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Abstract—In computer engineering, logic synthesis is a process
by which an abstract specification of desired circuit behavior
is turned into a design implementation in terms of logic gates.
Historically, logic synthesis was tightly related to the physical
implementation of the logic gates. Nowadays, pushed by the
forecasted end of Moore’s law, several emerging technologies
(e.g., nanodevices, optical computing, quantum computing) are
candidates to either replace or co-exist with the de facto standard
CMOS technology. The main consequence of the rising of those
emerging technologies is that the logic synthesis has to face new
issues and, at the same time, exploits new opportunities. The goal
of this paper is thus to present three emerging technologies (Ver-
tical Nanowire Field Effect Transistors, Ferroelectric Transistors,
and Memristors), how to use them to implement logic gates, and
the main challenges and issues for the logic synthesis.

Index Terms—Emerging Technologies, Logic Synthesis, Fe-
FETs, Vertical Nanowires, Memristors

I. INTRODUCTION

Energy and computer efficiency is undoubtedly one of the
major driving forces of current computer industry, which is rel-
evant not only for supercomputers, but also for small portable
personal electronics and sensors. However, today’s computing
architectures (mainly based on the CMOS technology) are
facing major challenges making them unable to meet the
requirements. Such challenges are: power wall, memory wall,
and Instruction Level Parallelism wall. Moreover, even the
dominating CMOS technology (which made manufacturing
of computers feasible) is suffering, especially nodes below
20 nm. At this level the physical characteristics of such
devices are leading to high static power consumption, reduced
reliability; not to mention increased cost. All of these have led
to saturated computer performance and the slowdown of the
traditional device scaling, making today’s computing systems
unable to deliver the required computing and energy efficiency.

Due to these limitations, many alternative technologies be-
ing able to deliver the required demands at affordable cost are
under investigation. CMOS based logic gates are well known
and a holistic ecosystem of CAD tools is available to im-
plement each step of the production flow: design, simulation,
verification, synthesis, and test. On the other hand, emerging
technologies may suffer from the inadaptation of existing
CAD tools, especially for the synthesis. This paper aims at
presenting three promising emerging technologies: Vertical
Nanowire Field Effect Transistors, Ferroelectric Transistors,
and Memristors. For each one, we show how to build logic

Design

Logic Synthesis

Place&Route

Fig. 1: Synthesis flow.

gates and how those gates correspond to a challenge and/or
opportunity for the synthesis.

The paper is structured as follows. Section II provides the
background of synthesis and in particular of logic synthesis.
Section III presents the Vertical Nanowire Field Effect Tran-
sistors, Section IV presents the Ferroelectric Transistors and
Section V the memristors. Finally, Section VI concludes the
paper.

II. LOGIC SYNTHESIS

In the digital circuits production flow, the Synthesis takes
in input the circuit model description, usually expressed in
a hardware description language (e.g., VHDL, Verilog) and
produces as output the gate level netlist for a given layout
floorplan. Fig. 1 details the synthesis and it is mainly focused
on the two main steps: (i) Logic synthesis and optimization
and (ii) Place&Route.

As defined in [1], the overall problem of logic synthesis
is the one of finding “the best implementation” of a Boolean
function. The term “best” corresponds to a trade-off between
several metrics such as the area, delay, and power con-
sumption. The Place&Route aims at optimizing the physical
placement of each logic gate into a given layout floorplan and
route the logic gate interconnections. It is important to keep
in mind that logic synthesis is usually based on the knowl-
edge of the technology used to implement logic gates. For



Fig. 2: VNWFET device [7]: (a) STEM image in cross section
of the vertical transistor implemented in nanowire arrays, (b)
single nanowire showing its (c) gate formation.

example, first logic synthesis approaches addressed Boolean
functions expressed in the Sum-of-Products (SoP) form and
the optimization targeted to reduce the cardinality of logic
covers (i.e., the number of product terms) [2]. This worked
well when PLAs were used for the physical implementation
of logic gates because they have rectangular shapes with rows
associated with product terms. Hence, reducing the number of
product terms reduces the area, thus leads to achieve the “best”
implementation of the Boolean function. In the 1980’, with the
establishment of CMOS technology, logic gates and libraries
of components paved the way for modern logic synthesis
algorithms and tools [3], [4]. Here the problem consists of
mapping Boolean functions into the “Best” interconnection of
instances of library elements as depicted in Fig. 1.

Today, with the rising of alternative technologies to CMOS,
we are facing new challenges for logic synthesis. It is therefore
mandatory to well understand the logic gates built on the top of
emerging technologies and identify the available opportunities.

III. VERTICAL NANOWIRE FIELD EFFECT TRANSISTORS
(VNWFET)

This section explores preliminary logic gates based on VN-
WFET technology and the related challenges and opportunities
for logic synthesis. Gate-all-around Vertical Nanowire Field
Effect Transistors (VNWFET) are emerging devices, which
are well suited to pursue scaling beyond lateral scaling limita-
tions around 7nm. The VNWFET technology has a junction-
less architecture composed of a homogeneous highly doped
nanowire channel, patterned into boron doped (2 x 1019 cm−3)
Si substrate. The current flows between silicided source/drain
contacts and is controlled by a gate-all-around structure with
a physical channel length of 14nm as shown in Fig. 2. More
details on the fabrication steps can be found in [5], [6].

Fig. 3 shows the implementation of the Inverter gate with
two vertical transistors (P, and N type). In the figure, we
present the classical transistor level view (Fig. 3a) and the
layout cross-section (Fig. 3b) in which we can note the
presence of two nanowire arrays (one array for the P- and
the other for the N-channel). The 3D representation is shown
in Fig. 3c.

Ground

VOUT

VIN

VDD

N-MOS P-MOS

VDD
Ground

A

Z

a) b)

N-type V-nanowire

P-type V-nanowire

gate contact

metal

c)

ZA
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Fig. 4: Different 3D layout representations of the same logic
gate.

Vertical transistor channels lead to a paradigm change
in the design of logic cells, indeed, they further improve
the gain in circuit density. Moreover, the third dimension
enables numerous spatial configurations for the same logic
functionality [8]. An example is given in Fig. 4 where the four
pictures show different layouts of the same SR latch. This new
degree of freedom is clearly an opportunity for the back-end
(i.e., Place&Route) synthesis.

More complex gates can be easily implemented. We actually
investigated the possibility to implement compact gates and,
at the same time, able to perform complex Boolean functions.
The first result we got is shown in Fig. 5. Here we designed
a compact gate composed of 2P and 2N vertical transistors.
The gate has 5 inputs (from A to E). We simulated it using
the model of [6], and we got the following Boolean function:

Z = E(A · C +BC +B ·D +AD) (1)

Now how can these gates be fully exploited by logic synthe-
sis? One opportunity can be explored with 3-input gate logic
synthesis [9]. In that paper, authors investigated advantages of
3-input gates as constituents of logic networks. They found
out that some 3-input gates can be extremely powerful in
efficient representing a Boolean function (i.e. the dot gate
in [9]). Coming back to our gate of Fig. 5, we can split
the E input, actually common to the four vertical transistors
into four individual inputs E, F, G, and H (one for each
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Fig. 6: (a) Ferroelectric HfO2 device gate stack (b) equivalent
circuit schematic (c) electronic symbol.

vertical transistor). It is now possible to consider the following
subgroups of 3-inputs depending on the vertical transistor type:

• Z = f(EAC) for P-type;
• Z = f(FBC) for N-type;
• Z = f(GAD) for P-type;
• Z = f(HBD) for N-type.
In other words, it is possible to explore new 3-input gates

to leverage logic synthesis. Finally, also the Place&Route
synthesis can exploit the high number of possible 3D layouts
to provide a more dense circuit (reducing area and volume
overhead).

IV. FERROELECTRIC TRANSISTOR BASED LOGIC

From a structural point of view, a ferroelectric transistor
(FeFET) is simply an extension of a regular bulk or FDSOI
(Fully Depleted Silicon On Insulator) MOSFET with an addi-
tional layer of ferroelectric HfO2-based material [10] inside
the gate stack as depicted in Fig. 6.

The ferroelectric layer behaves as a ferroelectric capacitance
CFE between VG and VM which actually controls the state of
the FET channel. FeFETs operate in two different modes: a
non-volatile mode, which requires hysteretic operation, and
a steep switching mode, which can be hysteretic or non-
hysteretic [10]. The ratio between the ferroelectric capacitance
and the dielectric capacitance determines the FeFET operation
mode. In this paper we target the non-volatile mode and we
show how FeFET can be exploited to design non-volatile logic
gates: Nand and Configurable gate.

All the presented circuits have been designed using 28nm
technology provided from GLOBALFOUNDRIES and sim-
ulated using Cadence Virtuoso. Simulations are based on
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Fig. 7: (a) Full Schematic view of the FeFET based Nand, (b)
simplified view
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Fig. 8: Simulation of the FeFET Dynamic Nand gate

Preisach-based FeFET model [11] which has been fitted on
ASIC characterization [12].

A. Non-Volatile Nand Gate

This Nand gate is the most simple one since it is imple-
mented by using a single FeFET transistor as shown in Fig. 7a.
The schematic corresponds to a dynamic logic gate [13] in
which the FeFET (dashed box) implements the Nand. Fig. 7b
provides a simplified view of the Nand gate in terms of inputs
A, B and output Z = A ·B.

One of the two operands, in our case B, is a constant value
stored as a charge in the ferroelectric capacitance. The second
operand A, corresponds to the input voltage on the gate FeFET.
The protocol to access the Nand gate is composed of the
following 4 steps:

1) Write the constant operand B in the FeFET (details
about FeFET writing protocol are provided in [10]);

2) Charge Vout to Vdd: Vp = Vdd (i.e., logic ‘1’), Vn = gnd
(i.e., logic ‘0’);

3) Activate the FeFET: Vp = gnd (i.e., logic ‘0’), Vn = Vdd
(i.e., logic ‘1’);

4) Set Vin to the voltage level corresponding to operand A;
5) Depending on A and B the FeFET will be closed

or open. If open, the output capacitance C will be
discharged through the FeFET leading to have Vout =
gnd (i.e., Z = ‘0’ ). If close, the output capacitance C
will maintain Vout = Vdd (i.e., Z = ‘1’ ).
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Fig. 9: Configurable gate

Fig. 8 shows a simulation waveform of the Nand gate. For
the sake of simplicity, we only report the signals Vin and
Vout. The simulation starts with the FeFET initialisation ( 1©)
by applying two consecutive opposite write pulses. In our
simulation, a negative pulse writes a logical ‘1’ inside the
FeFET, while a positive pulse writes a logical ‘0’. Note that
the initialisation has to be done only one time. In 2© we set B
= ‘0’ (positive pulse applied to Vin) and in 3© we set A = ‘1’
(Vin = Vhigh ). In 3©, the output Z = ‘1’ (Vout = Vhigh).
The second simulated pattern starts in 4© by setting B =
‘1’ (negative pulse applied to Vin). In 5©, we set A = ‘1’
(Vin = Vhigh ) and the output Z = ‘0’ (Vout = Vlow).

B. Configurable Gate

Fig. 9 depicts the schematic of a gate that can be configured
to implement different Boolean functions depending on the
logic value stored in the FeFETs. First of all, the output Z is
set to logic ‘1’ if and only if the two transistors are opened
(i.e., not passing). This can be formalize as following:

Z = A · C0 ·B · C1 (2)

where C0 and C1 are the values stored in the FeFET and
A, B correspond to the gate inputs. Based on the Eq. 2, it is
possible to configure the gate to implement several Boolean
functions as shown in Table I. Moreover, if we set C0 = B
and C1 = A we can rewrite Eq. 2 as:

Z = A ·B ·B ·A (3)

From Eq. 3 we can apply De Morgan’s theorem and write:

Z = A ·B ·B ·A

= (A ·B) + (B ·A)
= A⊕B

(4)

We can thus obtain the Xnor gate as shown in Eq.4. Using
the same approach, we can obtain the Nor gate when C0 =
C1 =‘1’ (last row of Table I)

Z = A ·B
= A+B

(5)

To summarize:
1) Nand Gate can be exploited to synthesize any Boolean

function in which some inputs are constant values stored

TABLE I: Possible configuration

C0 C1 Z
0 0 1
0 1 B
1 0 A
1 1 A ·B
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Fig. 10: Set and Reset operations [17]

in the FeFET gates. For example in the case of filter
coefficients.

2) Configurable Gate can be exploited to synthesize any
Boolean function. Moreover, the same circuit can be
configured to execute different Boolean functions as for
the polymorphic circuits [14].

V. MEMRISTORS BASED LOGIC

A memristor is a non-linear bipolar device, characterized by
an electrical resistance that is not constant but rather depends
on the past history of current that has flowed through the
device itself [15]. We resort to the memristor proposed in [16],
where depending on the applied voltage value Vin applied to
the memristor terminals, it is possible to set the resistance to
a given value. We resort to the Snider Boolean Logic (SBL)
convention [16] where a lower resistance RON represents the
logic ‘0’, while the higher resistance ROFF represents the logic
‘1’. More in particular, we can define the following operations:

• SET: Vin > Vth, the memristor is set to logic ‘0’ Vin is
defined as Vw in Fig. 10a

• RESET: Vin < −Vth, the memristor is set to logic ‘1’
Vin is defined as −Vw in Fig. 10b

• Read: gnd < Vin < Vth, the memristor does not change
its resistance. The current flowing through its terminal
is proportional to its actual resistance vale (i.e., RON or
ROFF). Vin is defined as Vr

A. Fast Boolean Logic Circuits

The logic circuit implementation that we consider in this
paper is Fast Boolean Logic Circuit (FBLC) [17]. The FBLC
logic circuit implementation requires that the Boolean function
is expressed in the SoP format:

M1 +M2 . . .+Mn =M1 ·M2 . . .Mn (6)

where Mi are minterms. The left member of the Equation 6
can be easily manipulated through transformation rules (i.e.,
De Morgan’s laws). The obtained form (right member of



—

A B A B
— — O— O

IN

A B
A B
A B

— —

—

—
—
O—

H0

H1

H2

H3

H4

V0 V1 V2 V3 V4 V5

M02M01

M11 M12

H0

H1

V1 V2

Fig. 11: FBLC Example

the Equation 6) can be computed exploiting three Boolean
operations: Nand, And and Not. Let us consider the following
example. The Boolean function is defined as:

O = AB +AB +AB = AB ·AB ·AB (7)

Eq. 7 is implemented in the memristors crossbar array
shown in Fig. 11. In order to properly drive signals to the
data path, an external control unit has to perform the following
phases.

1) Al the memristors in the crossbar are initialized to ROFF
(logic value ‘1’);

2) Input values are copied to the input block (IN) memris-
tors (first line of the example crossbar);

3) Values from IN are copied to to the Minterms blocks
(Rows 2, 3 and 4 of the example crossbar);

4) Minterms are evaluated performing all the Nand opera-
tions in parallel;

5) Results are stored in the And block (column O)
6) The AND operation is performed and the result is stored

in the Output block (last row of the example crossbar).

B. Experiments

For a given a Boolean function to be synthesized, we
exploited different logic minimization approaches available
in the state-of-the-art of synthesis tools, namely ABC [18],
SIS [19] and BDS [20]. In particular, SIS has been exploited
for the 2-level minimization, ABC for the multi-level mini-
mization based on two-input ANDs and Inverters and on Look
Up Tables (LUTs) mapping, while BDS for the multi-level
minimization based on MUX and XOR.

Specifically, as for the 2-level minimization, we leveraged
the collapse option embedded in SIS. Then, we exploited
different commands embedded in ABC and BDS for obtaining
different forms of multi-level functions. As for BDS, we used
it with (i) limitSize 500 and (ii) limitSize 800. The LimitSize
option sets the largest BDD size on which exact variable
reordering can apply (number of variables times number of
nodes in a BDD); the default is 200. For ABC, we resorted to
the simple strash command (we refer to it as MultiLev) and to
the resyn2 script. Moreover, we also investigated the impact
of a technology mapper. ABC embeds the FPGA mapping for
obtaining a set of K-LUTs where K is the number of inputs
of each LUT. We exploited the if command with the -K option

Fig. 12: Area values distribution

Fig. 13: Delay values distribution

to perform 3-7 FPGA LUTs mapping (thus K varies from 3 to
7). The main difference between those minimization options
is the resulting number of required crossbars to be used to
implement the Boolean function.

Then, we leveraged XbarGen (an in-house tool [21], [22])
for obtaining statistics (i.e., Area and Delay). We carried out
experiments over about 300 different combinational circuits
given from [23]–[26] with up to 1763 inputs and 2048 outputs
and up to 40 thousands general terms. It is worth to mention
that some circuits were obtained by extracting the combina-
tional logic of sequential circuits.

Fig. 12 compares the area distribution of circuits synthesized
exploiting the previously described logic optimizations (values
are expressed on the logarithmic scale). As shown, synthesiz-
ing on crossbars composed by 6/7 inputs (6/7 LUT) leads
to a reduction of the area overhead compared with previous
configurations because the crossbars are denser. Specifically,
the occupied area of 6/7 LUT configurations is comparable
with the 2Lev configuration area. On the other hand, Fig. 13
shows that, on average, all configurations always lead to
circuits with higher delay (i.e., they have more crossbars),
w.r.t. the 2Lev configuration (i.e., a single crossbar). However,
one big drawback of the 2Lev minimization is its limited
scalability. For functions with many inputs (> 20), the result-
ing two-level form is prohibitively large. A good compromise
is the LUT-based mapping. It significantly reduces the delay
compared with the simple multi-level approach. Indeed, the
delay of LUT-based implementations is very close to the 2-
level mapping. We can thus consider the LUT-mapping as the
best implementation considering area/delay characteristics.



Finally, as for logic syntheses obtained by means of BDS
tool [20], the results were not impressive, as shown in the
Figures. Indeed, it produces circuits with lots of crossbars
(i.e., high delay) and area overhead levels comparable with
the 5LUT configuration.

To summarize, we presented how of well-known logic
optimization techniques such as the 2-level and multi-level
optimizations can fit with FBLC memristor based logic synthe-
sis. Contrary to the common implementation technology which
makes use of simple logic gates, for memristor-based crossbars
the area/delay curve is surely not trivial. Classic CMOS-
oriented tools produce bad optimizations of logic functions
for memristor-based crossbars, while by introducing a proper
optimization (i.e., K-LUTs), we managed to restore the well-
known area/delay trend.

VI. CONCLUSIONS

In this paper, we presented three emerging technologies
(Vertical Nanowire Field Effect Transistors, Ferroelectric Tran-
sistors, and Memristors). For each of these technologies,
we presented how to design logic gates and what are the
challenges and opportunities for logic synthesis. We have
shown that vertical transistors can cope well with the 3-
input logic synthesis and they offer new opportunities for
the Place&Route. Ferroelectric Transistors allow to implement
non-volatile logic gates. Here one operand is stored inside the
gate offering, from one side, opportunities for reducing the
need of moving data, but also challenges since it is possible
to design polymorphic gates. Finally, for the memristors based
FBLC logic we tested several state-of-the-art logic synthesis
approaches on a large set of circuit benchmarks. The results
have shown that some of the existing approach may be useful,
but globally, the logic synthesis community has a lot of
opportunities to explore, thanks to the presented emerging
technology based logic.
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