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Chiral magnetic domain walls under transverse fields: a semi-analytical model

Pierre Géhanne, André Thiaville,* Stanislas Rohart, and Vincent Jeudy
Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS UMR 8502, 91405 Orsay, France
(Dated: March 25, 2021)

An analytical model for the domain wall structure in ultrathin films with perpendicular easy
axis and interfacial Dzyaloshinskii-Moriya interaction, submitted to an arbitrary in-plane magnetic
field, is presented. Its solution is simplified to the numerical minimization of an analytic function
of just one variable. The model predictions are compared to numerical micromagnetic simulations,
using parameters of existing samples, revealing a very good agreement. Remaining differences are
analyzed, and partly corrected. Differences with the predictions of the simplest model, usually
found in the literature, in which only the domain wall moment’s in-plane orientation can vary, are
exemplified. The model allows accurate computations, as a function of in-plane field module and
orientation, of the domain wall tension and width, quantities controlling the creep motion of domain

walls in such films.

I. INTRODUCTION

The interfacial Dzyaloshinskii-Moriya (DMI) interac-
tion was shown, in the last years, to have an important
role on the magnetization statics and dynamics [1], espe-
cially in the case of magnetic domain walls. This holds
not only for epitaxial atomic monolayers on single-crystal
substrates [2, 3|, but also for the polycrystalline ultra-
thin films which are at the heart of present spintronic
devices [4]. The interfacial DMI, like the DMI introduced
many years ago [5, 6], is allowed only when spatial inver-
sion symmetry is broken. Such symmetry breaking takes
place naturally at interfaces [7]. DMI is expressed as
an exchange interaction with an anti-symmetric matrix.
The form of this matrix is dictated by the symmetry of
the atomic arrangement, according to the Moriya rules
[6]. Interfacial DMI, in the limiting case of maximal sym-
metry compatible with the presence of an interface (like
for two amorphous materials on each side of the inter-
face), and specializing to a film with perpendicular mag-
netization, applies to the moments in such domain walls
a chiral in-plane effective field. As a consequence, the ap-
plication of in-plane fields on such samples has become a
very common experimental tool to study and control the
effect of the interfacial DMI.

As the applied fields can be large (because the DMI-
induced effective field can also be), the effect of these
fields on the domain wall structure and dynamics should
be precisely appreciated. However, the complete re-
calculation of the one-dimensional domain wall profile
under an in-plane field has not been performed system-
atically (as the DMI was absent in the previous works
[8, 9]), and various approximations have been recently
considered in the presence of DMI [4, 10-12]. It is the
goal of this paper to describe an accurate semi-analytical
method to perform such calculations, based on the ‘small
circle’ Ansatz employed by A. Hubert a long time ago [9],
as we have found that this model describes rather well

* andre.thiaville@universite-paris-saclay.fr

the situation. The accuracy of these calculations is in-
deed required for reliably estimating the domain wall sur-
face tension [13], which is numerically very sensitive as it
involves the second derivative of the domain wall energy.
The importance of this parameter, different from the do-
main wall surface energy, for the domain wall motion in
the creep regime was realized recently [13]. Moreover,
the variations of the domain wall width, which have re-
cently been shown to affect the pinning of domain walls
[14], are also obtained by this model.

Along the paper, semi-analytical results are compared
to micromagnetic simulations, using as parameters those
of several Pt/Co ultrathin films that were studied else-
where [14]. They are also compared to the simplest model
(called ‘constrained model’ hereafter) in which the do-
main wall profile is fixed, except for the in-plane angle of
the domain wall magnetization [4, 10, 11, 13] (note that
less constrained variants exist, for example with a vari-
able domain wall width [12]). After describing generally
the small circle model (Sec. II) [15], the case where the
in-plane field is applied along the domain-wall normal
is first treated, as it is the most considered configura-
tion (Sec. IIT). Then the general case of a field applied
at an arbitrary angle with respect to the domain wall is
treated, by the same method (Sec. IV). The obtained
solutions are used to evaluate the important parameters
of the domain wall, namely its width (several definitions
are considered, corresponding to different physical mean-
ings of this width), and energy. In the last section, the
domain wall surface tension is also evaluated.

II. SMALL CIRCLE MODEL

The reference frame used throughout is set by x the
direction of the applied field, and z the normal to the
film. The domain wall normal is the 7 direction, with
m = (0,0, 1) representing the unit magnetization vector
in the domain for n < 0 (n is the abscissa along the 7
direction), far from the wall. In the presence of an in-
plane field, magnitude H (positive by construction), the
magnetization in the domains rotates from (0,0,+£1) to



(h,0,£v1—h?). We define h = H/Hgo the reduced
applied field, Hxo = 2Koy/(110Ms) being the effective
anisotropy field of the sample, with Ko = K,, — uoM2 /2
the effective anisotropy including the thin film demagnet-
zing effect for perpendicular magnetization, the uniax-
ial anisotropy constant K, itself consisting of bulk crys-
talline and interface anisotropy. The interfacial DMI in
the considered samples favors Néel walls, with a chiral-
ity fixed by the sign of the DMI constant. The samples
considered for the numerical evaluations are Pt/Co/Pt,
Pt/Co/Au and Au/Co/Pt, with a nominal cobalt thick-
ness of 0.9 nm, in which the DMI constant D varies
widely.

The ‘small circle’ Ansatz, is depicted in Fig. 1. Under
the influence of the in-plane field, the magnetization in
the domains rotates out of the poles to points denoted
G and G’. A domain wall is, quite generally, a path on
the sphere that connects these two points. The internal
magnetostatic energy of the domain wall favors equally
the two paths that are parallel to the domain wall orien-
tation, whereas DMI favors only one path orthogonal to
the domain wall orientation, and applied field favors also
only one path, through point E of Fig. 1(a). The idea of
the Ansatz is to simplify the task by looking at paths that
are contained within a plane, so moderately long. This
restriction allows analytical calculations nearly up to the
end, and we will show below that it corresponds well to
numerical simulation results. The cut of the unit sphere
by a plane gives, by definition, a small circle, hence the
name of this Ansatz. The family of planes going through
points G and G’ is described by a single parameter, the
‘cut angle’ ¢, with —7/2 < ¢ < 7/2. The magnetiza-
tion position on the small circle is described by an an-
gle 6. It increases from 6y to m — 0y for the short path
C., and decreases from 6y to —m — 0y for the long path
C_. From the drawings, the radius of the small circle

is r = /1 — h2sin? ¢, and the coordinates of the cen-

ter C are OC' = (hsin® p, —hsin @ cos @, 0). Thus, the
magnetization along the small circle reads
hsin? ¢ + 7 cos @ sin 0
m= | —hsingcosy + rsinpsinf (1)
rcosf

The angle 6y along the small circle that corresponds to
the domains magnetization satisfies sinfy = hcosy/r
and cos 0y = v/1 — h?/r. Note that by definition one has
0< 6y <m/2and h > 0.

III. FIELD NORMAL TO THE DOMAIN WALL

This is a high symmetry situation (the x axis and the
n axis coincide), where the applied field H and the DMI-
induced effective field at the domain wall are collinear.
When these two fields point in the same sense (and their
sum is sufficiently large), the solution is the Néel wall
of the corresponding chirality. When the applied field is

Figure 1. The ‘small circle’ Ansatz.

(a) Top view of the
unit sphere for the magnetization vectors, under an in-plane
field in the +x direction. Point G depicts the magnetization
orientation in the n < 0 domain (and hides point G’ which

corresponds to the n > 0 domain). A small circle of the
unit sphere, that goes through G and G’ and is vertical, is
defined by the cut angle ¢, which has to be optimized for
each situation. Point C' is the center of this small circle. The
in-plane angle of the domain wall magnetization, called ), is
defined by the angle of OA with OE; it is thus different from
¢. (b) Side view in the direction normal to the small circle,
showing the two paths that connect G to G, either through A
(short path Cy where 6 increases), or through B (long path
C_ where 6 decreases). The great circle (radius 1) is also
drawn in thin line.

opposite to the DMI field and sufficiently large, the solu-
tion is again a Néel wall, with reversed chirality. When
the applied field is close to compensate the DMI effective
field, an intermediate Bloch-Néel wall may appear.

A. Semi-analytical model

The densities for the exchange, DMI, effective uniaxial
anisotropy, Zeeman and domain wall internal magneto-
static energy are, respectively,

ao\?
cxc:A 2| — ’ 2
& r (dn) (2a)

do
Epmi= —Dd—r(hsin2<psin9+rcos ), (2b)
n
Eanis = Ko (h2 sin? o+ sin? 9) , (2¢)
&z = —poMsH (h sin? ¢ 4 7 cos psin ), (2d)
Epn = K cos® ¢ (hcosg — rsinf)?. (2e)

In the last expression, K is the effective magnetostatic
term related to the domain wall, i.e. the magneto-
static cost of a Néel wall. In the ultrathin limit (sample
thickness ¢ < domain wall width parameter Ay where
Ay = /A/Ky), it reads K =~ poM2tIin2/(27A) [16].
The DMI-induced effective field at the domain wall is
Hpwy = D/ (poMsAo).

The integral of the total energy density £ has to be
minimized with respect to the function 6(n), with the
constrains 6(—oo) = 6y, 0(+00) = m — 0y. Inspection



of the terms of Eq. (2) shows that (i) the DMI term is
the z derivative of some function, hence will play no role
in the profile 8(n); (ii) the energy density has the usual
expression of domain walls, with a gradient squared plus
a function of #. Therefore, the associated first integral
can be written, leading to the angle differential variation
law

de

d—gz\/1+n0052<p(sin97sin00), (3)
where the reduced variables £ = n/Ag and k = K/Kj
have been introduced. This relation can be integrated
[8], a surprisingly simple formulation of this result being
[9]

cos? 6y

sin 0y + cosh (f cosfpy/1 + K cos? <p>

(4)
From Eq. (3), the energy of the domain wall can be eval-
uated. It is given by the integral of £ 4+ Kyh?, the last
term having been included to remove the energy density
in the domains. Using the condition (3) to simplify the
calculations, one obtains finally

o+ _ r2\/1+ kcos? [cos 0o — (g — 90) sin 90]

sinf = sinfy +

o0

—rd {h sin? ¢ cos fy + (g — 0p)r cos <p] (5a)
7= _ r?y/1+ Kcos? ¢ [cos 0o + (g + 90) sin 90]
a0

—rd [h sin® ¢ cos Oy — (g + 6p)r cos <p] . (5b)

In this expression, § = D/(2v/AKy) = (2/m)D/D, is
the reduced DMI constant, with D, = (4/7)v/AKy the
well-known critical value of DMI [neglecting the Bloch-
Néel anisotropy energy of Eq. (2e)] above which the
uniform magnetic state is unstable. In the constrained
model [4, 10, 11] where only the in-plane angle (called
1) of the domain wall magnetization can vary, one sim-
ply has to minimize versus ¢ the expression o(¢)/o¢ =
1+ (k/2)cos? ¢ — (7/2)(6 + h) cosp.

Let us now look at a few limiting cases. When H = 0,
the small circle is a great circle so r = 1, 6y = 0, and the
cut angle ¢ is the angle of the domain wall magnetization
(¢ = ¢ = 0 for Néel walls, /2 for Bloch walls). The
domain wall energy simplifies to

U—i:\/l—l—ncos%p?ﬁécosgo. (6)
g0 2

For § > 0, the energy minimum is obtained with o, and
at cos? p = (16/2)%/ [k? — K(m6/2)?]. This value reaches
1 for

K

0 =0, .
1+ k&

i
3w

]

(7)

This relation is a more general expression of the criti-
cal value of the DMI at which the uniform state becomes

Figure 2. Results of the numerical minimization using the
‘small circle’ Ansatz, for the case of zero DMI, § = 0. The
color code of the map shows the small circle cut angle ¢,
it extends from 0 (blue) to m/2 (red). The two lines (also
obtained in the constrained model) depict the linear relation
valid at small k, see text.

unstable, as it takes better into account the internal mag-
netostatic energy of Néel walls. The expression at leading
order is §. = 2k/7 [4]; the practical difference is weak as
 vanishes in the limit of zero thickness (for the samples
studied here one indeed has k ~ 0.1).

Another limit is the a priori simple case with no DMI
6 = 0. Inspection of Eqns. 5a - 5b shows that even in
that case the minimization over ¢ is not simple. The
numerical solution of the problem is depicted in Fig. 2,
as a map of the cut angle ¢ in the (h,x) plane. For
small domain wall anisotropy &, the solution agrees with
the simple expectation in the case where the rotation of
magnetization in the domains, and the deformation of
the profile of the polar angle of the magnetization across
the domain wall, are neglected, namely h = £(2/7)x for
the field required to reach the Néel wall structure.

This simple case stresses that, even if the small cir-
cle model is easy to write down, its full solution is not.
Therefore here stops, in general, the analytical work; one
has to continue by a numerical minimization with respect
to the cut angle ¢. It should be noted that, if the mini-
mum is at ¢ = 0, then the solution is exact (within the
assumption made for evaluating the energies). The cor-
responding expressions for the domain wall energies were
already given in [17, 18].

To illustrate the model outputs, Fig. 3 shows the re-
sults for the case k = 0.3 and 6 = 0.1, with the field
acting in the same sense as DMI when 6 > 0, whereas
at zero field the wall is in an intermediate Bloch-Néel
state. The domain wall energies [Fig. 3(a)] mostly de-
crease with field, and reach 0 at the effective anisotropy
field where the domain wall vanishes as the magnetiza-
tion turns in-plane, parallel to the field. In the case where
DMI and applied fields are parallel, the characteristic
negative domain wall energy region [17] is obtained. In
the anti-parallel case, the domain wall energy reaches a
maximum, before decreasing to 0. This maximum is not
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Figure 3. Results of the numerical minimization using the
‘small circle’ Ansatz, for a large domain wall relative magne-
tostatic energy (k = 0.3), for two opposite and small values
of the DMI (6 = £0.1). (a) Normalized domain wall en-
ergy. The energy maximum in the antiparallel case occurs at
h = 0.0901. (b) Corresponding cut angle ¢, and minimum en-
ergy contours Ct (see Fig. 1). The value ¢ = 7/2 is reached
at h ~ 0.0995. The zero-field value ¢ ~ 1 radian means that
the domain wall is in a mixed Bloch-Néel state with the cho-
sen values of k and 6. The results of the constrained model
are drawn by dotted curves.

exactly located at h = —§ (i.e. H = —Hpumi), because
the domain wall magnetostatic energy is not negligible.

Repeating this calculations for various values of x, §
and h, phase diagrams can be constructed, as shown in
Fig. 4. They illustrate that the switching of the domain
wall from one polarity of Néel wall to the other takes
place around h = —§/+/1 + k, with a mixed Bloch-Néel
region that gets larger as k increases. The above switch-
ing field relation can be obtained by equating o4 (Eq. 5a)
to o_ (Eq. 5b) under the assumption that ¢ = 0 (i.e.
Néel walls). The graphs show two switching processes,
either continuous and through the Bloch wall in the vicin-
ity of the center of the graphs, or discontinuous from one
Néel wall to the opposite one far from the center of the
graphs. One can obtain analytically the endpoints of the

continuous region as (h,0) = £ (—\/H/(l + k), \/E>
Once the domain wall profile is known, it is possible to

compute some quantities of interest. The first one is the
so-called Thiele domain wall width At which governs the

—0.75-0.50-0.25 0.00 0.25 050 0.75 —0.75-0.50-0.25 0.00 0.25 050 0.75

k=0.3

~0.75-0.50-0.25 0.00 0.25 0.50 0.75

-0.75-0.50-0.25 0.00 0.25 0.50 0.75

Figure 4. Type of domain wall as a function of in-plane field
(scaled field h) and DMI (expressed by the scaled parame-
ter §), for increasing values of the domain wall magnetostatic
energy (scaled parameter k). For these drawings, a fixed di-
rection in the plane is considered, so that negative fields are
figured, and ¢ spreads over the [0, 7] interval. The color code
represents the cut angle ¢, plotted over the extended range
from 0 to 7 so as to differentiate the two chiralities of Néel
walls. The constrained model predicts a switching at h = —4,
the ¢ isovalues being parallels to that line.

domain wall dynamics [19, 20]. It is defined by 2/Ar =
[ (diiy/dz)? dz. One obtains

ﬁ = ! (8a)
Ao r2\/1+ Kcos? ¢ [cosby — (5 — b)sin by
A |

2T _ 8b
Ay r2\/1+/$0052cp[cos@o—i—(g—i—ﬁo)sinﬁo]( )

Note that, in the presence of an in-plane field that tilts
the magnetization in the domains, the famous steady-
state velocity to easy-axis field (H,) relation becomes

A
2T g V1— R, (9)

«
(with 79 = po|y| the gyromagnetic factor and « the
Gilbert damping parameter, not to be confused with the
angle of domain wall normal with field resp. the domain
wall tension, both used in Sec. IV). Thus, the velocity
increase due to that of the Thiele DW width is partly
compensated by the decrease of the driving force due to
the domain magnetization tilt, illustrating the fact that
the in-plane field has conflicting influences on the domain
wall mobility.

The other domain wall width of interest is the ‘imag-
ing’ width, introduced by A. Hubert [9, 21], which mea-
sures the extension in physical space of the domain wall.

Ve =

k=0.5 o(°)
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Figure 5. Results of the numerical minimization using the
‘small circle’ Ansatz, for a large domain wall relative magne-
tostatic energy (k = 0.3), for two opposite and small values of
the DMI (§ = £0.1). (a) Thiele domain wall width At nor-
malized to Ao, for the small fields. The inset shows the full
curve, in log-lin scale. The dashed curves plot the product
V1 — h2A~, the relevant quantity for the domain wall mobil-
ity. (b) Hubert domain wall width Ay, normalized to A, the
inset showing the full curve, this time in lin-lin scale. The
breaks of the curves correspond to the fields (h = 0.0664 for
0 = +0.1 and h = 0.2334 for 6 = —0.1) where the domain
wall becomes of the Néel type, perfectly parallel to the field
[p = 0, see Fig. 3(b)]. The constrained model assumes that
all widths are constant, equal to A (dotted lines).

It is anticipated that this width is the relevant one to
evaluate the pinning of the domain wall by imperfections
[14]. Using the general definition of Ref. [21], based on
the value of m, at infinity, one gets

ﬁ _ cos 6 (10a)
Ao \/1T+kcos? [l — sinb)
ﬁ _ cos 6y (10b)

Ao \/1+kcos2 [l +sinb)

These two widths are plotted in Fig. 5; they globally
increase with the in-plane field, as expected. The width
smaller than Ag at zero field expresses the contraction
due to the magnetostatic cost of the non fully Bloch
wall. Whereas the Thiele domain wall width diverges
at H = Hgo (as no magnetization gradient anymore ex-
ists at that field), the Hubert width increases less. In

Table I. Parameters of the three samples investigated, all with
a nominal 0.9 nm Co thickness (the name reflects the growth
order). The exchange constant is assumed to be A = 16 pJ/m.

Sample Au/Co/Pt Pt/Co/Au Pt/Co/Pt
M, (kA/m)| 1610 1650 1621
K., MJ/m®)| 236 2.35 2.12
D (mJ/m?)| 0.60 0.87 0

woHro  (T) 0.9 0.77 0.58
Ao (nm) 4.7 5.0 5.8

K 0 0.10 0.11 0.12
5 0 0.09 -0.20 0

the intermediate field region (intermediate Bloch- state),
the width differs for fields parallel and antiparallel to the
DMI field. Moreover, in the case of large domain wall
anisotropy and low DMI, the Thiele and Hubert widths
can show opposite trends with field [Fig. 5(b)]. This is
due to the behavior of the various factors entering the
domain wall widths, see Eqgs. (8,10). Especially, the DW
width can decrease with field when the factor contain-
ing the DW anisotropy (parameter ) is dominant, the
DW magnetization turning from Bloch to Néel as field
increases.

Note also that, for this relatively small DMI compared
to the domain wall internal magnetostatic energy, no
minimum of the DW width occurs at H, = —Hpwur,
in contrast with what is predicted by simplified mod-
els. Thus, the small circle Ansatz allows an exploration
of the complex physics of the statics of domain walls sub-
mitted to a transverse field, in which several effects are
in competition.

B. Comparison to numerical micromagnetics

We now compare quantitatively the results of the
model to those obtained by numerical micromagnetic cal-
culations, using MuMax3 [22]. For these calculations, the
sample was meshed in 1024 x 1 x 1 cells in the z, y resp.
z directions, with a cell size 1 x 1 x 0.9 nm? and periodic
boundary conditions in the y direction, the magnetostatic
interaction coefficients being summed over 100 000 rep-
etitions (this value was reached by comparison with the
analytical demagnetizing factor, for a uniform magneti-
zation). To avoid edge effects, known to exist with DMI
[23], the data for the domain wall were collected on the
400 central cells, this length being also well above the
obtained domain wall widths. The magnetic parameters
of the three samples considered in these calculations are
provided in Tab. I (see ref. [14] for details). Important
parameters derived from these values are also given, in
particular the numbers s and §.

The profiles of the domain wall magnetization pro-
jected on the (mg, m,) plane (this plane was used to draw
Fig. 1a) are shown in Fig. 6 (a), as obtained by the small



circle model (dashes), and by numerical micromagnet-
ics (continuous curves), for several values of the in-plane
field that span reversal of the domain wall magnetic mo-
ment. One first notes that the small circle approximation
is very good, as the numerical profiles are extremely close
to straight lines, the traces on the (m,, m,) plane of the
vertical cut plane. Small deviations to this behavior are
seen close to the origin of the plots, i.e. at the tails of the
domain wall [see Fig. 6(b)]. However, the cut angles are
found to differ. This is due to the model’s assumption
of a purely local z-component of the demagnetizing field,
namely Hy, = —Msm,. Plot (c) shows that indeed the
demagnetizing field perpendicular component falls below
the —1 ratio to the normal magnetization component m,
at the domain wall. As a result, the Thiele domain wall
width in zero applied field, estimated to be 4.7 nm in
the model, is 4.37 nm in the numerical calculation. This
leads to a larger demagnetizing cost of the Néel wall, so
that the reversal of the domain wall £ magnetic moment
extends over a larger field region.

Next we look at the energy of the domain wall, per
unit surface [24]. As visible in Fig. 7, the small circle
model gives precisely the same trend as the numerical
simulation, but lower values due to the neglect of the
non-local magnetostatic term within the domain wall. A
calculation detailed in the Appendix leads to a correction
term, dependent on the width of the domain wall, which
corrects most of this difference (see Fig. 7).

Finally the widths of the domain wall, either relevant
for dynamics (the Thiele domain wall width parameter
Ar) or for imaging (the Hubert domain wall width pa-
rameter Ay) are investigated. The comparison of the
numerical micromagnetic simulation results with those
of the small circle model is detailed in Fig. 8. One sees
that, generally, the widths are larger with the small cir-
cle model, due to the local approximation for the z com-
ponent of the demagnetizing field, as well as for the z
component [Eq. (2e)]. The computed variations of the
domain wall width are important in relative terms. Even
if it changes, in absolute terms, only between 4 and 6 nm,
an effect on the domain wall pinning characteristics has
been experimentally observed [14].

One notices that the widths, in this case where DMI
is comparable to or even larger than the domain wall in-
ternal magnetostatic energy, show a minimum for some
field opposite to the DMI field. This field is however
smaller, in absolute value, than the field where the do-
main wall energy is maximum. Therefore, the various
methods based on domain walls to measure the interfa-
cial DMI should be compared in detail.

Globally, the small circle model is shown to be quite
accurate, for the magnetization profile, its spatial extent
and its energy. The biggest difference appears to lie in
the domain wall energy. Most of it may be corrected by
adding an estimate of the non-local magnetostatic energy
of the domain wall.

(9]
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Figure 6. Comparison of the small circle model with numer-
ical simulations, for the Au/Co/Pt sample. (a) The in-plane
magnetization components for an up-down domain wall un-
der several in-plane fields, predicted by the small circle model
(dashed lines) and computed by numerical micromagnetics
(curves). (b) Zoom close to the origin, for the numerical pro-
files, to evidence the small deviations from linearity. (c) Pro-
file of the local z demagnetizing factor as extracted from the
micromagnetic calculation under zero applied field.

IV. FIELD AT AN ARBITRARY ANGLE

For this general case, we proceed similarly to the pre-
vious part. Only what changes or was not present in the
high symmetry case is given.

A. Semi-analytical model

The angle of the domain wall normal 7 with the field
(z) axis is called . The energy densities which depend
on the domain wall orientation are the DMI and domain
wall internal magnetostatic energies. They read

Epmi= fDZ—gr [hsin psin(¢p — «) sinf + r cos(p — )]
n

Ean = K cos?(¢ — a) (hcos o — rsinf)” . (11)
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Figure 7. Comparison of the small circle model with numeri-
cal simulations, for the Au/Co/Pt (a) and Pt/Co/Pt (b) sam-
ples, regarding the domain wall energy. The effect of the
analytical domain wall energy correction (see Appendix) is
shown. For Au/Co/Pt, the domain wall energy maximum is
reached at puoH; = —75 mT.

The same analysis as before leads to the variation law of
the angle 6

Z—z = /1 + rcos?(p — a) (sinf — sin ) . (12)

Similarly, the domain wall energies for both arcs are

T+ _ 21+ Kcos?(p — a) {‘30590 - (g - GO)SmGO}
00

—rd [h sin psin(p — o) cos Oy + (g — 0o)r cos(p — a)} ,

(13a)
- _ r2\/1+ kcos?(p — a) [COSHO + (E + 6p) sin@o}
ao 2

—rd [h sin g sin(p — «) cos by — (g + 6o)r cos(p — a)} .
(13b)

Finally, the domain wall widths have similar expressions
to the normal case [Egs. (8, 10)], only replacing ¢ by
¢ — « inside the square root with k. These formulas
illustrate the power of the model: treating a much more
general problem is realized by a minor modification of
the functions to use. For the constrained model, counting
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Figure 8. Comparison of the small circle model with numeri-
cal simulations, for the AuCoPt (a) and PtCoPt (b) samples,
regarding the domain wall widths (see text for definitions).
For AuCoPt, all widths show a minimum at -30 mT for the
small circle model, and -40 mT for the numerical calculation,
values which are clearly lower from that where the domain
wall energy is maximum [see Fig. 7(a)].

the domain wall magnetization angle ¢ from the domain
wall normal, the function to minimize, for each value of
a, reads now o (1)) /oo = 1+ (k/2) cos® ¢ — (7/2) [0 cos 1+
hcos(ip — a)].

The computed dependence of the domain wall energy
on the domain wall orientation « allows evaluating an-
other important parameter, the domain wall surface ten-
sion 7. It is defined by

Za
da?’

Indeed, in the case of a domain wall surface energy that
depends on the domain wall orientation, the energy cost
of a bulging of the domain wall consists of (i) the in-
crease of the wall length, penalized by o, and (ii) an
energy variation due to the exploration of neighboring
domain wall angles by the bulge, which leads to the sec-
ond derivative. The distinction between energy and ten-
sion is a well-known concept in surface physics [25], and
its relevance for magnetic domain wall creep motion was
recently stressed [13, 26].

For the demonstration sample with large domain wall
internal magnetostatic energy (x = 0.3) first, the varia-

Y(a) =o(a)+ (14)



; -\ =0 —= Yog, =401 ][ -y o=1° -\ 0=5°
— = yloy, 8=-0.1
08F N — oloy, 5= +0.1 1 | N
N \
— ooy, 6=-0.1 ~<
06 ! ,~ o 1t <
I T‘\ SN

04r | | \
02t II' I S \ =

. =| | - S \\ - iy

i' [
_02 i} i 1
1.2 .
o~ a=10° a=90°
1 N
O\
0.8 \
\\\ \ \
06t x \
04 f \
\\ - \\

0.2 Il

o -
02 . . . . . . .

0 0.2 0.4 0.6 0.8 10 0.2 08 0.8 10 0.2 0.4 b 0.6 0.8 1
h

Figure 9. Results of the numerical minimization using the ‘small circle’ Ansatz, for a large domain wall relative magnetostatic
energy (k = 0.3), for two opposite and small values of the DMI (§ = £0.1). The domain wall surface energy o (lines) as well
as surface tension ~ (dash lines), normalized to the Bloch wall surface energy oo, are plotted as a function of the normalized
in-plane field h, for several values of the angle o between the domain wall normal and the applied field.
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Figure 10. Alternative view of the results shown in Fig. 9, for Kk = +0.3 and § = +0.1, where the angle a of the domain wall
normal with the in-plane field is varied, for selected values of the field. The results of the constrained model have been included

(dotted curves) for comparison.

tion of domain wall surface energy and tension as a func-
tion of in-plane field and domain wall orientation is shown
in Fig. 9. For large angles (o > 20°), domain wall energy
and tension follow similar evolutions with applied field.
One should nevertheless note that the negative domain
wall energies found close to saturation give positive ten-
sions. At low angles however, things are much more com-
plex, with the appearance of regions in the («, h) space
where the domain wall tension is negative. This situa-

tion is well known in crystal growth [25]: such a domain
wall orientation is unstable, and faceting appears (a phe-
nomenon also called the zig-zag faceting in magnetism
[9]). The faceting in the case where in-plane field is par-
allel to DMI field (6 > 0 here) is minute, as the domain
wall tension is already postive at a = 1° [for h = 0.07 for
example, the tension reaches 0 at o = o, = 0.515° and
the faceting occurs with angles (+ or —) af = 1.29°]. It
is larger in the antiparallel case: at h = 0.3 the angles
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(open black symbols) to those of the semi-analytical small circle

model (colored curves), for the Au/Co/Pt sample. (a) variation of the domain wall energy o with angle of the applied in-plane
field, for 3 values of the field poH = 100,200,300 mT. (b) variation of the domain wall tension ~ in the same conditions. The
analytical correction to the domain wall energy (and tension) is included in the small circle values. Note the absence of noise
in the semi-analytical calculation of the tension, compared to the numerical procedure (see text for cause).
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Figure 12. Comparison of the numerical micromagnetics results (open black symbols) to those of the semi-analytical small
circle model (red curves), for the Au/Co/Pt sample. (a) variation of the domain wall energy o with the in-plane field, applied
at an angle o = 10 degrees. (b) variation of the domain wall tension  in the same conditions. The analytical correction to the
domain wall energy (and tension) is included in the small circle values.

are 5.25° and £11.3°, respectively. In the v < 0 region
(i.e. |a] < ac¢), the domain wall energy o is replaced
by o¢(a) = o(ar)cosa/ cos s, with a discontinuity at
« = «. This relation moreover leads to a domain wall
tension which is exactly zero. These conclusions hold,
however, only in the infinite domain wall length limit, as
the energy cost of the kinks of the faceted domain wall
is not taken into account.

Another noticeable feature is that, for moderate angles
(Ja| < 20°), at non-negligible fields (h > 0.25) the favored
domain wall has a lower energy, but a larger tension.

The other way to look at the same data, in which the
angle « varies continuously, is shown in Fig. 10. In ad-
dition, the results of the constrained model have been
included in these graphs (dashed curves). The differ-
ences with the small circle model steadily increase as the

field becomes larger, and they are more important for
the domain wall tension v, with larger variations with
angle predicted by the constrained model. This should
be expected, from the presence of the second derivative
of the domain wall energy versus angle, which is sensitive
to the fine variations of the domain wall energy o. The
large differences of computed domain wall tension mean
large differences of the domain wall mobility as a func-
tion of field orientation, hence for example big differences
of shape of bubble domains when expanding in the creep
regime in the presence of an in-plane field [13].



B. Comparison with numerical micromagnetics

We now turn to the samples investigated in this study.
Using the same procedure, the domain wall surface en-
ergy o was numerically evaluated. In order to obtain the
domain wall tension -, a finite differences evaluation of
the second derivative versus angle was performed. Due
to the limited precision of the numerical values (single
precision), the angle step could not be reduced below 1
degree. For the small circle calculations, a much smaller
angle step could be used (107° degree), as the calcula-
tions are performed with double precision, resulting into
a smaller numerical noise. The analytical correction of
the domain wall energy (see Appendix) was added to
the small circle model results, using for the domain wall
width parameter the Hubert value. As the variation with
angle of the Hubert domain wall width is small (for exam-
ple, £0.1 nm around 5.7 nm for Au/Co/Pt at 200 mT),
this correction amounts to the same offset for o and ~.

The comparison of the two models, for the case of the
Au/Co/Pt sample, is shown in Fig. 11. The quantitative
agreement is close to perfect. The two quantities ¢ and
~ show a strikingly different behavior, even if the applied
fields are all above the DMI field: whereas the energy
o monotonously varies with angle, by a small amount,
and monotonously decreases as more field is applied, the
tension v shows a marked decrease at intermediate fields,
around the antiparallel orientation of the applied field
with respect to the DMI field. This difference comes from
the strong sensitivity of v to the o(a) variation. Note for
example that, if 0 = A cos« then v = 0.

In order to see better the difference between domain
wall tension and energy, the alternative plot where field is
varied, for given values of the angle, is shown in Fig. 12.

Now that the quantitative accuracy of the small circle
Ansatz has been demonstrated, the model can be used
to obtain detailed predictions. As an example, Fig. 13
shows the computed color-coded maps of the domain
wall surface energy o and tension -, for the case of the
Au/Co/Pt sample. Whereas the o-map (a) shows the ex-
pected larger energy when field is antiparallel to the DMI
field (here, at o = 180°), the y-map (b) shows an energy
reduction around that orientation, that depends strongly
on the applied field. The cut at o = 180° (c) compares
the variation of domain wall surface tension with that of
the cut angle ¢ of the small circle, revealing that the deep
troughs of « occur when the domain wall magnetization
reorients out of the Néel state. The corresponding maps
(not shown) for the symmetrical Pt/Co/Pt sample only
show troughs in v at a ~ 0, 180, 360° and poH ~ 26 mT.

From these energy maps, maps of energy differences
can be constructed, by comparing for the same angle
the results for positive and negative fields. These are
shown in Fig. 14, for the surface energy and for the sur-
face tension. For Au/Co/Pt which has a positive DMI,
and as up-down walls are considered, one expects that
o(H) < o(—H) for positive fields. This is indeed ob-
tained [Fig. 14(a)]. However, and as remarked for the
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Figure 13. Computed domain wall surface energy o (a) and
tension v (b) for the Au/Co/Pt sample, by the small cir-
cle model incorporating the additional demagnetizing energy.
Note that such noiseless maps, containing 360x200 pixels,
would have required very long numerical micromagnetics cal-
culation times, whereas a few seconds suffice to produce them
using the small circle model, including the magnetostatic cor-
rection. The color scale spans the values 0 to 414 mJ/m? for
(a), and -14 to +14 mJ/m? for (b), values outside of these
boundaries having been clipped. Panel (¢) compares a cut of
(b) through o = 180° to the variation of the small circle cut
angle .

large domain wall anisotropy sample, the domain wall
tension difference changes sign twice as field is increased
[Fig. 14(b)]. Therefore, if domain wall tension -y alone
were determining the domain wall velocity, one would
expect that the asymmetry of a circular-shape domain
expanding in the presence of an in-plane field would re-
verse twice, giving a sign in accord with that of the en-
ergy difference only at intermediate fields. This directly
relates to experimental observations [18, 27], as qualita-



400
Au/Co /Pt
o(H) - o(-H)
(a) 300}
3
~ 200 |
T
Ky
100
0
400
Au/Co/Pt
(b) y(H) - y(-H)
300
3
~ 200 |
T
< ¢
100
O 1 1 1 1 1
-90 -60 -30 0 30 60 90

o ()

Figure 14. Computed differences of domain wall surface en-
ergy o (a) and tension 7 (b) for the Au/Co/Pt sample, be-
tween positive and negative fields e(a, H) — €(a, —H). The
maps are derived from the data of Fig. 13. The color
scale spans values -5 to +5 mJ/m? for (a), and -10 to
+10 mJ/m? for (b), values outside of these boundaries having
been clipped.

tively explained earlier [13].

V. CONCLUSION

We have developped a semi-analytical model for the
one-dimensional domain wall structure in ultrathin films
with perpendicular magnetization, in the presence of ar-
bitrary in-plane fields, in orientation and magnitude.
The model is based on the ‘small circle’ Ansatz intro-
duced by A. Hubert. It is semi-analytical, as an analytic
expression needs to be minimized versus one variable, the
‘cut angle’ of the small circle.

The model has been compared to the simplest model
of the situation, in which only the orientation of the do-
main wall magnetic moment is allowed to vary. Clear
differences have been observed, that increase as the in-
plane field becomes larger. The model ouputs have also
been compared to numerical micromagnetic calculations,
for three samples having the Au/Co/Pt generic struc-
ture, the parameters of which coming from experiments.
A very good quantitative agreement has been obtained,
with some systematic differences having been uncovered,
linked to the magnetostatic energy. A correction to the

11

domain wall energy has been worked out, which leads to
much closer values. For the domain wall width however,
this is not generally possible as the model computes the
full structure of the domain wall.

The model provides the energy and the complete pro-
file of the domain wall, which allows computing the var-
ious domain wall widths that are relevant for its statics
(Hubert domain wall width), or dynamics (Thiele do-
main wall width), or any other quantity dependent on
the domain wall profile. The complete freedom on the
in-plane field allows computing the domain wall surface
tension, whose key role has been recently uncovered, with
no fear from artefacts due to too restricted energy cal-
culation hypotheses. In particular, the occurence of zero
tension regions (in the field-angle space) has been con-
firmed, meaning that the one-dimensional picture breaks
down there, and domain wall faceting occurs. To illus-
trate the power of semi-analytical means, maps of the
domain wall properties as a function of the magnitude
and angle of the in-plane field are shown.

It is hoped that the refined calculation of the domain
wall properties developed in this work will be useful in
constructing a domain wall creep theory which fully in-
corporates the presence of the in-plane field (a first step
being Ref. [26]), quantitatively explaining the surprising
results of some experiments [18, 27, 28]. The extension
of this methodology to the fast domain wall dynamics
should also be investigated.
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VII. APPENDIX A: ANALYTICAL
CORRECTION TO THE DOMAIN WALL
MAGNETOSTATIC ENERGY

In the limit of a magnetization uniform across the
sample thickness (¢), which applies to ultrathin films,
the demagnetizing energy FE4 of a domain wall with a
Bloch profile (domain wall width parameter A) can be
analytically calculated, by going to Fourier space. This
energy diverges, but the difference between two values
of A is finite. One obtains Eq(A = 0) — Eq(A) =
(noM2/2)tI (A/t), where the integral I reads

I(p) = /m 1=’ {4 " Ja s
0 x mx?  sinh®(mpx/2)

On the other hand, the assumption of a local de-
magnetizing field leads to Eq(A = 0) — E4(A) =
(uoM2/2) (2A). Therefore, the small circle domain wall
energy o should be corrected by adding to it the quantity
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Figure 15. Numerical evaluation of the function giving the
demagnetizing energy correction o4 to the domain wall en-
ergy. The large parameter (i.e. A > t) asymptotic behavior
0.69 + 0.6351n(A/t) is also drawn.

oa = (noM2/2) [2A — tI(A/t)]. The function involved is
plotted in Fig. 15. Under an in-plane field, o4 should be
multiplied by m? = (1 — h?).

This magnetostatic domain wall energy correction oq
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can be used to predict the domain wall width more accu-
rately, in the case of zero applied field where the domain
wall profile is known. Taking this domain wall width pa-
rameter A as a variable, one has to minimize the total
energy of the domain wall, obtained by integrating the
terms of Eq. (2), which reads

pio M2

24 A
0(8) = TH2K A+t [0.69 +0.6351n()| (16)

(the Bloch-Néel magnetosatic cost, using the first order
approximation for the demagnetizing factor of the Néel
wall in an ultrathin film [16], is independent of the do-
main wall width parameter). This results in

0.635t\* 0.635¢
_ 2 _
A\/AO+( o ) 00 (17)

where Qp = 2Ko/(uoM2) is the quality factor of the
sample. As an example, for the Au/Co/Pt sample, one
finds A = 4.385 nm, much closer to the numerical value.
This calculation shows again the origin of the discrepancy
between the small circle and the full micromagnetics.
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