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ABSTRACT

Iron and cobalt monometallic Layered Double Hydroxide (LDH), combining divalent and trivalent
cations of the same chemical element, are commonly used respectively for nitrate reduction and
oxygen evolution reaction. This article reports the first synthesis of a LDH using only manganese
as metallic ion. X-Ray diffractograms, infrared and Raman spectra show that the structure obtained
through the oxidation of a basic MnII salt with persulfate is comparable to the structure of Fe-LDH also
known as Green Rust. XPS shows that in this solid coexist MnII and MnIII states. Thermodynamic
considerations predict that this solid can reduce nitrate into gaseous nitrogen without further reduction
into ammonium or ammonia unlike what is observed for Fe-LDH.

Keywords Mn6(OH)12SO4 · LDH ·Mn · Green rust ·Mn basic salts · XPS · XRD · Raman · IR · SEM ·Monometallic
LDH ·Water remediation · Nitrate reduction · Pourbaix diagram · Thermodynamic calculation

1 Introduction

Layered double hydroxides (LDH), or anionic clays are a class of ionic solid with a layered structure and a general
formula [MII

1−xMIII
x (OH)2]x+[An−

x/n]x−·mH2O in which MII and MIII are metallic cations and An− an intercalated
anion. These materials are useful structures for many applications, e.g., catalysis (oxygen evolution reaction [1],
photodegradation of pollutants [2]), for anionic exchange [3] or biomedical applications [4]. They are usually synthe-
sized using a trivalent cation distinct from the divalent cations (e.g. Al3+ as MIII and Mg2+ as MII for the common
hydrotalcite AlMg-LDH) [5]. But it is possible to synthesize such structure using only one metallic element. This
is well known for iron, the Fe-LDH also known as "Green rust" [6, 7] or "Fougerite" [8, 9]. Sulfate Fe-LDH is very
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active for reducing nitrate into ammonium species [10]. This mono-metallic layered structure is also observed for
cobalt [11, 12], forming single transition metal hydroxide with mixed valences. This monometallic Co-LDH can be
used as capacitors with high pseudocapacitive performance [13] or for oxygen evolution reaction. In addition, cerium
monometallic LDH exist with interesting photocatalitic properties[14] but the high oxidation state of Ce (Ce3+-Ce4+)
impose the substitution of OH− by SO2−

4 . Lanthanide-LDH have also been synthetized [15]. Ni monometallic LDH
are also mentioned in the literature, but without convincing proof of their synthesis [16].

Manganese is frequently incorporated in LDH structures: as a divalent cation with Al3+[17, 18, 19] or as a trivalent
cation with Mg2+, Zn2+ or Co2+ [20, 21, 22, 23] because of its photocatalytic potential [24]. These LDH can be
used for phototherapy against cancers [25], for electrocatalytic detection of hydrogen peroxide [23] or as an electrode
for oxygen [26]. However, to our knowledge, it was never used as single metallic constituent of a LDH. One of the
main limitation is the impossibility to get a stable MnIII solution excluding the classical coprecipitation method using
an initial solution prepared by the dissolution of MnII and MnIII salts. The MnIII cations contained in the LDH are
obtained by either introducing an oxidant such as H2O2 in the initial solution [27] or was probably due to the contact of
the LDH suspension with air [28, 29].

An another synthesis pathway is the oxidation of MII hydroxide. Mn(OH)2 oxidation was thoroughly studied an half
century ago [30] and it appeared that the formation of oxide (Mn3O4 or birnessite [31]) or oxide-hydroxide (MnOOH)
was the sole fate. However, using a basic Mn(II) salt as a precursor, we are able to synthesize a Mn-LDH with sulfate
anions in the interlayer space. In addition to the potential use for catalysis, the possibility to stabilise a mixed MnII-MnIII

species in a hydroxide structure opens new perspectives because of their redox properties. Indeed, soluble Mn2+
(aq)

species are well known to be very slowly oxidised by soluble oxygen in acidic or neutral aqueous solutions. MnII

species present in more compact solid structure such as spinels (e.g. hausmannite) are well known to be stable in contact
with air. On the contrary hyroxylated MnII species present in an opened solids structure such as LDH are expected to be
much more reactive. Such differences of reactivity were clearly demonstrated in the case of FeII containing compound,
i.e., the oxidation of Fe(OH)2 or Fe3O4 by NO−

3 is extremely slow in comparison to the nitrate oxidation of Fe-LDH
[32]. Finally, the existence of a mixed MnII-MnIII LDH structure has to be considered when analysing the oxidation of
MnII in geology. Indeed, the source of MnIII in aqueous media is still debated [33].

2 Experimental section

2.1 Synthesis

Mn-LDH were synthesized using 50 mL of a MnSO4·H2O (Sigma Aldrich, >99%) solution (0.4 mol.L−1) with a
variable volume of a 1 mol.L−1 NaOH (VWR 31627.290) to reach the desired R value (R = n(OH−)

n(Mn2+)
) under stiring and

nitrogen bubling. Once the pH was stabilized, a 0.2 or 0.5 mol.L−1 solution of Na2S2O8 (Sigma Aldrich, >99%) was
added by a perilstatic pump with a 0.167 mL.min−1 flow and the pH as well as the redox potential Eh were registered
with a Metrohm pH electrode Unitrode with Pt1000 and a Toledo Inlab redox electrode. The x value indicates the

quantity of persulfate introduced, as x = 2 n(S2O2−
8 )

n(Mn2+)
.

For XPS analysis, Mn(OH)2 was prepared from a mixture of 1.12 g of MnCl2 · 4H2O (Sigma Aldrich, >98%) and 0.57
g of NaOH (VWR, 99,1%) in 40 ml of water under nitrogen bubbling.

2.2 Characterization

2.2.1 XRD

The products were measured soon after the synthesis and the centrifugation. XRD diffractograms were recorded either
on wet sample ( x = 0, 0.12 and 0.24) or on sample dried under nitrogen flow (x = 1). For the wet sample, excess
of water was removed by pressing the water soaked paste between tissues. The resulting paste was measured on an
approximately 10 µm thick zero background X-ray holder covered with a minimal amount of glycerol to protect the
paste from air oxidation, as the compounds were known to be air sensitive. Multiple (at least 15) 1h X-ray scans were
collected, and the diffractograms did not show any sign of evolution, the multiple scans were summed up for better
X-ray statistics.

Powder X-ray diffraction patterns were recorded with a Panalytical X’Pert Pro MPD diffractometer in reflection
geometry using a tube with Cu radiation (Kα1 = 1.5406 Å), a Ge(111) incident-beam monochromator, 0.02 rad
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Soller slits, programmable divergence and antiscatter slits (the irradiated area was fixed to 10 mm x 10 mm), and an
X’Celerator detector. Data were collected from finely ground samples with a sample holder spinner and continuous
rotation of sample to improve statistical representation of the sample.

2.2.2 XPS

X-ray photoelectron spectra were recorded on a KRATOS Axis Ultra Xray photoelectron KRATOS Axis Ultra DLD
spectrometer equipped with a monochromated Al Kα source (hν = 1486.6 eV, spot size 0.7mm x 0.3 mm). The detector
was a hemispherical analyzer at an electron emission angle of 90◦ and pass energy of 20 eV (high resolution spectra).
For the high-resolution spectra, the overall energy resolution, resulting from monochromator and electron analyzer
bandwidths, was better than 800 meV. The C1s binding energy of adventitious carbon was taken as 284.6 eV. O1s
spectra were decomposed using Gaussian peaks after using Shirley method of background subtraction.

2.2.3 Vibrational spectroscopies

• Infrared IR measurements of the wet solids were recorded under nitrogen flow in a Attenuated Total Reflectance
mode on a Bruker Tensor 27 spectrometer equipped with a KBr beam splitter and a deuterated triglycine
sulfate (DTGS) thermal detector. Spectra were recorded and processed using OPUS 7.5 software (Bruker,
Karlsruhe, Germany).

• Raman 10 µL sample were collected and dried over a aluminium plate. Then Raman spectra were collected on
a Renishaw inViaTMQontor R©microspectrometer equipped with a confocal microscope and an Olympus X50
objective (N.A = 0.55). It should be noted that nitrogen atmosphere was used to avoid exposure to oxygen.
A 532 nm exciting radiation was used with a laser power below 0.05 mW for all samples to prevent their
degradation. The spot area was of few µm2. Several locations were probed on each sample. The spectral
resolution was about 4 cm−1 and the precision on the wavenumber was lower than 1 cm−1.

2.2.4 SEM

The analysis by Scanning Electron Microscopy (SEM) was performed on an JEOL JSM-IT500HR, with a Field
Emission Gun (FEG). The powder sample was fixed on double face scotch tape. The analysis was made under high
vacuum, and we settled a 60µm diaphragm aperture. The voltages for analysis came from 2kV to 5kV. We used mainly
the Secondary Electron Detector (SED) for imaging the powder.

3 Results and discussion

3.1 Preparation of manganese hydroxide sulfate

Figure 1 shows the evolution of the pH for increasing R = n(OH−)
n(Mn2+)

ratio. With a 0.23 mol.L−1 Mn2+ concentration
after dilution, precipitation of pyrochroite Mn(OH)2 should start at pH = 8 [34] with the reaction described in equation 1.
For values up to R = 1.48 (A area), the pH follows a classical basic precipitation curve for nitrate, sulfate and chloride
salts. For R above 1.48, the pH decreases for the solution with MnSO4 whereas it is following a classical titration
pattern for the chloride and nitrate salts. A final increase shortly before R = 2 is observed for the three initial salts.
During the addition of sodium hydroxide over the manganese solution, a white solid precipitates (SI fig. 16) for all R
values. For all initial salt, the solid obtained for R = 2 is Mn(OH)2.

Mn2+ + 2OH− → Mn(OH)2 (1)

The distinctive behavior of MnSO4 solution for R < 1.48 may be attributed to the formation of manganese sulfate
hydroxide basic salts. Indeed, various manganese sulfate hydroxide basic salts exist. The ratio between the hydroxide
and the sulfate can be connected to a R value. Those salts are:

• R = 0.75, Mn3(OH)2(SO4)2(H2O)2 [35] and Mn3(OH)2(SO4)2(H2O)2 · K2SO4 [36]

• R = 1, Mn2(OH)2SO4 [37]

• R = 1.55, Mn9(OH)14(SO4)2 · H2O [38, 39]

• R = 1.6, Mn5(OH)8SO4 [40]

3
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Figure 1: Evolution of the pH of MnSO4, MnCl2 and Mn(NO3)2 solution during sodium hydroxide addition

Figure 2: XRD of the solids using MnSO4 for various R ratios. Stars are the reference peaks for pyrochroite (Mn(OH)2).
The hump for θ = 20◦ is associated with the glycerol used to prevent the oxidation of the solid during the XRD analysis.

This solid is then transformed into manganese hydroxide as the OH− quantity is increased. Depending on the kinetics of
the transformation, a decrease in the pH for increasing OH− amount can be explained by the spontaneous transformation
of a metastable solid, similar to what is observed for the precipitation in supersaturated medium. [41].

Solids darken quickly, probably due to the air oxidation, even if no structure of oxidised product can be detected.
Therefore, during XRD analysis, the solids are protected from the air by a glycerol film. For R = 2, the main product
according to XRD is pyrochroite Mn(OH)2, in agreement with the ratio observed during titration. For R = 1.5, the
diffractogram is more complex, and broad peaks of pyrochroite appear along shaper peaks. There is no match for the
later with the ICDD database therefore, the formation of a solid with 1.5 OH− ion per manganese cation is presumed,
with the formula Mn4(OH)6SO4, along with a small quantity of Mn(OH)2. Equation 2 describes this first precipitation
from the (Mn2+, SO2−

4 ) solution.

4
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The transformation of the XRD patterns between R = 1.5 and 2 on Figure 2 may explain why the pH curve shows a
decreasing trend on Figure 1. In this range, the transformation of a manganese basic sulfate salts unit into four Mn(OH)2
traps two hydroxide ions from the solution as shown on equation 3. This explains the pH drop in the R = 1.5 - 2 range
during OH− addition.

4Mn2+ + SO2−
4 + 6OH− → Mn4(OH)6SO4 (2)

Mn4(OH)6SO4 + 2OH− → 4Mn(OH)2 + SO2−
4 (3)

A confirmation of the transformation in the solid eliminating sulfate during the addition are the ATR measurements
of the damp solids after centrifugation. Figure 12 (SI) shows that in addition of the O-H stretching and H2O bending
modes, the R = 1.5 synthesis absorbs the IR light with two bands at 1059 and 1119 cm−1, which is typical for the sulfate
ions [42]. This is not the case for the R=2 synthesis. Precise characterization of the solid labelled "Mn4(OH)6SO4" is
out of scope of this publication.

3.2 Oxidation of manganese hydroxide sulfate

As long as the solids obtained for various R with MnSO4 are kept under nitrogen bubbling, the suspensions remain
white while their pH are stable within hours. To oxidise them, a Na2S2O8 solution is added drop by drop. Subsequently,
the solids are darkening and the pH decreases (SI Figure 15). The progress of the addition of S2O2−

8 in the solution is

defined by the parameter x = 2 n(S2O2−
8 )

n(Mn2+)
. According to the stoichiometry of the oxidation reaction, if the reaction is

complete, x is also equal to the fraction of the manganese with the MnIII valence in the MnII and MnIII mixture as one
persulfate accepts two electrons to produce sulfate ions.

For R = 0 (no addition of OH−), the pH slightly decreases from 4.0 to 3.6 between x = 0 and x = 1. There is no
observable precipitation and only a small darkening of the color of the solution. This is in agreement with the fact that
Mn2+ oxidation has to overcome a large free energy barrier [43].

Figure 3: Position xi of the inflection (maximum of the derivative of the pH curve from SI Figure 15) as a function of
the ratio R

For R between 0.5 and 1.75, the variation of the pH against the x value presents an initial plateau whose length increases
with R (Figure 15 (SI)). Let us define xi the length of the plateau as the position of the inflection. For R = 2, on the
other side, there is no initial plateau. Figure 3 shows xi against R. The inflexion of the pH curve occurs for x values
proportional to the R ratio.

5
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Firstly, the oxidation of the initial basic salt is studied by comparing the xi value and what is expected with the
stoichiometry of various possible transformation listed in equations 4,5,6 and 7 and represented with solid lines on
Figure 3.

1. Formation of a new type of LDH containing only Mn (Mn-LDH). With this equation, the xi value should be xi = 2
nS4O8
nMn = 0.33 for R = 1.5 as the manganese is fully precipitated. As the number of water molecule within the Mn-LDH

structure is unknown, they will be omitted in the chemical formula of this LDH.

3MnII
4 (OH)6SO4 + 2S2O2−

8 + 6OH− → 2[MnII
4 MnIII

2 (OH)12][SO2−
4 ] + 5SO2−

4 (4)

2. The formation of the same product but simultaneously with a release of Mn2+ cations in the solution. The
equation 5 describes this chemical reaction. As only one fourth of the initial manganese would be released during this
transformation, the precipitation of Mn(OH)2 would not occur even with pH values above 8, as what is observed for
the less soluble Fe2+ ion [44]. According to the stoichiometry, the xi value for R = 1.5 should be xi = 0.25.

2MnII
4 (OH)6SO4 + S2O2−

8 → [MnII
4 MnIII

2 (OH)12][SO2−
4 ] + 2Mn2+ + 3SO2−

4 (5)

3. For the production of hausmannite, the xi value should be 0.66 for a R value of 1.5:

3MnII
4 (OH)6SO4 + 4S2O2−

8 + 14OH− → 4MnIIMnIII
2 O4 + 11SO2−

4 + 16H2O (6)

4. And for the production of the various manganese(III) oxyhydroxide, the xi value should be 1 for R =1.5.

MnII
4 (OH)6SO4 + 2S2O2−

8 + 6OH− → 4MnIIIO(OH) + 5SO2−
4 + 4H2O (7)

The ratio observed on Figure 3 between the xi values at the inflection and the R value suggest that the equation 5 is
more likely. In addition, the pH drop from 9.8 to 8.5 from 0 to xi (Figure 16) indicates that 6.10−5 mol.L−1 OH− react
during the reaction, which is a small change in the concentration compared to the initial concentration of Mn2+ that
was equal to 0.23 mol.L−1. The only equation that does not involve the consumption of OH− is equation 5.

To confirm this hypothesis, the ratio R is now fixed at the value R = 1.5 with MnSO4 as the quantity of Mn4(OH)6SO4
is maximised for this value. The solids for various x values will be extracted and characterized in the following sections.

3.3 Synthesis of the Mn-LDH

3.3.1 pH and redox potential during the Mn-LDH synthesis

Figure 4 indicates the pH and the potential Eh for increasing x values during the addition of persulfate in a R = 1.5
MnSO4 solution. Three different zones can be observed:

• The A zone, in which the liquid get a light brown color, ended with an inflexion for x = 0.266. As mentioned in
the previous section, this part can be attributed to the transformation of the basic salt into Mn-LDH according
to the reaction 5

• The B zone, in which one can observe a pseudo-plateau for Eh and pH. This pseudo-plateau can be attributed
to the transformation of Mn-LDH into MnO(OH) as in:

[MnII
4 MnIII

2 (OH)12][SO2−
4 ] + S2O2−

8 +→ 4MnIIIO(OH) + 2Mn2+ + 3SO2−
4 + 4H2O (8)

It is interesting to note that the production of the fully oxidised Metal (III) oxyhydroxy species is also observed
for further oxidation in the synthesis of Co [13] and Fe [44] monometallic LDH. However, the drop in the pH
is observed for x values below 1, which indicate that some of the MnII species are not oxidised, which is in
agreement with equations ?? and ??. Oxidation into Mn3O4 is also possible and are also in agreement with
full transformation for x values below 1.

• The C section, once the solid is fully transformed into MnO(OH), Mn3O4 and Mn2+
(aq).

The attributions made in the previous list are only based on stoichiometric considerations. To study further those
reactions, the solids were extracted from the solution in various zone and analysed.

6
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Figure 4: pH and Eh values for a MnSO4 solution with R = 1.5 as a function of x

3.3.2 XRD characterization

XRD of the solids obtained for R = 1.5 at various x values are plotted on Figure 5.

The diffractogram for x=0 is already described in Figure 2 and added here for comparison. It is interesting to note that
the peak pattern attributed to a unknown solid for x = 0 cannot be observed for x = 0.12. On the other side, an another
basic manganese salt, (Mn(OH)2)7(MnSO4)2 · H2O, with the JCPDS file 00-018-0788 (stars on Figure 5) is observed.
The R value for this structure according to its stoichiometry is 1.55. It is possible that the solid produced for x = 0 is
very similar to this solid. Alongside this structure, other diffraction peaks are present that can also be observed for x =
0.24.

For the x = 0.24 diffractogram, all the peaks (except a weak one at about 18.4◦) are indexed in the P31m hexagonal space
group showing that the sample is pure as no unindexed peaks are observed (indexation is shown in SI on Figure 13).
This diffractogram is very similar to the one of the sulfate Fe-LDH (green rust) [45]. Furthermore the sample is fairly
crystalline as shown by the sharpness of the peaks although the (00`) peaks are significantly broader as stacking faults
are often present in LDH samples. Refined cell parameters for the pure manganese sample are a = 3.2270(7) Å and c =
10.9390(23) Å, these values are very close to the sulfate Fe-LDH (green rust) : a = 3.1793 Å and c = 10.9664 Å with
the same space group. For Co-LDH, the parameters were a = 3.0468(9) Å with carbonate as intercalated anion [46], for
which the interlayer distance are much shorter (7.55 Å) and with R-3m space group.

A superstructure (a =
√

3a0) is observed for the Fe-LDH intercalated with SO2−
4 because of the ordering of the sulfate

ions in the interlayer space [45]. In our Mn-LDH, this kind of superstructure can explain the additional peak at
2θ = 18.4◦ (the # on Figure 5).

For x = 1, the diffractogram shows larger peaks that can be attributed to poorly crystalline manganite γ-MnO(OH) and
groutite α-MnO(OH).

3.3.3 XPS characterization

Surface properties of Mn-LDH were examined by XPS. Overview XPS spectra (not shown) show core-level photoelec-
tron peaks around 169 eV (S2p), 285 eV (C1s), 532 eV (O1s), 641 eV (Mn2p3/2), 652 eV (Mn2p1/2) and 1071 eV
(Na1s). The C1s peak should be attributed to atmospheric hydrocarbon contamination of the Mn-LDH surface. S2p
high-resolution spectrum (not shown) presents S2p3/2 and S2p1/2 (168.5 and 169.7 eV) components corresponding to
sulfur in sulfate form. This signal may be attributed to sulfate in the interlayer space as well as from sulfate associated
to sodium in adventitious Na2SO4.

On Figure 6, Mn2p3/2 feature is the sum of the contributions of various Mn valence state. Due to coupling between
the unpaired electron of the outer shell and unpaired core electron resulting from photoionization, high spin Mn ions

7
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Figure 5: XRD of the solids for R = 1.5 with various x ratios. Stars are the main peaks for the (Mn(OH)2)7(MnSO4)2 ·
H2O structure (JCPDS file 00-018-0788). # indicate the additional peak due to a Mn-LDH superstructure

Figure 6: XPS of the solids for R = 1.5 and x = 0.24 ratios (black dots) in the Mn2p3/2 region (a), O1s region (b) and
valence band (c). On the (a) graph, XPS spectra for Mn(OH)2 (red cross) and x = 1 (green open dots) as well as their
combination (grey line) are plotted.

give rise to multiplet splitting. Overlapping of these multiplets poses serious difficulty for qualitative and quantitative
analysis of Mn valence state [47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. Figure 6 shows Mn2p3/2 peak at 642.0 eV with
shoulder at 643 eV, which suggests the coexistence of MnII and MnIII valence states. The shake-up satellite at 646
eV appears as the finger print of Mn(II) in MnO [48, 50, 49], LDH [52], or Mn(OH)2 as in Figure 6. To confirm
this, the Mn2p3/2 spectra of Mn(OH)2 and MnO(OH) (Mn(III)) as well as their linear combination with area ratio of
38:62 were added on Figure 6 a). The latter fairly reproduces the spectrum of Mn-LDH confirming the mixed-valence
Mn(II)/Mn(III) nature of this compound.

8
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Figure 7: Infrared spectra for the R = 1.5 solid after various x addition of S2O2−
8

The O1s spectra (figure 6) presents a maximum at 531.4 eV essentially attributed to hydroxyl species.

The valence band (VB) spectrum (figure 6) is dominated by a peak at 4.3 eV with shoulders at 2.4 and 6.4 eV. The
locations of these features are close to the ones reported for MnO or Mn2O3 [57, 58, 47]. The top of the VB (at 50%
of the low binding energy shoulder) is located around 1.7 eV with respect to Fermi edge. Considering Mn ions in
high-spin octahedral environment, photoemission signal at low binding energy might be due to 3d electron removal
from eg and t2g. The predict intensity ratio 3/2 for Mn2+ ion is in the order of magnitude to what is observed for 2.4
and 4.3 eV features. Nevertheless, overlap with MnIII contribution complicates the picture and further insight into VB
interpretation would necessitate simulations [59] that are far beyond the scope of this work.

3.3.4 Vibrational spectroscopies

Infrared

Figure 7 gathers the IR spectra of the R = 1.5 solids after various x. It is interesting to note that on the x = 0 spectrum,
one can observe two main bands in the region for the ν3 vibration of sulfate (1059 and 1119 cm−1). This split is similar
as the one reported by Fan et al [40] for Mn5(OH)8SO4 and can be explained by a anisotropic environment around the
sulfate but may be also due to the presence of two different environments for the sulfate [42]. This split disappears
at higher x value and only one band at 1067 cm−1 is observed. At x = 1, the sulfate band can be attributed to sulfate
associated to sodium in adventitious Na2SO4.

Beside this feature, another peak is changed during oxidation: an additional non attributed absorption band at 966 cm−1

disappears as x increases and a new band at 982 cm−1 appears. On the x = 0.12 spectrum, both can be seen, which
confirm the fact that this solid is a mixture of two different products, as shown on Figure 5.

For lower wavenumbers, a strict attribution of the peaks is not straightforward. The band at 555 cm−1 is in line
with previous work by Fan et al as well as Salah et al observing a large band slightly above 500 cm−1 [40, 37]
for Mn5(OH)8SO4 and Mn2(OH)2SO4 respectively. Then, the evolution of those peaks for increasing x shows the
transformation of the solid during oxidation.

The same spectra but for higher wavenumbers on Figure 14 (SI) show the evolution of the O-H stretching during
oxidation and the decrease of the absorbance in this region for the x = 1 product.

Raman

9
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Figure 8: Raman for the R = 1.5 solid after various x addition of S2O2−
8

The evolution of Raman spectra for increasing x amount of persulfate is shown in Figure 8. For the x = 0 spectrum,
pyrochroite identified in XRD can be found with the 636 cm−1 peak, as referenced in the RRUFF database R10004
[60]. The other main peak at 525 cm−1 is probably related to the unknown manganese sulfate basic salt, as well as
the sharp sulfate peak at 997 cm−1. For x = 0.24, two peaks at 431 and 522.5 cm−1 are observed, close to what is
measured with the sulfate Fe-LDH (427 and 518 cm−1) [8], which suggest the presence of only one solid. As the
oxidation continues, a broad peak centered around 580 cm−1 emerges. This peak can be attributed to the vibrations
of the mixture of α-MnO(OH) at 550 cm−1 [61] and γ MnO(OH) (558 cm−1 for symmetric stretching of Mn-O-Mn
bridge and 621 cm−1 for the asymmetric stretching of these bridge) [62]. It is noteworthy that the oxidation of the solid
is not homogeneous and pure LDH as well as pure MnO(OH) spots can be found while translating the laser spot on the
solid. The last spectrum for x = 1 shows no more vibration associated with the LDH, and a new peak emerge at 660
cm−1 which can be attributed to Mn3O4, that was not observed in XRD [61].

Infrared and Raman spectroscopies confirm the transformation of the basic salt into the LDH followed by a subsequent
oxidation into oxide and oxyde-hydoxide.

3.3.5 Scanning Electron Microscopy

Scanning Electron Microscopy was also used to characterize the solids. After oxidation, some ribbons structures can be
seen, with 0.5 µm width and a few µm length. This is different from what is observed with Fe [63] and Co-LDH [12],
in which an hexagonal morphology was reported in SEM. The small roundish shapes of residual crystallites could be
attributed to the part of the LDH oxidised into Mn3O4.

3.3.6 Estimation of the standard Gibbs free energy of formation of the MnII-MnIII LDH

The redox potential Eh for the oxidation of a
{

Fe(OH)2,FeII
aq

}
solution by the air was used to determine the standard

Gibbs free energy of the Fe-LDH [44]. For example, a value ∆fG0 (Fe-LDH) = - 3790 ± 10 kJ mol−1 was determined
by this method for Fe-LDH with sulfate in good agreement with other works [64]. Unfortunately, as the basic salt
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Figure 9: SEM images for the R = 1.5 solid after (x = 0.24) addition of S2O2−
8 . White bar in the lower right corner

indicate the 2µm scale

“Mn4(OH)6SO4” produced for R = 1.5 before oxidation cannot be identified, the first step of oxidation (A part of
Figure 4) transforming it into the Mn-LDH cannot be used to determine its standard Gibbs free energy of formation:
∆fG0 (Mn-LDH) value. On the contrary the redox potential values recorded in zone B (0.4 < x < 0.7) was relatively
constant and a pseudo Eh plateau was observed. Zone B corresponds to the transformation of the Mn-LDH into
MnO(OH), in fact a mixture of manganite γ-MnO(OH) and groutite α-MnO(OH). The corresponding half reaction and
Nernst equation are given in equation 9 and 10, respectively:

[MnII
4 MnIII

2 (OH)12][SO2−
4 ](s) + 6H2O(l) 
 6MnO(OH)(s) + SO2−

4 (aq) + 6H3O+
(aq) + 4e− (9)

Eh(MnO(OH)(s)/Mn-LDH(s)) = E0
h(MnO(OH)(s)/Mn-LDH(s))−

RT
4F

log10[a(SO2−
4 (aq))] +

6RT
4F

pH (10)

A value E0
h(MnO(OH)/Mn-LDH) = + 1.117 V/SHE was computed from equation 10 by using the experimental Eh value

(+380 mV) and pH value (8.2) recorded at the middle of the Eh plateau of zone B. In a first approximation the activity
a(SO4) was assumed to be equal to the concentration of sulfate species. This concentration was estimated to be about
0.35 mol.L−1 at the middle of plateau B, a value corresponding to the difference between the initial concentration of
SO2−

4 in solution (0.4 mol.L−1) and the quantity of sulfate incorporated into GRSO4 (about 0.05 mol.L−1). Taking
into account the activity coefficient of sulfate species as performed in other works [44] will have only a minor influence
on the computed values of E0

h. The standard Gibbs energy of formation of the Mn-LDH was estimated by using
equation 11:

E0
h(MnO(OH)(s)/Mn-LDH(s)) =

6∆fG0(MnO(OH)(s)) + ∆fG0(SO2−
4 (aq))−∆fG0(Mn-LDH(s))

4F
(11)

with F = 96 485 C.mol−1 the Faraday constant. By using the ∆fG0 values reported in SI table 1, the standard Gibbs
energy of formation of the MnII

4 MnIII
2 (OH)12SO4 was estimated to be comprised in between -4519 and -4436 kJ.mol−1,

the lower and the higher values being determined for the final oxidation products manganite or groutite, respectively.

3.3.7 Pourbaix Diagrams

Pourbaix diagrams of Fe and Mn species were built by using the standard chemical potential of Table 1 (S.I.) and the
Nernst equations of the relevant redox couples. The electrochemical equilibria were considered at room temperature (T

11
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Figure 10: Pourbaix diagrams for Mn (A) and Fe (B)

= 298 K) and the activities of the soluble species was fixed at 10−2. Mn0(s), Mn2+
(aq), Mn(OH)2(s), Mn-LDH(s) and

γ-MnOOH(s) species were considered for the Mn Pourbaix diagram (Figure 10A). Basic salts with Mn mentioned in

this study were not added as their thermodynamic properties are little known. Similarly, Fe0(s), Fe2+
aq , Fe(OH)2(s),

Fe-LDH(s) and γ-FeOOH(s) species were considered for the drawing the Fe Pourbaix diagram (Figure 10B). The

stability domains of Mn2+
(aq) and Mn-LDH(s) are much broader than those of Fe2+

(aq) and Fe-LDH(s). The relative
stability of the Mn-LDH in comparison to Fe-LDH can also be illustrated by studying their potential reactivity towards
nitrate species. For this purpose, the following NO−

3(aq) reduction reactions were considered:

2NO−
3(aq) + 10e− + 12H3O+

(aq) = N2(g) + 18H2O(l) (12)

NO−
3(aq) + 8e− + 10H3O+

(aq) = NH+
4(aq) + 13H2O(l) (13)

NO−
3(aq) + 8e− + 9H3O+

(aq) = NH3(aq) + 12H2O(l) (14)

The corresponding Nernst equations computed for T = 298 K are the following :

Eh(NO−
3(aq)/N2(g)) = E0

h(NO−
3(aq)/N2(g)) +

RT
10F

log10[
a(NO−

3(aq))
2

a(N2(g))
]− 12RT

10F
pH (15)

For equation 12 with E0
h(NO−

3(aq)/N2(g)) = 1.24 V/SHE and a(N2(g)) = 1, a(NO−
3(aq)) = 0.01.

Eh(NO−
3(aq)/NH+

4(aq)) = E0
h(NO−

3(aq)/NH+
4(aq)) +

RT
8F

log10[
a(NO−

3(aq))

a(NH+
4(aq))

]− 10RT
8F

pH (16)

For equation 13 with E0
h(NO−

3(aq)/NH4(aq)+) = 0.88 V/SHE and a(NO−
3(aq)) = a(NH+

4(aq)) = 0.01.

Eh(NO−
3(aq)/NH3(aq)) = E0

h(NO−
3(aq)/NH3(aq)) +

RT
8F

log10[
a(NO−

3(aq))

a(NH3(aq))
]− 9RT

8F
pH (17)

For equation 14 with E0
h(NO−

3(aq)/NH3(aq)) = 0.81 V/SHE and a(NO−
3(aq)) = a(NH+

4(aq)) = 0.01.

Equations 15, 16 and 17 were superimposed on the Pourbaix diagrams and correspond to lines 8, 9a and 9b, respectively
(Figure 10). As observed on Figure 10B, lines 8, 9a&b are situated well above line 7 corresponding to the Fe-LDH/γ-
FeOOH redox couple. Therefore the reaction of reduction of nitrate into either ammonium or dinitrogen by oxidizing

12
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Figure 11: Summary of the structures observed in this study

the Fe-LDH into γ-FeO(OH) is thermodynamically favorable. Previously performed experiments are in agreement
with such a prediction and the Fe-LDH was observed to reduce nitrate either in ammonium [10] for sulfate and
chloride containing Fe-LDH or into a mixture of ammonium and N-gaseous species for carbonate containing LDH
[65]. Interestingly, lines 8 is still situated above line 7 on the Mn-Pourbaix diagram (Figure10A), while it is not the
case for line 9 a&b. This means that the Mn-LDH is not reactive enough to reduce nitrate into ammonium but it may
potentially reduce nitrate into N2. This is in line with what is observed with the manganese assisted denitrification
process observed by Swathi et al. [66]. This last reaction is of upmost importance if the goal is to find a material useful
for a water denitrification process. Such a properties could be unique among the monometallic LDH family. Indeed,
the Fe-LDH is a too strong reductant that transform nitrate mainly into the more reduced form of nitrogen, i.e. NH+

4 .
On the contrary, Co-LDH and Ni-LDH could be too weak reductants to transform NH+

4 into N2. Such a preliminary
forecast can be proposed by comparing similar redox potential, e.g. the standard potentials E0

h of M2+
(aq)/MIII

2 O3 redox
couples are equal to 0.728, 1.443, 1.746 and 1.753 V/SHE when M = Fe, Mn, Co and Ni, respectively [67]. However,
further experiments dedicated to the determination of the standard chemical potential of Co-LDH and Ni-LDH and to
the reactivity of monometallic LDH towards nitrate species should be explored to confirm these assumptions.

4 Conclusion

A new monometallic manganese double layered hydroxide was discovered using a basic MnII salt (probably
Mn4(OH)6SO4) and then oxidising it with S2O2−

8 as recapitulated on Figure 11. Measurement of the pH and
the redox potential show that a x = 0.24 ratio of the persulfate oxidant is necessary to produce this solid. XRD and
Raman confirm this transformation. XPS shows that the solid contain a mixture of MnII and MnIII. SEM shows an
ribbon shape organisation of the solid.

Pourbaix diagrams calculated from the experimental measurements during the synthesis indicate that this solid is
theoretically able to reduce nitrate into dinitrogen without further reduction into ammonium or ammonia. This indicates
that this solid could be used for water remediation. Finally, the eventual formation of Mn-LDH in natural environment
should also be considered. Indeed, fougerite, the equivalent solid using iron, is already identified in hydromorphic soils
and groundwater. MnII-MnIII LDH could be an intermediate species in the oxidation of manganese.
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6 Supplementary information

6.1 Characterization of the basic salts

Figure 12: IR spectra of the solids obtained with a Mn2+ solution and a NaOH addition with various R
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6.2 Further characterization of the Mn-LDH

6.2.1 XRD of the Mn-LDH with peak indexation

Figure 13: XRD with peak indexation of the Mn-LDH

6.2.2 IR measurement of the Mn-LDH

Figure 14: OH stretching region of the Mn-LDH
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6.3 Thermodynamic data used in this work

Species ∆fG0(kJ.mol−1) Reference
H2O(l) -237.19 [68]
SO2−

4(aq) -744.56 [68]

NO−
3(aq) -110.58 [67]

NH+
4(aq) -79.5 [67]

NH3(aq) -26.6 [68]
Fe2+ -84.93 [67]

Fe(OH)2 -483.55 [67]
FeII

4 FeIII
2 (OH)12SO4 -3790 [44]

FeO(OH) -469.03 [67]
Mn2+ -227.61 [67]

Mn(OH)2 -614.63 [67]
MnII

4 MnIII
2 (OH)12SO4 [-4519, -4436] This work

γ-MnO(OH)(s) -557.2 [69]
β-MnO(OH)(s) -543.4 [69]

Table 1: Reference Standard Gibbs free energy of formation ∆fG0(kJ.mol−1). The standard Gibbs energy of formation
of groutite α−MnO(OH)(s) (no data available) was supposed to be close from feitknechtite β −MnO(OH)(s) Indeed,
both compounds were reported to be less stable than manganite γ−MnO(OH)(s) [70] with corresponding higher ∆fG0

values.

6.4 Observations during the oxidation

6.4.1 pH measurement

Figure 15: pH values for the Mn2+ solution after various NaOH addition characterized by various R values and during
S2O2−

8 addition. Dotted line is the limit of the Mn(OH)2 solubility with a Mn2+ concentration of 0.4 mol.L−1. Red
cross are the inflexion points reported on figure 3.
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6.4.2 Colors of the solids

Figure 16: Color of the solution before (up left) and for various addition of S2O2−
8 (x = 0.12 (up right), 0.24 (down left)

and 0.30 (down right)) in a R = 1.5 solution
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