
HAL Id: hal-03296950
https://cnrs.hal.science/hal-03296950v1

Preprint submitted on 23 Jul 2021 (v1), last revised 30 Jul 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Natural constructive proofs of A via A -> B, proof
paradoxes, and impredicativity

Mark van Atten

To cite this version:
Mark van Atten. Natural constructive proofs of A via A -> B, proof paradoxes, and impredicativity.
2021. �hal-03296950v1�

https://cnrs.hal.science/hal-03296950v1
https://hal.archives-ouvertes.fr


Dr
aft

Chapter 1
Natural constructive proofs of A via
A → B, proof paradoxes, and
impredicativity

Mark van Atten, July 23, 2021

for Göran

Abstract Guided by a passage in Kreisel, this is a discussion of the relations
between the phenomena in the title, with special attention to the method of
analysis and synthesis in Greek geometry, fixed point theorems, and Kreisel’s
contact with Gödel.
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1.1 Introduction: A passage in Kreisel

In his obituary for Brouwer in the Memoirs of the Royal Society, Kreisel
explains the meaning of constructive implication thus:

(1.1) to prove A→ B, one needs two things: a mapping π from proofs to
proofs, and a proof, say p0, establishing that, if any p proves A then
π(p) proves B. [Kreisel and Newman, 1969, p. 57]

This is his construal of the corresponding clause in Heyting’s Proof Interpre-
tation:

(1.2) The implication p → q can be asserted, if and only if we possess a
construction r, which, joined to any construction proving p (supposing
that the latter be effected), would automatically effect a construction
proving q. [Heyting, 1956, p. 98]

Kreisel, keeping (1.1) in mind, further on writes:

(1.3a) Perhaps because of all this experience or for intrinsic reasons, nobody
seems ever to have been as much as tempted to put down false
principles in elementary constructivity. In contrast, if one actually
wants to formulate explicit properties of proofs, one has to keep one’s
wits about one to avoid errors which are, formally, similar to Russell’s
paradox in set theory.

(1.3b) This is not surprising, inasmuch as Russell’s paradox involves some
kind of self application and, as seen from the example of implication,
proofs obviously are about themselves, specifically the proof p0 is
involved in some values of the variable p.

and then adds this parenthesis:

(1.3c) (Incidentally, it is one of the peculiarities of constructive logic that,
for some A, a natural formal proof of A goes via proofs of A → B
and of (A→ B) → A: such a proof of A actually contains a proof of
A→ B.) [Kreisel and Newman, 1969, p. 58, original emphasis]1

These passages (1.3a)–(1.3c) raise, in order of reading, several questions, to
discuss which is the purpose of the present paper:2

1. What ‘errors’ are referred to in (1.3a)? (section 1.4.1)
2. In (1.3b) Kreisel notes that the informal construal of implication in (1.1)

shares a dependence on ‘a kind of self-application’ with Russell’s Paradox,
but he does not go on to suggest that this would be reason to find (1.1)
suspect. Whence the difference? (section 1.4.5)

1 On p. 23 of the ‘palimpsest of essays’ Odifreddi [2019b], the passage (1.3a)–(1.3c) has
retained its original content, but (1.3c) has been turned into a footnote.
2 As sources for Kreisel’s views that are pertinent to (1.3c), which was published in 1969,
publications have been chosen from the encompassing period 1965–1973.
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3. What, in (1.3c), is the role of the explicit qualification of formality,
what notion of naturalness is being appealed to, and what is meant by
‘constructive logic’? (sections 1.2.1, 1.2.2, 1.2.3)

4. What are examples of such A and B as (1.3c) refers to? (sections 1.3.1,
1.3.3, 1.4.4)

5. Given that (1.3c) is about formal proofs, but (1.3b) about informal ones,
what is the exact bearing of (1.3c) on (1.3b)? (sections 1.4.5, 1.5)

6. As far as I have been able to determine, Kreisel did not elaborate on
(1.3a)–(1.3c) elsewhere. If that is correct, could a conjecture be made why
he didn’t? (section 1.4.5)

Possible differences between Kreisel’s (1.1) and Heyting’s (1.2) will be
discussed as little as possible, as with respect to the remarks (1.3a)–(1.3c)
and the questions they make one ask, they seem to be interchangeable.3

1.2 Key concepts in that passage

1.2.1 Proof and formal proof

Kreisel characterises proofs, ‘intuitive proofs’ [Kreisel, 1968b, p. 321], as
‘mental processes by means of which we convince ourselves of the validity
of (mathematical) propositions’ [Kreisel, 1973, p. 263], but also as objects
that are ‘abstract’ [Kreisel, 1968b, p. 344] or ‘intensional’ [Kreisel, 1971a,
p. 242]. The senses of process and object are closely related, and not so
much in opposition as revealing of the different ways in which proofs present
themselves to us. In the order of both things and explanations, intuitive proof
takes priority over formal proof:

(1.4)Indeed it is easy to forget that formal languages or formal derivations
are introduced because they express propositions and proofs respec-
tively: an argument which can be formalized by given derivation rules
is conclusive not because the formalization proceeds according to some
formal rules, but because the formal rules have been seen to preserve
validity. Only in conjunction with this act of seeing the validity of

3 The key terms describing differences are ‘second clauses’ and ‘proof conditions versus
assertion conditions’. The former refers to Kreisel’s explicit demand for a mathematical
proof (object) p0; in Heyting’s formulation this is either implicit or, on the contrary,
absent because not required; Sundholm has argued that what is required is rather
an act (of understanding a construction process), which is not a mathematical object
[1983, pp. 161–167, 169n13]. To my mind, Sundholm is correct here. Be that as it
may, it could be argued that (i) coming to possess a mathematical proof and coming
to understand a construction process are both cases of coming to accept, that (ii) on
either (otherwise unadorned) reading of Heyting’s clause, accepting certain proofs of A
presupposes accepting a constituent proof of A→ B, and that (iii) this captures enough
of the ‘involvement’ that Kreisel speaks of in (1.3b).
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the rules is the formal verification that a sequence of formulae is
constructed according to given formal rules, a proof. In short, proofs
as understood here (and in ordinary life and mathematics) are not
linguistic objects. [Kreisel, 1970, p. 29, original emphasis]

This was of course a staple in Brouwer, Heyting, and Gödel; among those
of Kreisel’s own generation, one finds a clear expression also in Myhill 1960,
both – incidentally, born within five weeks of one another – having been
strongly influenced by Gödel.4

Besides ‘intuitive’ and ‘abstract’, qualifications that are used (by Kreisel or
others) to indicate proofs in this primordial sense are ‘absolute’, ‘contentual’,
‘contentful’, ‘informal’, or ‘non-formal’, depending on context and emphasis.5

4 Of more recent defenses (or sympathetic discussions) of this idea, I here mention
e.g. Leitgeb [2009], Tanswell [2015], and Crocco [2019].
5 The latter four all serve to translate the German ‘inhaltlich’, which according to the
Etymologisches Wörterbuch des Deutschen (https://www.dwds.de/d/woerterbuecher)
goes back to the 17th century.

Further and later information about Kreisel’s take comes from von Plato, who writes:

(1.5) I translate inhaltlich as contentful. Gödel suggested in the 1960s ‘contentual,’
but my translation is at least an English word. Georg Kreisel disliked it: He told
me in July 2010 that one should just use the word meaning. Inhaltlich, then,
would be meaningfully, or perhaps in terms of meaning. I regret not having
asked what he thought of Gödel’s invented word. [von Plato, 2017, p. 259]

In an email to me of November 7, 2020, von Plato adds that ‘or perhaps in terms of
meaning’ is his adaptation for cases where ‘meaningfully’ would not fit, and that Kreisel
preferred the translation to be as common a word in English as ‘inhaltlich’ is in German.

To take the claim about Gödel first, compare this remark by Van Heijenoort:

(1.6) A teaser for translators of German texts on foundations of mathematics is the
word ‘inhaltlich’. Mr. Bauer-Mengelberg coined the neologism ‘contentual’ and
used it at a number of places. Elsewhere various periphrases were adopted; in
particular, Professor Gödel suggested those that are used in the translation of
his 1931. [van Heijenoort, 1967, p. viii]

In that translation of Gödel’s paper, it is always suitable locutions with ‘meaning’ or
‘interpretation’ that are used. As pointed out in Buldt [1997, p. 92], this indicates that
Gödel did not like ‘contentual’, which word Van Heijenoort will surely have suggested to
him, perhaps when they met in September 1963; the matter does not come up in their
letters selected for Gödel [2003b]. In the mentioned email, von Plato takes Buldt’s point.

Although ‘contentual’ may well have seemed a neologism to all mentioned so far,
strictly speaking it was not. The Oxford English Dictionary lists it with the meaning
‘belonging to, or dealing with, content (opp. act or form)’. That is, admittedly, in its
second Supplement, published in 1972 (and neither in the original volume for the letter
C of 1893, nor in the first Supplement to the dictionary, of 1933), but the three citations
given there are dated 1909, 1935, and 1962. (Incidentally, with an eye on Gödel’s interests
one notes that the citation of 1962, ‘distinguishing the formal from the contentual features
of propositions’, comes from Plato’s Later Epistemology [Runciman, 1962, p. 132] – where
it is claimed that, for methodological reasons, Plato, unlike Aristotle, was not able to
make that distinction.)

In their translation of Weyl [1928], Bauer-Mengelberg and Føllesdal use ‘contentual’
for ‘inhaltlich’, but employ ‘meaningful’ for ‘sinnerfüllt’ [van Heijenoort, 1967, p. 482].

https://www.dwds.de/d/woerterbuecher
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Two aspects of formalisation that come to mind as possible further de-
terminants of the full meaning of ‘formal proof’ in (1.3c), individually or
together, are explicitation and arithmetisation. While an informal reasoning is
the starting point for a formal proof, the latter, when interpreted as intended,
supplements it wherever needed by making explicit what was left implicit, such
as certain premises or conditions. And through the device of arithmetisation,
certain formulas whose intended meaning is arithmetical acquire additional
meaning concerning properties of the formalism itself. (Such formulas may
themselves be reasoned about informally or formally again.)

Below, I will use notation such as A→ B both for meaningful propositions
and for formal statements, and Gentzen’s Natural Deduction to represent
both informal and formal proofs. On each occasion, the context makes clear
which is meant. The exact choice of proof system has no bearing on the
present discussion, as long as it embodies the idea that if a formal proof is
constructed on the basis of given ones, then the former retains the latter as
parts; otherwise Kreisel’s remark (1.3c) about ‘literal containment’ cannot
apply. For example, Gentzen’s Sequent Calculus (when seen as instructions for
constructing Natural Deduction proofs) also complies, but tableau systems do
not (Boolos [1984, pp. 377-378]; D’Agostino and Mondadori [1994, p. 287]).

1.2.2 Naturalness

Although the adjective ‘natural’ has a variety of meanings, as witnessed in, for
example, the Oxford English Dictionary, the one that seems the most suitable
for a reading of (1.3c) is ‘naturally arising or resulting from, fully consonant
with, the circumstances of the case’, as it is a naturalness that should reflect
a ‘peculiarity of constructive logic’. Which among the ‘circumstances’ are
the relevant ones, and what ‘consonance’ consists in, will depend on choices
guided by values; these choices and values may moreover vary over time.6 On
the other hand, a formal proof can be completely described in factual or non-
evaluative terms. A formal proof can therefore only be argued to be natural
if it is seen in relation to something else, such that either that something or

Finally, a reflection on Crocco’s suggestion [2019] of a difference between Kreisel’s
‘informal proof’ and Gödel’s ‘absolute proof’ will have to wait for another occasion.

(I thank Jan von Plato for discussion of an earlier version of this footnote, and for
permission to refer to his email.)
6 A recent, detailed philosophical and linguistic analysis of naturalness in mathematics,
culminating in an emphasis on ‘the dynamic and prescriptive character of naturalness’
that I find congenial, is Mauro and Venturi [2015]. Note that they likewise consult a
dictionary, ‘the Oxford Dictionary’ (presumably, given their quotes, the Oxford Dictionary
of English), but only consider (in a careful way: see pp. 280 and 311) the primary definition
they found there: ‘Existing in or derived from nature; not made or caused by humankind’,
and not the fourth, ‘in accordance with the nature of, or circumstances surrounding,
someone or something’. The latter is closer to the meaning I appeal to.
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that relation is subject to evaluation, because an evaluative conclusion of an
argument requires at least one evaluative premise. The obvious suggestion
now is that if a formal proof derives its status of proof from an intuitive proof,
then one way in which a certain formal proof could be considered natural is
the derivative one where the intuitive proof it formalises is considered natural
in some non-derivative sense. This is why, even though a discussion of natural
constructive formal proofs (as in (1.3c)) is central to the present note, its title
leaves out the qualification ‘formal’. What naturalness of an intuitive proof
consists in is perhaps best considered case-by-case.

1.2.3 Constructivity

To have the idea of (i) formally constructive proofs to which (ii) constructive
meanings are assigned according to certain explanations or interpretations,
one must have notions of constructivity of two kinds, theoretical ones for
(ii) and a pre-theoretical (‘naive’, ‘heuristic’) one for (i). The pre-theoretical
notion is appealed to when characterising formalisms as constructive, and
can be analysed into a variety of theoretical notions in terms of which these
formalisms are then given full meanings; the appropriateness of each of the
latter is subject to philosophical debate.7 Of course, both the pre-theoretical
and the theoretical notions have their uses also independently of any formalism.

Pre-theoretically, the following two familiar conditions on constructive
non-formal proof are uncontentious: from a proof of an existential proposition
one should be able to obtain an instance, and from a proof of a disjunction
a proof of one of the disjuncts. Further conditions have led to debate. For
example, in the development of intuitionistic logic, Johansson denied that
Ex Falso holds for it, Freudenthal held that a proof of any proposition
A → B must begin by proving A, and Griss argued that negation is not a
constructive operation.8 There is a large overlap with the concerns that led
to the development of relevance logic, and it may be argued that Brouwer’s
ideas about logic [Brouwer, 1907, 1908] lead to a relevance logic [van Atten,
2009, p. 124]. In the latter case, A → (B → A) would not hold; certain
instances may still be demonstrable, but not on the ground on which the
schema is considered acceptable by others. (This will be relevant on page 16.)
Heyting [1956] accepted the debated principles mentioned. While Kreisel in
his publications has little to say about this kind of discussion, his explicit
point of reference for informal constructive logic is always Heyting.9

The statements of the informal conditions on existential and disjunctive
propositions have formal analogues in what have become known as the Dis-

7 For an overview, see e.g. Ruitenburg [1991].
8 For references and discussion, see van Atten [2017].
9 On Freudenthal’s conception, remark (1.3c) could not be made.
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junction Property

If S ⊢ A ∨B, then S ⊢ A or S ⊢ B . (DP)

and the Existence Property

If S ⊢ ∃xP (x), then S ⊢ P (t) for some term t . (EP)

The natural and common system HA has both [Kleene, 1945]. But whereas
the mentioned pre-theoretical conditions are constitutive of non-formal con-
structivism, it is not the case that, analogously, a formal system must have the
properties DP and EP to count as formalisation of meaningful constructive
thought. Here is Kreisel’s proof for the case of EP (also for reference further
on p. 15 below).

Theorem 1 [Kreisel, 1970b, p. 125] There is a predicate P in the language
of HA such that ∃xP (x) is true on the intended interpretation, but the formal
system S = HA+ ∃xP (x) does not have EP.

Proof We follow the proof in Troelstra [1973b, pp. 178-179]. Define

R(x) = PrfHA(x, ⌜⊥⌝) ∨ ∀y¬PrfHA(y, ⌜⊥⌝) , (1.7)

where PrfHA is a canonical proof predicate of HA.10 From the consistency
of HA we see that ∀y¬PrfHA(y, ⌜⊥⌝) is true on the intended interpretation.
Hence, with the decidability of PrfHA, HA ⊢ ¬PrfHA(n, ⌜⊥⌝) for every n ∈ N,
and

HA ⊢ R(n) ↔ ∀y¬PrfHA(y, ⌜⊥⌝), for every n ∈ N . (1.8)

We also have, by the definition of R,

HA ⊢ ∃xR(x) ↔ (∃ yPrfHA(y, ⌜⊥⌝) ∨ ∀y¬PrfHA(y, ⌜⊥⌝)) . (1.9)

Consider the system S = HA + ∃xR(x). Trivially, S ⊢ ∃xR(x), and
that formula is true on the intended interpretation, because, as noted,
∀y¬PrfHA(y, ⌜⊥⌝) is; so S, like HA, formalises meaningful constructive
thought. Now suppose, towards a contradiction, that furthermore S ⊢ R(n),
for some n ∈ N. This is equivalent to

HA ⊢ ∃xR(x) → R(n) (1.10)

for that n. Applying equivalence (1.9) to the antecedent and equivalence (1.8)
to the consequent yields
10 ⌜ψ⌝ is the natural number that codes ψ in the given Gödel numbering, n is the
representation of the natural number n in the formalism. PrfHA(x, ⌜A⌝) holds if and
only if x codes a proof of A in HA; PrfHA is its representation in the formal language of
HA.
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HA ⊢ (∃ yPrfHA(y, ⌜⊥⌝) ∨ ∀y¬PrfHA(y, ⌜⊥⌝)) ,→ ∀y¬PrfHA(y, ⌜⊥⌝)
(1.11)

which simplifies to

HA ⊢ ∃ yPrfHA(y, ⌜⊥⌝) → ∀y¬PrfHA(y, ⌜⊥⌝) , (1.12)

and then, using ∀x¬ϕ(x) ↔ ¬∃ϕ(x) twice, to

HA ⊢ ∀y¬PrfHA(y, ⌜⊥⌝) . (1.13)

But this contradicts the second incompleteness theorem. □

Complementarily, Troelstra pointed out that EP and DP are not sufficient
conditions for a system to count as a formalisation of the intended constructive
interpretation either: he gives the example of two extensions of HA, each
of which has EP, but which yield an inconsistent system when combined
[Troelstra, 1973b, p. 179]. (The extensions codify incompatible ideas about
what constructive existence consists in.)

Given these results of Kreisel and Troelstra, I agree with Kreisel that the
formal properties DP and EP ‘are not linked to the constructive interpretation
of Heyting’s systems’ [Kreisel, 1971c, p. 123].11 Instead, I will take soundness
with respect to Heyting’s informal explanation to be a necessary and sufficient
condition for the constructivity of a formal system.

1.3 Cases depending on a proof of B

1.3.1 Finding the formula B from the formula A

In the search for an example of (1.3c), we may either start from ideas about
such an A and from there attempt to reason towards an appropriate B, or

11 I do not know whether Kreisel had found the results about EP and DP by the time
of writing the Brouwer memoir, but the general point is made in Kreisel [1970b], which
is the published version of his concluding address at the 1968 conference in Buffalo. In
that same volume Prawitz presents a cut elimination theorem for a second-order system,
points out the corollaries DP and EP, and comments: ‘These results, which certainly
are consonant with intuitionistic principles, may have some bearing on the debated
question whether a second-order system of the described kind is intuitionistic acceptable.’
Then a footnote states: ‘The intuitionistic significance of the described system has been
advocated by Professor Kreisel especially. I am grateful to him for encouraging me to
carry out these investigations’ [Prawitz, 1970, p. 259]. One possibility is that, by the time
of the Buffalo conference, Kreisel had not yet developed his argument against EP and
DP as criteria of ‘intuitionistic significance’. A further possibility is that Kreisel’s plea
was first of all based on his view that quantification over species should be acceptable in
ideological intuitionism; see section 1.4.5 below.
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the other way around. In the first direction, this suggests the following formal
proof skeleton, which is meant to represent not only the deductive relations
indicated in (1.3c) but also, in the direction from left to right, the intended
order of composition of the two subproofs:

[A]1

B 1
A→ B

[A→ B]2

[B]3

A 3
B → A

A↔ B B
A 2

(A→ B) → A

A

(1.14)

Thus, we here have a formal proof of a given A that proceeds by a cut
introduction with cut formula A→ B,12 with the particularity that our choice
for the proposition B depends on our having first derived it from A. This
leads to a second cut, with cut formula B.13 If we now eliminate the first cut,
we obtain

[A]1

B 1
A→ B

[B]3

A 3
B → A

A↔ B B
A

(1.15)

This skeleton still brings out the simple fact that a sufficient condition for
a formal proof of A to contain a subproof of A → B, which in (1.3c) is the
containment that is highlighted, is that A gets proved via proofs of A↔ B
and B; this fact would no longer be represented after elimination of the second
cut. Although this second skeleton no longer fits (1.3c) literally, of course the
essential part of the reasoning towards (A→ B) → A in the first skeleton is
preserved.

With Curry’s insight into the correspondence between implicational logic
and the typing of functions, the first skeleton can also be seen as a way to
arrive at a judgement that an object a is of type A by finding a function
f : A→ B, together with a selection functional F : (A→ B) → A, where the
latter is, in this case, obtained by finding a function g : B → A and an object
b of type B. A motivation for transforming a proof with the second skeleton

12 The term ‘cut’ comes from the Sequent Calculus, but I will use it also for the
corresponding phenomenon in Natural Deduction [van Dalen, 2004, section 6.1].
13 Usually, ↔ is treated as a defined connective, and correspondingly a cut rule for it
would be defined in terms of that for →. For our present purpose, this is immaterial.
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into one with the first would be to make the existence of that functional
explicit in the formal proof.14

The question whether these formal proof skeletons may be natural will, as
motivated in section 1.2.2 above, be approached by transposing the question
to the informal. The informal counterpart to a cut introduction is a lemma
introduction. A motivation for structuring an attempt at informally proving
A as a proof of its equivalence to B together with a proof of B as a lemma
would be that one expects or knows that, if one assumes that A is true, an
equivalent B can be inferred that, if provable at all, should in some sense
be easier to prove than A.15 Two cases may be distinguished. The first is
where this greater ease has its ground in the content of B, in case B is
more explicit than A,16 or is less complex,17 or shifts to a more convenient
domain;18 for short: is better intelligible, and therefore, one expects, more
fruitful to reason about.19 Intelligibility is a value that depends on the content
of the propositions involved in their relations to our capacity of understanding;
it is a matter of degree, and furthermore for one and the same proof this
degree may, with increased mathematical experience, change. The other case
arises when B is among the stock of propositions already proved. There the
value involved is efficiency of the simplest kind, independent of propositional
content. Since in analysing (1.3c) we are after a ‘peculiarity of constructive
logic’ as such, which has to do with (the contribution of the logic to the)
propositional content, it is the first case that is of interest.

The heuristic of proving A by looking for such a (more) intelligible B is,
not surprisingly, an old one, and goes back to the ‘method of analysis and
synthesis’ of the Greek geometers.20 The classical description was given by

14 For a comparative remark on the role of the selection functional here, see point 5 on
p. 28 below. On selection functionals, see e.g. the introduction to Escardó and Oliva
[2010].
15 Dijkstra writes that ‘equivalence is the most underexploited connective in mathematics,
in contrast to the implication that is used all over the place [. . .] the failure to exploit
inherent symmetries often lengthens an argument by a factor of 2, 4 or more.’ Dijkstra,
1985, p. 7. His explanation for this is that humans tend to reason in terms of cause
and effect, and tend to assimilate implications to that. Note that to constructions in
Brouwer’s setting, the familiar distinction between tokens and types applies; so that if
A→ B, at the token level there is a sense in which a construction for A causes the truth
of B, but this is compatible with A↔ B at the type level. See also footnote (53) below.
16 Through expansion of definitions, or by appeal to the meaning of A.
17 See the remarks around (1.22) below.
18 For example, when embedding R in C.
19 Indeed, cut introduction is part of the proof restructuring that is done to make
automatic, cut-free formal proofs, which are easier to find for computers, comprehensible
to humans (e.g., D’Agostino et al. [2008]). On cut-free proofs, see section 1.3.2 below.
20 Recent detailed linguistic analysis [Longa, 2020] has identified no fewer than 318 proofs
in the Greek mathematical corpus (3rd century BC to 7th century CE) that apply the
method of analysis and synthesis.
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Pappus; well-known modern discussions outside the specialist literature21 are
Heath’s in his edition of Euclid’s Elements [Euclid, 1908] and Pólya’s in How
to Solve It [2004, first ed. 1945].22

Pappus writes:

(1.16)Now, analysis is the path from what one is seeking, as if it were estab-
lished, by way of its consequences, to something that is established by
synthesis. That is to say, in analysis we assume what is sought as if it
has been achieved, and look for the thing from which it follows, and
again what comes before that, until by regressing in this way we come
upon some one of the things that are already known, or that occupy
the rank of a first principle. We call this kind of method ‘analysis’, as
if to say anapalin lysis (reduction backward). In synthesis, by rever-
sal, we assume what was obtained last in the analysis to have been
achieved already, and, setting now in natural order, as precedents,
what before were following, and fitting them to each other, we attain
the end of the construction of what was sought. This is what we call
‘synthesis’.

There are two kinds of analysis: one of them seeks after truth,
and is called ‘theorematic’; while the other tries to find what was
demanded, and is called ‘problematic’. [Pappus of Alexandria, 1986,
p. 82]

In bringing up Pappus, whose concern is with geometry, in the present paper,
which is concerned with propositional and predicate logic, I do not mean to
take a stand on the question whether the latter are the most appropriate
vehicles for the representation of the reasonings of the Greek geometers.
Rather, the idea is that the method of analysis and synthesis is of wider
21 As examples of that specialist literature in so far as it relates the method to modern
constructive mathematics, I mention Knorr [1983], Mäenpää [1993], and Menn [2002].
Brouwer also described this method in his dissertation; see p. 14 below.
22 It is quite likely that Kreisel had seen those discussions. Kreisel reports that ‘Since my
school days I had had those interests in foundations that force themselves on beginners
when they read Euclid’s Elements (which was then still done at school in England)’
[Kreisel 1989; trl. Odifreddi [2019a, p. 148]]. The edition used in his school (Dudley;
Isaacson [2020, p. 90]) may well have been a different one than Heath’s, but if it was, then
the latter would have been the first place to look further if one’s interest had been piqued.
The one reference to Pólya by Kreisel I have found is: ‘The use of axiomatic analysis
as a proof strategy does not seem to be well known to people writing on heuristics, like
Polya’ [Kreisel and Macintyre, 1982, p. 233]. (Axiomatic analysis is a proof strategy
because, once one has an axiomatic presentation of a subject, in trying to find a proof
one need only take into account the properties mentioned in that presentation [Kreisel
and Macintyre, 1982, p. 232].) That observation intimates a wide knowledge of Pólya’s
writings. Moreover they were colleagues at Stanford, where Kreisel taught from 1958-1959
and 1962-1985, incidentally the year Pólya died. Pólya had been an emeritus from 1953
on, but a very active one. Finally, perhaps that in Lakatos’ series ‘Proofs and refutations’
[Lakatos, 1963–1964] (spread over part 1, pp. 10–11 note 2; part 3, p. 243n1, part 4,
p. 305 and its footnote 1). In Kreisel’s writings one finds references to the book of the
same title that Lakatos published in 1976.
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applicability, and that various general remarks or phenomena that occur in
the Greek context may also be pertinent or suggestive in domains where these
logics are used.

From a modern constructivist point of view the difference between the-
orematic and problematic analysis is mostly one of perspective, as to find
certain constructions for objects and their relations is what constructively
proving the corresponding proposition consists in, and, conversely, proofs may
themselves be regarded as mathematical objects one can look for.23

In its application to propositions, analysis is the process that leads from
the assumption that A has been established to a proof of A→ B, where B
has independently been recognised as provable, and synthesis the process of
combining a proof of B and a proof of B → A to prove A. The heuristic turns
on the fact that a consequence B of A corresponds to a necessary condition
for the truth of A; if it is also a sufficient one, then, in a reversal of direction,
what was construed as a proposition following from A is now construed as a
proposition from which A follows. It is with an eye on this subsequent reversal
that Pappus glosses ‘analysis’ as a ‘reduction backward’, and I take it that the
latter sets things ‘in natural order’ because, by hypothesis, when embarking
upon this reasoning B was already known, whereas A was not. The central
idea in such a proof of A, then, is its equivalence to B. That B implies A is
immediate if B is obtained from A by a chain of equivalences, but other cases
will be more involved.24 Be that as it may, the method will have fulfilled its
heuristic function if one’s proof of A→ B at least suggests how to go about
proving the converse.

The overall reasoning process will, in general, involve making guesses,
but those will at least in part be motivated (directly or transitively) by the
meaning of A.25 As Pólya describes it, ‘analysis is devising a plan, synthesis
is carrying through the plan’ [2004, p. 146], and this plan is visible in the
successful outcome, if there is one. It also illustrates Rood’s observation (made
in a discussion of Kant) that ‘if we look at proofs from a procedural point of
view, then the boundary between discovery and justification starts to blur. A
proof may itself involve various elements of discovery’ [2005, p. 57]. This makes
proofs by analysis and synthesis highly intelligible and in that sense natural.
When the reasoning steps employed in a successful use of this heuristic method
can be mirrored and explicated in formal inferences in a suitable system, the
skeleton of a formal proof then is that as those above.

Perhaps one takes an alternative representation of the informal reasoning
by analysis and synthesis to be given by the pair of proofs

23 As set out in Kolmogorov [1932], which, as he succinctly put it later, ‘was intended to
construct a unified logical apparatus dealing with objects of two types – propositions
and problems.’ [2019, p. 452]; see also Bernays’ review of Pólya [Bernays, 1947, 184–185].
24 A discussion of this latter point in the Greek context is Behboud [1994].
25 A recent study of ‘motivated proofs’ is Morris [2020].
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[A]1

B 1
A→ B

[B]1

A 1
B → A B

A

(1.17)

in which, crucially, the proof of A → B does not figure as a subproof in
the proof of A. Indeed, in the corpus of ancient Greek geometry one finds
proofs where only an analysis is presented, or only a synthesis. The analysis
sufficed in case the subsequent synthesis was considered to be obvious,26 the
synthesis if the only interest was in a deductive justification of A.27 But it
was realised that giving both facilitates understanding, and hence can make
proofs more convincing. In addition, there is a rhetorical value to such a
double presentation: it ‘[creates] the illusion that the solution is necessary
and emerges naturally out of the problem’. (See for these two points Netz
[2000]; the emphasis here is mine.) Evidently a presentation of neither analysis
nor synthesis alone can count as a full rendering of the kind of reasoning
process under discussion, and even the pairwise formalisation above remains
incomplete, as it distributes the representation of the reasoning towards one
conclusion over two proofs. Either stands on its own, and the intended relation
between those two, in (1.17) suggested by the juxtaposition and our choice of
the same schematic letters, is not itself represented formally. In particular,
the central idea of a proof by analysis and synthesis, the equivalence of A to
B, is absent. Combining both trees into one, as in skeleton (1.15), makes it
appear, and thereby Kreisel’s claimed containment relation. That containment
is not an artefact of the representation, but results from an explicitation of
the top-level structure of the informal, intelligible reasoning that it represents.

A whole class of examples of proofs with skeleton (1.15) is generated
by a formal theory for which quantifier elimination has been established
constructively, and for which the quantifier-free statements obtained are
decidable. Then an appropriate B can be found from A without any need for
guessing: one has an algorithm that for every sentence A yields a quantifier-
free sentence B such that A↔ B is provable in the theory and B is decidable.
A positive outcome of the corresponding decision procedure for B then leads

26 Or, in the case of reductio ad absurdum, superfluous (this is implicit in Pappus’
account, see Mäenpää [1993, 188n83].
27 See Knorr [1986, p. 9 ] for the general point, and its p. 377n89 for some examples.
Incidentally, Knorr received support from Kreisel:

(1.18)Knorr read the ancient texts so as to reveal new proof strategies; indeed he
dated different bits even of Euclid in terms of a more or less linear develop ment
of proof ideas, which of course does not conform to the present order of the
Elements. Oral history: the proof theorist Georg Kreisel, Knorr’s colleague at
Stanford [Knorr joined the faculty in 1979], strongly encouraged this work. I
believe he did so because it pointed not only to the history of proof but also to
the human discovery of capacities for proving. [Hacking, 2014, p. 140]
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to a proof of A.28 It need of course not be the case that the quantifier-free
statement is, as a whole, better intelligible to humans than the quantified
equivalent, quite the contrary. Be that as it may, since this phenomenon exists
for both classical and constructive formal theories,29 it is too broad to count
as an interpretation of (1.3c), which asks for a ‘peculiarity of constructive
logic’.

To narrow down the scope, consider the characteristic demand of construc-
tive logic that existential statements ∃xP (x) be proved by exhibiting an a
such that P (a). A well known heuristic to fulfill that demand can readily seen
as an application of the method of analysis and synthesis.

The heuristic is this. Assume that ∃xP (x) and then attempt to reason,
from the definition of the predicate P and other available information (axioms
and previously obtained theorems) towards conditions that a witness for it
must satisfy, in such a way that combining them leads to conditions that are
moreover sufficient. Let a be a hypothetical object satisfying those conditions;
thus one has shown that, if the existential statement has a witness at all,
then a must be one.30 The second part of the attempt consists in establishing
that an a fulfilling these conditions can indeed be constructed. This is how
Brouwer described it in his dissertation:

(1.19) There is a special case [. . .] which really seems to presuppose the
hypothetical judgment from logic. This occurs where a building in
a building is defined by some relation, without that relation being
immediately seen as a means for constructing it. Here one seems to
assume to have effected the construction looked for, and to deduce
from this hypothesis a chain of hypothetical judgments. But this is
no more than apparent; what one is really doing here, consists in
the following: one starts by constructing a system that fulfills part of
the required relations, and tries to deduce from these relations, by
means of tautologies, other relations, in such a way that in the end
the deduced relations, combined with those that have not yet been
used, yield a system of conditions, suitable as a starting-point for
the construction of the system looked for. Only by that construction
will it then have been proved that the original conditions can indeed

28 Carrying out decision procedures based on quantifier elimination may quickly become
unfeasible for humans and then also for computers; here our concern is with the principle.
29 E.g., (classical and constructive) Presburger Arithmetic, the classical theory of
real closed fields. For Presburger Arithmetic, see Presburger [1930] and Kleene [1952,
pp. 204,474–475]; for real closed fields, Tarski [1948] and Lombard and Vesley [1998].
30 This is reminiscent of the classically provable ‘dual version of The Drinking Principle’:
‘There is at least one person such that if anybody drinks, then he does’ (Smullyan [1978,
p. 210]; Warren et al. [2018]). But here we are reasoning constructively and, in particular,
without appeal to Ex Falso, and conclude something only about a hypothetical object.
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be satisfied. [Brouwer, 1975, p. 72, emphasis Brouwer, translation
modified]31

Brouwer’s main interest here is in the question whether in a mathematics
founded on intuitive givenness, hypothetical constructions can be made sense
of at all. His answer is positive: hypothetical statements should be construed
not as propositional expressions of possible, as yet unknown truths, but as
conditions (on constructions). Conditions that we pose are themselves actual
objects, and no bearers of truth or falsehood.

For the present purpose, the interest is elsewhere, namely in the structure of
the reasoning that Brouwer describes. In a footnote, he give as examples ‘the
uniqueness proofs for transformation groups with given properties by Hilbert
and Lie, and also ordinary elementary problems, such as looking for a common
harmonic pair, or the problems of Apollonius’; the latter being classical
examples of the application of the method of analysis and synthesis.32 (Often,
the existence of the ‘building’ in which another ‘building’ is to be constructed
is itself given as an hypothesis, and specified in terms of parameters; then what
needs to be proved rather takes a form like R(n) → ∃xP (x, n). See below, at
the discussion of (1.23).) Now, as before: Suppose that the reasoning employed
in a successful case can fully be mirrored in formal inferences in a given system.
Then the candidate witness a can be obtained from the hypothesis using the
inferential resources of the system itself, so that this formal proof of ∃xP (x)
begins with a proof of ∃xP (x) → P (a). Taking ∃xP (x) for A and P (a) for
B, we see that the skeleton of the overall proof is that in (1.15).

Where this works out, the formal system is able to reflect the relation
between the propositions ∃xP (x) and P (a) to a greater extent than appli-
cations of EP are able to. We refer back to Kreisel’s proof that EP is not
a necessary condition for the constructivity of a formal system (p. 7). That
proof also shows that closure of a formal system under the rule EP does not
guarantee provability in the system of the corresponding implication: On the
one hand, EP is a schematic conditional that is constructively correct also
when instantiated with the hypothesis HA ⊢ ∃xR(x); this is not changed by
the fact that we know that, because of the consistency of HA, that hypothesis

31 Er is een bijzonder geval [dat . . . ] werkelijk het hypothetische oordeel der logica schijnt
te vooronderstellen. Dat is, waar een gebouw in een gebouw door eenige relatie wordt
gedefinieerd zonder dat men daarin direct het middel ziet het te construeeren. Het schijnt,
dat men daar onderstelt dat het gezochte geconstrueerd was, en uit die onderstellingen
een keten van hypothetische oordeelen afleidt. Maar meer dan schijn is dit niet; wat men
hier eigenlijk doet, bestaat in het volgende: men begint met een systeem te construeeren,
dat aan een deel der geëischte relaties voldoet, en tracht uit die relaties door tautologieén
andere af te leiden zóó, dat tenslotte de afgeleide zich met de nog achteraf gehoudene
laten combineeren tot een stelsel voorwaarden, dat als uitgangspunt voor de constructie
van het gezochte systeem kan dienen. Met die constructie is dan eerst bewezen, dat
werkelijk aan de voorwaarden kan worden voldaan. [Brouwer, 1907, pp. 126–127]
32 Incidentally, Brouwer’s description gives the impression that he had seen the discussion
of analysis and synthesis in Hankel [1874, esp. p. 141].
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will never be fulfilled. On the other hand, again because of the consistency of
HA, we know that for no t the corresponding implication can be proved in it.

And even in cases where we have a system with EP and ⊢ ∃xP (x), for
some P , a particular proof in that system of ∃xP (x) → P (t), for some t,
need not proceed by explicating a connection between its antecedent and its
consequent. HA has EP and contains the axiom A → (B → A). Suppose
that we have a P such that ⊢ ∃xP (x). One obtains ⊢ P (t) for some t by EP,
and then, via an instantiation of the axiom with A = P (t) and B = ∃xP (x),
⊢ ∃xP (x) → P (t). But the axiom depends on no relation between A and B at
all (which for relevantists is the reason to reject it). It may be observed that
nevertheless a relevant connection between ∃xP (x) and t has been exploited,
namely the one that is made in the proof, at the metalevel, of EP itself.
However, the point is that, while the construction method for the formal proof
of ∃xP (x) → (t) described here depends on that connection, the formal proof
obtained does not represent it.

The relation between constructive existential quantification and the method
of analysis and synthesis naturally extends to choice principles. Given the
informal constructive meaning of the quantifiers,

∀x ∈ D ∃ y ∈ D′P (x, y) (1.20)

must be proved by providing a method that transforms any proof of a ∈
D into a b together with proofs of b ∈ D′ and P (a, b).33 Thus, if such a
method is embodied in a constructive function f : D → D′, a natural way of
establishing (1.20) consists in observing that

∀x ∈ D ∃ y ∈ D′P (x, y) ↔ ∃ f ∀xP (x, f(x)) (1.21)

and then proving the right hand side. If this reasoning can be fully formalised,
the result is a natural formal proof of (1.20) with skeleton (1.15), taking for
A and B the left and right hand sides of (1.21).

This naturalness would explain Kreisel’s observation, in correspondence
with Mints, that various propositions seem easier to prove when understood
constructively than when understood classically [Kosheleva and Kreinovich,
2015]. Kosheleva and Kreinovich have suggested an explanation based on the
fact that constructively (and under the Church-Turing Thesis), Π0

2 -statements
about the natural numbers are equivalent to Σ0

2 -statements

∀x ∈ N ∃ y ∈ NP (x, y) ↔ ∃ e ∈ N∀x ∈ NP (x, {e}(x)) , (1.22)

where e is the index of a recursive function and {e}(x) denotes the result of
its application to x. On this reading, the original statement is therefore in
the class of ∆0

2-statements, and should be expected to be easier to prove than

33 Pitfalls in justifying such a choice principle for other domains than the natural numbers
are discussed in Troelstra and van Dalen [1988, pp. 189-190].
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on its classical classical understanding.34 This is a special case of that in the
preceding paragraph.

Informal existence theorems that depend on a hypothesis are typically of
the form

∀x ∈ D(R(x) → ∃ y ∈ D′P (x, y)) . (1.23)

On predicate-logical reconstructions, solved ‘problems’ in ancient Greek geom-
etry are examples; on this point, see Menn [2002, pp. 202–204]. A constructive
proof of such a theorem calls for a method that, dependent on proofs of n ∈ D
and R(n), constructs a proof of ∃ y ∈ D′P (n, y). To find such a method, one
treats these dependencies as additional information in a parameter n, and
may follow the (first part of the) strategy for proving existential statements
without an hypothesis sketched above. If this works out, one obtains an a
such that

∀x ∈ D(R(x) → (∃ y ∈ D′P (n, y) ↔ (a ∈ D′ ∧ P (n, a)))) . (1.24)

If this method does not actually depend on the way in which n ∈ D and
R(n) have been proved, it furthermore serves to establish

∃ f : D → D′ ∀x ∈ D(R(x) → P (x, f(x))) , (1.25)

which implies, and is implied by,

∀x ∈ D ∃ y ∈ D′(R(x) → P (x, y)) . (1.26)

This leads to a natural formal proof of (1.26) using (1.25) and skeleton (1.15).

1.3.2 A contrast with analytic proofs in a different sense

In its application to formal proofs, the term ‘analytic’ nowadays also has a
different meaning, a difference that Kreisel remarked upon as soon as it arose.
In his review of Smullyan [1965] he wrote:

(1.27)The author introduces the very happy terminology of ‘analytic’ deduc-
tion, i.e., deduction involving the analysis (breaking up) of assertions.
This replaces the less elegant ‘deduction rules possessing the subfor-
mula property’, or the quite misleading ‘cut free’ (misleading because
it refers to a specific formalization). The terminology seems good
despite its conflict with the traditional use of ‘analytic’ in contrast to
‘synthetic’ reasoning. [Kreisel, f]

34 Kreisel will also have had in mind examples of a different kind, in the theory of
recursive ordinals, and depending on specifically intuitionistic notions: see Kreisel [1965,
2.6141] and Kreisel [1983, pp. 228–229; not in the 1958 version].
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Formal proofs that are analytic in this sense have the property that every
formula in it is a subformula either of its assumptions or of its conclusion. As
a consequence, they do not contain the detour that (1.3c) calls for and that is
characteristic for (schematic) Greek analysis and synthesis. For certain formal
systems it can be demonstrated that all their proofs can be transformed into
ones that are analytic in this new sense; a corollary of such a demonstration
is that these systems have the properties DP and EP (p. 7 above).

Recognition of the conflict between these different uses of ‘analytic’ should
be enough to keep one from conflating them. But once the distinction is
clear, it is interesting to consider in its light a hypothesis evoked by Troelstra
concerning the rules by which, in suitable systems, a proof that is not analytic
in the modern sense is reduced (normalised) to one that is. The hypothesis is
that ‘the reduction rules for systems of natural deduction preserve the intuitive
proof-idea associated to the formal proof’ [Troelstra, 1973b, p. 180; see also
p. 186]. Accepting it would enable one to say that ‘for the obvious definition
of subproof, [. . .] each derivation of A ∨B contains (modulo some reduction
steps) a subderivation of A or a subderivation of B’, and, similarly, each
derivation of ∃xA(x) contains a subderivation of A(t) for some term t. For
our purpose, the question is what the relevant data for ‘intuitive proof-ideas’
are.

On this point (also), Kreisel was more outspoken than Troelstra; he had
already written:

(1.28) [C]onsider now the rule:
With every formal derivation D in F of an existential (numerical)

formula, i.e. a closed formula of the form ∃xA(x), associate that x
which is supplied by the proof which you understand to be represented
by D (x will, in general, be a term containing parameters).

[. . .]
Reflection shows that when one thinks through a formal argumentD

in Heyting’s system, the thought involved is more closely represented by
the cut free proof D′ associated by means of so-called cut elimination
[8] with D: D′ has the property that if it proves (∃x)A(x), it mentions
a particular A(t) from which it obtains directly (∃x)A(x). Thus,
though D′ may still be understood differently by different people, it is
a detailed enough representation of the intuitive thought to settle the
particular question above (namely, what x is supplied by the proof
that we understand to be represented by D?). All that is needed is
this: each of us should convince himself that cut elimination provides
a correct (i.e. more faithful) analysis of the proof which D represents
for us.35 [Kreisel, 1967a, pp. 244-245, emphasis his]

35 The current view of cut elimination is technical; the view I propose above is probably
not shared generally. But it should be noted that though it is more precise and specific
(and, perhaps, wrong in detail), it is not inconsistent, for instance, with Brouwer’s view,
[1], footnote 8, where he speaks of fully analysed, canonical proofs and stresses that they
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and

(1.29)A minimum requirement is then that any derivation can be normalized,
that is transformed into a unique normal form by a series of steps,
so-called ‘conversions’, each of which preserves the proof described by
the derivation. This requirement has a formal and an informal part:

(α) The formal problem of establishing that the conversions terminate
in a unique normal form (independent of the order in which they
are applied).

(βi) The informal recognition (by inspection) that the conversion steps
considered preserve identity, and the informal problem of showing
that

(βii) distinct, that is incongruent normal derivations represent different
proofs (in order to have unique, canonical, representations).

For examples of remarkable progress with the formal problem see
the work of Martin-Löf and Prawitz in this volume.36 The particular
conversion procedures considered evidently satisfy requirement (βi)
since each conversion step merely contracts the introduction of a
logical symbol immediately followed by its elimination. Such a con-
traction clearly does not change the proof described by the two formal
derivations (before and after contraction).

[. . .]
As stressed by Prawitz [1971], his normalization procedures obvi-

ously preserve identity of proofs.
[Kreisel, 1971c, pp. 112, 114–115, original emphasis]

On the view Kreisel expresses here, two formal proofs that differ in that
one is the normalisation of the other still represent the same (understood)
abstract proof. (In fact Prawitz’ attitude in the place Kreisel refers to is more
like Troelstra’s: he speaks of a ‘conjecture’, ‘a reasonable thesis’ [1971, p. 257].)
On the other hand, by Kreisel’s earlier claim quoted in (1.3c) above, there are
cases, depending on A, where the non-normalised formal proof can be said
to be the natural one. While these two ideas are not necessarily in conflict –
there may, for a given notion of naturalness, be both natural and unnatural
representations of one and the same object –, they are so on the strongly
procedural view on proofs taken above, according to which formal proofs
are (primarily) construed as representations of acts of reasoning: Applying
normalisation rules to a formal proof that reflects an intuitive proof obtained
by acts of analysis and synthesis makes that reflection vanish.37 From this
perspective, one would, in interpreting the method of analysis and synthesis,

are infinite structures. [Note MvA: The reference ‘[1]’ is to ‘Über Definitionsbereiche von
Funktionen’ [Brouwer, 1927b].]
36 [footnote MvA] Fenstad [1971].
37 In more recent work on the question of the identity of proofs, the presence of lemmas
is considered to be a distinguishing feature; see e.g. Straßburger [2019, section 2(a)].
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not emphasise the subformula property of certain formal systems, as Hintikka
and Remes do [1976];38 and whether a proof of ∃xA(x) proceeds by presenting
an instance is too crude a criterion for identifying the thought behind the
proof, as Kreisel does in (1.28) above.39

1.3.3 Finding the formula A from the formula B

There are also cases where an A is found starting from considerations about
certain B (or, initially, about an open B(x)). A formal context that provides
examples here, depending on arithmetisation, is the Diagonal Lemma or Fixed
Point Lemma (for arithmetic). Consider the following standard formulation
and proof:

Theorem 2 (Diagonal Lemma for Formulas) Let S be a system that
contains primitive recursive arithmetic. Then for each formula ϕ(x) with only
x free there exists a sentence ψ such that S ⊢ ψ ↔ ϕ(⌜ψ⌝).

Proof (after van Dalen [2004, p. 251]). Let s(x, y) be a primitive recursive
function such that s(⌜ϕ⌝, ⌜t⌝) = ⌜ϕ[t/x]⌝, so that s is a substitution function
specialised to substitutions for the variable x. Let the predicate σ(x, y, z)
represent s(x, y) in the formalism. Define θ(x) = ∃ y(ϕ(y) ∧ σ(x, x, y)), m =
⌜θ(x)⌝, and ψ = θ(m). The definitions give the immediate equivalences

⊢ ψ ↔ θ(m) , (1.30)

⊢ θ(m) ↔ ∃ y(ϕ(y) ∧ σ(m,m, y)) , (1.31)

and

⊢ ψ ↔ ∃ y(ϕ(y) ∧ σ(m,m, y)) . (1.32)

As σ represents s,

⊢ ∀y(σ(m,m, y) ↔ y = s(m,m)) , (1.33)

and by the definition of m

⊢ ∀y(σ(m,m, y) ↔ y = ⌜θ(m)⌝) . (1.34)

With this we obtain, from (1.32),

38 On this point also e.g. Behboud [1994, p. 61].
39 Interesting middle ground here may be provided by the so-called analytic cut rule,
in which the cut formula has to be a subformula of the assumptions or the conclusion
[Smullyan, 1968, D’Agostino and Mondadori, 1994].
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⊢ ψ ↔ ∃ y(ϕ(y) ∧ y = ⌜θ(m)⌝) , (1.35)

hence

⊢ ψ ↔ ϕ(⌜θ(m)⌝) , (1.36)

and then by the definition of ψ

⊢ ψ ↔ ϕ(⌜ψ⌝) . (1.37)

□

For the present purpose, I modify this proof slightly, and from (1.34) first
obtain, by predicate logic,

⊢ ∃ y(ϕ(y) ∧ σ(m,m, y)) ↔ ϕ(⌜θ(m)⌝) ∧ σ(m,m, ⌜θ(m)⌝) , (1.38)

which reduces to

⊢ ∃ y(ϕ(y) ∧ σ(m,m, y)) ↔ ϕ(⌜θ(m)⌝) (1.39)

since, by (1.34),

⊢ σ(m,m, ⌜θ(m)⌝) . (1.40)

Now with (1.32) we find ourselves at (1.36) again. The point of this detour
is that the proof now passes, in (1.38), through a proof of the equivalence of
a certain existential statement (namely, ψ) to one of its instances; so that,
by our earlier reflection, ψ is an A as in (1.3c), taking the right-hand side of
(1.38) for B.

While the proof could be simplified if the language contains a function
or term for s instead if representing it by σ, it is the representation that
allows for the introduction of the existential quantifier that my point depends
on. Representation brings out the existential quantification in the notion of
functionality. (For a proof simplified in this sense, see the Diagonal Lemma
for Terms and its corollary in section 1.4.2.)

When applying the Diagonal Lemma, one reasons from or toward ψ via
ϕ(⌜ψ⌝) in one step, leaving the passage through the instance of ψ on which
that step depends implicit (if the theorem is proved in the modified way);
and one may have proved it differently. Be that as it may, if the goal of the
application is to establish ψ itself, then as long as ϕ(⌜ψ⌝) is proved from
yet another equivalent, the overall proof of ψ this yields retains the form
of skeleton (1.15). For example, consider a proof of Gödel’s incompleteness
theorem for a (consistent) system S via an application of the Diagonal Lemma
to ¬PrS(x). The fixed point ψ this yields is undecidable in S, but provable
in a suitable system U in a proof with skeleton (1.15), where A is ψ and B
is, for example, Con(S) or the reflection principle PrS(⌜γ⌝) → γ, for closed
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γ ∈ Π0
1 . That principle is studied in Kreisel’s joint paper with Levy [1968].

They are convinced that
(1.41) What makes reflection principles useful is that they have a clear

intuitive meaning, and so, if such a principle is provable in U , we have
a good chance of finding a proof.

This, in effect, connects reflection principles and the considerations on intelli-
gibility on p. 10 above.40

A related application of the Diagonal Lemma is
Theorem 3 (Löb) [Löb, 1955] Let S be a system that contains recursive
arithmetic and a provability predicate PrS satisfying certain natural condi-
tions.41 If S ⊢ PrS(⌜ϕ⌝) → ϕ, then S ⊢ ϕ.

Where, for given ϕ, Löb in his proof had appealed to the Diagonal Lemma
to obtain a fixed point ψ such that

⊢ ψ ↔ (PrS(⌜ψ⌝) → ϕ) , (1.42)

Kreisel devised a variant proof using a fixed point ψ such that

⊢ ψ ↔ PrS(⌜ψ → ϕ⌝) . (1.43)

This equivalence does not mean that a natural formal proof of ψ contains
a proof of ψ → ϕ, because of the indirection introduced by the (formal)
provability predicate, which refers to (formal) proofs only through a coding.
Similarly, if one first tries to prove ψ → ϕ and then appeal to

S ⊢ PrS(⌜γ⌝) exactly if S ⊢ γ (1.44)

to arrive at a proof of ψ, the relation holding between the formal proofs
obtained is not that of containment. This could not be changed by adding an
axiom schema S ⊢ PrS(⌜γ⌝) ↔ γ to the system, because that is inconsistent,
and would not be changed by adding the admissible rules corresponding to
(1.44), because the device of an admissible rule introduces indirection in its
own way: it indirectly presents a proof that uses only the rules that are
constitutive of the system. However, Kreisel also used his fixed point to prove
Theorem 4 (Formalised Löb) [Kreisel and Takeuti, 1974, pp. 44–45] Let S
be a system as required for Löb’s Theorem. Then S ⊢ PrS(⌜PrS(⌜ϕ⌝) → ϕ⌝) ↔
PrS(⌜ϕ⌝)
40 By a coincidence, the final manuscript of their paper was accepted within days of
Brouwer’s death (December 8 and December 2, respectively; see Kreisel and Lévy [1968,
p. 142]), so that Kreisel had such applications well in mind when setting out to write
the obituary from which (1.3c) is taken. A letter from Kreisel to Heyting of February 20,
1967 shows that by then preparation for Kreisel and Newman [1969] had begun; and a
postcard in the same direction of April 14, 1969, that by then Kreisel was still working
on it [Heyting Papers, Bkre 690220, Bkre 690414].
41 See, besides Löb [1955] and Kreisel and Takeuti [1974], e.g. Smoryński [1991].
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Being an equivalence, this is a strengthening of what Formalised Löb’s The-
orem would strictly be. If one now attempts to obtain a formal proof of
PrS(⌜PrS(⌜ϕ⌝) → ϕ⌝) it would, since the right hand side is conceptually
simpler than the left hand side, be natural to do so via a formal proof
of PrS(⌜ϕ⌝) (and to obtain the latter, if ϕ ∈ Σ0

1 , by proving ϕ and ap-
pealing to Σ0

1 -completeness of S, which is a condition for Kreisel’s proof).
Thus, PrS(⌜PrS(⌜ϕ⌝) → ϕ⌝) again is an A exemplifying (1.3c), found from
B = PrS(⌜ϕ⌝).42

1.4 Cases independent of a proof of B: proof paradoxes

1.4.1 ‘Errors’

As we saw in the introduction, the immediate context in which Kreisel makes
his parenthetical remark (1.3c) is one in which he states that implication,
when understood as an operation on contentual proofs and not (only) a formal
connective, invites ‘errors which are, formally, similar to Russell’s paradox in
set theory’. He does not specify any, but, by the time of writing the Brouwer
obituary, he knew, through his own work and personal contacts:

1. his paradox in an untyped λ-calculus enriched with ‘notions’ (sec-
tion 1.4.4.1);

2. Gödel’s Paradox in Church’s system of 1932-1933 (intuitionistic version)
(section 1.4.4.2);

3. Troelstra’s Paradox in the ‘theory of the Creating Subject’ (section 1.4.4.3);
4. Goodman’s Paradox in the ‘theory of constructions’ (section 1.4.4.4).

References are given in the dedicated subsections below. The main interest
will be in how features they have in common make them illustrate Kreisel’s
remarks (1.3a)–(1.3c):

1. Each of these paradoxes turns on the existence of a particular proof whose
existence is, in effect, concluded to by an application of Lawvere’s Fixed
Point Theorem.

2. In each the existence of that particular proof entails

A↔ (A→ ⊥) (1.45)

for a certain proposition A.

The (extent of the) formal resemblance to Russell’s Paradox is clear if in
the formulation of these two features one takes sets instead of proofs for
42 It should be noted that the proof of the equivalence depends, in the direction from
right to left, on the acceptance of A→ (B → A). As recalled on p. 6 above, this is not
acceptable on every view of constructive logic.
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the objects. The first feature distinguishes these proof paradoxes from the
provability paradoxes, e.g., ‘This proposition is not provable’ or the Myhill-
Montague Paradox; I will briefly return to these at the end of this section.43

It can be argued that in the reasonings embodied in these proof paradoxes
an error has been made, to the extent that it can be argued that (1.45) leads
to ⊥. It is a well known general fact that if one has A and B such that

A↔ (A→ B) , (1.46)

then positive implicational logic suffices to prove A and then B from the two
component implications

A→ (A→ B) (1.47)

and

(A→ B) → A . (1.48)

One first derives the contraction of (1.47) by

[A]1
[A]1 A→ (A→ B)

A→ B

B 1
A→ B

(1.49)

and then composes

(1.49) (1.48)
A

(1.50)

This proof of A proceeds according to the pattern Kreisel indicates in his
remark (1.3c); the presence of the premiss (1.46) can be seen as a way of
expressing within the proof itself that only ‘some A’ are being considered. Also,
because of these premisses, the proof of A does not require us first to prove
B, unlike those in sections 1.3.1 and 1.3.3; and unlike those in section 1.3.1,
but like those in section 1.3.3, it does require that we have identified the
proposition B (or at least the free-variable form B(x)) when setting out to
make inferences from the hypothesis A.

Finally,

(1.50) (1.49)
B

(1.51)

43 In their discussion of Goodman’s Paradox, Dean and Kurokawa [2016], following a
suggestion of Weinstein [1983, p. 264], emphasise the (as they are aware, limited) extent
to which it resembles Montague’s; the present approach, the extent to which it is different.
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In the paradoxes at hand, B = ⊥; in Russell’s, moreover A = a ∈ a for a
particular a.44

In the reconstructions of the proof paradoxes below, the use of logic is
limited to positive implicational logic (as above), applied to (informally)
decidable propositions. While that use of logic is correct also on the Proof
Interpretation, it can be treated truth-functionally; from an intuitionistic
perspective, one would say that the latter treatment is just another, simpler
application of mathematics to the language of mathematics.

There are of course many A and B for which (1.46) holds unproblematically;
as Van Benthem [1978, p. 50] reminds us, in his discussion of Löb’s Paradox,

(A↔ (A→ B)) ↔ A ∧B (1.52)

is a tautology.45 The present discussion, however, concerns A and B for which
the existence of a proof prior to that of (1.46) is not assumed, and where (1.46)
is all we know about A – which it is therefore natural to prove as above.

There are several ways in which the paradoxes may be avoided by rejecting
something in the above derivation. For example, insisting that hypotheses can
be used only once, as in linear logic, would make (1.49) impossible; the use of
subproofs can be restricted in a way that rules out (1.50) [Fitch, 1952, p. 109];
or one may, more vaguely, suggest that we have ‘a wrong idea of [the] logical
force’ of propositions of the form A→ (A→ B) [Geach, 1955, p. 72].46 Any
such choice leads to narrower conceptions of constructive proof than those
of finitary and intuitionistic mathematics, which were the ones Kreisel was
interested in, as were the other originators of the paradoxes discussed below.
For them the cause of the problem must lie in the prior way A was concocted.

In contrast to proof paradoxes, provability paradoxes turn not on explic-
itly formulated properties of a certain proof, but on the existence of any
proof whatsoever of a certain self-referential sentence or proposition about
provability. Thus they would not serve to illustrate Kreisel’s remark (1.3a);
but, more importantly for the present discussion, they do not illustrate his

44 That it is possible to have a derivation of ‘Russell’s antinomy without negation, with
exclusive use of the positive propositional calculus’ was observed in those terms (in
German) by Gödel in Arbeitsheft 7, towards the end of 1940: ‘Russell Antinomie ohne
Negation mit alleiniger Verwendung d. pos. Aussagenkalküls’ [Gödel Papers, 5c/19, item
030025, backward direction, p. 7]. (A note on p. 12 is marked January 1, 1941.) He labels
contraction, in his version (p ⊃ (p ⊃ q)) ⊃ (p ⊃ q), with ‘Entscheidende Formel’. He
could have gone on to generalise to the paradox found and published by Curry [1942],
but apparently did not.
45 Note that a proof from right to left involves an inference from B to A → B that
Heyting would accept, but, arguably, Brouwer would not (in general); see page 6 above.
46 Kreisel knew Geach well at the time (letter from Kreisel to Derus, September 3, 2004,
in Derus [2020, p. 127]), and aptly connected Geach’ paradox (a rediscovery of Curry’s
Paradox) to Löb’s paper when writing about the latter for Mathematical Reviews [Kreisel,
e]; my attention to the latter fact was drawn by van Benthem [1978, p. 55].
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remark (1.3c) either.47 This will be illustrated by Myhill’s Paradox [Myhill,
1960, pp. 469–470]. Montague’s Paradox was originally formulated for ne-
cessity instead of provability, but is otherwise the same.48 Assume that we
have a formal system containing primitive recursive arithmetic, an informal
provability predicate B on sentences, the reflection axiom schema

⊢ B(⌜p⌝) → p , (1.53)

and the inference rule
p

R .
B(⌜p⌝)

(1.54)

By the Diagonal Lemma (p. 20 above),49 there is a sentence p0 such that

⊢ p0 ↔ (B(⌜p0⌝) → ⊥) , (1.55)

Myhill derives a contradiction from (1.53)–(1.55) and classical reasoning, but
positive implicational logic suffices. Decompose (1.55) into two implications.
With contraction provided by (1.49), we first derive

B(⌜p0⌝) → p0 p0 → (B(⌜p0⌝) → ⊥)
transitivity

B(⌜p0⌝) → (B(⌜p0⌝) → ⊥)
contraction

B(⌜p0⌝) → ⊥

(1.56)

and use that in

(1.56) (B(⌜p0⌝) → ⊥) → p0
p0

R
B(⌜p0⌝)

(1.57)

and again in

(1.57) (1.56)
⊥

. (1.58)

Although the proof of B(⌜p0⌝) in (1.57) proceeds via a (0-step) proof of
B(⌜p0⌝) → p0, as the latter is a premiss in (1.56), it does not exemplify

47 Independently of Kreisel’s remarks, the main question about provability paradoxes
is, in a Brouwerian setting at least, whether the sentences or propositions that figure in
such paradoxes have any mathematical significance at all (Petrakis; Dean [2014, p. 178]).
48 For comparison of the paradoxes of Goodman and Montague, see Weinstein [1983,
pp. 264-265], Dean [2014, pp. 164-165, p. 188n17], and Dean and Kurokawa [2016,
pp. 40-44].
49 The Diagonal Lemma can also be shown using the Fixed Point Theorem (see the next
section), so in that sense Myhill’s Paradox can also be seen as an application of the
latter.
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Kreisel’s remark (1.3c), as it contains no subproof of (B(⌜p0⌝) → p0) →
B(⌜p0⌝). Nor can it be restructured to that effect, as the rule R cannot be
used if there is an open assumption.

1.4.2 Lawvere’s Fixed Point Theorem

In the reconstructions of the proof paradoxes below, a central role is played
by the following result.50

Theorem 5 (Fixed Point Theorem) [Lawvere, 1969] Let A and B be any
objects in a category with a terminal object 1 and finite products. Suppose
that there exists a morphism g : A × A → B such that for every f : A → B
there exists an a : 1 → A that represents it via g, in the sense that for all
x : 1 → A, <a, x>g = xf . Then for all h : B → B there exists a b : 1 → B
such that b = bh.

Proof Let a g and h as described be given. The diagonal morphism ∆A : A→
A × A sends x : 1 → A to <x, x>. Define the morphism k : A → B as the
composition

A
∆A−−→ A×A

g−→ B
h−→ B . (1.59)

By hypothesis, k is represented by some a. Now consider ak : 1 → B. By
representation of k, ak = <a, a>g; by definition of k, ak = <a, a>gh. Hence
ak is a b as sought. □

The following points will be useful for the purposes of the present paper:

1. If the hypothesis of the theorem is satisfied constructively, the conclusion
holds constructively.

2. The construction in the proof also goes through if the definition of the
f : A→ B depends on parameters, so that for example fv : A→ B leads
to a fixed point bv. (This plays a role in the reconstruction of Goodman’s
Paradox in section 1.4.4.4.)

3. If A and B are objects in the category of sets or classes, the existence of
a morphism a : 1 → A corresponds to truth of the proposition a ∈ A, and
the composition af to the application f(a). This is the case everywhere
in the present paper.

4. The definition of f : A → B is presupposed in that of a representation
a of it, whence the latter definition is impredicative, as a lies in the
range of arguments of f . A predicative characterisation of provably the

50 As the potential for analysis depends on explicitness of the morphisms involved, I have
chosen to start from the general Fixed-Point Theorem instead of the Y -combinator, which
is readily obtained from it [Frumin and Massas, 2019] and which Dean and Kurokawa use
in their reconstruction of Goodman’s Paradox [Dean and Kurokawa, 2016, pp. 43–44].
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same object may or may not be simultaneously available. If not, then
this definition is ‘critically impredicative’. The use of the term ‘critical’
here comes from Bernays [1962]: it is such cases that raise the question
whether the definition is constructively acceptable. (See section 1.4.5 for
a quotation and further discussion.)

5. The condition on g has the form ∀f ∃ aR(f, a). This entails that there be
a choice operation F , i.e., ∃F ∀fR(f, F (f)), and we can set a = F (f).51
F is typed as (A→ B) → A; it is a selection functional. The verification
that the element a = F (f) is of type A corresponds to a proof of the
proposition A from proofs of the propositions A→ B and (A→ B) → A.
We saw a similar situation when discussing proof skeleton (1.14). It also
presents a contrast: there, an element b of B was used towards constructing
a selection functional; here, it is the reverse.

6. The condition on g is, in asking for a representation of every f : A→ B,
stronger than required for the proof, which uses only a representation of
the morphism k. (This was observed in Yanofsky [2003, p. 378], and is
exploited in the proof of the Diagonal Lemma for Terms just below.)

7. The proof of the theorem in effect constructs a choice operation H and
puts b = H(h). Thus, ∀h∃ b(b = bh) is proved via ∀h∃ b(b = bh) ↔
∃H ∀h(H(h) = H(h)h) and a proof of the right hand side. This yields an
overall proof with skeleton (1.15).

To illustrate point 6, here is a proof of the Diagonal Lemma for Formulas
that uses the proof of the Fixed Point Theorem while requiring representability
only of k; compared to the version proved in section 1.3.3, this one is for a
theory with a richer language. The proof takes the form of a corollary of a
Diagonal Lemma for terms.

Theorem 6 (Diagonal Lemma for Terms) [Jeroslow, 1973].52 Let S be a
system that contains primitive recursive arithmetic and has symbols for all
primitive recursive functions. Then for every formula ϕ(x) there is a closed
term t such that S ⊢ t = ⌜ϕ(t)⌝.

Proof (adapted so as to use the Fixed Point Theorem). In the category of
sets, let A be the set of Gödel numbers of the symbols in S for all primitive
recursive functions N → N. Let B be the set of Gödel numbers of closed terms
in S. Define

g : A×A→ B

<⌜x⌝, ⌜y⌝> 7→ ⌜x(⌜y⌝)⌝
(1.60)

51 The intuitionistic justification of choice principles depends on their being construed
intensionally; results to the effect that choice implies the Principle of the Excluded
Middle [Diaconescu, 1975, Goodman and Myhill, 1978] require an extensional construal
[Martin-Löf, 2006].
52 Jeroslow [1973, p. 360] mentions that it was his referee who had isolated this lemma
from one of the proofs in Jeroslow’s manuscript. Santos [2020, pp. 26, 38] shows that the
Diagonal Lemma for Formulas does not, in turn, entail that for Terms.
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and

h : B → B

⌜t⌝ 7→ ⌜ϕ(t)⌝
(1.61)

Following the proof of the Fixed Point Theorem, k : A→ B is defined as ∆Agh,
which has the action ⌜x⌝ 7→ ⌜ϕ(x(⌜x⌝))⌝. This action can also be effected by
a certain primitive recursive function a, in the language of S symbolised by
a, and with ⌜a⌝ ∈ A. The latter therefore serves to represent the morphism
k via g. We now have the fixed point b = ⌜a⌝k = bh = ⌜ϕ(a(⌜a⌝))⌝, whence
a(⌜a⌝) = ⌜ϕ(a(⌜a⌝))⌝, and ⊢ a(⌜a⌝) = ⌜ϕ(a(⌜a⌝))⌝. □

This simple case illustrates a theme of the proof paradoxes below: for
certain domains, a morphism on that domain may be construed as, or as
corresponding to, an element of that domain. Note that the sets A can be
defined predicatively, so that here the definition of a representation of k while
impredicative, is not critically impredicative.

Corollary 1 (Diagonal Lemma for Formulas) For every formula ϕ(x),
there is a formula ψ such that ⊢ ψ ↔ ϕ(⌜ψ⌝).

Proof Apply the Diagonal Lemma for Terms to ϕ(x), and set ψ = ϕ(a(⌜a⌝));
then

⊢ ψ ↔ ϕ(a(⌜a⌝)) by def. ψ

⊢ ψ ↔ ϕ(⌜ϕ(a(⌜a⌝))⌝) by the Diagonal Lemma for Terms
⊢ ψ ↔ ϕ(⌜ψ⌝) by def. ψ

□

In contrast, in the contexts in which Russell’s Paradox and the proof
paradoxes arise, the representability of k is concluded to by instantiation, as
there highly general principles have already been accepted that guarantee the
fulfilment of the condition on g as stated. For Russell’s Paradox, that is the
unrestricted comprehension principle. In the other cases these are principles
of the form:

(1.62)If we have a performable operation for assigning a construction (object)
to another construction (object), then to this operation corresponds a
function(al), which is itself a construction (object).53

53 Here I am referring to the threefold distinction thematised in Sundholm [1983, p. 164]
between construction as (1) a process as it unfolds in time; (2) an object obtained as
the result of such a process; (3) a construction-process as object (the objectification of a
process of construction). For each one can furthermore distinguish between types and
tokens [van Atten, 2018, pp. 1596-1597].
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The recognised operation serves to define the function(al). (The resonance
with the introduction to Gödel’s Dialectica paper, with its emphasis on
‘Denkgebilde’ [1958, p. 280], is intended.) Thus, in a category where the object
A is the class of all constructions, and morphisms are performable operations,
the morphisms A → A are themselves very much like elements of A, and
may even be identified as such. Since the perspective from which I look at
comprehension and the other general principles here is determined by their
role in the Fixed Point Theorem, I will use the umbrella term ‘representation
principles’.

1.4.3 Russell’s Paradox

This paradox [Russell, 1903] was one of the example reconstructions in Law-
vere’s paper on his Fixed Point Theorem [1969, p. 137]. It is included here
(i) to enable a direct comparison of the proof paradoxes below with this well
known one, and (ii) as part of the background to the paradox devised by
Kreisel, who actually made that comparison (as seen in (the discussion of)
his (1.72)–(1.73b) below.)

For a set-theoretic version, let A be the universe of all sets, and B the set
of truth-values {⊤,⊥}. Define

g : A×A→ B

<y, x> 7→
{
⊤ if x ∈ y

⊥ if x ∈ y → ⊥
(1.63)

According to the unrestricted comprehension principle, for every formula with
one free variable ϕ(x), there exists the set {x ∈ A | ϕ(x)}. Hence, for arbitrary
f : A→ B, there exists the set {x ∈ A | f(x) = ⊤}. That set represents f via
g.54 If f is given to us as the characteristic function of a predicate P , then
that set is definitionally equal to {x ∈ A | P (x)}.

Now apply the Fixed Point Theorem, taking for h the negation function

h : B → B

⊤ 7→ ⊥
⊥ 7→ ⊤

(1.64)

Then k is the characteristic function of the predicate P (x) = x ∈ x → ⊥,
and is represented by the set a of all sets that do not contain themselves.
Evidently, the impredicativity in the definition of a is critical. The conclusion

54 The circumstance that here the set is seen as a representation of its characteristic
function, instead of the more usual converse view, is of course a consequence of the
category-theoretical view of an element of a set as a morphism from an initial object.
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b = bh here means, in propositional terms, that a ∈ a↔ (a ∈ a→ ⊥). Now
one one derives ⊥ as in (1.46)–(1.51).

For a property-theoretic version, let A be the universe of all objects,
including properties, and replace ∈ by the exemplification relation ϵ. The
unlimited abstraction axiom states that for every unary predicate P the
property λx.P (x) exists. With the Fixed Point Theorem, we find the property
a = λx.(x ϵ x → ⊥) of being not self-exemplifying, for which a ϵ a ↔ (a ϵ
a→ ⊥).

Russell [1906, pp. 35–36] offered a generalisation of the set-theoretical
version; it is this generalisation that Kreisel appeals to in (1.73a) below. In
the present terms: Let A be the universe of all sets, u, x, and y variables
ranging over A, and j : A→ A a morphism such that

∀u(∀x(x ∈ u→ P (x)) → ∃ y(y = j(u) ∧ P (y) ∧ (y ∈ u→ ⊥))) . (1.65)

Russell calls a set u for which the condition holds, as well as the process of
applying j to it, ‘self-reproductive’, in that the result of this application is
again a set for which the condition holds [Russell, 1906, p. 36]. Define

g : A×A→ B

<y, x> 7→
{
⊤ if j(x) ∈ y

⊥ if j(x) ∈ y → ⊥
(1.66)

By unrestricted comprehension, for every f : A → B, there exists the set
{z ∈ A | ∃x(z = j(x) ∧ f(x) = ⊤)}. That set represents f via g. Taking for
h the negation mapping, we conclude to the existence of a set a such that
j(a) ∈ a ↔ (j(a) ∈ a → ⊥). The earlier version is the special case where j
is the identity map and P (x) is x ∈ x → ⊥. For let u be any set for which
∀x(x ∈ u → (x ∈ x → ⊥)). Instantiating x with that u and contracting as
in (1.49) yields u ∈ u→ ⊥, from which each of the three conjuncts within the
scope of the existential quantifier in (1.65) follows immediately.

1.4.4 Proof paradoxes

1.4.4.1 Kreisel’s Paradox

This paradox appears as part of Kreisel’s second presentation of his Theory of
Constructions in his ‘Mathematical logic’ [1965], in a volume edited by Saaty.
The aim of that theory, he explained in the first presentation, was to give ‘a
formal semantic foundation for intuitionistic formal systems in terms of the
abstract theory of constructions’ [Kreisel, 1962a, p. 198], beginning with the
logic. (The Theory of the Creating Subject, which figures in section 1.4.4.3
below, was meant to be developed into an extension.) The value of the exercise
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was seen not to lie in conveying the meaning of the intuitionistic constants,
but in technical applications such as independence proofs. As Kreisel related
to Heyting in a letter of October 5, 1961, Gödel saw a further interest:

(1.67) Gödel regards this whole work as specially interesting from the point
of view of the paradoxes. For, on the one hand we use constructions
without type distinction, on the other, we avoid paradoxes by not
allowing propositions as mathematical objects. (The rules of proof used
in the antinomies are intuitionistic: the question is why X ∈ X cannot
be expressed. Type distinctions are certainly not always observed,
e.g. not in your explanation of the logical constants, in particular of
implication. [Heyting Papers, Bkre 611005]

A version of that last sentence is included in the published paper [Kreisel,
1962a, p. 202], but not of the rest of this remark.55

Kreisel’s Paradox, as I call it here, is distinct from the paradox that has
become known as the ‘Kreisel-Goodman Paradox’, which is only found in
Goodman’s writings (on his modification of Kreisel’s theory),56 and will
be discussed in section 1.4.4.4. The present paradox arises upon Kreisel’s
introduction of two of the main ingredients of his Theory of Constructions,
unless further precaution is taken, which he of course goes on to do. The
one is ‘notions, that is, understood, decidable properties of mathematical
objects’ [Kreisel, 1965, 2.13]. (It is not required that such a decision can be
mechanised [Kreisel, 1965, 2.141].) The other is a convention that ensures
totality of functions, in the interest of having a theory with decidable equality,
and which consists in a modification of the ordinary meaning of application:

(1.68) 2.151. Total functions. [. . .] [If] for the objects a, b as given or conceived,
no sense is assigned to a(b), then a(b) is put = a, say. (Cf. in type
theory: if no sense is assigned to a ∈ b, we regard a ∈ b as false.)
Obviously, for any proposed axiomatic scheme one has to verify its
validity for this convention. This is illustrated by considering

2.152. The λ-Calculus. The naive proposal (parallel to the principle:
every property defines a collection) is this. For every term t[x], built up
by means of the application operation from constants and containing
the variable x, there is a function λzt[z] for which we have a proof
at : x · (λzt[z])(x) = t[x]. This is excluded by the paradoxes. There is a

55 I have not found a reply by Heyting in the Haarlem and Stanford archives (see the
Acknowledgements). The Heyting-Kreisel correspondence began in 1952 with a letter
from Kreisel, and seems to have ended (with a bang) in 1970; Heyting passed away in
1980. Given that Kreisel attended a lecture by Brouwer as early as 1946 [Kreisel, 1987b,
pp. 146], it is regrettable that, for all we know, he did not also begin a correspondence
with him (Brouwer died in 1966). Would the reason really just be that Kreisel did not
like Brouwer and his style [Kreisel, 1987b, pp. 146-147]? Two ideas of Brouwer’s that are
not prominent in Heyting’s thinking but that Kreisel was very interested in are that of
proofs as infinite objects (see footnote 35 above) and creating subject arguments.
56 On this last point, see Dean and Kurokawa [2016, p. 40].
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notion η, η(x) = 0 if x ̸= 0, η(x) = 1 if x = 0; it is a notion since any
clearly conceived object either is conceived as 0 or not. Consider the
term η(x(x)); though, by the convention of 2.151, it is well defined
for each x, is there a clearly conceived object c (c: for Church) with
c(x) = η(x(x))? No, since c(c) and η(c(c)) are different. In short, the
existential assumptions implicit in unrestricted λ-term formation and
conversion are not correct. The ‘rule’ c: for each x, take the value
η(x(x)) overlooks the tacit convention that, for x = c, the value is
also c(c). [Kreisel, 1965, pp. 124–125, original italics]

Upon reading 2.151, to some it will occur to ask: What if ‘a(b)’ takes on a
sense only at a certain point in time? Or what if the sense changes? But one
just looks at the situation at the moment that the application is attempted.
Time is made an explicit parameter in one version of Gödel’s Paradox and in
Troelstra’s Paradox, discussed in sections 1.4.4.2 and 1.4.4.3 below.

In his review of Kreisel’s paper for the Journal of Symbolic Logic, Vesley
wondered ‘whether the system of 2.152 is intended to be a description of
calculus of λ-conversion of Church XVII 76 (if so it is a misunderstanding
and, in any case, the attribution of the object c to Church is in error)’; the
work referred to is Church’s The Calculi of Lambda Conversion (1951 edition).
This will have been because of the presence of notions, which, to the extent
that they must be understood, need not be λ-definable. For the paradox as
such, this does not matter, as we can view the role of the λ-calculus here
as a superstructure; and this agrees better with Church’s earlier system of
1932–1933, with its underlying ‘intuitive logic’ and postulates.

Kreisel’s Paradox is, in effect and perhaps also intention, an immediate
generalisation of Russell’s Paradox as Church gives it there [1932, p. 347; 1933,
pp. 860–861]. There exists a propositional function λϕ.∼ϕ(ϕ). Consider the
self-application P = (λϕ.∼ϕ(ϕ))(λϕ.∼ϕ(ϕ)). Then P converts to ∼P and
vice versa, from which it would seem to follow that P is a proposition that is
both true and false. Church’s solution is to accept the existence of the function,
but to allow for the possibility that that function does not yield a defined
value when applied to itself. In Church’s later terms: P is not meaningful
because it has no normal form [Church, 1941, pp. 15, 70–71]. But paradox
by the same mechanism can be regained by (re)construing the function as a
function on all objects, not only propositions, replacing propositional negation
∼ by an everywhere defined function that, to put it anachronistically, likewise
has no fixed points.57

To see Kreisel’s Paradox as an application of the Fixed Point Theorem,
note that the representation principle in this paradox is the proposal at the
beginning of 2.152. Kreisel does not introduce an explicit application function,
but it seems faithful to his intention as expressed in the text to define

57 The presentation of Russell’s Paradox in [Curry, 1934, pp. 588–589] uses N instead of
∼, and a predicate Pr fthat is true of propositions; thus even more readily suggesting
their reinterpretation or replacement by something more general.



34

g : A×A→ A

<j, x> 7→
{
j(x) if ‘j(x)’ has a sense
j otherwise

(1.69)

where A is the universe of constructions. The case distinction is decidable (as
above: not necessarily by a mechanism, but by anyone who understands the
meaning of the terms involved), hence g is everywhere defined: that is, even
though there is no construction method for its domain, we see that, whenever
we have constructed two constructions j and x, we are able to evaluate g.

For h we take Kreisel’s η:

h : A→ A

x 7→
{
0 if x ̸= 0
1 if x = 0

(1.70)

Now the Fixed Point Theorem applied to g and h yields a morphism k : A→ A
whose composition is that of Kreisel’s η(x(x)), i.e., of h(g(<x, x>). By the
chosen representation principle, this morphism is represented by a construction
of which we have a proof that it is an everywhere defined function, and which,
by reflection, therefore is one. This function is Kreisel’s c. It lies in its own
domain, self-application makes sense, and we have g(c, c) = h(g(c, c)). But
that is impossible; in terms of propositional logic,

c(c) = 0 ↔ (c(c) = 0 → ⊥) . (1.71)

Therefore, the function c does not exist, and neither does the proof that it is
total: the ‘existential assumption’ had given both.

Note that the definition of c is impredicative, and critically so, as there is
no construction method for the elements of the universe of constructions.

In the version of his Theory of Constructions that Kreisel goes on to
develop, he keeps the convention 2.151, but introduces in 2.22 a restriction on
types in λ-abstraction that avoids the paradox just described. I take it, then,
that when Kreisel in his earlier presentation of the Theory of Constructions
voiced doubts about the consistency of one of its variants [Kreisel, 1962a,
pp. 200, 203], what he saw coming ahead was a paradox like the one he came
to formulate in 2.152.

Kreisel gives a detailed diagnosis in a letter to Gödel of April 1, 1968.58

(1.72) Vielen Dank für die angenehmen und nützlichen Gespräche. Es ist nur
schade, daß ich bei unserer Diskussion der Church’schen Paradoxie
eine, m.E. wesentliche, Unterscheidung nicht genügend betont habe,
nämlich zwischen Verfahren und Funktion (oder Konstruktion).

58 A date in the middle of the period during which he was working on the Brouwer
obituary.
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Eine Funktion f ist ein Tupel (Verfahren Vf , Menge Df ; Einsicht
Ef daß Vf auf Df definiert ist). Noch etwas präziser: Verfahren führen
immer (sozusagen hereditär) von Verfahren + Definitionsmenge zu
Verfahren + Definitionsmenge einerseits, von Einsichten zu Einsichten
andererseits. Man vermischt nicht das Objektive und Subjektive.

Es gibt natürlich Verfahren, die sich nur auf Verfahren (ohne Erwäh-
nung der Definitionsmenge des Arguments) beziehen, z.B. Konstante.

Church’sche Paradoxie (siehe 2.151, 2.152 auf S.124–125 des
Artikels „Math. Logic“, in Saaty). Natürlich „beschreibt“ η(x(x)) ein
Verfahren, worin die Definitionsmenge Dx selbst eingeht (von einem
Verfahren Vx kann man nicht entscheiden, ob Vx für das Argument Vx
definiert ist und S.125, Z.3–5, entsprechen keinem Verfahren). Nennen
wir dieses Verfahren Vc, wie im Saaty Band.

Ehe man zur Church’schen Paradoxie kommt, muß man noch ein
Dc angeben, von dem man weiß, daß Vc auf Dc definiert ist (also eine
Einsicht Ec, die von Dc abhängt).

Alles, was die Church’sche Paradoxie zeigt, ist m.E. dies: Obwohl
wir ein Verfahren Vc haben, haben wir mehrere Funktionen, abhängig
von Dc. Und (Vc, Dc) ist nicht in Dc: Vc ist also auch auf Dc∪ (Vc, Dc)
definiert.

Ist das nicht analog zu Saaty, S.100-101 und Fußnote 4 auf S.101?
Beste Grüße, auch an Ihre Frau (der es hoffentlich besser geht)
Ihr sehr ergebener G Kreisel
[Kreisel Papers, 50/1]

‘Church’s Paradox’ is also the name Gödel used for a paradox to be
discussed in the next section. Since differences between the paradoxes as
presented by Kreisel and Gödel are important here, and, in any case, these
two paradoxes were not devised by Church, I will not use the name ‘Church’s
Paradox’ for either.

As Kreisel describes it here, a ‘Verfahren’ is an operation that can be carried
out on one or more objects supposed to have been given, and is expressed
in a rule with corresponding free variables; but, unlike a function, it comes
without a domain.

The lines 3–5 on page 125 of his article that Kreisel refers to occur in 2.151
quoted as (1.68) above: ‘[If] for the objects a, b as given or conceived, no sense
is assigned to a(b), then a(b) is put = a, say.’ The comment on it in this letter
turns on the dependence of this convention, in its application, on whether
a is the kind of object to which a domain is associated to begin with, and,
if so, what that domain is. He concludes that η cannot be considered to be
a notion independently of a specified domain of its argument, and must be
understood not in operational but in functional terms.

At the end of the letter, Kreisel refers to the pages where he had given
Russell’s Paradox in a form of the self-reproductivity argument (see (1.65)
above):
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(1.73a) [T]here is a genuine problem: what properties define collections, par-
ticularly if properties themselves are to be regarded as objects. This
may be shown by means of the paradoxes. If x is the collection of
objects satisfying a property, take {x} (whose only element is x) to
be the property regarded as an object. Let r (for Russell) be any
collection satisfying (∀x)(x ∈ r ⇒ x ̸∈ x), and so r ̸∈ r. Thus,
∀x(x ∈ r∪{r} ⇒ x ̸∈ x), r∪{r} ⊃ r but r∪{r} ≠ r. In other words,
r is not the collection of all objects satisfying x ̸∈ x.

The ‘footnote 4’ Kreisel refers to is to this passage and reads:
(1.73b) One of the set theoretic definitions of ordinals takes the empty set ∅ to

be zero: a→ a ∪ {a} as the successor function (and unions for limits).
The argument above is literally the proof that there is no greatest
natural number (greatest ordinal). [Kreisel, 1965, pp. 100–101, original
emphasis]

Or, as he put it in his earlier presentation of this analogy,
(1.74) From this point of view the Russell Paradox does not seem more

astonishing than a child’s assumption that there is a greatest integer:
we have overlooked the fact that not every property has a definite
extension. [Kreisel, 1958, p. 157]59

Thus, in the letter Kreisel points out that just as collections that have the
property ‘being a collection of elements that do not contain themselves’ or
‘being a collection of ordinals closed under predecessor’ are self-reproductive,
so are collections that have the property ‘being a domain on which Vc is
defined’. Hence η must be understood not as a single function, but as a family
of functions (with different domains but the same rule).

I have not found a letter or note by Gödel in which he explicitly sets out
to give an answer to Kreisel’s letter. Perhaps there was one and it got lost.
Either way, the matter will surely (also) have been discussed on one of their
phone calls, or on one of Kreisel’s visits to Princeton. In fact, Kreisel has said
that ‘My main contact with Gödel was in private conversations during the
years I spent at the same Institute, not in correspondence’.60 A plan for one
such visit was mentioned by Kreisel in between that letter and the Buffalo
conference, held in August 1968.61 Be that as it may, we will now see that
Gödel had a different view, and that Kreisel came to change his mind.

1.4.4.2 Gödel’s Paradox (intuitionistic)

There is a paradox associated with Gödel that comes in both a classical and an
intuitionistic version; the latter is a proof paradox. They are reproduced here
59 We will come back to this remark on p. 64.
60 Letter of November 2, 2004 to Kai Käkelä, quoted in Derus [2020, p. 128].
61 In a letter from Kreisel to Gödel, July 11, 1968 [Kreisel Papers, 50/3].
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from Gödel’s archive in Figures 1.1 and 1.2. These notes were written back
to back, and kept in an envelope marked ‘Antin⟨omien⟩ des Intuit⟨ionismus⟩
und der abs⟨olute⟩ Beweisbarkeit’.62 (Another intuitionistic paradox in that
envelope is reproduced in Figure 1.3.) Gödel named the classical version
‘Church’s Paradox’, ‘because it is most easily set up in Church’s system’
[Wang, 1996, p. 279, 8.6.24].63 Wang proposes to call it ‘Gödel’s Paradox’; for
the reason given on p. 35 above, so will I.

I do not know when Gödel first thought of either version, which of the two
came first, or how much time there was between them; but I will suggest that
at least the particular way in which Gödel presents the intuitionistic version
in Figure 1.2 is a direct reaction to Kreisel’s Paradox. In the previous section,
it was remarked that Kreisel may have arrived at his paradox by generalising
Church’s version of Russell’s. That route was, of course, at any point open to
Gödel as well. (For the principal purpose of illustrating the ‘errors’ referred to
in Kreisel’s remark (1.3a), obviously neither the considerations in the present
paragraph, nor similar ones below, matter. But they are motivated by a
perceived intrinsic interest, and by the idea that they may lead to clues as to
what, in the sources, should be read in the light of what.)

Gödel never published his paradox. Kreisel included the classical version, in
a slightly different presentation, in the proceedings of the Logic Colloquium ’69,
calling it ‘a standard “functional” paradox’, without an attribution to Gödel
[Kreisel, 1971b, pp. 190-191]. Wang included it in his Logical Journey, based
on his conversation with Gödel of October 18, 1972 [Wang, 1996, p. 278–279].
No mention is made of Kreisel.64 The intuitionistic version is referred to in
Wang’s book (p. 279), but not included.

The paradox is, Gödel comments, ‘a simpler version of the familiar paradox
of the concept of not applying to itself’ [Wang, 1996, p. 279, 8.6.24]. Wang’s
rendition of the classical version (in 8.6.25) follows that in Figure 1.1 very
closely; Gödel evidently had the latter at hand.65 Having shown it, Gödel
made some points that also apply to the intuitionistic version:

(1.75)8.6.26 The derivation above has no need even of the propositional
calculus. Definition by cases is available in Church’s system.66 It

62 A pencil note on it states that it was ‘Filed with Wang corresp⟨ondence⟩’.
63 Gödel reviewed Church [1932] and Church [1933] for the Zentralblatt, but without
comments [1932, 1934]. The inconsistency referred to at the end of Gödel [1934] will have
been the one established by Kleene and Rosser in the Spring of 1934 – Gödel was in
Princeton from October 1933 through May 1934 [Kleene 1981, p. 57; Wang 1987, p. 95].
64 That may of course be an artefact of Wang’s representation. But in view of the date,
one can’t help recalling the fact that the to all appearances last letter from Kreisel to
Gödel was dated October 1, 1972. In that letter, Kreisel had expressed some grievances
against Gödel, and reflected that ‘Nach meiner Erfahrung mit vielen Menschen (nicht
aufgrund ungeprüfter “Theorien”) scheinen die menschlichen Beziehungen eine gewisse
natürliche Lebensdauer zu haben’. As Parsons comments, ‘It is very probable that they
never saw each other again’ [Parsons, 2020, pp. 79, 83].
65 Gödel wrote on the envelope (in shorthand): ‘erläutert’.
66 [Note MvA] As shown in Kleene [1934].
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Bew⟨eis⟩ (0.):

Df. von E:
E(x) = 0 wenn x ̸= 0
E(0) = 1 dann E(x) ̸= x.

a = b bedeutet: a is the object b

Church Antinomie

Df. 0. Überall definierte Funktion.
Th. 1. Es gibt überall definierte Funktionen, zum Beispiel I(x),

E(x), = (von 2 Variablen).a
Df. 2. F . x = F (x) wenn F eine überall definierte Funktion ist,

sonst = 0.
Th 3. . ist eine überall definierte Funktionb und F . x =x F (x)

für überall definierte Funktion⟨en⟩ F .
Df 4. H(x) = E(x . x). H ist ⟨eine⟩ überall definierte Funktion.

5. H(x) = H . x = E(x . x)
6. H . H = E(H . H)

andererseits ” ̸= ”
Th.

a Above these three examples: ‘sind überall definiert’.
b Above the word ‘Funktion’, there is an arrow leading to ‘alle’, written above
this line. That seems to be the beginning of an unfinished comment.

Fig. 1.1 Gödel’s Paradox, classical [Gödel Papers, 12/52, collective item 060772].

is easy to find functions which are everywhere defined. Unlike the
classical paradox,67 there is no need to assume initially that the
crucial concept (or function) of not applying to itself is everywhere
defined. The paradox is brief, and brevity makes things more precise.
By a slight modification, using provability, it can be made into an
intuitionistic paradox. [Wang, 1996, p. 279].

Apparently Gödel did not go on to elaborate that last point, and Wang seems
not to have asked.

To see Gödel’s Paradox (intuitionistic version) as an application of the
Fixed Point Theorem, first note the immediate correspondence between the
functions in the former and in the latter:

. = g

E = h
(1.76)

(where the equality is definitional). A is the constructive universe, and the
chosen representation principle is formulated in Gödel’s footnote: for every

67 [Footnote MvA] This evidently refers to what Gödel called ‘the familiar paradox’
above; not the classical version of Gödel’s Paradox.
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Antin⟨omie⟩ im Intuit⟨ionismus⟩

Df überall definierte Funktionx (unentscheidbar)
+ Beispiele

Df Wenn f ein Paar <B, g>, B ein Beweis ist dass das Verfahren g überall zum
Resultat führt:

f . x =Df g(x)
sonst =Df 0

Th . ist überall definiert.

(0.) Es gibt ein nachweislich überall definiert⟨es⟩ E so, dass E(x) ̸= x (siehe
Rückseite).a

(1.) Es gibt ein H so, dass:

H . x = E(x . x). Dann ist:
H . H = E(H . H)

andererseits H . H ̸= E(H . H)

Bew⟨eis⟩ (1.):
Es gibt ein überall definiertes Verfahren G so, dass G(x) = E(x . x). Also:
es gibt einen Beweis B der zeigt, dass G ein überall definiertes Verfahren ist.
H =Df <B,G>. Dann: H . x = G(x) = E(x . x).

xFunktion = Operation = Verfahren (Regel der Verwertbarkeit = Erstellung
einer Reihe von Gedanken).

a The other side is given in Figure 1.1. The words ‘nachweislich überall
definiert⟨es⟩’ are written above the line, with an arrow pointing to it from
‘ein’.

Fig. 1.2 Gödel’s Paradox, intuitionistic [Gödel Papers, 12/52, collective item 060772]

totally defined operation (performable series of acts) there is a function (which
in the argument is considered as a mathematical object), because these are
identified. Note that the case distinction in the definition of the application
function is decidable, and that use is made of reflection: if B is a proof that g
is everywhere defined, then g is everywhere defined, therefore it can be applied
to x. The composition of Gödel’s G = E(x . x) is that of the morphism k,
which has a representation as an object in A, namely a = H = <B,G>. The
definition of a is critically impredicative: it is an object in A, the constructive
universe, defined via quantification over A, but there is no construction method
yielding all elements of A.

Although for Gödel it was important to comment (because for him it shows
something about the depth of the paradox – see section 1.4.5 below) that no
propositional logic comes in, for our present purpose it should be observed
that its conclusion is readily presented in propositional form:
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H . H = 0 ↔ (H . H = 0 → ⊥) . (1.77)

Gödel expresses the same problem in a different way. On the one hand, to the
operations defined in Figure 1.2 the criterion for informal constructivity applies
that he had formulated in Dialectica: ‘die Ausführbarkeit der Operationen
unmittelbar aus der Kette der Definitionen ersichtlich’ [Gödel, 1958, p. 283n5].
On the other hand, as he observes in another note in which he gives the same
argument in a slightly different notation:68

(1.78) Also der Versuch der Wertung von H[H] führt auf einen unendlichen
Regress (Church). Also der Beweis b falsch. [Gödel Papers, 12/52,
collective item 060772]

The regress arises because an attempt to evaluateH.H, demands an evaluation
of E(H . H); but the latter demands an evaluation of H . H. (Absence of a
normal form, see Church [1941, pp. 70–71].) Intuitionistically, the appearance
of this regress means that there is a problem with the proof of the totality of
H, which must be supposed to have shown that a value can be constructed
for each argument. A condition of possibility for this problem to arise is the
critical impredicativity of the definition of H.69 In fact, the same regress can
be found in the other proof paradoxes; for now, the propositional presentation
suffices, and I will postpone a further remark on this to p. 59 in the section
on critical impredicativity.

I read the following remark of Gödel to Wang as a comment motivated by
his intuitionistic paradox and the other proof paradoxes discussed here.70

(1.79) 6.1.13 The concept of concept and the concept of absolute proof
[briefly, AP] may be mutually definable.71 What is evident about AP
leads to contradictions which are not much different from Russell’s
paradox. Intuitionism is inconsistent if one adds AP to it. AP may
be an idea [in the Kantian sense]: but as soon as one can state and
prove things in a systematic way, we no longer have an idea [but
have then a concept]. It is not satisfactory to concede [before further

68 Gödel now indicates the use of the special application function with straight brackets,
and the proof with a lowercase letter.
69 The impossibility of evaluating H . H (notated differently) is remarked on also by
Kreisel in his publication of the classical version; classical, but, as he puts it, ‘look[ing]
at the steps of the argument by the light of nature’, which means, in particular, that
application of a function rule presupposes that a value has been assigned to its argument
[1971b, p. 191].
70 Note that Wang’s (re)presentation of their conversations does not contain an explicit
connection between (1.75) and (1.79).
71 [Note MvA] When Gödel says that the concept of concept and the concept of absolute
proof may be mutually definable, he is suggesting, in one direction, an inferentialist theory
of concepts, but also, in the other direction, what may be called a conceptualist theory
of inference. In particular, the concept of concept would be that which one understands
once one understands the inferences that are correct for any concept. For Brouwer, any
such systematic understanding would intrinsically be a form of applied mathematics.
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investigation] that AP or the general concept of concept is an idea. The
paradoxes involving AP are intensional – not semantic – paradoxes. I
have discussed AP in my Princeton bicentennial lecture. [Wang, 1996,
p. 188, 6.1.13, amendations Wang’s, emphasis mine]

AP is the concept of proof independent of any particular formal language or
system. It would therefore seem natural to add the concept AP to intuitionism,
as intuitionism has always explained truth in terms of such a concept of
proof.72 (It is rather Gödel’s proposal in the Princeton lecture to introduce
it also in classical mathematics that is innovative.) But, Gödel claims, this
leads to inconsistency. The similarity between the phrases in (1.79) that
I have emphasised and Kreisel’s earlier (1.3a) leaps to the eye.73 Finally,
when in (1.79) referring to ‘contradictions which are not so much different
from Russell’s Paradox’, Gödel did so while knowing Kreisel’s Paradox and
Goodman’s Paradox, and, very likely, also Troelstra’s Paradox, as seen in the
respective sections here; all of which are like Russell’s Paradox in the sense
explained in section 1.4.1.74

The two circumstances that I find suggestive of the idea that, moreover,
Gödel’s (intuitionistic) Paradox, at least as presented in Figure 1.2, was
occasioned specifically by Kreisel’s Paradox, are:

1. Gödel’s footnote addresses (and denies) exactly the distinction that
Kreisel’s letter to Gödel on the paradox in 2.152 turns on.

2. Gödel’s Paradox illustrates the following theme in Kreisel’s paper even
more explicitly than Kreisel’s:

72 Since it is the role of AP in mathematics that we are here interested in, Gödel’s
question whether AP can be treated even independently of any specific system of things
[Gödel, 1946, pp. 152-153] is left aside. It is discussed in Crocco [2019].
73 There is independent reason to believe that Gödel had seen the latter before making
this remark to Wang in 1972. Kreisel had the habit of sending his work to Gödel, but in
this case there was no need to. By the time of Kreisel’s writing (1.3a), Gödel had, like
him, become a Foreign Member of the Royal Society (Gödel in 1968, Kreisel in 1966) and
on December 17, 1969, Kreisel wrote in a letter: ‘Wahrscheinlich kriegen Sie bald von
der Royal Society die 1969 Obituary Memoirs, einschließlich den Nachruf auf Brouwer,
den ich gemeinsam mit dem Topologen M. H. A. Newman verfaßt habe.’ [Kreisel Papers,
50/2].
74 Of the earlier (voluntarily brief) discussion of (1.79), that in Crocco [2019, p. 571], I
note that it does not give an example of a contradiction that AP leads to, except in its

(1.80)Remark 2. According to Gödel, intuitionism rejects the use of unrestricted
universal quantifications (all objects, all proofs, etc.) and therefore extensional
and intensional paradoxes do not appear in it. Absolute provability implies
reference to all proofs that can be performed by a human agent in any domain.
In this sense it is in contradiction with intuitionism.

But that contradiction is, in the way in which it arises, not similar to Russell’s Paradox.
Furthermore, the first half of the first sentence is problematic, both in the claim ascribed
and in the ascription (following Wang) of that claim to Gödel; see the discussion of (1.117)
and (1.118) below.
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(1.81) Finally, isolation of primitive concepts, in terms of which the other
can be defined, and laws (axioms) for these primitives. Current
candidates are construction (function) and the application operator
with proof as a suppressed parameter.

which comes with the footnote

(1.82) As ordinal and order of the cumulative type theory are suppressed
in the practice of set theory. The occurrence of such hidden
parameters seems essential in work that gives an analysis of
informal mathematics. [Kreisel 1965, 2.1, p121, italics in the
original]

It is certainly essential to intuitionistic mathematics, which by its nature
is informal, that functions are applied only to objects that have (actually,
or hypothetically) been proved to be in their domain.

In the other direction, even on the (as yet unsupported) supposition that
Kreisel knew (the content of) Gödel’s Paradox when he set out to write
the Saaty paper, it is clear that he would have had little direct motivation
to include it: his interest there is in (further) developing an alternative
interpretation of formal intuitionistic logic, not in using the intuitionists’ own
understanding. It is only when introducing the convention in 2.151 for use in
his theory of constructions that he makes a short detour to show his paradox.
Similarly, the topic of Kreisel’s 1971 publication in which he presents the
classical version of Gödel’s Paradox, generalisations of recursion theory, would
hardly have motivated including Gödel’s intuitionistic Paradox or, for that
matter, his own.75

As stated at the end of the previous section (p. 36), it is highly likely that
Gödel and Kreisel discussed the diagnosis in Kreisel’s letter of April 1, 1968,
and may have done so on Kreisel’s travel to the Buffalo conference, but I have
no direct evidence for either supposition. However, in Kreisel’s first published
remarks on notions and functions after that letter – the published version
of his address at Buffalo – he abandons the categorical distinction he had
appealed to in the letter, thus coming closer to Gödel’s view in the footnote
in Figure 1.2. This I take to be indirect evidence of a discussion with Gödel.
Kreisel now holds:

(1.83) Let us scrutinize a bit the basic relation:
For some given notion α, the construction (more precisely, judge-

ment) c proves αd for variable d.
[. . .]
If we think of the variable d as ranging over the, so to speak,

absolutely unattained universe of all constructions, it seems dubious
that there should be any construction (something that we grasp

75 In fact, there the Saaty paper is refered to only once (p. 166), and on another topic.
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completely) which proves αd, even if we have convinced ourselves that,
for any clearly given d, α is indeed a well defined notion.

[. . .]
On the other hand, if we take some particularly simple notion

αd, say βd ▷ βd (where I use ▷ for truth functional implication [. . .])
we simply have a proof. Whatever else may be in doubt, we have a
perfectly clear idea or ‘schema’ for verifying βd ▷ βd. The kind of
judgement involved here plays the same role among proofs as, say, the
identity operator plays among functions. It is simply a mindless ritual
to chant: for each type we have a different identity operator. (Though,
trivially, for each domain D the set of pairs {<x, x> : x ∈ D} depends
on D.)

The obvious and immediate conclusion is: just as there are some
operations which are defined for arbitrary operations (in the non-trivial
sense of giving distinct values for ‘lots’ of arguments, e.g. the identity
operator, the composition operator etc.) so there are some notions α
which can be proved by constructions to hold for unrestricted d. The
definition of other operators depends essentially on a given domain
(‘essentially’ in the sense that the function is made total by a trick of,
say, defining its value to be zero outside the given domain; cf. [21],
2.151, pp. 124-125).76 In the case of notions α, the corresponding
restriction concerns the variable d.

Applied to Kreisel’s Paradox, this view entails that Kreisel’s own earlier
diagnosis in his letter is not correct, provided one considers the notion η to
be simple enough.77

To return to Gödel’s intuitionistic Paradox, note the variant in Figure 1.3.
In the definition of F , the condition has to be understood as that on E in
Figure 1.1. The value of the function f applied to x at time t is notated f(x)t,
and A0t(f) is the sequence of the arguments to which f has been applied
between times 0 and t, such as they were given to us at these moments (i.e.,
intensionally), and possibly with repetitions. I take it that Gödel labels the
definitions of the functions F, ., and G as theorems because at the same time
the existence of these functions is established, a construal of definitions similar
to that in his introduction of ‘reductive proofs’ in the revised Dialectica paper
[Gödel, 1972, p. 275, note h1]. These theorems are themselves established in
time.

Note that the case distinction in the definition of the application function
is decidable, with the particularity that which of the two conditions is proved
to hold may, for the same arguments f and x, change with time. An example
of time-dependency of f . f would be an identity function f , calculated at t37
by the projection f(f) = π0<f, f> and at t40 as f(f) = f (‘andere Methode’);

76 [Note MvA] The remark referred to is contained in quotation (1.68) above.
77 This is a view that allows one to accept certain impredicative definitions as constructive;
see section 1.4.5 below.
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Bew⟨eis⟩-Begriff im Intuit⟨ionismus⟩.a
(zeitabhängig)

Df Eine Funktion ist etwas, von dem erkannt wurde, dass es immer einen

definierten Wert hat wenn
At(f)

ein Argument gegeben
f(x)t
ist (aber wenn darin ⟨das⟩

Argument zeitlich gegeben ist, kann sie einen anderen Wert ⟨annehmen⟩)

t = 0 Th F (x) = 0, F (0) = 1 ist eine Funktion
A0t(F ) x =t y ≡ x =t1 y

1 Th. (f . x)t = 0 wenn ein A0t(f) ⟨zeitabhängig ist⟩
= Wert wenn A0t(f) zeitunabhängig

. ist eine zeitabhängige Funktion für t > 1
2 Th F (f . ft) ist eine Funktion G für t > 2

G . ft = F (f . f)t gilt jederzeit
Th G . G = F (G . G)

Zeitabhängigkeit von x . y (= Anwendung)
(andere Methode der „Einsicht“ beziehungsweise des Errechnens)

a This title and the parenthesis are the text on one side of the paper, the rest
that on the other.

Fig. 1.3 Gödel’s Paradox, time-dependent [Gödel Papers, 12/52, collective item 060772].

then for t > 40, (f . f)t = 0. We will see something very similar in Troelstra’s
Paradox.

Gödel offered no solutions to his paradoxes; I will come back to that at
the end of section 1.4.5.

1.4.4.3 Troelstra’s Paradox

Kreisel intended to enrich his Theory of Constructions with axioms for the intu-
itionistic ‘thinking subject’, with an eye on reconstructing Brouwer’s so-called
‘Creating Subject’ arguments [Kreisel, 1967b, p. 180].78 Those arguments are
another example of (making explicit, or exploiting) a hidden parameter; see
quotation (1.81) above. There the hidden parameter in question was proof,
here time. (There is no reason these could not be treated together, but there
seems to be no experience with that.)

Troelstra added an axiom to Kreisel’s two, and in a modern formulation,
the axioms and their intended meanings are as follows.

∀n(□nA ∨ ¬□nA) (CS1)

78 Kreisel had received a letter from Kripke in which the latter had proposed a weak
version of the Brouwer-Kripke Schema. See van Atten [2018, p. 1588].
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That is, for any stage, it is decidable for the Creating Subject whether by
that stage it has made A evident.

∀n∀m(□nA→ □n+mA) (CS2)

The Creating Subject never forgets what it has made evident.

∃n□nA↔ A (CS3)

A proposition A is true if and only if the Creating Subject has made A evident
by some stage. From left to right this is a reflection principle: there is a certain
proof for A, therefore A.

These axioms show that about provability in Brouwer’s sense ‘one can
state and prove things in a systematic way’, as Gödel might have said it (see
quotation (1.79)).

But Troelstra had also found a paradox. He discussed it with Kreisel at the
Buffalo conference in 1968;79 the time span in which Kreisel was preparing
his part of the Brouwer obituary included all of that year (see the end of
footnote 40 above). It is treated in the notes of the lecture series he gave
there, the influential Principles of Intuitionism [Troelstra, 1969], of which,
incidentally, Gödel owned a copy [Dawson, 1984].80 Troelstra published on it
again in Troelstra and van Dalen [1988, ch. 16, section 3] and Troelstra [2018].

For the present purpose, the last publication is the clearest and most useful
one. It is best read as an argument in which we put ourselves in the shining
shoes of the (idealised) Creating Subject, which thus reasons about itself:81

(1.84a)Let us now use α, β to denote arbitrary, not necessarily predeterminate,
and not necessarily infinite sequences of natural numbers, and let us
consider statements of the form ‘α is a total sequence’. For example,
if α is defined as a primitive recursive sequence, this conclusion is
immediate as soon as α is defined. If α is initially given to us as a
partial recursive function, we may at a later stage conclude that α
is a total sequence, namely if we have found a proof of this fact. A
lawless sequence is from the moment it is initiated a total sequence.

The original idea for the paradox was as follows. Let αn be the
n-th total sequence the C[reating] M[athematician] encounters when
running through the stages of activity; then consider a sequence β
defined by

β(n) = αn(n) + 1

79 Email Troelstra to MvA, May 1, 2016. Troelstra spent the academic year November
1966-November 1967 with Kreisel at Stanford. Kreisel rarely refers to Troelstra’s Paradox
in print; a place where he does is Kreisel [1972, p. 326].
80 Also of Metamathematical Investigation of Intuitionistic Arithmetic and Analysis
[Troelstra, 1973a].
81 See van Atten [2018] for further discussion and references.
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β is total, and at some stage m β should appear as an αn. But then
β(n) = αn(n) = αn(n) + 1, a contradiction. This is just a classical
diagonalization argument.

Self-application of functions is not a feature of Troelstra’s background theory,
but its effect is provided for by letting the natural numbers also play the role
of indices (a form of coding) to the encountered sequences N → N (functions).
In this argument, one finds the principles CS1–3 instantiated as follows. CS1:
Such an encounter consists in the act of proving that the sequence is totally
defined, and for the Creating Mathematician it is decidable whether at a
given stage it has such an encounter. CS2: A necessary condition for a list of
the αn is that these encounters are not forgotten. CS3 (from left to right):
If, at some stage, it is proved that a sequence is totally defined, then that
sequence is totally defined. CS3 (from right to left): If it is true that β is
totally defined, then this is proved at some stage m.

(1.84b) Mark van Atten observed that perhaps β is not well-defined, because,
having encountered αn, we are not certain how long we have to wait
before the next total sequence appears.

That is, in its original formulation Troelstra’s Paradox depends on an appeal
to an unacceptable version of Markov’s Principle: for discussion, see van Atten
[2017a].

(1.84c) This can be remedied as follows. At stage 0 we take α0 to be the
constant zero function. As long as no new total sequence is declared
at stage n+ 1, we take αn+1 to be equal to αn; and if at stage n+ 1
a new total sequence γ is found, we take αn+1 to be equal to γ. Then
we can diagonalize as before. [Troelstra, 2018, p. 14]

In terms of the Fixed Point Theorem, the representation principle in this
Paradox is the instantiation of CS3: every totally defined sequence (function)
N → N that the Creating Mathematician encounters can be correlated to an
element of N.

The application function g is defined as

g : N× N → N
<n, x> 7→ αn(x)

(1.85)

Since the difference between the two versions that Troelstra described lies
only in the way that the list of the αn is constructed, g is the same for both.
Note that the constructivity of g depends, via its dependence on that list, on
the decidability of the appearance, at a given stage, of a total sequence.

The role of the morphism h is here played by the successor function. The
morphism k : N → N yielded by the Fixed Point Theorem is a recipe for
assigning a natural number to each natural number, and thus totally defines
a sequence, Troelstra’s β. The Creating Mathematician has this insight at
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some stage of its activity (otherwise it would, intuitionistically, not be true),
which means that β = αn for some n. Thus, n represents β with respect to g.

We now have the contradiction β(n) = g(n, n) = h(g(n, n)) = g(n, n) + 1.
To relate this to our theme in propositional logic, change h to the two-valued

h : N → N

x 7→
{
0 if x ̸= 0
1 if x = 0

(1.86)

This yields g(n, n) = 0 ↔ g(n, n) = 1, that is,

g(n, n) = 0 ↔ (g(n, n) = 0 → ⊥) . (1.87)

The definition of the n ∈ N that represents β is impredicative, as it lies in
the range of the latter’s argument. It is furthermore critically impredicative,
because this n, and any n in an argument <n, x> of g, is viewed here not
as a natural number as such, but as a natural number in the role of an
index into the collection of the encountered total sequences, and in that sense
as dependent on the latter. But there is no construction method for that
collection, as the Creating Subject is free to go about its constructive activity
as it pleases. This critical impredicativity exists on both the original and the
remedied formulations of Troelstra’s Paradox.

The paradox can be seen as a special case of the intuitionistic version of
Gödel’s Paradox in Figure 1.2, if one accepts the idea that the definition of
f = <B, g> there may change in the sense that B initially is, say, the object
0, but is identified with the proof that the operation g always yields a result
as soon as there is one.82 If the relation to time in such a change is made
explicit (and we furthermore allow for partial functions), we get a version of
Gödel’s time-dependent paradox in Figure 1.3, with the application function

(f . x)t =
{
0 if by stage t, f has not been proved to be total
f(x) if it has

(1.89)

82 Troelstra writes:

(1.88)Originally, I used, instead of ‘total sequence’ the notion ‘a total sequence
determined by a recipe’. I used the word ‘recipe’ instead of ‘lawlike’, because I
did not want to suggest that the sequence was recursive, only that it was fixed
by a recipe relative to the activity of the CM in general. But in view of the
fact that the CM is completely free in his actions, a ‘sequence determined by a
recipe’ can be as un-predetermined as an arbitrary choice sequence.

In fact, in the original publication the term had been ‘lawlike’ [Troelstra, 1969, p. 105];
it was changed to ‘fixed by a recipe’ in [Troelstra and van Dalen, 1988, p. 845]. Be that
as it may, the subsequent crystalisation into ‘total sequence’ in the 2018 version has the
effect of bringing it even closer to Gödel’s Paradox.
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This definition by cases is governed by a decidable disjunction, with the
property that it is time-dependent which of the two disjuncts is provable. In
both Gödelian renderings of Troelstra’s Paradox, the indirect self-reference
of Troelstra’s β via its index number is made direct in the application of a
function to itself. As alluded to at the beginning of this section, it can, at
present, not be excluded that Gödel devised his paradox after Troelstra and
had seen the latter’s, but I have neither positive nor negative evidence for
that.

One thematic solution that Troelstra proposed was to stratify:

(1.90) To each mathematical assertions and construction we suppose a level
(of self-reflection) to be assigned. [. . .] Assertions which may be un-
derstood or constructions which can be carried out without reference
to ⊢n [□nA] are said to belong to level zero.

Assertions which are described using ⊢n A for A of level p and
constructions of level p, are said to belong to level p + 1. Likewise,
constructions defined relative to ⊢n A for A of level p are said to be
of level p+ 1.

[. . .]
[O]ur paradox cannot be derived anymore.

Indeed, the critically impredicative definition of β is ruled out, as its construc-
tion can now be carried out only at a higher level than that of any collection
of sequences that its definition can legitimately refer to. It is noteworthy that
Troelstra proposed it only as an ‘approach [that] deserves further investigation’
[Troelstra, 1969, p. 107], and when writing about it again in Constructivism
in Mathematics, he qualified it as ‘at least as problematic’ as the theory it
replaces, unfortunately without expanding [Troelstra and van Dalen, 1988,
p. 846]. In Troelstra [2018], on the other hand, he describes it neutrally.

1.4.4.4 Goodman’s Paradox

Goodman’s Paradox (which is what is often really meant when the ‘Kreisel-
Goodman paradox’ is referred to) first appears in the introduction to Good-
man’s dissertation. He introduces (p. 4) an operation π, assumed (with Kreisel)
to be decidable, such that

π(g, y) ↔ y is a proof of ∀x(g(x) = 0) , (1.91)

and combines this with Kreisel’s understanding of intuitionistic implication
in (1.1) above to arrive at a contradiction:

(1.92) To recapitulate briefly, we have said that a pair (p, f) is a proof of the
proposition A→ B just in case p is a proof that, if q is any proof of
A, then f(q) is a proof of B. So far we have no way of excluding the
possibility that q is itself built up in some way from p. It is largely
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this impredicative character of implication that makes the theory of
constructions interesting from a technical point of view. Indeed, the
most natural formalization of the conception we have outlined so far
is inconsistent. It suffices to construct, using π, a function f such
that f(x) = 0 if and only if x(x) is a proof that no y proves that
f(x) = 0. Now suppose that y proves that f(x) = 0. Then f(x) = 0,
and so no y proves that f(x) = 0. This contradiction, together with
the decidability of the proof predicate, shows that no y can prove that
f(x) = 0. Therefore there must be a function g such that, for any x,
g(x) proves that no y proves that f(x) = 0. In particular, g(g) proves
that no y proves that f(g) = 0. That is, f(g) = 0. Hence there is a
proof that f(g) = 0, which is absurd.

In Goodman [1970] a formal derivation of this paradox is given,83 with as
background theory an extended type-free λ-calculus, mended afterwards by
stratification (see the end of this section).84 It is this derivation that is
reconstructed below, in different terms. The reader should consult also the
rich discussion of Goodman’s Paradox by Dean and Kurokawa [2016], and
compare their reconstruction and mine. They use the Y -combinator and their
perspective is that of a comparison with Montague’s Paradox; here, as per
footnote 50, the Fixed Point Theorem is used directly and, as per section 1.4.1,
the emphasis is rather on the paradox’s relation to the propositional reasoning
pattern that Kreisel mentions in (1.3c).

Let P be a decidable binary proof predicate, defined on constructions.
Goodman, in effect, sets P (v, u) to ‘v is a proof that u(z) ≡ ⊤ for all z’. To
simplify the presentation somewhat, I will here use ‘u is the Gödel-number of
a closed proposition and v is a construction that proves that proposition’, thus
presupposing that sufficiently much arithmetic has been developed first; and
I assume that we have an implicational logic for decidable statements from
the outset, whereas Goodman constructs it first. For the paradox itself these
things are not necessary. Of course Goodman’s choice of P is not determined
by its ease of use in generating a paradox, but by its suitability for an attempt
at a theory of constructions, and this survives after the paradox has been
repaired, whether subsequently the theory proves viable or not.85

83 There are reading notes by Gödel to that paper (and others in that volume) in Gödel
Papers, 10a/40, collective item number 050142.
84 For Mathematical Reviews, Heyting summarised Goodman’s paper with a fair amount
of detail, including the impredicativity and Goodman’s solution; but, unfortunately,
without comments [Heyting, a].
85 It did not; see Kreisel [a,b,c]; Weinstein [1983, p. 265]; Dean and Kurokawa [2016,
pp. 53–54]; van Atten [2017b, section 4]. Note that Goodman came to hold a view that
is critical of his own efforts in a different and farther-going way:

(1.93)I myself have been attracted by intuitionism. But I have gradually come to
see that, in the long term, strong intuitionistic convictions undermine one’s
actually doing mathematics. By embracing intuitionism the mathematician is
giving up the most powerful motivation for his work — the search for publicly
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Let A be the universe of constructions, and B the set of truth-values
{⊤,⊥}, considered as two arbitrary but distinct constructions. Representation
principle: every morphism is also a construction (an element of A).

Let f(v, u) : A × A → B be the characteristic function of P , and let the
family fv be given by fv(u) = f(v, u). Part of the assumed decidability of
P is the assumption that P is everywhere defined; if it is, then so are the
functions f and fv.

Define an application function for the fv by

g : A×A→ BA

<j, x> 7→
{
j(x) if j = fw, for some w
λz.⊥ otherwise

(1.94)

The equality here is intensional. Note that g is everywhere defined because
the case distinction is decidable and the fw are everywhere defined.

Define the family of functions

hv : BA → BA

λz.f(v, z) 7→ λz.f(v(v), ⌜P (v, z) → ⊥⌝) if v(v) is defined
λz.t[z] 7→ λz.⊤ in all other cases

(1.95)

Constructivity of the image for all arguments presupposes that, for the
chosen value of the parameter v, it is decidable whether v(v) is defined,
and that, if it is defined, f is constructive (i.e., that P is decidable). Under
those presuppositions, hv is everywhere defined; I will take the presupposition
concerning f as a given, and to find a value for v is precisely how the argument
will proceed.

With v a parameter, apply the Fixed Point Theorem to g and hv. Thus
we first obtain the morphism kv : A → BA; by the chosen representation
principle, it is represented by an element of A, which is kv itself. Then we get
the fixed point bv : A→ B = kvkv, and have bv = g(kv, kv) = hv(bv). Hence
for all z, the truth values given by bv(z) and (hv(bv))(z) are identical, which,
in propositional terms, entails that

validated truth. [. . .] There is a sense in which intuitionism is inadequate in its
own terms, for it overlooks what is introspectively obvious: that I am interested
in my constructions not for their own sake but for the new truths they enable
me to find. [. . .] Just as the constructions lie behind the symbols and give them
their interest and meaning, so there is something behind the constructions –
mathematical truth.

[. . .]
Mathematical truth, unlike a mathematical construction, is not something I

can hope to find by introspection. [Goodman, 1979, p. 545]

Goodman’s notion of truth is different from Brouwer’s. For a defense of intuitionism
against the charge of solipsism, see Placek [1999] and van Atten [2004, ch. 6].
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P (v, z) ↔ P (v(v), ⌜P (v, z) → ⊥⌝) . (1.96)

On account of the decidability of P , here and in the remainder (1.97)–(1.102),
the implication can be interpreted truth-functionally (which for the reductive
purpose of the Theory of Constructions would be required).

As an instance of reflection (‘What is proved, is true’),

P (v(v), ⌜P (v, z) → ⊥⌝) → (P (v, z) → ⊥) , (1.97)

so with (1.96)

P (v, z) → (P (v, z) → ⊥) , (1.98)

and by contraction as in (1.49)

P (v, z) → ⊥ . (1.99)

Thus, using the Fixed Point Theorem we have obtained a morphism c that
maps any construction v to a proof of P (v, z) → ⊥ for all z, provided that
v(v) is defined.

Again by the representation principle, we have c ∈ A, so c(c) is defined,
whence c is an admissible value for the parameter v. If furthermore we choose
an arbitrary z0 for z and follow the above reasoning, we obtain the closed
statement

P (c(c), ⌜P (c, z0) → ⊥⌝) , (1.100)

so (hc(bc))(z0) = ⊤, and therefore bc(z0) = ⊤; propositionally,

(P (c, z0) → ⊥) → P (c, z0) . (1.101)

Now (1.98) for z = z0 and (1.101) together yield

P (c, z0) ↔ (P (c, z0) → ⊥) . (1.102)

Part of the subsequent proof of P (c, z0) from (1.102) according to the
reasoning in (1.46)–(1.50) has already been carried out schematically in order
to find c, namely the contraction; but for the particular case it must be carried
out anew.86 Finally, one arrives at ⊥ as in (1.51).

86 On the (constructive) relation between the proof of a general statement and proofs of
its instances, there is Weyl’s well known conception of the former as an ‘Urteilsanweisung’
[Weyl, 1921]. I should like to recall here also Freudenthal, who wrote:

(1.103)der einmal gelieferte allgemeine Beweis dient uns nicht mehr als eine Landkarte,
die uns die Bergbesteigung zwar erleichtert, aber nicht erspart. [Freudenthal,
1936, p. 116]

with the footnote
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The definition of the representative kc of the morphism kc is critically
impredicative, because it depends on a quantification over A, for which
there is no construction method. Goodman’s solution of this paradox was
to stratify the universe of constructions ‘according to the subject matter
of proofs’.That is a much broader criterion than Troelstra’s of levels of self-
reflection (section 1.4.4.3), and correspondingly more difficult to justify (see
the references in footnote 85 above).

1.4.5 Critical impredicativity

A correct but limited answer to the question why these proof paradoxes
arise would be to say that their contexts satisfy the hypothesis of the Fixed
Point Theorem. To see if a more specific cause can be identified, consider
the following common aspects of the applications of that theorem in these
paradoxes:87

1. Reflection. ‘There is a proof of p, therefore p.’ This is part of the construc-
tive explanation of truth.

2. Informal decidability. In each of the proof paradoxes as analysed above,
the definitions of the morphism g – in (1.69), (1.76), (1.85), and (1.94) –
depends, for its constructivity, on a notion in Kreisel’s sense. To repeat:
such a notion is a property that is decidable, not necessarily in a mechanical
way, but for those who understand the terms [Kreisel, 1965, 2.13, 2.141].
The same dependence exists for h – in (1.70), (1.76), (1.86), and (1.95) – ,
where in Troelstra’s Paradox (1.86) this is just the decidable equality on
the natural numbers, the simplest property of the kind that notions were
in fact introduced to generalise [Kreisel, 1965, p. 123, 2.13].

3. A representation principle. The motivation for accepting the principles
figuring here was given together with (1.62) above.

4. Critical impredicativity. The general reason for the appearance of an
impredicative definition in each was given in point 4 on p. 27; the reason
why they are critical, in the discussion of the respective case.

I will argue that it is the last aspect that is responsible for these paradoxes.
I will not attempt to show that the other three aspects, doing away with

(1.104) Man könnte meinen, daß dies Immer-wieder-von-neuem-Beweisen nicht nötig ist
bei Hilfssätzen, die sich als explizite Formel darstellen, wie m+ n = n+m. In
Wirklichkeit bleibt einem aber weiter nichts übrig, als die Umordnung, von der
diese Formel handelt, immer wieder, wenn sie nötig ist, von neuem vorzunehmen.
Natürlich wird man in der sprachlichen Darstellung des Beweises das nicht tun,
aber das sagt nichts gegen unsere Feststellung und alles gegen die sprachliche
Darstellung.

87 Compare the analogous section 5 in the discussion of Goodman’s Paradox in Dean
and Kurokawa [2016].
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any of which would also block these paradoxes, are beyond doubt (although
to traditional intuitionism, and also to me, in the present cases, they are).
Rather, my take will be that rejecting the fourth is in any case necessary, and
clearly is sufficient.

The following discussion is constrained (constricted) by the choice to or-
ganise it, like the present paper as a whole, around Kreisel’s views – here, in
particular remark (1.3b) – and their development. On the one hand, this organ-
isation is natural, to the extent that Kreisel was one of the main participants
in the discussion of the relations between constructivity and impredicativity,
and an influential one at that, as seen in writings of intuitionists after Brouwer
and Heyting such as Troelstra and Van Dalen (but hardly in those of the
Nijmegen School).88 On the other hand, it leaves no natural occasion for
reflection on what an analysis of the views of Brouwer, who was neither a
participant in that discussion nor among Kreisel’s (epistolary) contacts,89
might suggest about the matter once these are treated in their own right. (See
the questions (i)–(iii) raised, but not taken up, on p. 63 below.) In contrast,
ample attention is given to the views of Gödel, which strongly influenced
Kreisel’s thought in question. But in the end we will rather see the emergence
of strong divergences between Kreisel’s and Gödel’s views.

An early occasion on which Kreisel brings up impredicativity is his 1959
lecture ‘La prédicativité’ [Kreisel, 1960], but there the emphasis is, as the title
suggests, on seeking positive characterisations of predicativity. For the present
purpose, more useful is a complementary lecture in 1962 by (his close contact)
Bernays,90 which refers to Kreisel’s but makes, as its title says, ‘Remarques
sur l’imprédicativité’ [Bernays, 1962]:

(1.105)Une définition d’un objet d’une espèce S (d’un nombre, d’un point)
- en bref : « d’un S » est imprédicative s’il intervient une quantification
par rapport aux S. C’est l’imprédicativité au sens général.

Le cas critique d’imprédicativité se présente si les conditions sui-
vants sont remplies :

1. Une définition contenant une quantification par rapport aux S est
nécessaire pour démontrer l’existence d’un S ayant une certaine
propriété.

2. L’espèce S n’est pas celle des individus, mais, pour ainsi dire une
espèce dérivée : espèce de fonctions, de suites, de prédicats, de
classes.

88 Wim Veldman informs me that there has been essentially no direct contact between
members of the Nijmegen School and Kreisel either.
89 See footnote 55.
90 Their contact started with a letter from Kreisel in 1947, and lasted until Bernays’
death in 1977. See for some details Isaacson [2020, p. 109].
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The first part of the second condition I take to mean that the members of
S are neither given to us from the outset,91 nor generated by a construction
method92. The term ‘critical’ may be said to apply here in two of its mean-
ings (in English as well as in the French of the original).93 First, ‘crucial’.
In the critical case, quantification over the domain is our only way to form
an intention towards the object defined.94 Second, ‘of the nature of, or con-
stituting, a crisis’: if the definition of an object is critical in the first sense,
then furthermore the existence of that object can be doubted or even rejected
to the extent that the correctness of critically impredicative definition itself
can.95 Poincaré opened the debate by rejecting such definitions. The question,
in any given case, is whether the quantification required according to the first
condition can be given constructive sense in spite of the fact that the second
condition is also fulfilled.96

Further on, Bernays comments on the Proof Interpretation:
(1.106) Mais la question se pose si l’intuitionnisme se restreint à des raison-

nements prédicatifs. Je crois que ce n’est pas le cas. En effet, dans
les raisonnements intuitionnistes l’espèce des preuves, qui, certes, est
une espèce dérivée, est employée de façon qu’on peut, au cours d’une
preuve, opérer avec la supposition de l’existence d’une preuve de
quelque assertion – ce qui est une méthode imprédicative. [Bernays,
1962, p. 121]

The example of proof being given to show that intuitionism is not wholly
predicative, it is clear that Bernays means to flag it as a critical impredica-
tivity. But he does not go on to say that it renders the Proof Interpretation
non-constructive. On the contrary, upon finding that alternatives (in meta-
mathematics) such as bar induction or computable functionals of finite type
likewise introduce impredicativity,97 he concludes:
91 Ramsey’s reference to a man as ‘the tallest in a group’ is an example [Ramsey, 1931,
p. 41].
92 E.g., the natural numbers.
93 As given in, respectively, the Oxford English Dictionary and the Trésor de la langue
française informatisé (http://atilf.atilf.fr/tlf.htm).
94 A critically impredicative definition need not be unique, but equivalents will likewise
depend on such a quantification.
95 Such definitions are not eliminable [Behmann, 1931], which had, in effect, been
demanded of definitions in Pascal’s ‘De l’esprit géométrique et de l’art de persuader’ of
1658 [1936]. Bernays’ talk was given at the Colloque international de Mathématiques,
Clermont-Ferrand, June 4-7, 1962, organised there at the third centenary of Pascal’s
death. Beth did rise to the occasion to recall Pascal’s criterion [Beth, 1962, p. 83], but
Bernays did not.
96 Impredicative definitions that are not critical in the first sense, and hence not in the
second, are known as ‘impredicative specifications’ or ‘characterisations’. They define
either an object that is accepted as an individual from the outset, or one for which there
is an alternative definition that is predicative.
97 For historical context: Bernays writes just after the appearance of Heyting [1956],
Gödel [1958], Kreisel [1960], and, as he reminiscences to Gödel [Gödel, 2003a, p. 198],

http://atilf.atilf.fr/tlf.htm
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(1.107)Ainsi nos expériences indiquent que la métamathématique ne peut
guère se restreindre dans ses méthodes à des évidences élémentaires
ou même seulement prédicatives.

Néanmoins nous pouvons maintenir l’idée de la métamathématique
et aussi rendre justice à la tendance constructive, cependant nous
abstenant dans les méthodes de restrictions innécessaires.

Mais puisqu’il se montre que nous avons à admettre des impré-
dicativités dans la métamathématique constructive, d’autant moins
il y a de raison de rejeter en bloc l’imprédicatif dans les mathéma-
tiques classiques. Cela naturellement n’empêche pas que nous tendions
généralement à éviter des imprédicativités inutiles.

By the same reasoning, the Proof Interpretation would still be considered
constructive.

Critical impredicativity of the Proof Interpretation is also what Kreisel
has in mind when he points out, in his remark (1.3b), that it, like Russell’s
Paradox, involves a kind of self-application.98 The quantification may be
construed in two ways. The first is a quantification over all proofs, as in
Kreisel’s (1.1). Then f : A→ B is a proof such that, for all proofs p, if p is a
proof of A, then f(p) is a proof of B. The impredicativity is direct, in that f
is itself among the p. The second is quantification specifically over proofs of
A, as in Heyting’s clause (1.2). In that case the impredicativity is indirect:
The informal definition of a proof f of A→ B then does not quantify over a
domain of which f itself is an element, but a proof of A in its domain may
contain subproofs of A→ B and (A→ B) → A.The latter subproof is defined
in terms of a quantification over proofs of A→ B, among which is f . On either
reading, the appearing impredicativity is critical, for lack of a generation
procedure for the respective domain containing f . Incidentally, if there is a
proof a of A containing a subproof of A→ B but not of (A→ B) → A, as in
skeleton (1.15), then there also is one that contains both, as in skeleton (1.14),
provided that the inference steps from the subproof of A→ B to A remain
correct under an open assumption. (Derivation (1.57) in Myhill’s Paradox
above is one where this is not the case.) Also note that the definition of such
an a is likewise indirectly impredicative.

Dean and Kurokawa [2016, p. 32], quoting Kreisel’s (1.3c) but not the
preceeding (1.3b), have suggested that a role of (1.3c) precisely is to make
one think of the impredicativity of ‘the pre-theoretical notion of constructive
proof which the BHK interpretation seeks to characterize’, by transference

had conversations with Spector in Princeton while the latter was working on his [1962];
see also the end of footnote 1 of the latter paper.
98 The first to make this observation about implication (without using the term ‘impred-
icativity’) in print seems to have been Kuroda [1956] in his review of Heyting [1956].
The first to use that term in print for this seems to have been Kreisel in his review of
Wittgenstein [Kreisel, 1958, 147-148]. In van Atten [2017b, section 2], I argue that it is
not made in Gödel [1933], but that he did see it as he was working on his functional
interpretation.
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from the formal to the informal. And, of course, it will; but I think that the
primary reason for following up (1.3b) with (1.3c) was a different one. I will
come back to that in my closing remark. In this section, I should like to make
some further remarks occasioned by (1.3b) itself.

Kreisel has argued that the impredicativity of the definition of a function f
that proves A→ B may make it impossible to generate the domain of f , but
that the constructive acceptability of f does not depend on that possibility to
begin with. Rather, we accept f as constructive when inspection of the rule in
its definition shows that, whatever we will come to recognise as a constructive
proof of A, will, by applying f to it, be turned into a constructive proof of B.
A characteristic (and general) passage is:

(1.108) Briefly, to recognize that a given procedure is a welldefined construc-
tion, one may already have to have the general notion of construction
(similarly in classical mathematics: a formula with quantifiers over
sets will in general define a set uniquely only if one already knows
the extension of set, except that in the intuitionistic case it is never a
matter of the extension). This is an impredicativity, but constructive,
provided, of course, one understands the notion involved. [Kreisel,
1962b, p. 318n8]99

Naturally, Kreisel applied this view to intuitionistic species: Just as a
function gets applied to an object only after that object has been proved to
be in its domain, an object becomes an element of a species only by proving
that it has the property in question. A species therefore depends as little on a
construction method for its elements as a function on a construction method
for its domain. The two cases are essentially the same, as to each species
corresponds a characteristic function. For the exact definition of species, one
would have expected Kreisel to refer to Heyting’s Intuitionism [1956], which
was his reference for the explanations of the logical constants. Heyting’s
definition runs:

(1.109) Definition 1. A species is a property which mathematical entities can
be supposed to possess (L. E. J. Brouwer 1918, p. 4; 1924, p. 245;
1952, p. 142).

Definition 2. After a species S has been defined, any mathematical
entity which has been or might have been defined before S and which
satisfies the condition S, is a member of the species S. [Heyting, 1956,
p. 37]100

99 This paper was ‘Communicated by Prof. A. Heyting at the meeting of January 27,
1962’. The Heyting-Kreisel correspondence of January 1962 indicates that the final part
of that paper was revised quite a bit in the weeks before Heyting presented it to the
Academy. Kreisel received the proofs on February 24, and sent the corrected proofs to
the Academy on March 8, 1962 [Heyting Papers, Bkre 620308]. Gödel’s letter to Kreisel
quoted in (1.119) below is of the next day.
100 Below we will have occasion to give, in (1.118), the last of Brouwer’s own definitions
that Heyting refers to.
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But in this case, Kreisel did not follow suit. Without reference to Heyting’s
definition, in his paper introducing the Theory of Constructions, Kreisel
defines

(1.110)A species of n-tuples of constructions a1, . . . , an is determined by a con-
struction s where s(c, a1, . . . , an) = 0 if c is a proof that <a1, . . . , an>
belong to the species, s(c, a1, . . . , an) = 1 otherwise. [Kreisel, 1962a,
p. 202] 101

and in the Saaty paper a species is simply a property (specifically, an undecided
one) [Kreisel, 1965, p. 121]. One notices immediately the absence of anything
corresponding to Heyting’s Definition 2 above of a member of a species, which
he had elucidated as follows:

(1.111)Circular definitions are excluded by the condition that the members
of a species S must be definable independently of the definition of
S; this condition is obvious from the constructive point of view. It
suggests indeed an ordination of species which resembles the hierarchy
of types. [Heyting, 1956, p. 38]

Indeed, Kreisel, in his letter to Heyting of 1962 quoted above in (1.67), had
pointed out that ‘type distinctions are not always observed, e..g. not in
your explanation of the logical constants, in particular implication’. By 1968,
he speaks of ‘the impredicative theory of species’, understanding it as the
comprehension principle with intuitionistic logic (Kreisel [1968a, pp. 153]; also
Kreisel [1968b, p. 351]). Specifically, he proposes to accept as a principle of
second-order arithmetic:

∃X ∀y[y ∈ X ↔ Ay] , (1.112)

whereX ranges over species of natural numbers, y ranges over natural numbers,
and A may contain quantifiers over species of natural numbers (but not contain
the variable X).102 He elucidates:

(1.113)For Ay to be intuitionistically meaningful, we must have a notion of:
proof of Ay ([Kreisel 1965], p. 128, 2.31) and this knowledge determines
per se a species X such that ∀y(y ∈ X ↔ Ay).

What could go wrong? Of course there is the common place objec-
tion to impredicative notions allegedly connected with the paradoxes;
more precisely we consider here species of arbitrary species instead of
sets of arbitrary sets, and take care to derive the paradoxes intuition-
istically. Evidently this objection is as weak here as in the case of set

101 The special case for properties of natural numbers had been given in his lecture ‘La
prédicativité’ [Kreisel, 1960, p. 388], held in November 1959, about a year before that of
which ‘Foundations of intuitionistic logic’ [1962a] is the published version.
102 Likewise, Troelstra accepts the existence of a least upper bound on species of the
so-called extended reals [Troelstra, 1982, pp. 284–285].
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theory since we are considering species of natural numbers, and not
of arbitrary species. Kreisel [1968a, pp. 153–154]103

The paradox arising from accepting species of arbitrary species would be a
form of Russell’s Paradox for properties (section 1.4.3), but for the species
considered here the question of self-membership does not arise. The emphasis
on intuitionistic logic in the derivation of the paradox here serves to diagnose
that the cause of the paradox lies in the theory of species (see section 1.4.1,
and Kreisel’s remark (1.67)). Further on, Kreisel comments:

(1.114) Of course it is not claimed that the impredicative species above are
our constructions in the sense of our having, so to speak, ‘listed’
them all before speaking about them, ‘listed’ in the idealized sense
of having given a rule of construction indexed by natural numbers
or even ordinals. But note that Heyting’s own interpretation of the
logical operations, e.g., of implication, certainly does not refer to any
‘list’ of possible proofs of the antecedent. It simply assumes that we
know what a proof is.

[. . .]
The moral is not that Heyting’s interpretation is non-constructive!

nor that a more elementary interpretation such as Gödel’s (G) [i.e.,
the Dialectica interpretation of HA] is foundationally uninteresting.
The moral is that its foundational interest depends on something
subtler than mere constructive validity. [Kreisel, 1968a, pp. 154–155]

Looking back in 1987 on the period in which (1.108), (1.113), and (1.114) were
written, he relates this way of seeing the matter to Gödel and the Dialectica
paper:

(1.115) Asymmetry between rules and – the ranges of – their arguments. One
feature that Gödel emphasized increasingly in conversations during the
decade after [Gödel 1958] appeared, was the possibility of exploiting
the amorphous character – or, if preferred, our ignorance – of the
totality of all effective rules. More fully, a rule is accepted only if
it is understood to be well defined for all effective arguments (of
appropriate type), even though little is – or can be – known about
this possibly growing totality. This situation is only superficially
paradoxical, to adapt the wording of footnote 1 on p. 283 of [Gödel
1958] about propositional and other logical operators – for the class
of propositions – meant by Brouwer and Heyting.104

103 See also Kreisel [1970b, pp. 130-131].
104 In the footnote referred to, Gödel had written about the concept of computable
functional of finite type:

(1.116) Man kann darüber im Zweifel sein, ob wir eine genügend deutliche Vorstellung
vom Inhalt dieses Begriffs haben, aber nicht darüber, ob die weiter unten
angegebenen Axiome für ihn gelten. Derselbe scheinbar paradoxe Sachverhalt
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The critical impredicativity arising in proof paradoxes when reconstructed
with the Fixed Point Theorem is, unlike that in the case of functions, direct,
and does not define a species, but an individual object. Therefore:

1. On the one hand, accepting a representation principle as constructive
obliges us to accept its instances as constructive. On the other hand,
accepting the critical impredicative definition that in the present cases
results does not put us in a position actually to construct the defined
object. This combination presents us (or rather: we present ourselves)
with an obligation that is impossible to fulfill. The infinite regress that
Gödel observes in (1.78) is a symptom of this, and parallel regresses arise
in each of the other proof paradoxes. The reason can be stated in terms
of the proof of the Fixed Point Theorem: the contexts in which these
paradoxes arise leave us with no other possible attempt at constructing
the fixed point b than to construct it as the result of bh, which cannot
succeed.

Note that this kind of impossibility is not the one we are presented
with in the case of intuitionistic negation, when we observe that a fitting
of one mathematical building into another at some point ‘no longer goes’
[Brouwer 1907, p. 127; trl. Brouwer 1975, p. 73]. Rather, we here observe
that an intention directed at a single mathematical object cannot be
fulfilled for the reason that, by its nature, this object lies outside the reach
of our construction acts. Thus, to put it in the same terms as Brouwer’s
analogous rejection of Cantor’s second number class: Here contact with
the firm ground of mathematics is lost [Brouwer 1907, p. 146; trl. Brouwer
1975, p. 81]. The proposition that the fixed point exists is therefore not
contradictory, but rather non-mathematical (‘theological’, some would
say).

2. This separation of cases between direct and indirect impredicativity shows
why the existence of proof paradoxes does not, by analogy, cast doubt on
the Proof Interpretation of implication (whether construed in Kreisel’s
way (1.1), or Heyting’s (1.2)): in both figures ‘some kind of self-application’,
but not of the same kind.105

3. Indeed, in the wake of their paradoxes, neither Kreisel, nor Goodman
(both of whom sought a mathematical model of the informal Proof In-
terpretation) nor Troelstra (who did not, but used it), came to express
doubts about the Proof Interpretation. Rather, they blocked their re-
spective paradoxes by (in effect) rejecting the critically impredicative

besteht auch für den der intuitionistischen Logik zugrunde liegenden Begriff des
inhaltlich richtigen Beweises. [Gödel, 1958, p. 283n1]

105 Although, by footnote 3 above, I see no reason to discuss Kreisel’s ‘second clause’
extensively, I do, coming from a different perspective, express my agreement here with
Dean and Kurosawa’s view [2016, section 4.2] that Weinstein [1983, p. 264] was mistaken
to suggest that it is the self-reflexivity in the ‘second clause’ that leads to Goodman’s
Paradox.
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definition coming in with the application of the Fixed Point Theorem, by
introducing forms of typing and stratification.

The approach in item 3 is not the one Gödel envisaged to block his
intuitionistic paradox. That much is clear from a comment he makes on
intuitionism and paradoxes in general, as reported by Wang:

(1.117) Brouwer objects to speaking of all proofs or all constructible objects.
Hence the extensional and the intensional paradoxes do not appear
in intuitionism according to his interpretation. But I think that this
exclusion of all, like the appeal to type theory in the theory of concepts,
is arbitrary [from the intuitionistic standpoint]. [Wang, 1996, p. 188,
6.1.15, amendation Wang]

The opening sentence here is, in that exact wording, a half-truth. There
certainly is an (intensional) sense of ‘all’ such that Brouwer did not object to,
and indeed engaged in, asserting that every mathematical construction starts
from the ‘basic intuition of mathematics’ [Brouwer, 1907, p. 8–9], or that any
proof can be put in canonical form [Brouwer, 1927b, p. 64]. What Brouwer
objected to is the formation of a species of all proofs, or of all constructible
objects (species to play the role of, e.g., domains of functions), because he
required species as the (not necessarily decidable) separation of certain objects
out of all previously constructed ones (constructed individually, or implied
by a given generation method for a collection), and hence to be defined
predicatively, as is clear from his definition:

(1.118) mathematical species, i.e. properties supposable for mathematical enti-
ties previously acquired, and satisfying the condition that, if they hold
for a certain mathematical entity, they also hold for all mathematical
entities which have been defined to be equal to it, relations of equality
having to be symmetric, reflexive and transitive; mathematical enti-
ties previously acquired for which the property holds are called the
elements of the species. [Brouwer, 1952, p. 142, original emphasis]

The qualification in italics was not present in Brouwer’s published definitions
before (the Dutch – which Gödel could read) Brouwer [1947], and it can
be investigated whether it is a stronger qualification than that imposed on
elements in Heyting’s ‘Definition 2’ in (1.109) above.106 Either way, the ensuing
predicativity was also the essence of Brouwer’s remarks on denumerably
unfinished collections and of his reaction to Russell’s Paradox, both formulated
in his dissertation [Brouwer, 1907, pp. 148-149, 162-163], which dissertation
Gödel had read [van Atten, 2015, p. 191]. Once one forbids species with
members whose definition is critically impredicative, the proof paradoxes as
well as the Russell paradox are all blocked. Surely that was what Gödel had
in mind in the first sentence of (1.117), and one begins to wonder whether
‘speaking’ might be Wang’s mishearing or misremembering of Gödel saying

106 See on this point van Atten [2017b, section 3].
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‘species’.107 This would also give a precise sense to Gödel’s qualification of
arbitrariness, the idea being that if intuitionism accepts impredicativity in the
Proof Interpretation (as observed, for example, in Bernays’ remark (1.106)
above) then why not also in the definition of species? Indeed, Brouwer’s theory
of well-ordered species has generally been considered to be impredicative (see
also footnote 117 below).

Gödel insists on the intensional conception of quantification in intuitionism
in a letter to Kreisel of March 9, 1962, in a discussion of his Russell paper:

(1.119)Was das vicious circle betrifft, so habe ich ja selbst auf p134 gesagt,
dass es sogar für die konstruktive Mathematik nicht in vollen Umfang
gilt (vgl. die Formulierung auf p133). Dabei ist ja unter ‘Konstruk-
tivismus’ in meiner ganzen Arbeit der Russell-Poincaré-Weylsche
‘Halbintuitionismus’108 zu verstehen, der in einer Hinsicht weiter,
in einer andern (insbes⟨esondere⟩ hinsichtlich des Imprädikativen)
enger ist als der Intuitionismus. In dem letzteren kommt ja der Be-
griff der Totalität überhaupt nicht vor u⟨nd⟩ auch die Quantoren
sind intensional zu interpretieren (vgl. p136 oben). Es besteht daher
kein Grund, weshalb das vic⟨ious⟩ circ⟨le⟩ princ⟨iple⟩ (intensional
formuliert) im Intuit⟨ionismus⟩ gelten sollte. [Kreisel Papers, 50/1,
underlining Gödel]109

In the Russell paper, Gödel had stated the vicious circle principle as ‘no
totality can contain members definable only in terms of this totality, or
members involving or presupposing this totality’, and remarked that, for each
choice among ‘definable only in terms of’, ‘involving’, and ‘presupposing’, one
in fact obtains a different principle [Gödel, 1944, pp. 133, 135]. The intensional
formulation is that in terms of definability. In it, intuitionism would replace
the extensional ‘totality’ by the intensional species, but then Gödel sees no
objection to a species having members that are definable only in terms of that
species. Kreisel’s acceptance of impredicative definitions as in (1.108)–(1.115)
above is based on this idea.

107 Wang made notes during and after the conversations, but no tape recordings [Wang,
1996, p. 135]. ‘Since I do not have a verbatim record of Gödel’s own words, there are
bound to be misrepresentations’ [Wang, 1996, p. 129]. The possibility evoked here is
reminiscent of Wang’s ‘Rotterdam’ when mentioning Gödel’s 1939 lectures at Notre
Dame [Wang, 1981, p. 655]. (See also Parsons’ comment on this in Gödel [2003b, p. 392].)
108 Die finite Mathematik scheint mir in einem gewissen Sinn der Durchschnitt von
Intuition⟨ismus⟩ u⟨nd⟩ Halbintuit⟨ionismus⟩ zu sein.
109 In the letter of January 31, 1962 to which Gödel is replying, Kreisel (letter of
January 31, 1962 [Kreisel Papers, 50/2]) had said that he had read the Russell paper
again, and found the argument there that the vicious circle principle should apply to
constructive mathematics [Gödel, 1944, pp. 136–137] not convincing, on the ground
of the considerations in the Dialectica paper. But that is, as we see, not the kind of
constructivism Gödel had meant.
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Not long after that letter, Gödel made the point in print, in a note he
added to the 1964 reprint of that paper:110

(1.120) The author wishes to note [. . .] that the term ‘constructivistic’ in
this paper is used for a strictly anti-realistic kind of constructivism.
Its meaning, therefore, is not identical with that used in current
discussions on the foundations of mathematics. If applied to the actual
development of logic and mathematics it is equivalent with a certain
kind of ‘predicativity’ and hence different both from ‘intuitionistically
admissible’ and from ‘constructive’ in the sense of the Hilbert School.
[Benacerraf and Putnam, 1964, p. 211]

Gödel here sees, by implication, an element (not a ‘vestige’!) of realism in
the intuitionistic position;111 and we see that (1.119) and (1.120) confirm the
correctness of Wang’s amendation to (1.117).

The paradoxes that drew attention to the problematic character of the
impredicative species of all proofs or all constructions, the proof paradoxes of
section 1.4.4, all appeared in print, and were discussed among the protagonists,
over a period of a few years after (1.120). In 1969, Gödel stated where he
wanted to look for a solution to paradoxes, in a letter to Kreisel (July 25):

(1.122) Die Scott-schen Bedenken gegen impräd⟨ikativen⟩ Spezies u⟨nd⟩ den
allgemeinen Beweisbarkeitsbegriff112 scheinen mir beim heutigen Stand
der Wissenschaft durchaus berechtigt.113 Wie die Antinomien zei-
gen,114 verstehen wir diese sehr allgemeinen Begriffe heute noch nicht.
Erst nach einer genauen phänomenolog⟨ischen⟩ Analyse, welche die
Antinomien auf eine vollkommen einleuchtende Weise auflöst, werden
sie vertrauenerweckend sein. [Kreisel Papers, 50/2, emphasis Gödel]

110 He expanded and revised that note in 1972, and only that version is included in
Gödel [1990]. But see the next footnote for a related note that is included there.
111 In a note kept with an offprint of the Russell paper, Gödel specified an ‘antireal⟨istic⟩
kind of constr⟨uctivism⟩’ as one for which

(1.121) the starting point and the means of constr⟨uction⟩ are to be exclusively sensual
& material (e.g. symbols, their perc⟨eptual⟩ prop⟨erties⟩ & rel⟨ations⟩ and the
actual or imagined handling of them), not the element⟨ary⟩ operations and
int⟨uitions⟩ of a new & irreducible entity called mind. [Gödel, 1990, p. 320]

In Sundholm and van Atten [2008, p. 71], intuitionism and platonism were likened to
one another in that both are forms of ‘ontological descriptivism’ (there, as opposed to
meaning-theoretical approaches).
112 This refers to Scott’s thinking, which he discussed with Gödel and Kreisel, that led
to „Constructive validity“ [1970]; see its p. 239 and p. 241 (where, however, no explicit
argument against quantification over species is given). See also footnote 119 below.
113 [Note MvA] Kreisel comments: ‘Scott, in [Scott 1970], p. 239, 1.-10 to 1.-9, expresses
very clearly similar misgivings about the role of proofs in constructive foundations.
Pushed beyond reason [. . .] Scott’s view blocks any chance, at least at present, of a
non-circular explanation of implication.’ [Kreisel, 1971c, p. 124n8]
114 [Note MvA] Here Gödel may also have had paradoxes such as Myhill-Montague in
mind (see the end of section 1.4.1).
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These lines were written at the time of Gödel’s undergirding his Dialectica
Interpretation by Husserl’s phenomenology, first, more specifically, as a contri-
bution to intuitionism, then in the form of a theory of ‘reductive proof’ [van
Atten, 2015, pp. 210–222]. This is no coincidence, of course: philosophical
questions around impredicativity and proof are raised just as much by the
concept of computable functional; see, e.g., Gödel’s (1.116) in footnote 104
above. One thinks of Husserl: ‘Für die apriorischen Disziplinen, die innerhalb
der Phänomenologie zur Begründung kommen (z.B. als mathematische Wis-
senschaften) [kann es] keine ‚Paradoxien‘, keine ‚Grundlagenkrisen‘ geben’
[Husserl, 1962, p. 297].115

Gödel’s expectation in (1.122) is that an analysis such as he envisages will
have the effect of validating impredicative species and a general notion of
proof.116 Brouwer, on the other hand, at least in his explicit statements, and
presumably on the basis of his further analysis, accepts a general concept of
proof, but not impredicatively defined species, e.g. (1.118) above. It has been a
matter of debate (i) whether in Brouwerian intuitionism, as practised, critical
impredicativities nevertheless do occur;117 (ii) whether, given Brouwer’s
views on mathematical existence and truth, they should be avoided; and (iii)
whether, if they should, intuitionism would still be able to develop satisfactory

115 On his ‘reductive proof’, which Gödel introduced around the time of (1.122), he
observed in a note dated February 11, 1974:

(1.123)Meine Dial⟨ectica⟩ Arbeit mit dem Begriff des reduktiven Beweis⟨es⟩ gibt keine
die Parad⟨oxien⟩ ausschließende Interpretation (daher die Fundierung nicht
wesentlich besser als Heyting und zwar deswegen, weil zum Beispiel der all-
gemeine Begriff der berechenbaren zahlentheoretischen Funktion vorkommt
und dieser von irgendeiner Def⟨initions⟩-Kette spricht (also die Def⟨inition⟩
x ∈ a ≡ ∼x ∈ x kann vorkommen). [Gödel Papers, 10a/40, item 050136]

See on this note also van Atten [2015, p. 222–224].
116 A view that I cannot go into here, but that is highly interesting for comparison
and contrast with Gödel’s, is that of those who wished to accept both impredicative
species and the Curry-Howard isomorphism. This combination was proved inconsistent by
Girard [1972]; see also Coquand [1986]. Generally, the conclusion was that impredicative
species had to go [Martin-Löf, 2008, p. 250], and this opened the way to Martin-Löf’s
Constructive Type Theory as we know it today. Gödel, on the contrary, had accepted,
from early on, as the object correlate to a general notion of proof, one universe of
all proofs. He (and Kreisel) criticised Howard’s manuscript for not analysing what a
construction is [Wadler, 2014, p. 11]. (Incidentally, Bill Howard told me that Gödel and
he never discussed impredicativity in the Proof Interpretation explicitly [van Atten, 2015,
p. 193n10].)
117 In his notebook Max Phil IV of May 1941-April 1942, Gödel lists as impredicativities
in Brouwer the sum species of an arbitrary species (of species) and the definition of ordinal
numbers [Gödel Papers, 6b/67, item 030090, p. 154]. See, e.g., Brouwer’s definition of the
‘Vereinigungsspecies’ (and note the use of S, as for ‘Summe’) in Brouwer [1925, p. 247],
and the definition of well-ordered species, which is fundamental to Brouwer’s theory of
ordinal numbers, in Brouwer [1927a, pp. 451, 456]. In the former definition, the implicit
quantification over species is not universal but existential. Note that Gödel does not
mention implication; perhaps because in Brouwer the Proof Interpretation is operative,
but implicit [van Atten, 2017, section 3.1].
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understandings of, in particular, implication and of well-orderings. A treatment
of those questions lies outside the scope of the present paper; for references, a
discussion, and an attempt at a contribution, see van Atten [2017b].

As for Kreisel, already at the time of receiving Gödel’s letter with (1.122)
in it, his thinking was developing in quite the opposite (deflationary) direction,
in every respect:

1. Having given his analysis of impredicative species quoted in (1.83) above,
he recommended leaving it at that:

(1.124) The analysis above, like the interpretation of the logical operations
intended by Brouwer and formulated by Heyting, uses notions
which are more abstract than those of familiar constructive math-
ematics [. . .] The analysis has enough coherence and substance
to suggest that there is something deflnite to understand here
[. . .] But do we want to know about it, not only subjectively, but
for getting on with the business of constructive mathematics?
Not the possibility of understanding intuitionistic concepts, but
their usefulness is the true issue. Dramatic exaggerations would
only lead to the kind of letdown which Russell felt after he (or
rather, according to his autobiography, after Whitehead) finished
Principia. [Kreisel, 1970b, p. 131]118

In fact, Gödel had written (1.122) after having seen this recommenda-
tion.119

2. Kreisel’s initial calls for phenomenological analysis in papers at the time
[1969, p. 97; 1970a, p. 489; 1971b, p. 151] no doubt inspired by his
conversations with Gödel, quickly vanished. As Kreisel explained later, he
did not read Husserl because he was, in fact, ‘interested in other things’
[1998, pp. 100, 105].

3. As we saw in (1.74), a comment of 1958 and among Kreisel’s first on
the paradoxes, he looked at Russell’s and concluded that it arises from
an oversight: not every property has a definite extension. He there also

118 The qualification ‘dramatic exaggeration’ predicts Kreisel’s reaction to the elaboration
of the Dialectica paper that Gödel was working on at that very moment. Kreisel always
considered the 1958 version a ‘gem’ [Kreisel, 1987b, p. 108], but, reviewing volume 2 of
the Collected Works, considers the added notes in the 1972 version ‘particularly ethereal’,
and opines that, while it is not difficult to see the philosophical gain achieved ‘when the
“gain” is measured by the canons of academic epistemology’, ‘[t]his leaves open what
gain, if any, there is for a more realistic view (of knowledge)’ [Kreisel, 1990, p. 615].
119 The details, as recounted in a letter from Kreisel to Gödel of March 10, 1969 [Gödel
Papers, 2a/92, item 011262], are these. On February 20, 1969, Scott had sent Gödel
a letter in which he stated objections to impredicative species, and a copy to Kreisel.

DRAFT NOTE: I hope
to obtain a copy of
Scott’s letter soon.

Kreisel then asked Myhill, one of the editors of the Buffalo volume, to send Gödel the
typescript of Kreisel [1970b], and commented to Gödel that at least some of Scott’s
objections seem to be incorrect, for the reasons Kreisel gives in section 5 of his paper
(which does not discuss Scott’s views directly). ‘Übrigens sind Ihnen die Überlegungen
von §5 höchstwahrscheinlich sowieso nicht fremd.’
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stated that this take, while ‘illuminating’, ‘does not seem to lend itself
to generalisation’. Initially, it seems he nevertheless hoped that such a
generalisation existed and would be found; thus in 1967 he writes that

(1.125)in Zermelo’s work [. . .] the intuitive analysis of the crude mixture
of notions, namely the description of the type structure, led to
the good axioms [. . .] And a similar conceptual analysis will be
needed for solving the problem of the paradoxes. [Kreisel, 1967b,
p. 145]

But by 1971, at the beginning of a long ‘Autobiographical remark on the
(functional) paradoxes’, a turn sets in:

(1.126)Speaking for myself, I simply do not find the paradoxes dramatic:
halfway through the argument, that is well before any hint of
a paradox appears, my attention begins to wander as in free
association. [Kreisel, 1971b, p. 188]

And in 1973 he holds:

(1.127)For contrary to popular opinion I have the impression that para-
doxes occur when we have not even begun to think, when we are
playing with words, and their resolution is generally not fruitful:
after all, how much more does the child really know about the
concept of number when he realizes that there is no greatest?
[Kreisel, 1973, p. 265]

Not fruitful, unlike, one is, in view of the above, inclined to add, Zermelo’s
analysis of set.120 Finally, in his retrospective Salzburg essay, he draws
the contrast with Gödel:

(1.129)Evidently, if such simple and familiar points are overlooked in the
manufacture of paradoxes, there is good reason to doubt Gödel’s
high expectations from a solution of the paradoxes. [Kreisel, 1987a,
pp. 95-96]

120 Kreisel [1967b, p. 144n1] still expressed his opposition to the view, there ascribed to
Rasiowa and Sikorski [1963], of the paradoxes as a ‘dead (fruitless) issue’. Also note how
close the spirit of Kreisel’s (1.127) to that of this passage in Brouwer:

(1.128)It can be shown, however, that these paradoxes result from the same error as
that of Epimenides, namely, that they arise where regularities in the language
that accompanies mathematics are extended over a language of mathematical
words that does not accompany mathematics; that, further, logistics too is
concerned with the mathematical language instead of with mathematics itself,
thus does not clarify mathematics itself; that, finally, all paradoxes disappear,
when one restricts oneself to speaking only of systems that explicitly can be built
out of the Ur-intuition. [Brouwer 1908, p. 155; trl. van Atten and Sundholm
2017, p. 17]
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Items 1 and 3 in this list make up an educated guess why Kreisel seems never
to have taken up the matter of (1.3b) again.

1.5 Closing remark

A question I need to return to is that of the relation between remarks (1.3b)
and (1.3c). As mentioned at the beginning of section 1.4.5, I agree with Dean
and Kurokawa that (1.3c) will draw attention to the idea of impredicativity
of implication, which is a way in which proofs are about themselves, as
stated in (1.3b). However, Kreisel could have done that in a more direct way,
without also invoking the contrast between the formal and the non-formal,
or that between the natural and the non-natural. The point of inserting
the parenthetical remark (1.3c), such as I understand it, will also serve as
conclusion to the present paper as a whole. It is to make clear that for
certain A, a formal proof that depends on a proof of A→ B is not a merely
theoretical, and in that sense unnatural possibility, to be taken into account
only to test the generality of some theoretical interpretation or explanation
of the pre-theoretical notion ‘constructive proof of A’, but one that, when
formalising natural informal proofs, is to be expected.
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