 
force serrations were only found in the range of high strain rates, typically for a  ≥ 10−3 s−1. They 

progressively changed to Gaussian-like distributions when a  was decreased. In Refs. [36,37], this 

behavior was attributed to a competition between the phenomena of SOC and synchronization in 
complex nonlinear systems [45]. More specifically, it is generally accepted that the collective 
dynamics of dislocations is mostly governed by internal stresses in the crystal lattice distorted by 
the dislocations themselves and other defects. In particular, this point of view is confirmed by the 
evolution of the AE intensity and activity accompanying the microstructure evolution during 
deformation, as illustrated in Fig. 2. It can be suggested that slow deformation provides enough 
time for the uniformization of internal stresses through non-intense dislocation processes giving rise 
to numerous AE events but is indistinguishable on deformation curves. Consequently, the building 
up of internal stresses brings the dislocation microstructure globally close to instability, so that the 
breakthrough of a dislocation group through obstacles can trigger a catastrophic deformation 
process involving hundreds of thousands of dislocations and resulting in a macroscopic drop in the 
applied force. Its size is governed by macroscopic factors such as the size and elastic properties of 
the system. The repetitive sequence of slow loadings followed by abrupt discharges gives rise to a 
relatively small number of stress serrations distributed according to Gaussian statistics. As shown in 
[36,37], the stress drops develop as chain processes leading to bursts in δ because of the 
overlapping of successive AE hits, without visible increase in the hit amplitudes. However, as the 
reloading time is many orders of magnitude longer than the duration of the catastrophic instability 
process, the number of such long AE events is negligible in comparison with their total number 
detected during plastic deformation. As a result, such a macroscopic instability does not bias the 
power-law statistics of durations of acoustic events, as shown in Fig. 3, except for contributing to 
the upward trend of the very right data points.  
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4. CONCLUSIONS 
 

In summary, a thorough analysis of the statistics of durations and waiting times was realized for the 
acoustic emission accompanying the unstable plastic flow. Together with the previous analysis of 
energy distributions [36,37], the data obtained indicate that the collective dislocation dynamics 
conforms to the self-organized criticality phenomenon in the scale range relevant to acoustic 
emission under conditions of the PLC effect. This result suggests the plastic deformation as a real 
system with SOC dynamics. Furthermore, the paper provides experimental evidence that 
thresholding leads to a transition from exponential to apparent power-law behavior of the statistics 
of waiting times of acoustic events. This thresholding effect does not considerably affect the 
experimental determination of the power-law scaling of their durations (or energies [39]). At the 
same time, it interferes with the determination of Poisson behavior of the waiting times. The fact 
that a similar transition was predicted in the literature for model systems characterized by Poisson 
statistics of quiescent intervals between events bears evidence to a general character of this effect 
that can prevent the detection of SOC-like behavior in signals corrupted by noise.   
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Table I. Power-law exponent τ determined by least square approximation of the slope of PDF 
dependences in Fig. 3(a) and by the MLE method [40] applied to the same data. Numbers in 
parentheses indicate standard errors determined by the corresponding method.  
 
Threshold V0(mV) τ (PDF) τ (MLE) p-value 

1.22 2.14(0.02) 2.14(0.03) 0.14 
1.52 2.22(0.03) 2.40(0.13) 0.53 
2.14 2.32(0.04) 2.51(0.13) 0.61 
3.06 1.96(0.04) 2.06(0.03) 0.29 

 
 

 
 
 

 
 
 
 
 
Figure 1. Scheme illustrating the effect of the threshold level V0 on the detection of AE events. 
Solid line shows an example of a recorded AE signal. Dotted (blue) and dashed (red) lines display 
the hits found for two V0 values. For each choice of the threshold, denoted by the order number in 
the subscripts, double arrows indicate the duration δ of the first of two events and the waiting time 
tw until the next one. 
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Figure 2. Example of a portion of a tensile curve recorded at a  = 2×10−4 s−1 and the accompanying 

AE signal (only the positive half-cycles are shown). Arrows indicate the time interval 
corresponding to the statistical analysis presented in Figs. 3 and 4(c-d).  
 

 

Figure 3. Probability density functions P(δ/<δ>) normalized to the bin size for durations of AE 
events. (a) HDT = 30 µs, HLT = 100 µs; (b) HDT = 300 µs, HLT = 300 µs. Numbers in the legend 
represent the threshold V0 in mV. The dotted lines are provided as guides for eye and correspond to 
the power-law exponent τ = 2.2. 
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Figure 4. Effect of V0 on the probability density functions P(tw/<tw>)  for inter-event waiting times. 
(a, b)  a  = 2×10−5 s−1 ; (c, d) a  = 2×10−4 s−1 ; (e, f) a  = 6×10−3 s−1. Left column: HDT = 30 µs, 

HLT = 100 µs; right column: HDT = 300 µs, HLT = 300 µs. Numbers in the legend of the top left 
plot represent the threshold values in mV, common for all plots. The slopes of the dashed straight 
lines are indicated in the legends. 


