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Abstract

We introduce a new class of asymmetric random walks on the one-dimensional infinite lattice. In
this walk the direction of the jumps (positive or negative) is determined by a discrete-time renewal
process which is independent of the jumps. We call this discrete-time counting process the ‘gener-
ator process’ of the walk. We refer the so defined walk to as ‘Asymmetric Discrete-Time Random
Walk’ (ADTRW). We highlight connections of the waiting-time density generating functions with Bell
polynomials. We derive the discrete-time renewal equations governing the time-evolution of the
ADTRW and analyze recurrent/transient features of simple ADTRWs (walks with unit jumps in both
directions). We explore the connections of the recurrence/transience with the bias: Transient simple
ADTRWs are biased and vice verse. Recurrent simple ADTRWs are either unbiased in the large time
limit or ‘strictly unbiased’ at all times with symmetric Bernoulli generator process. In this analysis
we highlight the connections of bias and light-tailed/fat-tailed features of the waiting time density
in the generator process. As a prototypical example with fat-tailed feature we consider the ADTRW
with Sibuya distributed waiting times.

We also introduce time-changed versions: We subordinate the ADTRW to a continuous-time re-
newal process which is independent from the generator process and the jumps to define the new
class of ‘Asymmetric Continuous Time Random Walk’ (ACTRW). This new class - apart of some spe-
cial cases - is not a Montroll–Weiss continuous-time random walk (CTRW). ADTRW and ACTRW mod-
els may open large interdisciplinary fields in anomalous transport, birth-death models and others.

Keywords:

Asymmetric discrete and continuous time randomwalks, Recurrence/transience, Discrete-time count-
ing process, Sibuya distribution, Semi-Markov and fractional chains, Bell polynomials, light-tailed/fat-
tailed waiting time distribution
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1 Introduction

Historically the interest in biased random walks on the integer line goes back to the classical ‘Gam-
bler’s Ruin Problem’ and occurred already in 1656 in a correspondence between Blaise Pascal to Pierre

Fermat [1]. A simple probabilistic version is as follows. Two gamblers A and B play against each other
a probabilistic game multiple times. Each game is independent of the previous ones. In a game one

gambler wins a certain unit of money whereas the other loses this amount where both gamblers start
with the same amount. If both gamblers win with the same probability p = 1

2 , this game is ‘fair’,

whereas for p 6= 1
2 one the gamblers has an advantage. The sequence of games stops when one of

the gamblers reaches zero money units (ruin). The time sequence of such repeated games defines a

random walk on Z with directed unit jumps where the first passage on zero of one of the gamblers

defines ‘the ruin condition’ (end of the game sequence). For an outline of the essential features we
refer to [28]. The fair case p = 1

2 is an unbiased walk (as an example of a martingale [3, 25] and consult

also [2]).
In the meantime an impressive interdisciplinary field has emerged with many variants of biased

random walks with applications in areas as varied as finance (‘risk theory’) and in physics sophis-
ticated models have been developed explaining anomalous transport processes [15]. Among them

asymmetric (biased) diffusion has become a major subject with a huge amount of specialized literature
[14, 4, 47, 8, 7], just to quote a few examples. The anomalous transport and diffusion theory is mostly
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based on the continuous time random walk (CTRW) approach by Montroll and Weiss [5] where a ran-

dom walk is subordinated to an independent (continuous-time) renewal process [9, 10]. For fat-tailed
interarrival time densities in the renewal process the resulting stochastic motion is governed by time-

fractional evolution equations characterized by non-markovianity and long-time memory features. For
a comprehensive overview of the wide range of models we refer to [9, 10, 48, 11, 12, 6, 13, 15, 16]

and the references therein. These developments have launched the upswing of the fractional calculus
[49, 50, 17] and generalizations [46, 51, 52, 53, 54, 55, 56] (and see the references therein).

Most of the mentioned models consider continuous-time renewal processes and have profound con-
nections with semi-Markov chains [18, 19, 20, 21, 22]. In contrast, the discrete-time counterparts of

semi-Markov processes, renewal processes with integer valued interarrival times and corresponding

random walk models are relatively little touched in the literature. Essential elements of this theory
have been developed only recently by Pachon, Polito and Ricciuti [32]. For recent pertinent physical

applications in discrete-time random walks and related stochastic motions on undirected graphs we
refer to our recent article [33].

The goal of the present paper is to introduce a new class of biased random walks where the direction

of the jumps is selected by the trials of a discrete-time counting process. We call this discrete-time

counting process the ‘generator process’ of the walk. The approach can be extended to different direc-
tions, for instance to multidimensional biased walks. In our model we focus on walks on Z and consider

cases where the asymmetry of the walk solely originates from the generator process.

The structure of our paper is as follows. In Section 2 we recall some basic mathematical features of
biased walks on the integer-line to define the new class of ‘asymmetric discrete-time random walk’
(ADTRW). We derive general expressions for the transition matrix of the ‘simple ADTRW’ which is the
ADTRW with unit jumps in both directions.

Section 3 is devoted to introduce the ‘generator process’ of the ADTRW. We define the generator
process as a discrete-time counting process (renewal process with IID integer interarrival times) com-

ing along as trial process. To generate the ADTRW two possible outcomes of the trials “success” or
“fail” determine the direction of the jumps (positive or negative). We consider especially the long-time

memory and non-markovian effects on the bias of the walk. We introduce a scalar counterpart of the
transition matrix, the ‘state polynomial’ of the generator process which contains the complete stochas-

tic information of the simple ADTRW (i.e. of the walk with directed unit jumps).

In Section 4 we highlight general connections of the waiting-time generating functions of the generator

process with Bell Polynomials.

Section 5 is devoted to the recurrence and transience features of the ADTRW. We analyze the connec-
tion of the memory of the waiting-time densities in the generator process with the recurrence/transience

behavior and derive general expressions for the expected sojourn on sites in infinitely long simple

ADTRWs. We show for simple ADTRWs that recurrence requires light-tailed (LT) waiting time densi-
ties (short-time memory) where the recurrent cases are unbiased in the long-time limit. Among the

recurrent simple ADTRWs it turns out that only the one with symmetric Bernoulli generator process
is unbiased in a strict sense. We prove that fat-tailed (FT) waiting time densities (long-time memory)

generate transient and biased simple ADTRWs. The general approach for simple ADTRWs boils down
to well known classical results in the case of the Bernoulli generator process.

As a proto-typical example with non-markovian long-memory features and FT Sibuya distributed wait-
ing time, we introduce in Section 6 the ‘Sibuya ADTRW’. We derive the transition matrix and for the

simple Sibuya ADTRW the expected position of the walker and reconfirm the transience and bias of
this walk as a consequence of the non-markovianity of the Sibuya generator process.

In Section 7 we introduce a time-changed version of the ADTRW: We subordinate the ADTRW to an in-
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dependent continuous-time point process such as Poisson or fractional Poisson. In this way we define

a new class of asymmetric continuous-time random walks (ACTRW) which in general (apart of some
special cases considered at the end of this section) are not Montroll–Weiss CTRWs. We also derive the

time-evolution equations for the ACTRW which are of general fractional type.

2 Statement of the problem and preliminary remarks

In this section we recall the basic mathematical background we repeatedly use in the conception of

our random walk model. We consider a class of random walks Yt∈N0 ∈ Z a.s. on the integer line

characterized by

Yt =
t∑

j=1

Xj , Y0 = 0 , Xj ∈ Z \ {0}, t ∈ N0 (1)

where we allow positive and negative integer jumps (Xj 6= 0) taking place at integer times t. We
consider the initial condition that the walk starts in the origin at time t = 0. We identify Yt ∈ Z with the

position node of a random walker at time t on the infinite one-dimensional lattice. We focus on a wider
class of random walks (1) which are governed by a transition matrix of the following general type

P(t) =
t∑

n=0

P(N (t) = n)(W+)n(W−)t−n , Pi,j(t)|t=0 = δi,j , t ∈ N0 (2)

with the elements Pi,j(t) = P0,j−i(t) = P(Yt = j − i) (i, j ∈ Z) indicating the probability that the walker

is present on node j at time t when having started the walk on node i at t = 0 and δi,j stands for
the Kronecker symbol. W+ and W− indicate the transition matrices for positive and negative jumps,

respectively. The transition matrix (2) as well as W+ and W− are ‘Töplitz’ with the circulant property
(defined in (6)). In (2) the integer random variable N(t) ∈ N0 (with 0 ≤ N(t) ≤ t ∈ N0) is a discrete-

time counting process to be specified later (which we call the ‘generator process’ of the walk) for the
choice of the direction of the jumps. P(N(t) = n) indicates the probability of occurrence of n positive

and t − n negative jumps within time interval [0, t]. Hence the generator process introduces (apart of
some special cases) asymmetry (bias) to the walk. We call the class of walks (1), with transition matrix

(2)‘Asymmetric Discrete-Time Random Walk’ (ADTRW). We assume that if a jump Xj is positive, it is

governed by the single-jump transition matrix W+ and a negative jump Xj is following the single-jump
transition matrix W−. The matrix W+ has the elements

W +
p,q = Θ(q − p)W+(|q − p|) (3)

indicating the probability to move from p → q in one single jump. The condition W+
0,0 = W+(0) = 0

ensures that only non-zero jumps occur. (3) has non-vanishing elements only in side diagonals above

the main diagonal and can be seen as a right-sided discrete jump density supported on ℓ = {1, 2, . . .} ∈ N

allowing solely strictly positive integer jumps. In (3) further is introduced the ‘discrete Heaviside
function’ defined by

Θ(r − k) =
r∑

j=−∞

δj,k =







1, r − k ≥ 0

0, r − k < 0

(4)

where we emphasize that in our definition Θ(0) = 1. Correspondingly we introduce the transition

matrix for negative jumps by
W −

p,q = Θ(p − q)W−(|q − p|) (5)
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withW−
0,0 = W−(0) = 0 and is a left-sided discrete jump density. Transition matrices (in our convention)

fulfill row-stochasticity, i.e.
∑∞
r=−∞W±

r,p = 1 with 0 ≤ W±
r,p ≤ 1. We mainly consider cases where (3)

and (5) have mirror symmetry W−
0,−(q−p) = W+

0,q−p, i.e. where the jump length for positive and negative

jumps follow the same one-sided distribution (3). However, bear in mind the model to be developed
includes arbitrary single-jump one-sided transition matrices W+ and W− without further symmetries.

Circulant matrices
The transition matrices and all matrices we are dealing with (including the unit matrix represented

with elements δp,q, p, q ∈ Z) are Töplitz or (we use synonymously the term) ‘circulant’. We call a matrix
A Töplitz or (synonymously) circulant if it fulfills

Ap,q = Ap+r ,q+r , p, q, r ∈ Z (6)

i.e. the main diagonal and all side diagonals have identical elements, respectively. Any circulant matrix
(6) can be represented by shift operators such that

Â =
∞∑

k=−∞

A0 ,kT̂−k , A = Â1 (7)

where 1 = (δp,q) denotes the unit matrix and we introduced the spatial shift-operator T̂r (r ∈ Z) which
is such that T̂rf(p) = f(p + r) (p, r ∈ Z) with T̂r = T̂ r1 and we denote with 1 = T̂0 the zero shift. We

agree that in the notation T̂rδp,q = δp,q+r = δ−r,q−p the shift operator acts on the right index of the

Kronecker symbol and by this convention the expression Â1 = A in (7) gives a well-defined circulant
matrix representation. For instance consider a single jump transition matrix generating right-sided

jumps of size +1, namely W+
q,p = T̂−1δq,p = δq,p−1 and f(p) = δi,p (where the walker sits on i before

the jump) to give
∑∞
r=−∞ f(r)δr,p−1 = f(p − 1) = T̂−1f(p) = δi,p−1 = δi+1,p, i.e. the walker jumps from

position i to i+ 1. The shift operator T̂m (m ∈ Z) is unitary and has eigenvalues eimϕ on the unit circle.

Any circulant matrix (7) has canonical representation, e.g. [39, 40]

Am,n = A0 ,n−m =
1

2π

∫ π

−π
A(ϕ)eiϕ(n−m)dϕ (8)

with eigenvalues A(ϕ) =
∑∞
q=−∞A0,qe

−iqϕ to the (right-) eigenvectors with components e−iϕq√
(2π)

where

ϕ ∈ (−π, π]. Matrix multiplications among circulant matrices commute and are equivalent to discrete
convolutions [39] (and see Appendix in [33] for some properties) as a consequence of commutation of

shifts. The above single-jump transition matrices can be represented by shift operators as follows

W+ =
∞∑

r=1

W+(r)T̂−r1,

W− =
∞∑

r=1

W−(r)T̂r1.

(9)

Despite we focus on walks with discrete jumps, it is rather straight-forward to extend the random walk

models developed here to their continuous-space counterparts. The single-jump transition matrices
W+ and W− are then replaced by right- and left- sided continuous-space transition density kernels.

2.1 Simple ADTRWs

In random walk theory an important class consists in walks where only positive and negative jumps
of unit size occur. We call this class of walks here ‘simple walks’ or ‘simple ADTRWs’. Simple walks
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are governed by the transition matrices W+
1 = T̂−11 for jumps “+1” and W−

1 = T̂+11 for jumps “−1”.

Simple random walks were extensively studied in the literature [29, 28, 25, 26, 27, 41], and see the
references therein. Simple walks include models for birth-death processes [24] with a vast field of

applications in epidemiology, demography, queueing theory, finance strategies including the above
mentioned Gambler’s Ruin Problem, and others. In a simple ADTRW the position of the walker (1) at

time t is given by the integer random variable

[Yt ]simple = 2N (t) − t, Y0 = 0 , t ∈ N0 (10)

where N(t) jumps of +1 and t−N(t) jumps of −1 are made within the time interval [0, t] and N(t) ∈ N0

is the above-mentioned discrete-time counting process to be specified subsequently. As 0 ≤ N(t) ≤ t

we have that −t ≤ [Yt]simple ≤ t.

The simple ADTRW has the drift term −t. It is therefore convenient to introduce a coordinate system
having its origin on a moving particle navigating with constant speed −1 and starting in the same

position as the walker at t = 0. The position q(t) of the random walker seen by this moving particle has
no drift anymore and is given by the random variable

q(t) = [Yt ]simple − (−t) = 2N (t) (11)

corresponding to a strictly increasing walk with positive jumps of size “2” (almost surely). For our
convenience we introduce the transition matrix Q(t) = (W−)−tP(t) (see also (2)) which is ‘seeing’ the

moving particle, namely

Q(t) =
t∑

n=0

P(N(t) = n)(W+)n(W−)−n =
t∑

n=0

P(N(t) = n)T̂−2n1

Q0,r(t) =
t∑

n=0

P(N(t) = n)δ0,r−2n = P(q(t) = r) = P0,r−t(t)

(12)

with initial condition P0,r(t)
∣
∣
t=0

= Q0,r(t)
∣
∣
t=0

= δ0,r. The matrix (12) indicates the probability that the
walker at time t has distance r ∈ N0 from the moving particle. Correspondingly, the transition matrix

(12) reduces to

Q0,r(t) = Θ(r)δr,2⌈ r−1
2

⌉P

(

N(t) =
r

2

)

, r ∈ Z, t ∈ N0

P0,r(t) = Q0,r+t(t).

(13)

Q0,r(t) has non-zero entries only on the sites r ∈ {0, 2, . . . 2t− 2, 2t} (and P0,r(t) on r ∈ {−t,−t+ 2, . . . t−
2, t}). We introduced above the ceiling function ⌈a⌉ indicating the smallest integer greater or equal to

a ∈ R and the Kronecker symbol picks up the terms for which r is even. Of interest is especially the
probability of return to the departure site

P0 ,0 (t) = δt,2⌈ t−1
2

⌉P

(

N (t) =
t

2

)

=







P

(

N(t) =
t

2

)

, t even

0, t odd.

(14)

In the subsequent section we specify the trial process selecting the direction of the jumps in (2) and

recall the notion of ‘discrete-time counting process’ which comes along as ‘renewal trial process’ with

connections to discrete-time semi-Markov chains. Essential elements of the theory of discrete-time
counting processes are developed in the recent article [32].
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3 Discrete-time renewal processes and trial schemes

In this section our goal is to introduce a trial process which defines the directions of the jumps in the

ADTRW. Consider a sequence of trials where each trial has two possible outcomes, “success” or “fail”.
For our convenience we introduce random variables Zr ∈ {0, 1}, a.s., representing these possible

outcomes, namely {Zr = 0} for a fail and {Zr = 1} for a success at trial r ∈ N. Furthermore, let
P(Zr = 1|Zr−1 = 0) = αr ∈ [0, 1], r ∈ N, P(Zr = 1|Zr−1 = 1) = α1, be the conditional probability of

success in the r-th trial conditional to the filtration Fr−1 (up to trial r − 1) to which the trial process

is adapted. Performing a sequence of k trials gives 2k possible outcomes. Each outcome (z1, z2, . . . , zk)

occurs with probability Pk(z1, z2, . . . , zk). The probability of a certain outcome in a sequence of k trials

has the structure
Pk(z1 , z2 , . . . , zk) = p1 (z1 )p2 (z2 ) . . . pk(zk), (15)

where the pr(zr), r ∈ {1, . . . , k} are in general conditional probabilities. As an example, the probability
that a trial sequence “(fail, fail, fail, success, fail, success)” occurs in a sequence of 6 trials then is with

above adaption rule P6(0, 0, 0, 1, 0, 1) = (1 − α1)(1 − α2)(1 − α3)α4(1 − α1)α2. If the αk is non constant

the process has a memory (i.e. it has non geometric waiting times). A sequence of k trials where the
first success occurs at trial k has then the probability

ψk = Pk(0 , . . . 0 , 1 ) = αk(1 − αk−1 ) . . . (1 − α1 ), αj ∈ [0 , 1 ], k ∈ N (16)

with the ‘survival probability’ (probability that in k − 1 trials all outcomes are fails) Pk−1(0, . . . , 0) =

Sk−1 =
∏k−1
j=1(1 − αj). On the other hand we observe that any discrete density ψk (k ∈ N) can be

represented as (16) within such a trial scheme with Sk−1 =
∑∞
r=k ψr and Sk = Sk−1 −ψk = Sk−1(1 −αk).

Notice that the survival probability1 Sk → S∞ = 0 as k → ∞. With the initial condition S0 = 1 it follows

then
∑∞
k=1 ψk = 1.

A pertinent example of (16) with memory is the Sibuya distribution (also referred to as Sibuya(α)

which has αk = β/k, β ∈ (0, 1), thus the probability of the first success at trial k is

ψβ(k) =
β

k

(

1 − β

k − 1

)

. . . (1 − β) = (−1)k−1

(

β

k

)

, β ∈ (0, 1), k ∈ N (17)

which is fat-tailed, i.e. for k → ∞ we have a heavy power-law tail ψβ(k) = β
k
Sβ,k−1 ∼ β

Γ(1−β)k
−1−β .

Hence, the Sibuya survival probability tends to zero as a power-law Sβ(k) = (−1)k
(β−1
k

)
∼ k−β

Γ(1−β)

reflecting the long-memory and non-markovian feature of the Sibuya trial process. We will come back
to the Sibuya distribution later on.

3.1 Discrete-time renewal process - generator process of the ADTRW

In order to establish the connection with discrete-time renewal processes with above mentioned adap-
tion rule we consider the conditional probabilities

P(Zk = 1|Zk−1 = 0) = αk, αk ∈ [0, 1]

P(Zk = 1|Zk−1 = 1) = α1, k ≥ 2

(18)

and probability of success P(Z1 = 1) = α1 in the first trial. Once in a trial sequence a success occurs
(i.e. Zr = 1) for the first time, say at trial r, then the probability for success in the subsequent trial is

1We do not consider here cases where S∞ = 1 −

∑
∞

k=1
ψk > 0 where a finite survival probability exists, i.e. a finite

probability that in infinitely many trials never a success occurs.
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reset to α1 as in the first trial and the process starts anew. In the renewal picture the trial number r of

first success can be seen as the integer renewal time (arrival time of event ‘success’) in a discrete-time
renewal process. For an outline of the theory of discrete-time counting processes and their connection

with discrete-time semi-Markov chains we refer to the recent article [32].

With these remarks we introduce the discrete-time counting process N(t) which counts the successes
among t trials (success = ‘arrival’ or ‘event’ in the counting process) as

N (t) =
t∑

j=1

Zj , N (0 ) = 0 , Zj ∈ {0 , 1} a.s. (19)

We call the so defined discrete-time counting process with conditional probabilities (18) ‘generator
process’ of the ADTRW. The number of trials between two successes then can be seen as IID interarrival
times ∆tj which can take positive integer values ∆tj ∈ {1, 2, . . . }. Further, to define the jump directions

in the ADTRW, we associate with each ‘success’ a positive jump and with each ‘fail’ a negative jump.
Hence, the integer variable N(t) ∈ N0 counts the number of positive jumps and t−N(t) the number of

negative jumps within the time interval [0, t] and clearly we have 0 ≤ N(t) ≤ t.
Then we define a discrete-time renewal process fulfilling (18) where the IID interarrival times follow

the waiting-time density (∆tj → t)

P(Z1 = 0 , . . . ,Zt−1 = 0 ,Zt = 1 ) = ψ(α1 , . . . , αt) = αt

t−1∏

j=1

(1 − αj), t ∈ {1 , 2 . . .}. (20)

We use from now on the synonymous notations ψt = ψ(t) = ψ(α1, . . . , αt) for (20). Of utmost importance
are the state probabilities, i.e. the probabilities that in t trials n successes occur (n arrivals up to time

t). The state probabilities are defined as

Φ(n)(α1 , . . . , αt) = P(N (t) = n) = P





t∑

j=1

Zj = n



 , n, t ∈ {0 , 1 , 2 , . . .} (21)

In general, for non-constant αt the complete history of the outcomes of t trials is considered, and the

generator process has a memory and is non-Markovian. The probability of no success (t successive
fails) in t trials writes

P(N(t) = 0) = S(α1, . . . , αt) =
∏t
j=1(1 − αt), t ∈ N

P(N(t) = 0)
∣
∣
t=0

= 1,

(22)

i.e. the survival probability which we have previously introduced. We have the initial condition P(N(t) =

n)|t=0 = δn,0 and we point out a further feature of discrete-time counting processes, namely P(N(t) = n)

is non-null only for n ∈ [0, t], reflecting that 0 ≤ N(t) ≤ t. One further observes the normalization

condition

P(N (t) ≤ t) =
t∑

n=0

P(N (t) = n) = 1 , (23)

of the state distribution (21). In other words (23) covers all 2t possible paths in the branching tree of
the t trials. In order to connect the trial process with the above biased random walk (see (2)) we define

the transition matrix for the jump taking place at instant t ∈ N as

Wt(Zt) = ZtW
+ + (1 − Zt)W

−, Zt ∈ {0 , 1}, t ∈ N. (24)
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For Zt = 1 (‘success’) the walker makes a positive jump following W+ and a negative jump following

W− otherwise. Then we have that

P(t) = E

t∏

j=1

[ZjW
+ + (1 − Zj)W

−]

= E

[

(W+)N(t)(W−)t−N(t)
]

=
t∑

n=0

P(N(t) = n)(W+)n(W−)t−n

(25)

which is the initially claimed ADTRW transition matrix (2).

For our convenience we will extensively make use of generating functions in this paper. Let ψ(t) be a
discrete-time density such as (20). Then we introduce its generating function by2

ψ̄(u) =
∞∑

t=1

ψ(t)ut , |u| ≤ 1 (26)

with ψ(t) = 1
t!
dt

dut
ψ̄(u)|u=0 and where ψ̄(u)|u=1 = 1 reflects the normalization of (20). Further, we impose

in (26) the initial condition ψ(t)|t=0 = 0 ensuring that the minimumwaiting-time between two successes
is ∆t = 1. Then we introduce the discrete convolution of two discrete distributions g(t), h(t) supported

on N0 by

[g ⋆ h](t) =:
t∑

n=0

g(n)h(t − n) (27)

with generating function
∑∞
t=0 u

t[g ⋆ h](t) = ḡ(u)h̄(u). Furthermore we denote in the following the

convolution powers as
[g ⋆ . . . ⋆ g
︸ ︷︷ ︸

n times

](t) = [g⋆]n(t),

which has generating function (ḡ(u))n (where especially [g⋆]1(t) = g(t) and [g⋆]0(t) = δt,0). For an outline
of the connections between generating functions, discrete-time convolutions and related shift-operator

representations and some essential properties with applications in discrete-time renewal processes we
refer to our recent article [33]. By simple conditioning arguments one obtains for the state probabilities

(21)

P(N (t) = n) = Φ(n)(t) = Φ(0 )(t) ⋆ [ψ(t)⋆]n = [S(α1 , . . . , αt) ⋆ [ψ(α1 , . . . , αt)⋆]
n ] (t), n, t ∈ N0 . (28)

The state probabilities (28) are non-zero for 0 ≤ n ≤ t simply telling us that the number of successes
in t trials is within 0 ≤ N(t) ≤ t. Especially convenient for the derivations to follow is to employ the

generating following function of the state probabilities (see [32, 33] for detailed derivations) with the
representation

Φ̄(n)(u) =
∞∑

t=0

P(N (t) = n)ut =
∞∑

t=n

Φn(t)ut =
1 − ψ̄(u)

1 − u
(ψ̄(u))n , n ∈ N0 (29)

with P(N(t) = n) = 1
t!
dt

dut
Φ̄(n)(u)|u=0 and ψ̄(u) is the generating function of the waiting time density (26)

where ψ̄(u) = α1u + o(u) = u
∑∞
t=1 ψ(t)ut−1 having lowest order u reflecting ψ̄(u)|u=0 = ψ(t)|t=0 = 0.

2We indicate generating functions of densities f(t) by f̄(u).
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Hence Φ̄(n)(u) = αn1u
n + o(un) thus as mentioned P(N(t) = n) = 0 for t < n. We further observe that

P(N(t) = n)|t=n = αn1 which is the situation when in t trials all outcomes are successes with N(t) = t.
It is convenient to introduce the polynomial of degree t (generating function of the state probabilities)

P(v, t) = EvN(t) =
∞∑

n=0

vn
P(N (t) = n) =

t∑

n=0

vn
P(N (t) = n), t ∈ N0 (30)

where the series stops at n = t as P(N(t) = n) = 0 for n > t. Thus this generating function is a

polynomial of order t. We call P(v, t) the ‘state polynomial’ of the generator process. Useful is also a
rescaled version (see also (25))

Λ(a, b, t) =: E [aN(t)bt−N(t)] =
t∑

n=0

anbt−n
P(N (t) = n) = bt P

(
a

b
, t

)

. (31)

We observe that P(v, t)
∣
∣
v=1

= Λ(1, 1, t) = 1 as a consequence of the normalization (23) and we have

Λ(v, 1, t) = P(v, t). (31) fulfills the scaling property Λ(λa, λb, t) = λtΛ(a, b, t). The state polynomials
(30) and (31) in the ADTRW model come along as matrix functions defining the transition matrix (25):

P(t) = Λ(W+,W−, t). The state polynomial contains the complete stochastic information of the simple
ADTRW. So for instance the expected position of the walker in a simple ADTRW at time t is obtained as

E[Yt]simple = E[N(t) − (t−N(t))] =

(
∂

∂a
− ∂

∂b

)

Λ(a, b, t)
∣
∣
∣
a=b=1

= 2
∂

∂v
P(v, t)

∣
∣
∣
v=1

− t,

(32)

containing the drift term −t which is removed from the coordinate system of the moving particle:

E[q(t)] = 2 ∂
∂v

P(v, t)
∣
∣
v=1

= 2E[N(t)]. This corresponds to a strictly increasing DTRW with jumps of size 2

(see (11)). Clearly, the expected position of the walker in a simple ADTRW is bounded −t ≤ E[Yt]simple ≤
t. Then, it is convenient to introduce the generating function of the state polynomial

P̄(v, u) =:
∞∑

t=0

utP(v, t) =
∞∑

t=0

ut
∞∑

n=0

vnP(N(t) = n), |u| < 1, |v| ≤ 1

=
∞∑

n=0

vnΦ̄(n)(u) =
1

(1 − u)

1 − ψ̄(u)

1 − vψ̄(u)
=

Φ̄(0)(u)

1 − vψ̄(u)

(33)

which is related to the generating function of (31), yielding

Λ̄(a, b, u) = P̄
(
a

b
, ub

)

=
∞∑

t=0

ut
t∑

n=0

P(N(t) = n)anbt−n =
1 − ψ̄(bu)

1 − bu

∞∑

n=0

an

bn
(ψ̄(bu))n

=
b[1 − ψ̄(bu)]

(1 − bu)[b− aψ̄(ub)]
, |u| < 1, |a|, |b| ≤ 1, (b 6= 0)

(34)

converging at least for |u| < 1. See also Appendix A.1 for some pertinent limiting cases. We have

Λ̄(1, 1, u) = P̄(1, u) = 1
1−u reflecting the normalization (23) and the initial condition

Λ̄(a, b, u)|u=0 = Λ(a, b, t)|t=0 = P̄(v, u)|u=0 = P(v, t)|t=0 = 1 , (35)

as P(N(t) = n)
∣
∣
t=0

= δn0. The ADTRW transition matrix (2) is then given by the matrix function

P(t) = Λ(W+,W−, t) =
1

t!

dt

dut

(

W−[1 − ψ̄(W−u)]

(1 − W−u)[W− − W+ψ̄(W−u)]

) ∣
∣
∣
∣
u=0

(36)
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and fulfills the initial condition P(t)
∣
∣
t=0

= 1 as a consequence of (35). The convergence of the matrix

generating function Λ̄(W+,W−, u) is ensured by the fact that the eigenvalues W±(ϕ) of the transition

matrices W± fulfill |W±(ϕ)| ≤ 1 [39, 40]. In general we have that Λ̄(a, b, u) 6= Λ̄(b, a, u) where the

absence of the exchange symmetry is telling us that the ADTRW is in general biased even if W+
0,p−q =

W−
0,−(p−q) have mirror symmetry. As a consequence of the asymmetry of the walk the eigenvalues of

the transition matrix Λ(e−iϕ, eiϕ, t) ∈ C are complex and the transition matrix (36) is generally not
symmetric. This holds true with the exception of the class of ‘strictly unbiased walks’ where the

transition matrices are self-adjoint (symmetric) with real eigenvalues being even functions of ϕ. We
will prove in Section 5 that a simple ADTRW is strictly unbiased only if its generator process is the

symmetric Bernoulli process.

We observe that the state polynomial Λ(a, b, t) fulfills the following renewal equation (see Appendix A.2)

Λ(a, b, t) = btΦ(0)(t) +
t∑

r=1

abr−1ψ(r)Λ(a, b, t − r), t ∈ N,

Λ(a, b, t)
∣
∣
t=0

= 1

(37)

containing the survival probability P(N(t) = 0) = Φ(0)(t) = S(α1, . . . , αt) =
∏t
ℓ=1(1 −αℓ) and the waiting

time density ψ(t) = αtS(α1, . . . , αt−1) (see (20) and (22)). The right-hand side of the renewal equation

contains the history of the process {Λ(a, b, r)} (0 ≤ r ≤ t − 1) reflecting the memory and the non-

markovian nature of the ADTRW. The renewal equation is especially useful for numerical evaluations
to successively compute Λ(a, b, t) from all its previous values and the waiting time density ψ(r) (r ∈
{1, . . . , t}) of the generator process. For instance, for t = 1 we have Λ(a, b, 1) = b(1 − α1) + aα1,
and so forth. The renewal equation for the state polynomial is contained in (37) by accounting for

P(v, t) = Λ(v, 1, t). By simply replacing a → W+, b → W− (37) takes the form of a time-evolution
equation with memory which governs the transition matrix (36). For the simple walk (i.e. Ŵ+ = T̂−1,

Ŵ− = T̂+1) we get

Pi,j(t) = Φ(0)(t) δi,j+t +
t∑

r=1

ψ(r)Pi,j+r−2(t− r), t ∈ N

Pi,j(t)
∣
∣
t=0

= δij

(38)

being solved by the transition matrix of the simple ADTRW of (13). Then we can rewrite the renewal
equation as a master equation with memory as

Pij(t) − Pij(t − 1 ) = Φ(0 )(t) δi,j+t +
∞∑

r=1

ψ(r)[Pi,j+r−2 (t − r) − Pij(t − 1 )], t ∈ N (39)

with initial condition Pij(t)
∣
∣
t=0

= δij . Also, recall causality, i.e. Pij(t) = 0 for t < 0. Consult also
Appendix A.2 for some operator representations. It appears instructive to consider the following two

limiting cases which correspond to strictly increasing and decreasing walks, respectively.

(i) Markovian limit

A markovian limit is obtained for the ‘trivial case’ when each trial almost surely is a success with

ψ(t) = δt,1 (α1 = 1), i.e. the waiting time density has the shortest possible tail of one time unit. The
survival probability then is Φ(0)(t) = δt,0. Then (37) boils then down to the memoryless recursion

Λα1 =1 (a, b, t) = δt,0 + aΛ(a, b, t − 1 ) (40)
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which has, with initial condition Λ(a, b, t)
∣
∣
t=0

= 1, the simple solution Λα1=1(a, b, t) = at independent of

b and therefore coincides with the limiting case Λ̄(a, 0, u) = 1
1−au for α1 = 1 and ψ̄(u) = u (see (134),

Appendix A.1). In this limit (38) takes the form

Pij(t) = δijδt,0 + Pi,j−1(t− 1)

P(t) = 1δt,0 + W+P(t − 1), W+
ij = T̂−1δij = δi,j−1

(41)

being solved by P(t) = [W+]t = T̂−t1 with entries

Pij(t) = T̂−tδi,j = δi,j−t (42)

i.e., as said, corresponding to a strictly increasing walk where the walker makes at each time increment
a jump of size +1 and is at time t on site j = t when departing on i = 0 (almost surely). The transition

matrix Qi,j(t) = T̂−2tδi,j = δi,j−2t seen by the moving particle in this limit gives a strictly increasing
walk of constant jump size +2.

(ii) Limit of long waiting times: ‘Frozen limit’

Another limiting case of interest is when the waiting time density is concentrated at infinity, i.e. the

probability for a success in the generator process becomes smaller and smaller (though not zero) and

the waiting time density then has an extremely long tail. We then have that αt ≤ ǫ → 0 for each finite
t. Examples for this limit include the geometric waiting-time density ψB(t) = pqt−1 for p = ǫ → 0, or in

the Sibuya density (17) this limit is obtained for β → 0 (considered subsequently). In the Bernoulli case
the survival probability Φ(0)(t) = (1 − p)t remains close to one during a ‘very long’ time interval, i.e. at

time scales 0 ≤ t < 1/pδ with 1/pδ → ∞ for any δ ∈ (0, 1) and 1 ≪ 1/pδ ≪ 1/p. Indeed, for the Bernoulli
ADTRW we have for p → 0 the state polynomial (148) limp→0+ ΛB(a, b, t) = limp→0+(ap + qb)t = bt. This

limit is therefore connected with the limit Λ(a, b, t) when a → 0 having generating function (136) (see
Appendix A.1). The effect is that the survival probability Φ0(t) = (1 − α1) . . . (1 − αt) → 1− (for t finite)

remains for a very long time close to its initial value one thus the walker remains a long time ‘frozen’

in its ‘ground state’ N(t) = 0 (though not ‘forever’ as eventually Φ0(t) → 0 for t ≫ 1/ǫ). The renewal
equation for the frozen limit becomes

Λ(a, b, t) = btΦ(0 )(t) ∼ bt , 0 ≤ t <
1

ǫδ
≪ 1

ǫ
, δ ∈ (0 , 1 ) (43)

and it is independent of a, so that in such a walk negative jumps strongly dominate. The renewal

equation (38) then writes

Pij(t) = T̄tδi,jΦ
(0 )(t) = δi,j+t, Φ(0 )(t) = 1−, 0 ≤ t <

1

ǫδ
≪ 1

ǫ
, δ ∈ (0 , 1 ). (44)

In the coordinate system of the moving particle the walker hence does not move for a long time which

is reflected by Qi,j(t) = T̂−tPi,j(t) = δi,j.

4 Connections with Bell polynomials

It appears instructive to point out in this section an interesting connection with a certain class of
Bell polynomials. Bell polynomials are named in honor of Eric Temple Bell who first introduced them
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[34, 35]. Consider first the generating function representation of convolution powers of the waiting-

time density:

[ψ∗]n(r) =
1

r!

dr

dur
(ψ̄(u))n

∣
∣
u=0

=
1

r!

dr

dur

(

ψ1u+ . . . ψr−n+1u
r−n+1

)n ∣
∣
u=0

=
1

r!

∑

n1+n2+...nr−n+1=n

n!

n1! . . . nr−n+1!
ψn1

1 ψn2
2 . . . ψ

nr−n+1

r−n+1

dr

dur
un1+2n2+...(r−n+1)nr−n+1

∣
∣
u=0

=
∑

n1+n2+...nr−n+1=n

n!

n1! . . . nr−n+1!
ψn1

1 ψn2
2 . . . ψ

nr−n+1

r−n+1 δr,n1+2n2+...(r−n+1)nr−n+1

= Br,n(ψ1, ψ2, . . . , ψr−n+1), 1 ≤ n ≤ r ∈ N.

(45)

We have [ψ∗]n(r) = 0 for n > r and therefore

Br ,n = 0 , n > r . (46)

In (45), for the expression of ψ̄(u) we omit the terms with orders t > r − n + 1 as they give zero

contribution. We further have Br,1 = ψr. The trivial cases n = 0 and r = 0 (considering [ψ∗]0(r) = δr,0,
r ∈ N0), yield

Br,0 = δr,0, r ∈ N0

B0,n = (ψ̄(u))n
∣
∣
∣
∣
u=0

= δ0,n.

(47)

The quantities Br,n(ψ1, ψ2, . . . , ψr−n+1) are referred to as the incomplete ordinary Bell polynomials [34,
35]. The Kronecker symbol δr,n1+2n2+...(r−n+1)nr−n+1

indicates that the only terms which contribute are

those for which
∑r−n+1
k=1 knk = r and nk (0 ≤ nk ≤ n) are non-negative integers such that in above

multinomial
∑r−n+1
k=1 nk = n. This summation covers all possible partitions of the integer r into n

members where each member is of integer size k = 1, 2, . . . , r − n + 1 ∈ N. The member k occurs with
multiplicity nk where for n > r no such partition exists thus (46) holds true. For instance, when r = n

there is only one partition into n members, namely each member of size k = 1 with multiplicity n1 = r.
On the other hand, for n = 1 there is only one partition (i.e. nk = 1) of size k = r. It follows hence from

(45) that

(ψ̄(u))n =
∞∑

t=n

utBt,n(ψ1 , ψ2 , . . . , ψt−n+1 ). (48)

To avoid any confusion we point out that the incomplete ordinary Bell polynomials Br,n and the incom-

plete exponential Bell polynomials Bexp
r,n are related by [35]

Bexp
r ,n (x1 , . . . xr−n+1 ) =

r !

n!
Br ,n

(
x1

1 !
,

x2

2 !
, . . . ,

xr−n+1

(r − n + 1 )!

)

. (49)

Indeed the exponential Bell polynomials come into play in the remarkable Faà di Bruno’s formula [38]

emerging in a composition of functions from the chain rule dt

dxt
f(τg(x))

∣
∣
x=0

. For an outline of this

beautiful theory and its interpretations in combinatorics we refer the interested reader to [36, 37] and
the references therein.
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For a fixed t ∈ N, by means of the set of ordinary incomplete Bell polynomials {Bt,n} (1 ≤ n ≤ t) we

can generate the complete ordinary Bell polynomial as

Bt(ψ1, ψ2, . . . , ψt; v)

=
t∑

n=1

vnBt,n(ψ1, ψ2, . . . , ψt−n+1) =
1

t!

dt

dut

(

vψ̄(u)

1 − vψ̄(u)

) ∣
∣
∣
∣
u=0

, t ∈ {1, 2, . . .}
(50)

and with B0,0 = 1 we have B0 = 1. Then, by accounting for (29) the state polynomial writes

P(v, t) =
t∑

r=0

Φ(0 )(t − r)Br(ψ1 , ψ2 , . . . , ψr ; v), (51)

where in this convolution B0 = 1. Using the representation (50) we can write for the expected number

of arrivals within [0, t]

E[N (t)] =
∂

∂v
P(v, t)

∣
∣
∣
v=1

=
t∑

r=1

Br(ψ1 , . . . , ψr ; 1 ). (52)

5 Expected sojourn times on sites

An important issue in random walk theory are recurrence/transience features. If the walker in an

infinitely long walk returns to the departure site with probability one, the walk is said ‘recurrent’ and
’transient’ if this probability is smaller than one. A vast literature on this topic exists [28, 25, 27].

For the simple symmetric walk on Z
d the celebrated recurrence theorem was established by Pólya [29].

Recurrence and transience for symmetric Lévy flights in multi-dimensional lattices and fractal features
in distributions were analyzed in [41] and a recurrence theorem for these motions was established

[42, 43]. Further models considering recurrence and transience for modified Lévy motions emerged
only recently [44].

Recurrence/transience of a walk is an intrinsic property linked to the expected sojourn time (EST)
of an infinitely long walk. The EST on site n (departure sitem) in an infinitely long ADTRW (i.e. t → ∞)

can be extracted from the generating function of the transition matrix (36):

E[τm,n] = E[τ0,n−m] =
∞∑

t=0

[P(t)]m,n = [Λ̄(W+,W−, u)]m,n
∣
∣
u=1

=
1

π
ℜ
∫ π

0

W−(ϕ)[1 − ψ̄(W−(ϕ))]

(1 −W−(ϕ)){W−(ϕ) −W+(ϕ)ψ̄[W−(ϕ)]}
eiϕ(n−m)dϕ.

(53)

Here ℜ extracts the real part of the following complex quantity.

The ADTRW is transient if E[τ0,0] < ∞ and recurrent if this quantity diverges. It is sufficient to

consider the EST on the departure site in order to verify recurrence/transience and we have that
E[τm,n]/E[τ0,0] ≤ 1. In a transient walk a site is visited only a finite number of times as t → ∞ whereas

in a recurrent walk (E[τ0,0] = ∞) infinitely often by recurrent visits.

5.1 Recurrence/Transience features of the simple ADTRW

The goal of the present part is to explore recurrence/transience features of simple ADTRWs by means
of analyzing their EST. The EST on site n (departure site 0) of (53) has the canonical form

E[τ0 ,n]simple =
1

π
ℜ
∫ π

0
einϕΛ̄(e−iϕ, eiϕ, u)

∣
∣
∣
∣
u=1

dϕ, Λ̄(e−iϕ, eiϕ, u) = P̄(e−2iϕ, ueiϕ), n ∈ Z. (54)
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with transition matrices W+
1 = T̂−11, W−

1 = T̂11 having eigenvalues W+
1 (ϕ) = e−iϕ and W−

1 (ϕ) =

eiϕ (ϕ ∈ (−π, π]) due to the occurrence of (positive and negative) unit jumps. For what follows it is
important to keep in mind that in our convention the transition matrices have identical left eigenvectors

which are row-vectors with components eiϕn/
√

2π (to fulfill T̂−1e
iϕn/

√
2π =

∑∞
s=−∞ δs,n−1e

iϕs/
√

2π =

e−iϕeiϕn/
√

2π), and identical right eigenvectors which are column-vectors with components e−iϕm/
√

2π

(see (8)). Note that Λ̄(1, 1, u) = 1/(1 − u) (see (34)) is diverging for u → 1. Correspondingly the
generating function Λ̄(e−iϕ, eiϕ, 1) becomes singular for ϕ → 0 which is the only singularity in the

integration interval. The type of this singularity is crucial for the integrability of (54) at ϕ = 0 and
hence to understand whether the walk is recurrent or transient. In order to explore this singular

behavior we expand

ℜ
{

P̄(e−2iϕ, eiϕ)
}

= ℜ
{

[1 − ψ̄(eiϕ)]

(1 − eiϕ)

1

[1 − e−2iϕψ̄(eiϕ)]

}

(55)

for small ϕ. To this end we need to account for the following possible cases: the interarrival time

density ψ(t) is either (a) fat-tailed (FT) or (b) light-tailed (LT). To capture this feature we expand the
generating function ψ̄(u) = ψ̄µ(u) around the critical value u = 1 which gives

ψ̄µ(u) = 1 − Aµ(1 − u)µ + o((1 − u)µ), µ ∈ (0 , 1 ] |1 − u| → 0 . (56)

containing the positive constant Aµ > 0 (independent of u) and µ indicates the lowest order occurring

in this expansion. Let us now analyze the FT and LT cases separately.

(a) µ ∈ (0, 1): ψ̄µ(t) fat-tailed (FT)
We call a waiting-time density ‘fat-tailed’ (FT) if (56) is weakly singular at u = 1 leading to an asymptotic
power-law decay ψµ(t) ∼ Aµ(−1)t−1

(µ
t

)
∼ Aµµ

Γ(1−µ) t
−µ−1 (t → ∞) which is of the same type as in the Sibuya

distribution. Therefore, the Sibuya distribution is a prototypical example for a FT distribution and of
utmost importance. We will consider it closely in Section 6. (55) then takes for ϕ small

P̄µ ∼ Aµ(1 − eiϕ)µ−1

1 − e−2iϕ[1 −Aµ(1 − eiϕ)µ]
∼ i

ϕ

1

(1 + 2
Aµ
iµ+1ϕ1−µ)

, (ϕ → 0)

∼ i

ϕ
+

2ϕ−µ

Aµ
iµ.

(57)

Taking the real part shows the weakly singular behavior

ℜ{P̄µ} ∼ 2ϕ−µ

Aµ
cos

(
µπ

2

)

> 0 , µ ∈ (0 , 1 ), (ϕ → 0+) (58)

and hence it is integrable at ϕ = 0. We conclude that in the fat-tailed range µ ∈ (0, 1) the integral

(54) exists, i.e. the EST on the sites is finite. Therefore, simple ADTRWs with generator processes of
fat-tailed interarrival time densities always are transient. A sufficient criteria is the weakly singular

behavior of the state probability generating functions

∞∑

t=0

P(N (t) = n) = lim
u→1

1 − ψ̄(u)

1 − u
ψ̄(u)n = lim

u→1
Φ̄(0 )
µ (u) ∼ Aµ(1 − u)µ−1 → ∞, µ ∈ (0 , 1 ) (59)

independent of state n reflecting the universal asymptotic power-law behavior
Φ

(n)
µ (t) ∼ Aµ(−1)t

(µ−1
t

)
∼ Aµ

t−µ

Γ(1−µ) (t → ∞), see e.g. [33].

(b) µ = 1: ψ̄1(t) light-tailed (LT)
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We call an interarrival time density ‘light-tailed’ (LT) if its decay for large t is at least geometrical or
faster, i.e. there are constants C, ξ > 0 such that |ψ̄(t)| ≤ Ce−tξ for t → ∞. As a consequence LT
densities have finite moments (see also Appendix A.4). For our convenience we introduce the complex

variable z = eiϕ to rewrite the EST on the sites n ∈ Z (54) in an infinitely long walk as a closed complex
contour integral over the unit circle |z| = 1, namely

E[τ0,n]simple = lim
ǫ→0+

Λ̄(T̂−1, T̂1, e
−ǫ)δ0,n = lim

ǫ→0+

∞∑

t=0

e−tǫP0,n(t)simple, (ǫ > 0)

= lim
ǫ→0+

1

2π

∫ π

−π
einϕ P̄(e−2iϕ, ei(ϕ+iǫ)) dϕ

= lim
ǫ→0+

1

2πi

∮

|z|=1

[1 − ψ̄(ze−ǫ)]

(1 − ze−ǫ)

zn+1

[z2 − ψ̄(ze−ǫ)]
dz

=: P.V.
1

2πi

∮

|z|=1

zn+1 Φ̄(0)(z)

(z − 1)[z + 1 − Φ̄0(z)]
dz

= P.V.
1

2πi

∮

|z|=1

zn Φ̄(0)(z)

z − ḡ(z)
dz.

(60)

In the last line we introduced ψ̄(z) = zḡ(z) with the auxiliary generating function ḡ(z) (see Appendix
A.4 for essential features). The integrand of (60) is singular at z1 = 1 (corresponding to the singularity

of (55) at ϕ = 0). In order to achieve a regularization we consider instead of u = 1 the limit u = e−ǫ for
infinitesimally positive ǫwith Λ(e−iϕ, eiϕ, u)

∣
∣
u=e−ǫ = P̄(e−2iϕ, ei(ϕ+iǫ)). In this way we shift the singularity

at z1 = 1 infinitesimally away from the unit circle and obtain a well defined integral.

Let us explore in which direction this regularization procedure shifts the singularity z1 = 1. First, we

observe as a consequence of the LT feature that the generating function of the survival probability
Φ̄(0)(z) is analytical and finite at z = 1 (see (64), (65)) thus the singularity at z1 = 1 is due to the zero

z2 − ψ̄(z) = 0. To this end we put the shifted zero to z1(ǫ) = eaǫ which is infinitesimally close to one,
where the constant a is independent of ǫ and has to be determined from z2 − ψ̄(ze−ǫ) = 0, leading to

e2aǫ − ψ̄(e(a−1 )ǫ) = 0 . (61)

The first order in ǫ must identically vanish, which yields

a =
A1

A1 − 2
= −1 + g1

1 − g1

, g1 =
d

dz
ḡ(z)|z=1 = A1 − 1 (62)

where the constant A1 = d
dz
ψ̄(z)|z=1 =

∑∞
t=1 tψ(t) (with A1 ≥ 1) indicates the expected waiting time

between successes (positive unit jumps). The sign of the parameter a is crucial in order to see whether
z1 = eaǫ is within or outside the unit disc. It follows that (i) a > 0 for A1 > 2 and (ii) a < 0 for A1 < 2,

and therefore

z1 ∼ e
ǫA1
A1−2 ∼ 1+, for A1 > 2,

z1 ∼ e
ǫA1
A1−2 ∼ 1−, for 1 ≤ A1 < 2.

(63)

Hence the residue at z1 = 1 contributes to (60) for 1 ≤ A1 < 2 but does not contribute in the range

A1 > 2. Interestingly, the sign of the infinitesimal shift is solely determined by the sign of B = 2 − A1.
Later on we will see more closely that B is a measure for ‘bias’ in an asymptotic sense which emerges
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in a simple ADTRW for large t.

Crucial for the further analysis is the expansion of the generating function of the survival probability

Φ̄(0)(z) =
1

z − 1

(

−1 + ψ̄(1) +
∞∑

ℓ=1

(z − 1)ℓ

ℓ!

dℓ

dzℓ
ψ̄(z)

∣
∣
z=1

)

= A1 +
∞∑

ℓ=2

Aℓ(z − 1)ℓ−1, Aℓ =
1

ℓ!

dℓ

dzℓ
ψ̄(z)

∣
∣
z=1

≥ 0

(64)

which is analytic on the unit disc |z| ≤ 1 where allAℓ are finite as a consequence of the LT feature of ψ(t).
The lower bound of the expected waiting time A1 is A1 = 1 and occurs only in the trivial case when

each trial almost surely is a success, corresponding to the interarrival time density ψtrivial(t) = δ1t,
i.e. for ψ̄trivial(z) = z. Further, we observe that Φ̄(0)(z)

∣
∣
z=0

= A1 − ∑∞
l=2(−1)ℓAℓ = 1 recovering the

initial condition of the survival probability. On the other hand d
dz
ḡ(z)

∣
∣
z=1

= g1 = A1 − 1 ≥ 0 thus
g1 =

∑∞
l=2(−1)ℓAℓ. In particular, we have that

Φ̄(0 )(z)
∣
∣
z=1

= Φ̄(n)(z)
∣
∣
z=1

= lim
z→1

1 − ψ̄(z)

1 − z
=

d

dz
ψ̄(z)

∣
∣
z=1

=
∞∑

t=1

tψ(t) = A1 ≥ 1 (65)

yielding the expected interarrival time between successive successes. We hence observe the inequality

1 ≤ Φ̄(0)(z) ≤ A1 for z ∈ [0, 1] where we also use that Φ̄(0)(z) is absolutely monotonic (AM) in that
interval (see Appendix A.4). Clearly by using the LT feature (65) it follows for the state probabilities

∞∑

t=0

P(N (t) = n) =
(

Φ̄(0 )(z)(ψ̄(z))n
) ∣
∣
z=1

= A1 , ∀n ∈ N0 . (66)

Hence, recurrence/transience solely depends on the singularities of the part z
(z2−ψ̄(e−ǫz))

(ǫ → 0+) within

the unit disc where

D(z) = z2 − ψ̄(z) = −z (ḡ(z) − z) , ψ̄(z) = zḡ(z). (67)

We prove in Appendix A.4 that the complex function ḡ(z)− z has a canonical representation of the form

ḡ(z) − z = (z − 1 )(z − r)eh(z), r ∈ R
+, |z| ≤ 1 , (68)

which exists at least on the unit disc |z| ≤ 1. The zero r is real with the properties r = r(A1) > 1 for

A1 < 2 and r(A1) < 1 for A1 > 2. Further, r = 1 for A1 = 2 which is the recurrent limit where the
multiplicity of the zero z = 1 then is two. The contribution eh(z) has no zeros and h(z) is analytic at least

on the unit disc |z| ≤ 1. Consult Appendix A.4 for a detailed discussion with proofs and the example of
Poisson distributed waiting times where a canonical form (68) for all z ∈ C exists (see (168)). Due to

the structure of the zeros of (68) in the evaluation of (60) by residue theorem we have to distinguish
the two cases 1 ≤ A1 < 2 and A1 > 2.

For 1 ≤ A1 = g1 + 1 < 2 (g1 = d
dz
ḡ(z)|z=1 ∈ (0, 1)) we get

E[τ0 ,n]simple =







Φ̄0(z)

1 − d
dz
ḡ(z)

∣
∣
z=1−

=
1 + g1

1 − g1
=

A1

2 −A1
, n ∈ N0

A1

2 −A1
+

1

(|n| − 1)!

d|n|−1

dz|n|−1

(

Φ̄(0)(z)

z − ḡ(z)

)

∣
∣
z=0

, −n ∈ N

(69)
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where we accounted for (63), i.e. the fact that singularity at z = 1 → 1− is for A1 < 2 infinitesimally

shifted inside the unit disc and therefore contributes whereas the second zero r(A1) > 1 does not
contribute. The second line in (69) refers to the sites n < 0 where due to z−|n| an additional singularity

at z = 0 occurs. Remarkably, all sites n ≥ 0 are equally long visited in an infinitely long walk, namely
E[τ0,n]simple = E[τ0,0]simple = 1+g1

1−g1
≥ 1 with 0 ≤ g1 < 1 in the range 1 ≤ A1 < 2. Moreover, in the trivial

strictly increasing walk where each jump almost surely is of size +1 with A1 = 1 we have the minimum
value τ0,n = 1 ∀n > 0 where the EST on all these sites is one.

We observe that E[τ0,n] → ∞ for A1 → 2 which is hence the recurrent limit. In the recurrent limit
the expected waiting time between jumps of the same direction is A1 = 2 which physically means that

for t → ∞ an equal expected numbers of jumps +1 and −1 occur. We expect therefore that a recurrent

simple ADTRW is unbiased at least in an asymptotic sense, i.e. for an infinitely long observation time.
We prove this assertion subsequently in this section (see (80)) and explore the interplay of bias and

recurrence/transience features. To this end we consider the quantity B = 2 −A1 which will turn out to
contain crucial information on the bias.

We call a simple ADTRW strictly unbiased if the following conditions (i) and (ii) are fulfilled.

(i) A1 = 2 (B = 0), i.e. the walk is recurrent and the expected position (80) is null in the limit of an
infinitely long observation t → ∞.

(ii) The state polynomial (31) and its generating function fulfill the exchange symmetry property
Λ̄(a, b, u) = Λ̄(b, a, u), and as a consequence the transition matrix then is symmetric (self-adjoint) with

Λ(T̂−1, T̂1, t) = [Λ(T̂−1, T̂1, t)]
† = Λ(T̂1, T̂−1, t)

as the unitary shift operators (T̂−1)† = T̂1 are adjoint to each other. As a consequence of (ii) the

eigenvalues of the transition matrix Λ(e−iϕ, eiϕ, t) = Λ(eiϕ, e−iϕ, t) (and of its generating function matrix
Λ̄(e−iϕ, eiϕ, u)) are real and even functions of ϕ. We also see that in this case the expected position of

the walker (32)

E[Yt ]simple =

(
∂

∂a
− ∂

∂b

)

Λ(a, b, t)
∣
∣
∣
a=b=1

= 0 , ∀t ∈ N0 (70)

is null for all times as a consequence of the exchange symmetry Λ(a, b, t) = Λ(b, a, t) (where 0 is the

departure site). The occurrence of a symmetry in Λ(a, b, t) such as the exchange symmetry a ↔ b re-
flects a conserved quantity, namely E[Yt]simple = 0. We point out that this observation has a remarkable

analogy with Noether’s theorem which roughly tells us that each symmetry corresponds to a conserved
quantity [45]. If (ii) is fulfilled (i) is fulfilled, conversely if (i) is fulfilled (ii) does not necessarily hold

true. To see this, consider the generating function (see (78) below) of the expected position of the

walker. For a strictly unbiased simple ADTRW this quantity must vanish which yields a condition for
the generating function ψ̄unbiased(u) of the generator process for which the walk is strictly unbiased,

namely3

2 ψ̄unbiased(u)

(1 − u)(1 − ψ̄unbiased(u))
− u

(1 − u)2
= 0 . (71)

This yields

ψ̄unbiased(u) =
u

2 (1 − u
2

)
(72)

that is the generating function ψ̄B(u) = pu
1−qu with geometrically distributed waiting times ψB(t) = pqt−1

of the Bernoulli generator process for the symmetric case p = q = 1/2. In particular, we have the state

polynomial ΛB(a, b, t) = (a + b)t/2t (see (148)) which indeed fulfills the claimed exchange symmetry

3u/(1 − u)2 being the generating function of t and ∂
∂v
P̄ (v, u)

∣
∣
v=1

= ψ̄(u)

(1−u)(1−ψ̄(u))
.
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ΛB(a, b, t) = ΛB(b, a, t), i.e. condition (ii). We have for this recurrent walk indeed A1 = 1/p = 2, i.e.

condition (i) also holds true. Since the result (72) is unique for simple walks, it follows that the simple
ADTRW with symmetric Bernoulli generator process with p = q = 1/2 indeed is the only one which is

strictly unbiased, i.e. fulfills conditions (i) and (ii) with (70) for all times t ∈ N0. Further, note that
this is consistent with the fact that the interarrival times between two consecutive successes and those

between to consecutive fails are equally distributed. We consider briefly the Bernoulli ADTRW at the
end of this section and consult Appendix A.3 as well as the references [29, 28, 25, 26, 27]. The class of

simple walks with A1 = 2 which do not have Bernoulli generator process are recurrent fulfilling (i) but
they are not strictly unbiased since they do not fulfill (ii). The class of these simple walks is unbiased

in an asymptotic sense, i.e. limt→∞ E[Yt]simple = 0 (see (80) for A1 = 2).

We devote the subsection 5.2 to consider the class of admissible prescribed functions for the expected

position E[Yt]simple = f(t) in an ADTRW.

The class of simple ADTRWs with A1 6= 2 are both biased and transient (with finite EST E[τ0,n]simple ≤
E[τ0,0]simple < ∞). The walk is ‘right-biased’ for A1 < 2 (B > 0) where the expected number of positive
jumps dominates, and ‘left-biased’ for A1 > 2 (B < 0) with domination of the expected number of

negative jumps in infinitely long walks. In the picture of Gambler’s Ruin Problem the simple ADTRW
defines in the range B = 2 − A1 > 0 (B ∈ (0, 1]) a long-time ‘winning strategy’. We will come back to

the asymptotic behavior subsequently.

For A1 > 2 (g1 = d
dz
ḡ(z)|z=1 ∈ (1,∞)) the EST integral (60) yields

E[τ0 ,n ]simple =







rn Φ̄(0)(r)

1 − d
dz
ḡ(z)

∣
∣
z=r

n ∈ N0

rn Φ̄(0)(r)

1 − d
dz
ḡ(z)

∣
∣
z=r

+
1

(|n| − 1)!

d|n|−1

dz|n|−1

(

Φ̄(0)(z)

z − ḡ(z)

)

∣
∣
z=0

, −n ∈ N.

(73)

where the zero of (68) r = r(A1) ∈ (0, 1) and the singularity at z = 1 → 1+ is here infinitesimally shifted

outside the unit disc and therefore does not contribute (see (63)). By using the convex feature of ḡ(z)

we show in Appendix A.4 that d
dz
ḡ(z)

∣
∣
z=r

∈ (0, 1) (see (163)) ensuring that (73) is strictly non-negative.

The EST on the sites n ≥ 0 on the right of the departure node decays geometrically as rn which is
consistent with the picture that this walk with B = 2 − A1 < 0 is left-biased for t → ∞. Therefore the

geometric decrease of the EST for positive sites physically makes sense.

Indeed, (69) and (73) are both positively singular for the recurrent limit A1 = 2 (B = 0), thus in-
tegrability of the contour integral (60) breaks down as the multiplicity of zero z = r = 1 in (68) is

two. The divergence of (73) for A1 = 1 + g1 → 2+ can be seen by r(A1) → 1− and accounting for
d
dz
ḡ(z)

∣
∣
r(A1)

→ 1− in this limiting case (see Appendix A.4 for a detailed outline of related properties).

Consider again (69) in the range A1 < 2 for the left neighbor site n = −1 from the departure site. We
have

E[τ0 ,−1 ]simple =
A1

2 − A1

− Φ̄0 (z)

ḡ(z)

∣
∣
z=0

=
A1

2 − A1

− 1

α1

, 1 ≤ A1 < 2 (74)

where we used ḡ(0) = ψ(1) = α1 together with the initial condition of the survival probability Φ̄(0)(z)
∣
∣
z=0

=

Φ(0)(t)
∣
∣
t=0

= 1. We see that E[τ0,−1]simple < E[τ0,0]simple which clearly reflects the fact that the walk with
B = 2 − A1 > 0 is right-biased as t → ∞ where the jumps in positive direction dominate. For a proof

of non-negativeness of E[τ0,−1]simple consult Appendix A.4. For the trivial walk with A1 = 1, α1 = 1 we

have E[τ0,0] = 1, i.e. the walker is present on the departure site almost surely only during one time unit
following its departure at t = 0. On the other hand we then have E[τ0,−1] = 0, i.e. the site −1 is almost
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surely not visited in the strictly increasing trivial walk. Consider the trivial walk A1 = 1 for all n < 0

which yields (where in this case Φ̄0(z) = 1 and ḡ(z) = 1)

E[τ0 ,−n ]simple = 1 +
1

(n − 1 )!

dn−1

dzn−1

1

(z − 1 )

∣
∣
z=0

= 1 +
(−1 )n−1

(z − 1 )n

∣
∣
z=0

= 0 n ∈ N (75)

i.e. all sites on the negative side of the departure node are almost surely not visited. This is perfectly

consistent with the physical picture of the trivial strictly increasing walk performing unit jumps +1

almost surely in each time increment.

A further interesting quantity also is the probability that a site n in an infinitely long walk is ever visited

(for n = 0 that the walker ever returns to the departure site). This quantity is related with the EST by

[29, 25, 42, 43]

F0 ,n =
E[τ0 ,n ]simple − δ0 ,n

E[τ0 ,0 ]simple

(76)

and yields for 1 ≤ A1 ≤ 2:

F0,0 =
2(A1 − 1)

A1

F0,n = 1, n = {1, 2, . . .} ∈ N.

(77)

The quantity 1−F0,0 = (E[τ0,0]simple)
−1 can be interpreted as the ‘escape probability’, i.e. the probability

that the walker never returns to the departure site. Further, we have 0 ≤ F0,0 ≤ 1 where in the
recurrent limit F0,0 = 1 and we have F0,0 < 1 in all transient (biased) cases (A1 6= 2). For A1 = 1 have

F0,0 = 0 (almost surely no return to the departure site) and a.s. no visits on negative sites F0,−n = 0

(−n < 0) in the trivial strictly increasing walk. In the recurrent limit A1 = 2 we have for all sites

F0,0 = F0,n = 1 (n ∈ Z), i.e. each site is almost surely ever visited.

It appears instructive to consider here also the connection of bias and expected position of the walker

(32) for large times t → ∞. The generating function Ȳ (u) of this quantity is

Ȳ (u) = 2
∂P̄
∂v

(v, u)|v=1 − u

(1 − u)2

=
2ψ̄(u)

(1 − u)(1 − ψ̄(u))
− u

(1 − u)2

(78)

where u
(1−u)2 =

∑∞
t=1 tu

t is the generating function of t ∈ N0 and N̄(u) = ∂
∂v

P̄(v, u)
∣
∣
v=1

of the expected
number of arrivals. In order to capture the large time asymptotic behavior we expand (78), u → 1−,

and arrive at

Ȳ (u)simple ∼ (2 − A1 )

A1

u

(1 − u)2
, u → 1− (79)

which gives the asymptotics for the expected position of the walker for t large

E[Yt ]simple ∼ (2 − A1 )

A1

t, t → ∞. (80)

The sign of this quantity defines the bias in an asymptotic sense where this formula holds for all B and
indeed in the recurrent case B = 0 the walk is unbiased in the limit t → ∞. For the Bernoulli generator

process (80) recovers the well known classical result (149) (see Appendix A.3). For the trivial strictly
increasing walk with A1 = 1 we have necessarily E[Yt]simple = t. On the other hand the asymptotic

behavior E[Yt]simple = −t is approached in the fat-tailed limit A1 → ∞ and is indeed the dominant
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contribution in the asymptotic formula (108) for the simple Sibuya ADTRW considered in Section 6.

Simple Bernoulli ADTRW
Let us compare some of these results with the case of the Bernoulli generator process (see also Ap-

pendix A.3). The Bernoulli trial process has geometric light-tailed waiting-time density ψB(t) = pqt−1

(p+ q = 1) with generating function ψ̄B(z) = pz
1−qz where A1 = d

dz
pz

1−qz |z=1 = 1/p and we have for (68)

ḡB(z) − z =
p

1 − qz
− z = (z − 1 )(z − p

q
)

q

1 − qz
= (z − 1 )(z − p

q
)ehB(z) (81)

with the zeros 1, rB = p/q and hB(z) = log(q) − log(1 − qz). For A1 = 1/p < 2, i.e. p > q the second

zero rB > 1 is outside the unit disc in agreement with our above result that for A1 < 2 the function

ḡB(z) − z = 0 has the only (infinitesimally shifted) zero z1 = 1− in the unit disc (See Appendix A.3
for details). The second zero rB = p/q is within the unit disc only for A1 > 2 (p < q), and outside for

1 ≤ A1 < 2 (p > q) in agreement with the general behavior outlined above (and see Appendix A.3).
On the other hand p = q = 1

2 (A1 = 2) represents the recurrent limit and represents the only existing

strictly unbiased simple ADTRW where the multiplicity of the zero z1 = rB = 1 of (81) then is two and
E[(Yt)B ]simple = 0 ∀t.
One obtains with (69) and (73) for the EST on the departure site in an infinitely long simple Bernoulli
ADTRW

E[τ0 ,0 ]B = lim
ǫ→0+

1

2πi

∮

|z=1 |

dz

(−q)e−ǫ[z2 − eǫ z
q

+ p
q
]

=
1

|p − q| (82)

which is a classical result given by Feller [25] (see Chapter VIII).

5.2 Prescribed expected position and bias in a simple ADTRW

In many applications it may be interesting to prescribe in a simple ADTRW not the generator process,
but the expected position of the walker E[Yt]simple = f(t) where f(t) has to be an admissible function

which fulfils f(t)
∣
∣
t=0

= 0, t ∈ N. It follows from (32) that the class of admissible functions f(t) is

restricted by −t ≤ f(t) ≤ t and f(t) = −t + 2C(t) where C(t) is non-negative and non-decreasing with
0 ≤ C(t) ≤ t as a consequence of 0 ≤ N(t) ≤ t with C(t) = E[N(t)] and therefore is defined as well on

t ∈ N (with C(0) = 0). Its generating function C̄(u) is absolutely monotonic. Considering (32) we have
that

E[Yt ]simple = 2
∂

∂v
P(v, t)

∣
∣
∣
v=1

− t = f (t) = 2C (t) − t, t ∈ N0 . (83)

Let f̄(u) =
∑∞
t=1 f(t)ut be the generating function which we assume to converge at least for |u| < 1. It is

convenient to put f̄(u) = uk̄(u)/(1−u)2 (i.e. f(t) = t⋆k̄(t)) and k̄(u) = 2c̄(u)−1 with C̄(u) = uc̄(u)/(1−u)2.

Taking then generating function on both sides of (83) it yields

ψ̄f (u) =
u(1 + k̄(u))

2 [1 − u
2

(1 − k̄(u)]
=

uc̄(u)

1 − u + uc̄(u)
, k̄(u) = 2 c̄(u) − 1 (84)

where c̄(u) ∈ [0, 1] for u ∈ [0, 1). We observe that ψ̄f (u)|u=0 = 0 and ψ̄f (u)|u=1 = 1, i.e. ψf (t) has the

good properties of a waiting-time density supported on N. Generally, the resulting generator process
corresponding to (84) allows both LT and FT waiting-time densities ψf (t).

Consider the linear law f(t) = b0t with constant b0 ∈ [−1, 1]), (i.e. kb0(t) = b0δt,0). Then (84) takes the

form

ψ̄b0
(u) =

u(1 + b0 )

2 [1 − u
2

(1 − b0 ]
(85)
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where we identify this expression with the generating function of the LT waiting time-density of the

Bernoulli generator process with p = (1 + b0)/2 (and c̄(u) = p constant), q = (1 − b0)/2, i.e. b0 = p − q,
recovering the well known relation (149) for the expected position of the walker. The case f(t) = 0 ∀ t ∈
N0 is covered by k̄(u) = b0 = 0 in (85) and recovers the generating function (72) corresponding to the
strictly unbiased simple ADTRW, i.e. the ADTRW with the symmetric Bernoulli generator process.

6 Sibuya ADTRW

In this section we consider an ADTRW with generator process of Sibuya distributed interarrival times

as a FT prototypical case. We refer this walk to as ‘Sibuya ADTRW’. The probabilities of first success
(17) in a Sibuya trial process have generating function

ψ̄Sibuya(u) =
∞∑

t=1

(−1 )t−1

(

β

t

)

ut = 1 − (1 − u)β, |u| ≤ 1 , β ∈ (0 , 1 ). (86)

The FT feature of the Sibuya distribution is reflected by the divergence of the expected interarrival

time between successes: d
du
ψ̄Sibuya(u)

∣
∣
u=1

= β(1 − u)β−1|u=1 → ∞ (see also the asymptotic expansion
(56)). The generating function (33) of the Sibuya state polynomial yields

P̄Sibuya(v, u) =
(1 − u)β−1

1 − v + v(1 − u)β
, |u| < 1 , |v| ≤ 1 (87)

where necessarily P̄Sibuya(1, u) = 1
1−u (corresponding to the normalization of the Sibuya state probabil-

ities) holds true. Then we have for the generating function (34)

Λ̄Sibuya(a, b, u) = P̄Sibuya

(
a

b
, ub

)

=
b(1 − bu)β−1

b − a + a(1 − bu)β
(88)

with the limiting cases Λ̄Sibuya(1, 0, u) = 1
1−βu and Λ̄Sibuya(0, 1, u) = (1 − u)β−1 (see Appendix A.1 for

details). The Sibuya state polynomial is obtained from

PSibuya(v, t) =
1

t!

dt

dut
P̄Sibuya(v, u)

∣
∣
u=0

=
1

t!

dt

dut

{
∞∑

n=0

vn(1 − u)β−1 [1 − (1 − u)β]n
} ∣
∣
∣
∣
u=0

(89)

and yields

PSibuya(v, t) =
t∑

n=0

vnP(NSibuya(t) = n) =
1

t!

dt

dut

{
t∑

n=0

vn
n∑

ℓ=0

(

n

ℓ

)

(−1)ℓ(1 − u)βℓ+β−1

}

∣
∣
u=0

=
(−1)t

t!

t∑

n=0

vn
n∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

Γ(β[ℓ + 1])

Γ(β[ℓ+ 1] − t)

=
t∑

n=0

vn
n∑

ℓ=0

(−1)ℓ
(

n

ℓ

)(

t− β(ℓ+ 1)

t

)

.

(90)

The expression for the Sibuya state probabilities P(NSibuya(t) = n) and some related quantities were

derived earlier [32]. In Figure 1 we plot the state polynomial for different values of β where the non-
markovianity with long-time memory of the Sibuya generator process is reflected by very long waiting
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Figure 1: (Color online) Sibuya state polynomial of Eq. (90) for v = 0.1 and different values of β ∈ (0, 1)

with extremely long waiting times for small β. The fat-tailed power-law decay emerges for large t and

can be seen in the slopes of the log-log representation.

times for small β and shorter waiting times for larger β. One can identify the FT asymptotic power-law
decay for large t by the slopes (see also (94)). Then we have

ΛSibuya(a, b, t) = EaNSibuya(t)bt−NSibuya(t) = btPSibuya

(
a

b
, t

)

. (91)

The Sibuya ADTRW transition matrix then, with (2) and (90), yields

PSib(t) =
(−1 )t

t!

t∑

n=0

(W−)t−n(W+)n
n∑

ℓ=0

(−1 )ℓ
(

n

ℓ

)

Γ(β[ℓ+ 1 ])

Γ(β[ℓ+ 1 ] − t)
, t ∈ N0 (92)

with the initial condition PSibuya(t)
∣
∣
t=0

= 1. The terms for ℓ = 0 are all identical, namely Γ(t+1−β)
Γ(1−β)Γ(t+1)

and dominating for t → ∞. From Tauberian arguments it follows that this contribution is obtained

from the dominating order for u → 1 in the generating function, namely the weakly singular term
Φ̄(n)(u) ∼ Φ̄(0)(u) = (1 − u)β−1. From this we see that all state probabilities have the same universal

asymptotic scaling as the survival probability,

P(NSibuya(t) = n) ∼ lim
t→∞

Γ(t + 1 − β)

Γ(1 − β)Γ(t + 1 )
=

t−β

Γ(1 − β)
, β ∈ (0 , 1 ], ∀n ∈ N0 (93)

independent of n. This type of power-law scaling is universal for all fat-tailed waiting time distributions
and it is equal to the asymptotic scaling of the Mittag-Leffler survival probability (see again (59)). This

fact can be generally attributed to non-Markovianity and long-time memory [9, 10] (consult also [33]).
It follows that for the long-time asymptotic behavior of the state polynomial (which then becomes an

infinite power series in v) we have

PSibuya(v, t) ∼ 1

(1 − v)

t−β

Γ(1 − β)
, β ∈ (0 , 1 ], t → ∞. (94)

For β → 0+ extremely long-waiting times occur between Sibuya successes (positive jumps), i.e. t−β

Γ(1−β) →
1. The limit β → 0 corresponds to the above discussed frozen limit with very long waiting times be-
tween positive jumps and therefore strong domination of negative jumps. For β → 1− the waiting times
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between Sibuya successes reaches their lower bound one, thus a strictly increasing markovian walk

emerges where almost surely solely positive jumps occur, drawn from W+. In this Markovian limit the
asymptotic relation limβ→1−

t−β

Γ(1−β) = δ(t) = 0 for t large reflects the loss of memory.

6.1 Simple Sibuya ADTRW

We now consider the simple Sibuya ADTRW, where almost surely only directed jumps of size one occur.
The transition matrix (13) (seen by the moving particle) then yields

QSibuya0,r (t) =
(−1)t

t!

t∑

n=0

δ0,r−2n

n∑

ℓ=0

(

n

ℓ

)

(−1)ℓ
Γ(β[ℓ + 1])

Γ(β[ℓ+ 1] − t)
, r ∈ Z

=
(−1)t

t!
δr,2⌈ r−1

2
⌉

r
2∑

ℓ=0

(
r
2

ℓ

)

(−1)ℓ
Γ(β[ℓ + 1])

Γ(β[ℓ+ 1] − t)

(95)

supported on r ∈ {0, 2, . . . , 2t−2, 2t}. The Sibuya transition matrix then is related to (95) by PSibuya0,r (t) =

QSibuya0,r+t (t) (see relations (12), (13)). The Sibuya transition matrix solves with (38) the renewal equations

P
Sibuya
i,j (t) = (−1 )t

(

β − 1

t

)

δi,j+t +
t∑

r=1

(−1 )r−1

(

β

r

)

P
Sibuya
i,j+r−2(t − r), t ∈ N (96)

with PSibuyaij (t)
∣
∣
t=0

= δij and those for QSibuyai,j (t) = PSibuyai,j−t (t) write by shifting the Kronecker symbols

δk,l → δk,l−t in (96). The return probability to the departure site then is non-zero only for even t = 2s

(s ∈ {0, 1, 2, . . .}) to give

PSibuya0,0 (t) = δt,⌈ t−1
2

⌉P[NSibuya(t) =
t

2
]

=







1

t!

t
2∑

ℓ=0

(
t
2

ℓ

)

(−1)ℓ
Γ(β[ℓ+ 1])

Γ(β[ℓ+ 1] − t)
, t ∈ {0, 2, 4, . . .}

0, t ∈ {1, 3, 5, . . .}.

(97)

We plot in Figure 2 the Sibuya return probabilities to the departure site (97) for different values of β.

The smaller β the more negative jumps −1 occur which reduces the return probability to the departure
site thus the transient nature with a strong left-sided bias of the walk becomes more pronounced which

can be clearly seen in Figure 3 depicting the expected position of the walker. Figure 2 shows that in
the frozen limit β → 0+ when negative jumps strongly dominate that the return probability to the

departure site drops for t > 0 ‘immediately’ to zero.

For the issue of recurrence/transience indeed the generating function of the return probabilities is

especially important. In fact, this generating function is the diagonal element (see (60))

[Λ̄Sibuya(T̂1 , T̂−1 , u)]0 ,0 =
∞∑

s=0

u2sP
Sibuya
0 ,0 (2s) =

∞∑

s=0

u2s

(2s)!

s∑

ℓ=0

(

s

ℓ

)

(−1 )ℓ
Γ(β[ℓ+ 1 ])

Γ(β[ℓ+ 1 ] − 2s)
(98)

and its canonical representation (see (54))

[Λ̄Sibuya(T̂1, T̂−1, u)]0,0 =
1

2π

∫ π

−π
Λ̄Sibuya(e

−iϕ, eiϕ, u)dϕ

=
1

π
ℜ
∫ π

0

eiϕ(1 − ueiϕ)β−1

2i sinϕ+ e−iϕ(1 − ueiϕ)β
dϕ.

(99)
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Figure 2: (Color online) Return probability to the departure site of Eq. (97) for different values of

β ∈ (0, 1).

The EST on the departure site in an infinitely long walk yields (see also relation (53))

E[τ00 ]Sibuya = [Λ̄Sibuya(T̂1 , T̂−1 , u)]0 ,0
∣
∣
u=1

=
∞∑

s=0

1

(2s)!

s∑

ℓ=0

(

s

ℓ

)

(−1 )ℓ
Γ(β[ℓ+ 1 ])

Γ(β[ℓ+ 1 ] − 2s)
. (100)

To explore this quantity it is convenient to consider (99) at u = 1, namely

E[τ00 ]Sibuya =
1

π
ℜ
∫ π

0

eiϕ(1 − eiϕ)β−1

2i sinϕ+ e−iϕ(1 − eiϕ)β
dϕ. (101)

Taking into account that for ϕ → 0+ we have

ℜΛ̄Sibuya(e−iϕ, eiϕ, 1 ) ∼ ℜ (−i)β−1ϕβ−1

2iϕ + (−i)βϕβ
∼ 2ϕ−β cos

(
πβ

2

)

(102)

being at ϕ = 0 weakly singular as ϕ−β (β ∈ (0, 1)). Hence Λ̄Sibuya(e
−iϕ, eiϕ, 1) is integrable at ϕ = 0,

by accounting for Aβ = 1, in agreement with the general FT feature (58). As a consequence the EST

on the departure site (relations (100), (101)) is finite. Therefore, the simple Sibuya ADTRW indeed is
transient in agreement with our general proof for simple ADTRWs with FT waiting-time densities (case

(a) in Section 5.1).

Let us now explore the bias and consider (32) by the generating function of the expected number of

Sibuya arrivals, namely

N̄Sibuya(u) =
∂

∂v
P̄Sibuya(v, u)

∣
∣
v=1

=
1

(1 − u)

ψ̄Sibuya(u)

(1 − ψ̄Sibuya(u))

= (1 − u)−β−1 − (1 − u)−1, |u| < 1

(103)

25



Figure 3: (Color online) Expected position of the simple Sibuya ADTRWwalker of Eq. (105) for different

values of β.

yielding the exact non-negative expression

ENSibuya(t) = (−1)t
(

−(β + 1)

t

)

− 1 =
(β + 1) . . . (β + t)

t!
− 1, t ∈ N

=
Γ(β + t+ 1)

Γ(β + 1)Γ(t + 1)
− 1 =

(

β + t

t

)

− 1, t ∈ N0

(104)

holding for β ∈ (0, 1] (see also [32]). The second line includes t = 0 and reflects the initial condition
NSibuya(0) = 0. We see in (104) that ENSibuya(t)β→0+ → 0 which means that for small β the interarrival

times between the Sibuya successes becomes infinitely long corresponding to the ‘frozen’ limit. On

the other hand we have the Markovian limit ENSibuya(t)β→1− → t where the trivial strictly increasing
trivial walk emerges (see Section 3.1). With (104) and (32) we obtain for the expected position of the

walker the exact expression

E[Yt ]Sibuya = −t + 2ENSibuya(t) = 2
Γ(β + t + 1 )

Γ(β + 1 )Γ(t + 1 )
− 2 − t, t ∈ N0 , β ∈ (0 , 1 ] (105)

where this result also holds in the Markovian limit β = 1 and yields the upper bound E[Yt]β=1 = t. We

also see that E[Y0]Sibuya = 0 reflects the initial condition. In Figure 3 it is depicted the expected position
E[Yt]Sibuya for different values of β ∈ (0, 1). The smaller β the longer the waiting times between positive

jumps +1, the closer the lower bound −t is approached. For β → 0+ the ‘frozen’ limit emerges and the
expected position approaches the lower bound limβ→0+ E[Yt]Sibuya = −t of a strictly decreasing walk

with almost surely solely jumps −1 (see Section 3.1). On the other hand, for β → 1− where positive
jumps +1 dominate one can see in the plot the larger β the more the expected position approaches the

upper bound t reflecting limβ→1− E[Yt]Sibuya = t.

Consider now the asymptotic behavior with Γ(γ+t)
Γ(t) ∼ tγ for t large. We have then the power-law

E[N ]Sibuya(t) ∼ tβ

Γ(β + 1 )
, t → ∞, β ∈ (0 , 1 ] (106)

26



which is well known in anomalous diffusion (see e.g. [9, 10, 48, 11, 12, 33]) reflecting the non-Markovianity

and long memory feature of the Sibuya trial process. This relation includes the Markovian and frozen
limits, respectively.

To see more closely the strong tendency of occurrence of negative jumps for the smaller β, as visible in

Figure 3, we consider the generating function of the expected position (105) which takes, with (103),
the form

∞∑

t=0

E[Yt ]Sibuyaut = 2 (1 − u)−β−1 − 2 (1 − u)−1 − u(1 − u)−2 < 0 , u → 1 − . (107)

We see in this relation the asymptotic behavior emerging in (105) for t → ∞, namely

E[Yt]Sibuya ∼ 2 tβ

Γ(β+1) − t ∼ −t → −∞, β ∈ (0, 1)

E[Yt]Sibuya = t, β = 1.

(108)

In the non-Markovian range β ∈ (0, 1) the long-time limit is governed by the term −t due to domination

of occurrence of negative jumps. Solely in the markovian limit β = 1 the walk is strictly increasing with
jumps +1 almost surely where the linear increase of the expected position is maintained for all t ∈ N0.

7 Asymmetric continuous time random walk

In the present section we introduce time-changed versions of the ADTRW. We subordinate the ADTRW
defined in (1) to an independent renewal process, i.e. a continuous-time counting process M(t) ∈ N0

(t ∈ R
+) with IID interarrival times such as Poisson, fractional Poisson and others. We call the so

defined walk ‘asymmetric continuous time random walk’ (ACTRW). It turns out that the ACTRW is

different from the classical Montroll–Weiss CTRW apart of some special cases also discussed in this
section. ACTRWs are the class of random walks defined by

Y(t) = YM(t) =

M(t)
∑

j=1

Xj , Y0 = 0 , Xj ∈ Z \ {0}, t ∈ R
+ (109)

where Ym∈N0 is the ADTRW defined in (1) with transition matrix (2). In the ACTRW the trials of the

generator process selecting the direction of the jumps Xj take place at the instants of arrival times
of the point process M(t). The variable counting the arrivals in the composed process N [M(t)] ∈ N0

(t ∈ R
+) indicates the number of successes (number of positive jumps) inM(t) trials andM(t)−N [M(t)]

the number of fails (number of negative jumps) occurring within the continuous time interval [0, t].

The instants of successes are the continuous arrival times of the composed process N [M(t)] which
therefore is also a point process. Compositions of counting processes (mainly of point processes)

where extensively studied in the literature [30, 31].

Denoting with P(M(t) = m) (m ∈ N0) the state probabilities (probabilities for m arrivals within [0, t]) in

the continuous-time process M(t), the state probabilities of the composed counting process N [M(t)],
i.e. the probabilities for n arrivals (successes in the picture of trial process) within [0, t]) are given by

P(N [M (t)] = n) =
∞∑

m=0

P(M (t) = m)P(N (m) = n), n ∈ N0 , t ∈ R
+ (110)

where we maintained for our convenience the vanishing terms m < n for which the state probabilities
P(N(m) = n) = 0. We call the composed continuous-time counting process N [M(t)] the ‘time-changed
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generator process’ of the ACTRW since it contains information on the asymmetry of the walk: N [M(t)]

counts the number of positive jumps and M(t) − N [M(t)] the number of negative jumps within [0, t].
The ACTRW transition matrix is then the time-changed version of (25) and writes

Π(W+,W−, t) =
∞∑

m=0

P(M(t) = m)
m∑

n=0

P(N(m) = n)[W+]n[W−]m−n, t ∈ R
+

Πi,j(t) =
∞∑

m=0

P(M(t) = m)Pi,j(m)

(111)

where P(m) = (Pi,j(m)) is the ADTRW transition matrix (25). From the initial condition Pi,j(0) = δi,j it
follows the same initial condition for (111), Πi,j(t)

∣
∣
t=0

= δi,j, as a consequence of the initial condition

P(M(t) = m)
∣
∣
t=0

= δm,0. The elements Πi,j(t) of the ACTRW transition matrix represent the probability
that the walker is present on node j at time t with the indicated initial condition. Clearly, the ACTRW

transition matrix (111) preserves the circulant property Πi,j(t) = Π0,j−i(t). Since M(t) is a continuous-

time counting process, (109) is a continuous-time random walk which is intrinsically asymmetric and -
as we will see a little later - not of Montroll–Weiss type. Then, it is useful to consider the scalar version

of (111),

Π(a, b, t) =
∞∑

m=0

P(M(t) = m)
m∑

n=0

P(N(m) = n)anbm−n, t ∈ R
+

=
∞∑

m=0

P(M(t) = m)Λ(a, b,m),

(112)

where Π(1, 1, t) = 1 reflects the normalization of the state probabilities
∑∞
m=0 P(M(t) = m) = 1 with

P(1,m) = Λ(1, 1,m) = 1 (see (23)) and Π(v, 1, t) is the time-changed state polynomial. This equation for

Π(a, b, t) shows the main difference to the Montroll–Weiss CTRW: For b 6= 1 the function Π(a, b, t) and
therefore the ACTRW transition matrix (111) are not represented by a series of the state probabilities

(110) of the composed process. Therefore, the ACTRW generally is not in the Montroll–Weiss sense
a random walk subordinated to the composed counting process N [M(t)] (apart of some special cases

such as the limits (121), (122) and the example considered at the end of this section). The general

class of ACTRWs which can be reduced to Montroll–Weiss CTRWs have transition matrices of the form
Λ(W,1, t) where W is a single-jump transition matrix. The scalar version of this class is obtained for

b = 1 in (112) leading to (see (110))

Π (v, 1 , t) =
∞∑

n=0

vn
P(N [M (t)] = n) = EN [M(t)]v

N [M(t)] (113)

and is the time-changed state polynomial where the connection with the classical Montroll–Weiss CTRW
can also be seen by means of its time-Laplace transform (117).

For our further analysis it is convenient to consider (112) in the Laplace domain. The time-Laplace

transform of a causal function f(t) supported on t ∈ R
+ is defined as

f̃ (s) = (Lf )(s) =

∫ ∞

0
e−stf (t)dt (114)

with a suitably chosen Laplace variable s. The time-Laplace transforms of the state probabilities

P (M(t) = m) reduce to

∫ ∞

0
P(M (t) = m)e−stdt =

1 − η̃(s)

s
(η̃(s))m , m ∈ N0 (115)
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where η̃(s) denotes the Laplace transform of the interarrival time density η(t) of the point processM(t).

The Laplace transform of (112) can hence be written as

Π̃(a, b, s) =
1 − η̃(s)

s

∞∑

m=0

(η̃(s))mbmP
(
a

b
,m

)

|a|, |b| ≤ 1

=
1 − η̃(s)

s
P̄
(
a

b
, bη̃(s)

)

=
1 − η̃(s)

s
Λ̄(a, b, η̃(s))

=
1 − η̃(s)

s

b(1 − ψ̄[bη̃(s)])

(1 − bη̃(s))(b− aψ̄[bη̃(s)])

(116)

where necessarily Π̃(1, 1, s) = 1/s as a consequence of Π(1, 1, t) = 1 (reflecting the normalization
condition of the state probabilities P(N [M(t)] = n) of the composed process). In (116) it appears the

generating function of the state polynomial Λ̄(a, b, η̃(s)) = P̄(a/b, bη̃(s)) (34) with argument u → η̃(s)

(fulfilling |η̃(s)| ≤ 1), and Π̃(v, 1, s) is the Laplace transform of the time-changed state polynomial (113)

having the simpler form

Π̃ (v, 1 , s) =
1 − ψ̄[η̃(s)]

s

1

1 − vψ̄[η̃(s)]
, |v| ≤ 1 . (117)

In this relation it appears the Laplace transform ψ̄[η̃(s)] of the waiting time density of the composed
counting process N [M(t)]. Therefore, (117) has an interesting interpretation. It is the time-Laplace

transform of the generating function of the state probabilities P[N(M(t)) = n] (n ∈ N0) of the composed
counting process. The interarrival time density of the composed process N [M(t)] then reads

χ(t) = L−1 {ψ̄[η̃(s)]}(t) =
∞∑

r=1

ψ(r)[η⋆]r (t), t ∈ R
+ (118)

where we denote the inverse Laplace transform with L−1{. . .}(t). It follows from ψ̄[η̃(s)])
∣
∣
s=0

= ψ̄(1) = 1

that χ(t) is indeed a density. Then we have the Laplace transform of the state probabilities (110) as
∫ ∞

0
e−st

P(N [M (t)] = n) dt =
1 − ψ̄[η̃(s)]

s
(ψ̄[η̃(s)])n , (119)

consistent with (117). In view of (116) Laplace transform of the ACTRW transition matrix (111) can be

written as

Π̃ (W+,W−, s) =
1 − η̃(s)

s

W−(1 − ψ̄[W−η̃(s)])

(1 − W−η̃(s))(W− − W+ψ̄[W−η̃(s)])
. (120)

Clearly, this expression does not have a Montroll–Weiss structure. However, in some special cases, for
instance for the limits αk ≤ ǫ → 0+ and αk → 1− ∀k, respectively strictly decreasing and increasing

Montroll–Weiss CTRWs emerge, namely

Π0+(t) =
∞∑

m=0

P(M(t) = m)(W−)m, αk ≤ ǫ → 0+

Π̃0+(s) =
(1 − η̃(s))

s
[1 − W−η̃(s))]−1

(121)

and

Π1−(t) =
∞∑

m=0

P(M(t) = m)(W+)m, αt → 1−

Π̃1−(s) =
(1 − η̃(s))

s
[1 − W+η̃(s))]−1.

(122)
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7.1 ACTRW evolution equations

With the above considerations we can derive the time-evolution equations for Π(a, b, t) and the ACTRW

transition matrix. To this end we rearrange (116) to

1 − ψ̄[bη̃(s)]

sψ̄[bη̃(s)]

[

sΠ̃ (a, b, s) − 1
]

= −(1 − b)η̃(s)

1 − bη̃(s)

(1 − ψ̄[bη̃(s)])

sψ̄[bη̃(s)]
+

(
a

b
− 1

)

Π̃ (a, b, s). (123)

Introducing the auxiliary kernels

K(b, t) = L−1

{

1 − ψ̄[bη̃(s)]

sψ̄[bη̃(s)]

}

(t), t ∈ R
+, |b| ≤ 1 (124)

and

R(b, t) = L−1

{
η̃(s)

1 − bη̃(s)

}

(t) (125)

where we observe that (1−b)η̃(s)
1−bη̃(s)

∣
∣
s=0

= 1 since η̃(s)
∣
∣
s=0

= 1 thus (1 − b)R(b, t) is a normalized density.

K(1, t) can be seen as the memory kernel of the composed process N [M(t)]. Writing (123) in the
time-domain yields the following Cauchy problem

∫ t

0
K(b, t − τ)

d

dτ
Π(a, b, τ) dτ = (b− 1)

∫ t

0
K(b, t − τ)R(b, τ) dτ +

(
a

b
− 1

)

Π(a, b, t), t ∈ R
+

Π(a, b, t)
∣
∣
t=0

= 1

(126)

and defines also the Cauchy problem for the ACTRW transition matrix (111) by replacing a with W+,
b with W− and considering the initial condition Πij |t=0 = δij . The left-hand side of the scalar equation

(126) is a general fractional derivative and has profound connections to the general fractional calculus
introduced by Kochubei [46] and see also [39, 52, 53, 54, 55]. The influence of the asymmetry can be

seen in the change of sign of the second term on the right-hand side for a > b and a < b for real a, b,

respectively. We also recover for a = b = 1 that the right hand side is null thus Π(1, 1, t) = 1 is constant
(the normalization of the state probabilities (110) as a conserved quantity ∀t as a = b introduces a

further symmetry — one should recall the previously mentioned connection with Noether’s theorem).
The difference to the Montroll–Weiss CTRW becomes obvious by the presence of the first term on

the right-hand side for b 6= 1. For b = 1 we have (1 − b)R(b, t)
∣
∣
b=1

= 0 and the auxiliary kernel (124)
reduces to the memory kernel of the composed counting process N [M(t)]. Thus, (126) then reduces

to the form of a generalized Kolmogorov–Feller equation of Montroll–Weiss type for Π(v, 1, t), being
solved by the Laplace-inverse of (117).

Equation (126) governs the time-evolution in a ACTRW and is the counterpart to the generalized
Kolmogorov–Feller equation which occurs in a Montroll–Weiss CTRW.

As a pertinent example let us consider the point process Mµ(t) to be the time-fractional Poisson pro-
cess and the independent trial process NB(m) to be the Bernoulli process. We will see that in contrast

to the general case, in this example the ACTRW indeed boils down to a Montroll–Weiss type CTRW.
The Laplace transform of the waiting time density of the time-fractional Poisson process Mµ(t) has

the form η̃µ(s) = ξ0

ξ0+sµ (ξ0 > 0, µ ∈ (0, 1]) [48] and the Bernoulli waiting time generating function is

ψ̄B(z) = pz/(1 − qz) (p + q = 1), thus the waiting time density of the composed process NB[Mµ(t)] has
the Laplace transform

ψ̄B[η̃µ(s)] =
pξ0

pξ0 + sµ
, µ ∈ (0 , 1 ] (127)
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i.e. the composition is also a continuous time fractional Poisson process with changed constant ξ = pξ0.

If µ = 1 the standard Poisson process is recovered. The auxiliary kernel (124) yields

Kµ(b, t) = L−1

(

sµ−1

pξ0 b
+

1 − b

bp
s−1

)

=
t−µ

bpξ0 Γ(1 − µ)
+

1 − b

bp
, t ≥ 0 (128)

and the second kernel (125) is expressed by a Mittag Leffler density

(1 −b)Rµ(b, t) = L−1

(
ξ0 (1 − b)

ξ0 (1 − b) + sµ

)

= ξ0 (1 −b)tµ−1 Eµ,µ(−ξ0 (1 −b)tµ) = − d

dt
Eµ(−ξ0 (1 −b)), t ≥ 0

(129)

where Eµ,γ(z) and Eµ(z) denote the generalized and the standard Mittag-Leffler functions, respectively
(see [49, 50] for definitions and properties). We introduce the Caputo-fractional derivative [49, 50]

dµ

dtµ
y(t) =

∫ t

0

(t − τ)−µ

Γ(1 − µ)

d

dτ
y(τ)dτ, µ ∈ (0 , 1 ] (130)

recovering for µ → 1− the standard first order derivative. The Cauchy problem (126) after some
routine manipulations takes the form of a fractional differential equation

dµ

dtµ
Πµ,λ(a, b, t) = −λΠµ,λ(a, b, t), λ = ξ0[1 − qb− pa)], µ ∈ (0, 1]

Πµ,λ(a, b, t)

∣
∣
∣
∣
t=0

= 1

(131)

where keep also in mind that |a|, |b| ≤ 1. (131) then has the Mittag-Leffler solution

Πµ,λ(a, b, t) = L−1

(

sµ−1

sµ + λ

)

= Eµ(−λtµ) (132)

which is also directly obtained from (116). The ACTRW with the time-changed generator process

NB [Mµ(t)] has therefore the Mittag-Leffler transition-matrix

Pµ(t) = Πµ,λ(W+,W−, t) = Eµ(−ξ0 tµ[1 − pW+ − qW−]). (133)

One can see by means of the Laplace transforms that this transition matrix has the particularity that it
is of Montroll–Weiss type where Bernoulli jumps with a well defined ‘Laplacian matrix’ 1−pW+ −qW−

are subordinated to the independent time-fractional Poisson process Mµ(t).

8 Conclusions

We have presented a new type of asymmetric discrete-time random walk, the ADTRW. In this walk the
direction of the jumps is determined by the outcomes of a trial process (the ‘generator process’) which

is constructed as a discrete-time counting process. We considered the ADTRW on the integer line and
analyzed recurrence/transience features. We demonstrated that fat-tailed waiting time distributions in

the generator process generate transience and bias in a simple ADTRW whereas light-tailed waiting-
time distributions allow both transient and recurrent behavior. In the recurrent case the simple ADTRW

is unbiased in an asymptotic sense (i.e. in the limit t → ∞). We proved that solely the simple ADTRW
with symmetric Bernoulli generator process is strictly unbiased in the sense that the expected position

is null (i.e. on the departure site) at all times. On the other hand for all transient cases the simple
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ADTRW is biased and vice versa. The ADTRW model can be generalized to several directions. For

instance modifications in the trial process for the determination of directions of the jumps define new
types of ADTRWs with a large potential of new applications. Further possible generalizations include

involvement of long-range jumps where different one-jump transition matrices are selected by counting
processes, or the possibility of further considering the interarrival times between two consecutive fails

(negative jumps) not geometrically distributed.

We also considered prescribed admissible functions for the expected position E[Yt]simple = f(t) in a
simple ADTRW (see (83)). For future research interesting candidates are constituted by the class

of discrete-time versions of non-negative Bernstein functions which are strictly positive E[Yt]simple =

f(t) > 0 for t ∈ N. The special interest of this topic is also due to the possibility to construct simple
ADTRWs which in the Ruin Game interpretation provide strategies where the expectation value of the

assets never hits the ruin condition (zero assets). For an analytical procedure to construct discrete
approximations of Bernstein functions, see [39] and consult also [32, 33].

We also introduced time-changed versions of the ADTRW leading to the ACTRW model. The ACTRW

constitutes a new class of biased continuous-time random walks which are generally not of Montroll–

Weiss type, apart of some special cases. In the present paper we could only introduce the main idea of
the ACTRW model which merits further thorough analysis and exploration of pertinent cases.

The new types of asymmetric random walks introduced in the present paper open a wide field of

interdisciplinary applications in ‘complex systems’ such as in finance, birth and death models, and
biased anomalous transport and diffusion.

A APPENDICES

A.1 Some pertinent limits of Λ(a, b, t)

We consider here some limiting cases of the state polynomial Λ(a, b, t) (31).

First let b → 0 for which we get for the related generating function

Λ̄(a, 0, u) = lim
b→0

P̄
(
a

b
, ub

)

= lim
b→0

1

1 − a
b
ψ̄(bu)

=
∞∑

t=0

P(N(t) = t)utat, P(N(t) = t) = αt1

=
1

1 − aα1u
.

(134)

Thus

Λ(a, 0 , t) = P(N (t) = t)at = (aα1 )t (135)

containing only the order t of the state polynomial where we account for the probability of t successes
in t trials P(N(t) = t) = αt1 and limb→0 ψ̄(bu)/b = uα1.

A further pertinent limit is obtained for a = 0, namely

Λ̄(0 , b, u) = P̄
(

a

b
, ub

) ∣
∣
∣
a=0

=
1 − ψ̄(bu)

1 − b̄u
=

∞∑

t=0

(bu)t
P(N (t) = 0 ) (136)

retrieving the (rescaled) survival probability

Λ(0 , b, t) = bt
P(N (t) = 0 ). (137)

Plainly, these limiting relations are connected with the ‘Markovian’ and ‘frozen’ limits, respectively
(see Section 3.1).
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A.2 Time shift operator representations

In order to derive some convenient operator representations of above deduced renewal and master

equations (37)-(39) be reminded that we deal with causal (discrete-time) distributions supported on
non-negative integers

F(t) = Θ(t)f (t), t ∈ Z (138)

i.e. they are null for negative t which we indicate by the discrete Heaviside function Θ(t) defined in (4).

Then, we introduce the time-backward shift operator T̂−1 which is such that T̂−1f(t) = f(t− 1), where

t ∈ Z is the discrete time coordinate. We further use throughout the paper the following equivalence
of generating functions and shift operators (see [33] for an outline of essential properties)

f(t) =
1

t!

dt

dut
f̄(u)|u=0 t ∈ N0

=
∞∑

k=0

f(k)T−k · δ0,t, T−k · δ0,t = δ0,t−k = δk,t

= f̄(T̂−1) · δ0,t.

(139)

We see that causality of a distribution f(t) is generated by f̄(T̂−1)δ0,t, where in the generating function

we replaced u with T̂−1 and only non-negative powers of the time backward shift operator T̄−1 are
considered (T k

−1 = T−k). The interarrival time density has then the backward time shift operator

representation

ψ(t) = ψ̄(T−1 )δ0 ,t =
∞∑

k=1

ψ(k)T−kδ0 ,t =
∞∑

k=1

ψ(k)δ0 ,t−k . (140)

The state polynomial can be represented as

P(v, t) = P̄(v, T̂−1 )δ0 ,t =
1 − ψ̄(T̂−1 )

[1 − T̂−1 ][1 − vψ̄(T̂−1 )]
· δ0 ,t (141)

and

Λ(a, b, t) = btP
(

a

b
, t

)

=
1 − ψ̄(bT̂−1 )

1 − bT̂−1

1

1 − a
b
ψ̄(bT̂−1 )

· δ0 ,t , b 6= 0 . (142)

Note that shift operators and shift operator functions commute among each other reflecting the com-

mutative property of discrete convolutions. Then by accounting for f̄(bT̂−1)δ0,t = btf̄(T̂−1)δt,0 = btf(t)

we can rewrite this relation as

Λ(a, b, t) =
1 − ψ̄(bT̂−1)

1 − bT̂−1

δ0,t +
a

b
ψ̄(bT̂−1)Λ(a, b, t)

= btΦ(0)(t) +
a

b
ψ̄(bT̂−1)Λ(a, b, t)

(143)

and use that

ψ̄(bT̂−1)Λ(a, b, t) =
∞∑

r=1

brψ(r)T̂−rΛ(a, b, t)

=
∞∑

r=1

brψ(r)Λ(a, b, t − r) =
t∑

r=1

brψ(r)Λ(a, b, t − r)

(144)
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where in the last line we used causality, i.e. Λ(a, b, t−r) = 0 when r > t. We hence arrive at the renewal

equation (37), i.e.

Λ(a, b, t) = btΦ(0 )(t) +
t∑

r=1

abr−1ψ(r)Λ(a, b, t − r). (145)

A.3 Bernoulli trials

As the simplest and best known special case we briefly recall some well-known features of the mem-

oryless Bernoulli walk. This walk matches in our ADTRW model as ‘simple Bernoulli ADTRW’ where

αt = p ∀t ∈ N does not depend on t, leading to geometric waiting time density (20) ψB(t) = pqt−1

(p + q = 1, t ∈ N), with generating function ψ̄B(u) = pu
1−qu and survival probability Φ

(0)
B (t) = qt (t ∈ N0).

It is straight-forward to see that the Bernoulli state probabilities are given by the Binomial distribution

Φ
(n)
B (t) =

1

t!

dt

dut
pnun

(1 − qu)n+1

∣
∣
∣
∣
u=0

=
t!

n!(t− n)!
pnqt−n, n ≤ t

n, t ∈ N0.

= 0, n > t

(146)

The state Polynomial (30) yields then straight-forwardly

PB(v, t) = (pv + q)t (147)

and

ΛB(a, b, t) = E aN(t)bt−N(t) = (pa + qp)t . (148)

This relation contains information on the bias where the expected position of the walker E[(YB)t] at

time t in a simple walk (32) (i.e. with unit next neighbor jumps) leads to the well-known classical result
[25, 26]

E[(YB)t ] =

(
∂

∂a
− ∂

∂b

)

ΛB(a, b, t)

∣
∣
∣
∣
a=b=1

= (p − q)t. (149)

A measure for the asymmetry of the walk is provided here by CB = t−1
E[(YB)t] = p − q where for

p = q = 1
2 this simple walk is strictly unbiased. The EST (53) then writes (with transition matrix

PB(t) = [pW+ + qW−]t)

E[τrs]B =
∞∑

t=0

[
(

pW+ + qW−
)t

]rs =

([

1 − pW+ − qW−
]−1

)

rs

. (150)

For more details consult [29, 28, 26, 25, 27], and the references therein.

A.4 Some features of light-tailed waiting time densities

We introduce the auxiliary generating function

ḡ(z) =
∞∑

t=1

ψ(t)zt−1 , ψ̄(z) = zḡ(z) (151)

with ḡ(0) = ψ(1) = α1 and ḡ(1) = ψ̄(1) = 1 and where ψ̄(z) denotes the generating function (26) of a

discrete-time waiting time density supported on N (where 0 < ψ(1) = α1 ≤ 1 and α1 = 1 only in the
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trivial case when ψ̄trivial(z) = z with constant ḡtrivial(z) = 1 and ψtrivial(t) = δt1 with unit waiting times).

We consider here only the situation in which ψ(t) is LT. Then we introduce

g1 =
d

dz
ḡ(z)

∣
∣
z=1

=
∞∑

t=2

(t − 1 )ψ(t) = A1 − 1 ≥ 0 , z ∈ [−1 , 1 ] (152)

where A1 = d
dz
ψ̄(z)

∣
∣
z=1

=
∑∞
t=1 ψ(t)t ≥ 1 denotes the expected waiting time. For some related proper-

ties of generating functions, we refer to the book of Harris [23]. The aim of this appendix is to prove for

light-tailed (LT) waiting-time densities ψ(t) = g(t − 1), i.e. ψ̄(z) = zḡ(z) the existence of the canonical
representation

ḡ(z) − z = (z − 1 )(z − r)eh(z), |z| ≤ 1 (153)

at least within the unit disc where h(z) is analytic. The zero r is real and non-negative. The convex
property of ḡ(z) with g1 = d

dz
ḡ(z)

∣
∣
z=1

= A1 − 1 ≥ 0 allows us to determine the properties of the zero

r = r(A1) ∈ R
+:

r(A1) > 1, A1 < 2

r(A1) = 1, A1 = 2

0 < r(A1) < 1, A1 > 2.

(154)

Note that r is outside of the unit disc for A1 < 2, inside for A1 > 2, and r = 1 for A1 = 2. Since r(A1) is
a continuous function of A1 we can infer that

• limA1→1+0 r(A1) = +∞ (limit of trivial walk);

• limA1→∞ r(A1) = 0 (FT limit).

Further limiting properties can be seen from (154) together with the continuity of r(A1).

This behavior can be explicitly seen in the Bernoulli trial process: see (81) where rB = p
q
and A1 = 1

p

thus ḡB(z) − z = (z − 1)(z − rB)ehB(z) with hB(z) = log(q) − log(1 − qz).

To prove (153) let us now consider the cases 1 ≤ A1 < 2 and A1 > 2 separately.

Case 1 ≤ A1 < 2 (g1 = d
dz
ḡ(z)

∣
∣
z=1

∈ [0, 1)):

One observes then the following properties:

(i)
dn

dzn
ḡ(z) ≥ 0, z ∈ [−1, 1], n ∈ N0

i.e. ḡ(z) is absolutely monotonic (AM) for z ∈ [−1, 1]. Hence ḡ(−z) is in that interval completely mono-
tonic (CM) and strictly positive. Therefore we have

(ii) 0 ≤ d

dz
ḡ(z) ≤ d

dz
ḡ(z)

∣
∣
z=1

= g1 = A1 − 1 < 1, z ∈ [−1, 1]

(iii) 0 < ḡ(−1) < ḡ(z) < ḡ(1) = 1 , ḡ(z) is AM for z ∈ [−1, 1].

In (ii) we have g1 = 0 only for A1 = 1, otherwise 0 < g1.
Remark: There is a connection of ψ̄(z) with Bernstein functions, see [39] (Formula (39)).

Remark to (i)-(iii):
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The derivatives
dn

dzn
ḡ(z) =

∞∑

t=n+1

(t − 1)!

(t− 1 − n)!
ψ(t)zt−1−n ≥ 0 are AM functions for z ∈ [0, 1] and for all

n ∈ N0. As a consequence ḡ(−z) is completely monotonic (CM) with (−1)n dn

dzn
ḡ(−z) ≥ 0 for z ∈ [0, 1].

Then, it follows that ḡ(−z) =
∑

t=1 ψ(t)(−z)t−1 is strictly positive on the interval z ∈ [0, 1] with the min-
imal value ḡ(−1). In that interval ḡ(−1) < ḡ(−z) < ḡ(0) = α1 ≤ 1. From this inequality, reflecting the

AM feature of ḡ(z), it follows the property (iii), i.e. ḡ(z) is strictly positive and AM on the real interval
z ∈ [−1, 1]. From (i)–(iii) we see that

ḡ(z) > z, −1 ≤ z < 1

ḡ(z) = z, z1 = 1

(155)

i.e. z1 = 1 is the only zero of (153) in the real interval [−1, 1] when 1 ≤ A1 < 2, therefore we have in

that range r(A1) > 1.

Recall that in this part our goal is to prove (153) first for g1 < 1 (1 ≤ A1 < 2). To this end we make use

of ∣
∣
∣
∣

d

dz
ḡ(|z|eiϕ)

∣
∣
∣
∣ ≤

∣
∣
∣
∣

d

dz
ḡ(|z|)

∣
∣
∣
∣ ≤ g1 < 1 , |z| ≤ 1 (156)

and therefore
d

dz
ḡ(z) = a(x, y)eiα(x,y) (157)

where a(x, y) = | d
dz
ḡ(z)| denotes the absolute value and α(x, y) the argument of d

dz
ḡ(z). If there are

complex zeros of (153) for |z| < 1 then they solve |y| = |ℑ{ḡ(x+ iy)}| with y = ℑ(z) 6= 0. Now consider

the imaginary part

ℑ{ḡ(x+ iy)} = ℑ
{

ḡ(x) +

∫ y

0

d

dx
ḡ(x+ iτ)idτ

}

= ℑ
{∫ y

0

d

dx
ḡ(x+ iτ)idτ

}

, |y| ≤ |z| < 1

=

∫ y

0
a(x, τ)eiα(x,τ)dτ,

(158)

having absolute value

|ℑ{ḡ(x+ iy)| = |ℑ
∫ y

0 a(x, τ)eiα(x,τ)dτ | ≤ |
∫ y

0 a(x, τ)eiα(x,τ)dτ | ≤
∫ y

0 a(x, τ)dτ < g1|y| < |y|, (159)

i.e. the left-hand side is always smaller than |y| as a(x, y) < g1 = A1 − 1 < 1 where this inequality holds
for any |z| ≤ 1. Therefore y = ℑ{ḡ(x + iy)} has for x ∈ [−1, 1] only the trivial solution y = 0, which

concludes the proof that (153) for A1 < 2 has solely the zero z1 = 1 and no zeros for |z| < 1. We hence
can establish the following theorem:

Theorem I

Let ḡ(x) be non-negative and absolutely monotonic (AM) and ḡ(x) 6= x on the real interval x ∈ [0, ρ0)

with | d
dz
ḡ(z)| ≤ g1(ρ0) < 1 for |z| ≤ ρ0. Then, the complex function ḡ(z) − z 6= 0 has no zeros within the

disc |z| < ρ0.
We will use this theorem to complete the proof of (153) for A1 > 2.

Case A1 > 2 (g1 = d
dz
ḡ(z)

∣
∣
z=1

∈ (1,∞)):

From the convexity of ḡ(x) for x ∈ (0, 1) it follows that there is a real zero r = r(g1) which is for g1 > 1
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in the interval r(g1) ∈ (0, 1). We have then for x ∈ [0, 1),

ḡ(x) − x > 0, 0 ≤ x < r

ḡ(r) − r = 0, r ∈ (0, 1)

ḡ(x) − x < 0, r < x < 1.

(160)

The inequality of the first line can be seen from ḡ(0) = α1 > 0 and using the continuity of ḡ(x). On the
other hand we have |ḡ(z)| ≤ ḡ(|z|) (z = x+ iy) as a consequence of the AM property and together with

the third line of (160) the inequality

|̄g(z)| ≤ ḡ(|z|) < |z|, |z| ∈ (r , 1 ) (161)

i.e. there are no zeros within the ring |z| ∈ (r, 1)

ḡ(z) − z 6= 0 , |z| ∈ (r , 1 ). (162)

Now we finally consider |z| < r. From the convexity of ḡ(x) it follows that

∣
∣
∣
∣

d

dz
ḡ(z)

∣
∣
∣
∣ <

d

dz
ḡ(z)

∣
∣
∣
z=r

= g1 (r) < 1 , |z| < r (163)

i.e., the slope d
dz
ḡ(z)

∣
∣
z=r

< 1 must be smaller than one in the cutting point ḡ(x) = x, that is at x = r.

Since d
dz
ḡ(z)

∣
∣
z=r

< 1 apply Theorem I with ρ0 = r to see that

ḡ(z) − z 6= 0 , |z| < r . (164)

This relation together with (162) concludes the proof that for g1 > 1 there are no further zeros for

|z| ≤ 1 except the real zeros z = r ∈ (0, 1) and z = 1.

In conclusion the canonical form (153) with (154) holds true at least for |z| ≤ 1 in the admissible range

A1 ∈ [1,∞).

Poisson waiting time density

As a prototypical example for an LT waiting-time density we consider Poisson waiting times with

ψP (λ, t) = e−λ λt−1

(t−1)! (t ∈ N) and ψ̄P (λ, z) = zḡP (λ, z) with ḡP (λ, z) = eλ(z−1) where g1 = λ = A1 − 1

and λ ≥ 0 (λ = 0 corresponding to the trivial walk). Clearly, ḡP (λ, z) is AM on [−1, 1]. Consider (159)

for 0 ≤ λ < 1. It yields

|eλ(x−1 )ℑ{eiλy}| = eλ(x−1 )| sin λy| < |y|. (165)

Therefore

eλ(z−1 ) − z = 0 , 0 ≤ λ < 1 (166)

has the only zero z1 = 1 for |z| ≤ 1. We also see that

ḡP(λ, z) − z = eλ(z−1 ) − z = (z − 1 )

[

λ− 1 +
∞∑

ℓ=2

λℓ

ℓ!
(z − 1 )ℓ−1

]

(167)

has zero z1 = 1 with multiplicity one for λ 6= 1 and multiplicity 2 for λ = 1 (i.e. A1 = 2) which is the

recurrent limit. We prove now that the canonical form

eλ(z−1 ) − z = (z − 1 )(z − rλ)ehλ(z), z ∈ C, ψ̄(z) = zeλ(z−1 ) (168)
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holds here for all λ ≥ 0 (A1 = λ+1). The zero rλ ∈ R
+ has the properties (154) where g1 = λ (A1 = λ+1).

Let us explore whether
z = eλ(z−1 ), λ > 0 (169)

has complex zeros with non-vanishing imaginary parts. Applying the logarithm to both sides we have
log(z) = λ(z−1) and with z = ρeiϕ, considering the real and imaginary parts, it yields the two equations

log ρ = λ(ρ cos(ϕ) − 1)

ϕ = λρ sin(ϕ)

(170)

each defining a parametrization of lines ρ1,2(ϕ) where both sides of (169) have the same argument ϕ.

The intersections of (169) are points where ρ1(ϕ) = ρ2(ϕ). The second equation gives

ρ2 (ϕ, λ) =
ϕ

λ sin(ϕ)
, ϕ 6= 0 (171)

Plugging (171) into the first equation of (170) we obtain

ρ1 (ϕ, λ) = eϕ cot(ϕ)−λ. (172)

We will see that ρ2(ϕ, λ) − ρ1(ϕ, λ) > 0 by rewriting the inequality

ϕ

sin(ϕ)
> λe−λeϕ cot(ϕ) (173)

holding for all λ ≥ 0 and ϕ 6= 0 (which we show below) to conclude the proof of (168) with (154).

We verify inequality (173) as follows: ϕ
sin(ϕ)

∣
∣
ϕ→0

= 1 > λe−λ ∀λ ≥ 0. Thus (173) is true in the limit ϕ → 0.

Then consider the slope of the left hand side

d

dϕ

(
ϕ

sin(ϕ)

)

=
sin(ϕ) − ϕ cos(ϕ)

sin2 (ϕ)
, ϕ ∈ [−π, π] (174)

This is an odd function with the same sign as ϕ, i.e. negative for ϕ < 0, null for ϕ = 0 and positive for
ϕ > 0, thus ϕ

sin(ϕ) ≥ 1 and the value 1 at ϕ = 0 is a minimum for ϕ ∈ [−π, π]. Then consider the slope of

the right-hand side of (173),

λe−λ d

dϕ
e
ϕ

cosϕ
sinϕ = λe−λe

ϕ
cosϕ
sinϕ

(sin(2ϕ) − 2ϕ)

2 sin2 ϕ
(175)

which is an odd function with the opposite sign than ϕ, i.e. for ϕ 6= 0, i.e. the value at ϕ = 0 is a

maximum. Thus ϕ
sinϕ ≥ 1 > λe−λ ≥ λe−λeϕ

cosϕ
sinϕ and hence inequality (173) holds true for ϕ ∈ [−π, π]

(ϕ 6= 0), i.e. (169) has no intersections with non-vanishing imaginary parts.

Non-negativity of (74)
The EST (74) has to be non-negative. This formula holds for A1 < 2 which we rewrite as

E[τ0 ,−1 ]simple =
1 + g1

1 − g1

− 1

α1

, 0 ≤ g1 < 1 (176)

where from (152) it follows that g1 ≥ ∑∞
t=2 ψ(t) = 1 − α1. Thus α1 ≥ 1 − g1 and so E[τ0,−1]simple ≥ 0 for

all non-trivial cases 1 − α1 ≤ g1 < 1 (and for the trivial walk ḡ(z) = 1 is constant with g1 = 0 and α1 = 1

thus E[τ0,−1]simple = 0) concluding the proof.
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