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Chapter 1

Natural constructive proofs of A via A — B,
proof paradoxes, and impredicativity

Mark van Atten, July 30, 2023

for Goran

Abstract Guided by a passage in Kreisel, this is a discussion of the relations between
the phenomena in the title, with special attention to the method of analysis and
synthesis in Greek geometry, Lawvere’s Fixed Point theorem, and Kreisel’s contact
with Godel.
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1.1 Introduction: a parenthesis in Kreisel

In his obituary for Brouwer in the Memoirs of the Royal Society, Kreisel explains the

meaning of constructive implication thus:

to prove A — B, one needs two things: a mapping & from proofs to proofs,
and a proof, say pg, establishing that, if any p proves A then 7 (p) proves B.
(Kreisel and Newman 1969, p. 57)

That is his construal of the corresponding clause in Heyting’s Proof Explanation:

The implication p — ¢ can be asserted, if and only if we possess a construc-
tion r, which, joined to any construction proving p (supposing that the latter
be effected), would automatically effect a construction proving g. (Heyting
1956, p. 98)

Kreisel, keeping (1.1) in mind, a bit further on writes:

Perhaps because of all this experience or for intrinsic reasons, nobody
seems ever to have been as much as tempted to put down false principles
in elementary constructivity. In contrast, if one actually wants to formulate
explicit properties of proofs, one has to keep one’s wits about one to avoid
errors which are, formally, similar to Russell’s paradox in set theory.

This is not surprising, inasmuch as Russell’s paradox involves some kind
of self application and, as seen from the example of implication, proofs
obviously are about themselves, specifically the proof pg is involved in
some values of the variable p.

attached to which is this parenthesis:

There the paragraph ends. The aim of the present paper is to analyse remark (1.3c)

(Incidentally, it is one of the peculiarities of constructive logic that, for
some A, a natural formal proof of A goes via proofs of A — B and of
(A — B) — A: such a proof of A actually contains a proof of A — B.)
(Kreisel and Newman 1969, p. 58, original emphasis)!

and its role in the immediate context in which it was made.

1 On p. 23 of the ‘palimpsest of essays’ Kreisel (n.d.), the passage (1.3a)—(1.3c) has retained its

original content, but (1.3c) has been turned into a footnote.



1 Proofs of Avia A —» B 3

The passages (1.3a)—(1.3c) raise, in reading order, several questions, which will
be discussed in one or more sections:2

—_—

What ‘errors’ are referred to in (1.3a)? (section 1.4.1)

2. In (1.3b) Kreisel notes that the informal construal of implication in (1.1) shares
a dependence on ‘some kind of self-application’ with Russell’s Paradox, but he
does not go on to suggest that this would be reason to find (1.1) suspect. Whence
the difference? (section 1.4.5)

3. What, in (1.3c¢), is the role of the explicit qualification of formality, what notion
of naturalness is being appealed to, and what is meant by ‘constructive logic’?
(sections 1.2.1, 1.2.2, 1.2.3)

4. What are examples of such A and B as (1.3c) refers to? (sections 1.3.1, 1.3.3,
1.4.4)

5. Given that (1.3c) is about formal proofs, but (1.3b) about informal ones, what is
the exact bearing of (1.3c) on (1.3b)? (sections 1.4.5, 1.5)

6. As far as I have been able to determine, Kreisel did not elaborate on (1.3a)—(1.3c)

elsewhere. If that is correct, could a conjecture be made why he didn’t? (sec-

tion 1.4.5)

Possible differences between Kreisel’s (1.1) and Heyting’s (1.2) will be discussed as
little as possible, as with respect to the remarks (1.3a)—(1.3c) and the questions they
make one ask, they seem to be interchangeable.?

The main questions are those of the meaning of the terms involved (question 3)
and of examples of such A and B (question 4). They determine the overall structure
of this paper, as reflected in the table of contents.

1.2 Key concepts in that passage
1.2.1 Proof and formal proof

Kreisel characterises proofs, ‘intuitive proofs’ (Kreisel 1968a, p. 321), as ‘mental
processes by means of which we convince ourselves of the validity of (mathematical)
propositions’ (Kreisel 1973, p. 263), but also as objects that are ‘abstract’ (Kreisel

2 As sources for Kreisel’s views that are pertinent to (1.3c), which was published in 1969, publica-
tions have been chosen from the encompassing period 1965-1973.

3 The key terms describing differences are ‘second clauses’ and ‘proof conditions versus assertion
conditions’. The former refers to Kreisel’s explicit demand for a mathematical proof (object) po;
in Heyting’s formulation this is either implicit or, on the contrary, absent because not required.
Sundholm has argued for the latter, the idea being that what is required is rather an act (of
understanding a construction process), which is not a mathematical object (1983, pp. 161-167,
169n13). To my mind, Sundholm is correct here. Be that as it may, it could be argued that (i) coming
to possess a mathematical proof and coming to understand a construction process are both cases of
coming to accept, that (ii) on either (otherwise unadorned) reading of Heyting’s clause, accepting
certain proofs of A presupposes accepting a constituent proof of A — B, and that (iii) this captures
enough of the ‘involvement’ that Kreisel speaks of in (1.3b).
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1968a, p. 344) or ‘intensional’ (Kreisel 1971b, p. 242). The senses of process and
object are closely related, and not so much in opposition as revealing of the different
ways in which proofs present themselves to us. In the order of both things and
explanations, intuitive proof takes priority over formal proof:

Indeed it is easy to forget that formal languages or formal derivations are
introduced because they express propositions and proofs respectively: an
argument which can be formalized by given derivation rules is conclusive
not because the formalization proceeds according to some formal rules,
but because the formal rules have been seen to preserve validity. Only in
conjunction with this act of seeing the validity of the rules is the formal
verification that a sequence of formulae is constructed according to given
formal rules, a proof. In short, proofs as understood here (and in ordinary life
and mathematics) are not linguistic objects. (Kreisel 1970c, p. 29, original
emphasis)

This was of course a staple in Brouwer, Heyting, and Godel; among those of Kreisel’s
own generation, one finds a clear expression also in Myhill (1960), both authors —
incidentally, born within five weeks of one another — having been strongly influenced
by Godel.# Besides ‘intuitive’ and ‘abstract’, qualifications that are used (by Kreisel
or others) to indicate proofs in this primordial sense are ‘absolute’, ‘contentual’,
‘contentful’, ‘contensive’, ‘informal’, or ‘non-formal’, depending on context and
emphasis.>

4 Of more recent defenses (or sympathetic discussions) of this idea, I here mention Leitgeb (2009),
Tanswell (2015), and Crocco (2019).

5 The latter four all serve to translate the German ‘inhaltlich’, which according to the Etymologisches
Woérterbuch des Deutschen (https://www.dwds.de/d/woerterbuecher) goes back to the 17th century.
Von Plato writes:

I translate inhaltlich as contentful. Godel suggested in the 1960s ‘contentual,’” but my
translation is at least an English word. Georg Kreisel disliked it: He told me in July
2010 that one should just use the word meaning. Inhaltlich, then, would be meaningfully,
or perhaps in terms of meaning. I regret not having asked what he thought of Godel’s
invented word. (Plato 2017, p. 259, original emphasis)

In an email to me of November 7, 2020, von Plato adds that ‘or perhaps in terms of meaning’ is his
adaptation for cases where ‘meaningfully’ would not fit, and that Kreisel preferred the translation
to be as common a word in English as ‘inhaltlich’ is in German.

To take the claim about Godel first, compare this remark by Van Heijenoort:

A teaser for translators of German texts on foundations of mathematics is the word
‘inhaltlich’. Mr. Bauer-Mengelberg coined the neologism ‘contentual’ and used it at a
number of places. Elsewhere various periphrases were adopted; in particular, Professor
Godel suggested those that are used in the translation of his /931. (Heijenoort 1967,
p. viii)
In that translation of Godel’s paper, it is always suitable locutions with ‘meaning’ or ‘interpretation’
that are used. As pointed out in Buldt (1997, p. 92), this indicates that Godel did not like ‘contentual’,
which word Van Heijenoort will surely have suggested to him, perhaps when they met in September
1963; the matter does not come up in their letters selected for Godel (2003b). In the mentioned
email, von Plato takes Buldt’s point.


https://www.dwds.de/d/woerterbuecher
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Two aspects of formalisation that come to mind as possible further determinants of
the full meaning of ‘formal proof” in (1.3c), individually or together, are explicitation
and arithmetisation. While an informal reasoning is the starting point for a formal
proof, the latter, when interpreted as intended, supplements it wherever needed by
making explicit what was left implicit, such as certain premises or conditions. And
through the device of arithmetisation, certain formulas whose intended meaning
is arithmetical acquire additional meaning concerning properties of the formalism
itself. (Such formulas may themselves be reasoned about informally or formally
again.)

Below, I will use notation such as A — B both for meaningful propositions and
for formal statements, and Gentzen’s Natural Deduction to represent both informal
and formal proofs. On each occasion, the context makes clear which is meant. The
exact choice of proof system has no bearing on the present discussion, as long as it
embodies the idea that if a formal proof is constructed on the basis of given ones,
then the former retains the latter as parts; otherwise Kreisel’s remark (1.3c) about
‘literal containment’ cannot apply. For example, Gentzen’s Sequent Calculus (when
seen as instructions for constructing Natural Deduction proofs) also complies, but
tableau systems do not (Boolos (1984, pp. 377-378); D’Agostino and Mondadori
(1994, p. 287)).

1.2.2 Naturalness

Although the adjective ‘natural’ has a variety of meanings, as witnessed in, for
example, the Oxford English Dictionary, the one that seems the most suitable for a
reading of (1.3c) is ‘naturally arising or resulting from, fully consonant with, the
circumstances of the case’, as it is a naturalness that should reflect a ‘peculiarity

Although ‘contentual’ may well have seemed a neologism to all mentioned so far, strictly speak-
ing it was not. The Oxford English Dictionary lists it with the meaning ‘belonging to, or dealing
with, content (opp. act or form)’. That is, admittedly, in its second Supplement, published in 1972
(and neither in the original volume for the letter C of 1893, nor in the first Supplement to the dictio-
nary, from 1933), but the three citations given there are dated 1909, 1935, and 1962. (Incidentally,
with an eye on Godel’s interests one notes that the citation from 1962, ‘distinguishing the formal
from the contentual features of propositions’, comes from Plato’s Later Epistemology (Runciman
1962, p. 132) — where it is claimed that, for methodological reasons, Plato, unlike Aristotle, was not
able to make that distinction.) In their translation of Weyl (1928), Bauer-Mengelberg and Fgllesdal
use ‘contentual’ for ‘inhaltlich’, but employ ‘meaningful’ for ‘sinnerfiillt’ (Heijenoort 1967, p. 482).

Well before his exchange with Van Heijenoort, in his draft essays on Carnap Godel had used
‘contensive’ (1953, pp. 191n2, 197n20; 1953, p. 341n20). That neologism was introduced in
Curry (1941, p. 222), with the rationale that it stands to ‘content’ as ‘intensive’ to ‘intent’; the
alternatives Curry mentions and rejects are ‘material’ and ‘intuitive’. (Incidentally, Curry (1941,
p- 224) considers contensive conceptions of mathematics (Platonism, intuitionism) to be ‘useful
only as secondary standards’ compared to his primary standard of formalism.)

Finally, a reflection on Crocco’s suggestion (2019) of a difference between Kreisel’s ‘informal
proof” and Godel’s ‘absolute proof” will have to wait for another occasion.

(I thank Jan von Plato for discussion of an earlier version of this footnote, and for permission to
make use of his email.)
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of constructive logic’, something in the nature of the latter.® Which among the
‘circumstances’ are the relevant ones, and what ‘consonance’ consists in, will depend
on choices guided by values; these choices and values may moreover vary over time.”
On the other hand, a formal proof can be completely described in factual or non-
evaluative terms. A formal proof can therefore only be argued to be natural if it is
seen in relation to something else, such that either that something or that relation is
subject to evaluation, because an evaluative conclusion of an argument requires at
least one evaluative premise. The obvious suggestion now is that if a formal proof
derives its status of proof from an intuitive proof, then one way in which a certain
formal proof could be considered natural is the derivative one where the intuitive
proof it formalises is considered natural in some non-derivative sense. This is why,
even though a discussion of natural constructive formal proofs (as in (1.3c)) is central
to the present paper, its title leaves out the qualification ‘formal’. What naturalness
of an intuitive proof consists in is perhaps best considered case-by-case.

One general illustration (i.e., not specific to constructive logic) is of course
Gentzen’s choice of the term ‘natural deduction’ to characterise his systems of
formal derivation in which derivations can start from assumptions. A formal proof
that starts from an assumption shares this structural feature with our actual informal
reasoning, arelation that Gentzen (1935, pp. 183, 184) evidently evaluated positively.

1.2.3 Constructivity

To have the idea of (i) formally constructive proofs to which (ii) constructive mean-
ings are assigned according to certain explanations or interpretations, one must have
notions of constructivity of two kinds, theoretical ones for (if) and a pre-theoretical
(‘naive’, ‘heuristic’) one for (i). The pre-theoretical notion is appealed to when
characterising formalisms as constructive, and can be analysed into a variety of the-
oretical notions in terms of which these formalisms are then given full meanings; the
appropriateness of each of the latter is subject to philosophical debate.® Of course,
both the pre-theoretical and the theoretical notions have their uses also independently
of any formalism.

6 This meaning is distinct from, but by itself not in tension with, those into which enter notions of the
ordinary or the usual. An example of the latter in Kreisel’s writing is ‘the question of characterizing
notions of proof has presented itself repeatedly in the history of mathematics (and is thus, literally,
a natural question)’ (Kreisel 1970b, p. 491).

7 1 therefore find the emphasis on ‘the dynamic and prescriptive character of naturalness’ in
mathematics in the recent, detailed philosophical and linguistic analysis of that notion in Mauro
and Venturi (2015) congenial. Note that they likewise consult a dictionary, ‘the Oxford Dictionary’
(presumably, given their quotations, the Oxford Dictionary of English), but only ponder (in a careful
way: see pp. 280 and 311) on the primary definition they found there: ‘Existing in or derived from
nature; not made or caused by humankind’, not mentioning the fourth, ‘in accordance with the
nature of, or circumstances surrounding, someone or something’. The latter is closer to the meaning
I appeal to.

8 For an overview, see e.g. Ruitenburg (1991).
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Pre-theoretically, the following two familiar conditions on constructive non-
formal proof are uncontentious: from a proof of an existential proposition one should
be able to obtain an instance, and from a proof of a disjunction a proof of one of
the disjuncts. Further conditions have led to debate. For example, in the develop-
ment of intuitionistic logic, Johansson denied that Ex Falso holds for it, Freudenthal
held that a proof of any proposition A — B must begin by proving A, and Griss
argued that negation is not a constructive operation.® There is a large overlap with
the concerns that led to the development of relevance logic, and it may be argued
that Brouwer’s ideas about logic (Brouwer 1907, 1908) lead to a relevance logic
(Atten 2009, p. 124). In the latter case, A — (B — A) would not hold; certain
instances may still be demonstrable, but not on the ground on which the schema is
considered acceptable by others. (This will be relevant on p. 16.) Heyting (1956)
accepted the debated principles mentioned. While Kreisel in his publications has
little to say about this kind of discussion, his explicit point of reference for informal
constructive logic is always Heyting.1©

The statements of the informal conditions on existential and disjunctive proposi-
tions have formal analogues in what have become known as the Disjunction Property

IfS-FAVB, thenS-rAorS+B.
and the Existence Property
If S+ 3x P(x), then S + P(t) for some term ¢ .

The natural and common system HA has both (Kleene 1945). But whereas the
mentioned pre-theoretical conditions are constitutive of non-formal constructivism,
itis not the case that, analogously, a formal system must have the properties (DP) and
(EP) to count as formalisation of meaningful constructive thought. Here is Kreisel’s
proof for the case of (EP) (also for reference on p. 16 below).

Theorem 1 (Kreisel 1970a, p. 125) There is a predicate P in the language of HA
such that Ax P(x) is true on the intended interpretation, but the formal system
S = HA + 3x P(x) does not have (EP).

Proof We follow the proof in Troelstra (1973b, pp. 178-179). Define
R(x) = Prfya(x,TL7) V Vy =Prfya(y,7L7),

where Prfy, is a canonical proof predicate of HA.!' From the consistency of HA
we see that Vy =Prfya (v, "L7) is true on the intended interpretation. Hence, with
the decidability of Prfys, HA F =Prfya(n,"L7) for every n € N, and

9 For references and discussion, see Atten (2017b).
10 On Freudenthal’s conception, remark (1.3c) could not be made.

1™y is the natural number that codes ¢ in the given Godel numbering, 7 is the representation of
the natural number 7 in the formalism. Prfy, (x, A7) holds if and only if x codes a proof of A
in HA; Prfy, is its representation in the formal language of HA.

(DP)

(EP)

(1.7)
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HA+ R(n) & Vy ﬂWHA(y,T),for everyn € N.
We also have, by the definition of R,
HA b 3xR(x) & (3y Prfua(y. L) V Yy ~Prfua(y."L7).

Consider the system S = HA + 3x R(x). Trivially, S + 3x R(x), and that formula
is true on the intended interpretation, because, as noted, Vy —|P_er Ay, "L is; so
S, like HA, formalises meaningful constructive thought. Now suppose, towards a
contradiction, that furthermore S + R(%), for some n € N. This is equivalent to

HA+ 3xR(x) > R(n)

for that n. Applying equivalence (1.9) to the antecedent and equivalence (1.8) to the
consequent yields

HA - (3y Prfya (3, TL7) VVy ~Prfya (3, 7L7) = Vy =Prfya (v, " L7),
which simplifies to
HA + E])’P_”JCHA()”T) —Vy _‘P_erA(y7r_J-—l) >
and then, using Y x —¢(x) < =3 ¢(x) twice, to
HA F Yy =~Prfya(y,"L7).
But this contradicts the second incompleteness theorem. O

Complementarily, Troelstra pointed out that (EP) and (DP) are not sufficient
conditions for a system to count as a formalisation of the intended constructive
interpretation either: he gives the example of two extensions of HA, each of which
has (EP), but which yield an inconsistent system when combined (Troelstra 1973b,
p. 179). (The extensions codify incompatible ideas about what constructive existence
consists in.)

Given these results of Kreisel and Troelstra, I agree with Kreisel that the formal
properties (DP) and (EP) ‘are not linked to the constructive interpretation of Heyt-
ing’s systems’ (Kreisel 1971a, p. 123, original emphasis).!? Instead, I will take as

12 T do not know whether Kreisel had found the results about (EP) and (DP) by the time of writing
the Brouwer memoir, but the general point is made in Kreisel (1970a), which is the published
version of his concluding address at the 1968 conference in Buffalo. In that same volume Prawitz
presents a cut elimination theorem for a second-order system, points out the corollaries (DP) and
(EP), and comments: ‘These results, which certainly are consonant with intuitionistic principles,
may have some bearing on the debated question whether a second-order system of the described
kind is intuitionistic[ally] acceptable.” Then a footnote states: ‘The intuitionistic significance of
the described system has been advocated by Professor Kreisel especially. I am grateful to him for
encouraging me to carry out these investigations’ (Prawitz 1970, p. 259). One possibility is that,
by the time of the Buffalo conference, Kreisel had not yet developed his argument against (EP)
and (DP) as criteria of ‘intuitionistic significance’. A further possibility is that Kreisel’s plea was
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criterion for the constructivity of a formal system: soundness with respect to the
informal explanation of the meanings of the connectives in Heyting (1956).13

1.3 Cases dependent on a proof of B
1.3.1 Finding the formula B from the formula A

In the search for an example of (1.3c), we may either start from ideas about such
an A and from there attempt to reason towards the formulation of an appropriate
B, or the other way around. In the first direction, this suggests the following formal
proof skeleton, which is meant to represent not only, in a straightforward way, the
deductive relations indicated in (1.3c), but also, in the direction from left to right,
the intended temporal order of construction of the two subproofs:

(B
A
[A]' [A—>B? BoAa '
Ao B B
__ B A
AS>B | (A—>B)—> A ?

A

Informal reasoning that would be formally represented thus runs ‘If I have A, then I
derive, let’s see, B, so A — B, and if  have A — B, then etc.” The formal proof of
A proceeds by a cut introduction with cut formula A — B,* with the particularity
that our choice for the formula B depends on our having first derived it from A. This

first of all based on his view that quantification over species should be acceptable in ideological
intuitionism; see section 1.4.5 below.

13 This does not mean that one’s intended interpretation must be Heyting’s Proof Explanation, but it
does rule out variations on it that validate formal systems for classical logic; on such variations, see
Troelstra and Dalen (1988, p. 9 and pp. 32-33, exercise 1.3.4) and Sundholm (2004). They depend
on understanding basic notions such as construction and existence classically. Obviously Heyting,
Brouwer, and Kolmogorov neither intended nor did this, and I therefore would rephrase Troelstra
and van Dalen’s conclusion that ‘This exercise shows that the BHK-interpretation in itself has no
“explanatory power”’, and also Sundholm’s title “The proof-explanation is logically neutral’. For
these phrases to be correct, the ‘BHK-interpretation’ or ‘proof-explanation’ must be understood in
a far more ambiguous (more widely schematic) sense than they had in their original contexts. As
for the differences among the constructivists themselves (p. 7 above), note that the proposals of
Johansson, Freudenthal, and Griss only lead to restrictions on Heyting’s notion of construction, so
that formal systems based on those proposals still satisfy the criterion I adopt.

1 The term ‘cut’ comes from the Sequent Calculus, but I will use it also for the corresponding
phenomenon in Natural Deduction (Dalen 2004, section 6.1).

(1.14)
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leads to a second cut, with cut formula B.15 If we now eliminate the first cut, we
obtain

(Al (B
B 1 A 3
A—>B B— A :
Ao B B
A

This skeleton still brings out the simple fact that a sufficient condition for a formal
proof of A to contain a subproof of A — B, which in (1.3c) is the containment that
is highlighted, is that A gets proved via proofs of A < B and B; this fact would
no longer be represented after elimination of the second cut. Although this second
skeleton no longer fits (1.3c) literally, of course the essential part of the reasoning
towards (A — B) — A in the first skeleton is preserved.

With Curry’s insight into the correspondence between implicational logic and the
typing of functions, skeleton (1.14) can also be seen as a way to arrive at a judgement
that an object a is of type A by finding a function f: A — B, together with a selection
functional F': (A — B) — A, where the latter is, in this case, obtained by finding
a function g: B — A and an object b of type B. Seen thus, a motivation for
transforming a proof in the other direction, from one with skeleton (1.15) into one
with skeleton (1.14), would be to make also the existence of that functional explicit.

The question whether these formal proof skeletons may be natural will, as mo-
tivated in section 1.2.2 above, be approached by transposing the question to the
informal. The informal counterpart to a cut introduction is a lemma introduction.
A motivation for structuring an attempt at informally proving A as a proof of its
equivalence to B together with a proof of B as a lemma would be that one expects
or knows that, if one assumes that A is true, an equivalent B can be inferred that,
if provable at all, should in some sense be easier to prove than A.7 Two cases may
be distinguished. The first is where this greater ease has its ground in the content
of B, in case B is more explicit than A, or is less complex,? or shifts to a more

15 Usually, < is treated as a defined connective, and correspondingly a cut rule for it would be
defined in terms of that for —. For our present purpose, this is immaterial.

16 For a comparative remark on the role of the selection functional here, see point 5 on p. 29 below.
On selection functionals, see e.g. the introduction to Escard6 and Oliva (2010).

17 Dijkstra (1985, p. 7) writes that ‘equivalence is the most underexploited connective in mathemat-
ics, in contrast to the implication that is used all over the place [. . .] the failure to exploit inherent
symmetries often lengthens an argument by a factor of 2, 4 or more’. His explanation for this is
that humans tend to reason in terms of cause and effect, and tend to assimilate implications to that.
Note that to constructions in Brouwer’s setting, the familiar distinction between tokens and types
applies; so that if A — B, at the token level there is a sense in which a construction for A causes
the truth of B, but this is compatible with A < B at the type level. See also footnote 62 below.

8 Through expansion of definitions, or by appeal to the meaning of A.
19 See the remarks around (1.22) below.
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convenient domain;2° for short: is better intelligible, and therefore, one expects,
more fruitful to reason about.?! Intelligibility is a value that depends on the content
of the propositions involved in their relations to our capacity of understanding; it is a
matter of degree, and furthermore for one and the same proof this degree may, with
increased mathematical experience, change. The other case arises when B is among
the stock of propositions already proved. There the value involved is efficiency of
the simplest kind, independent of propositional content. Since in analysing (1.3c)
we are after a ‘peculiarity of constructive logic’ as such, which has to do with (the
contribution of the logic to the) propositional content, it is the first case that is of
interest.

The heuristic of proving A by looking for such a (more) intelligible B is, not
surprisingly, an old one, and goes back to the ‘method of analysis and synthesis’ of
the Greek geometers.?? The classical description was given by Pappus; well-known
modern discussions outside the specialist literature?? are Heath’s in his edition
of Euclid’s Elements (Euclid 1908) and Pélya’s in How to Solve It (2004, first
ed. 1945).24

Pappus writes:

Now, analysis is the path from what one is seeking, as if it were established,
by way of its consequences, to something that is established by synthesis.
That is to say, in analysis we assume what is sought as if it has been achieved,
and look for the thing from which it follows, and again what comes before
that, until by regressing in this way we come upon some one of the things

20 For example, by embedding R in C. See also Kreisel (1967a, p. 166).

2 Indeed, cut introduction is part of the proof restructuring that is done to make automatic, cut-free
formal proofs, which are easier to find for computers, comprehensible to humans (e.g., D’Agostino,
Finger, and Gabbay (2008)). On cut-free proofs, see section 1.3.2 below.

22 Recent detailed linguistic analysis (Longa 2020) has identified no fewer than 318 proofs in the
Greek mathematical corpus (3rd century BC to 7th century CE) that apply the method of analysis
and synthesis.

23 As examples of that specialist literature in so far as it relates the method to modern constructive
mathematics, I mention Knorr (1983), Méenpéd (1993), and Menn (2002). Brouwer also described
this method in his dissertation; see p. 15 below.

24 Tt is quite likely that Kreisel had seen those discussions. Kreisel reports that ‘Since my school
days I had had those interests in foundations that force themselves on beginners when they read
Euclid’s Elements (which was then still done at school in England)’ (Kreisel 1989; trl. Kreisel n.d.,
p. 148). His school — Dudley (Isaacson 2020, p. 90) — may well have used a different edition than
Heath’s, but if it was, then the latter would have been the first place to look further if one’s interest
had been piqued. The one reference to Pdlya by Kreisel I have found is: ‘The use of axiomatic
analysis as a proof strategy does not seem to be well known to people writing on heuristics, like
Polya’ (Kreisel and Macintyre 1982, p. 233). (Axiomatic analysis is a proof strategy because, once
one has an axiomatic presentation of a subject, in trying to find a proof one need only take into
account the properties mentioned in that presentation (Kreisel and Macintyre 1982, p. 232).) That
observation intimates a wide knowledge of Pdlya’s writings. Moreover they were colleagues at
Stanford, where Kreisel taught from 1958-1959 and 1962-1985, incidentally the year Pélya died.
Pélya had been an emeritus from 1953 on, but a very active one. Finally, perhaps Kreisel knew
the remarks in Lakatos’ series ‘Proofs and refutations’ (Lakatos 1963-64) (spread over part 1,
pp. 10-11 note 2; part 3, p. 243n1, part 4, p. 305 and its footnote 1). In Kreisel’s writings one finds
references to the book of the same title that Lakatos published in 1976.

(1.16)
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that are already known, or that occupy the rank of a first principle. We
call this kind of method ‘analysis’, as if to say anapalin lysis (reduction
backward). In synthesis, by reversal, we assume what was obtained last in
the analysis to have been achieved already, and, setting now in natural order,
as precedents, what before were following, and fitting them to each other,
we attain the end of the construction of what was sought. This is what we
call ‘synthesis’.

There are two kinds of analysis: one of them seeks after truth, and is
called ‘theorematic’; while the other tries to find what was demanded, and
is called ‘problematic’. (Pappus of Alexandria 1986, p. 82)

In bringing up Pappus, whose concern is with geometry, in the present paper, which is
concerned with propositional and predicate logic, I do not mean to take a stand on the
question whether the latter are the most appropriate vehicles for the representation
of the reasonings of the Greek geometers. Rather, the idea is that the method of
analysis and synthesis is of wider applicability, and that various general remarks or
phenomena that occur in the Greek context may also be pertinent or suggestive in
domains where these logics are used.

From a modern constructivist point of view the difference between theorematic
and problematic analysis is mostly one of perspective, as to find certain construc-
tions for objects and their relations is what constructively proving the corresponding
proposition consists in, and, conversely, proofs may themselves be regarded as math-
ematical objects one can look for.?

In its application to propositions, analysis is the process that leads from the as-
sumption that A has been established to a proof of A — B, where B has independently
been recognised as provable, and synthesis the process of combining a proof of B
and a proof of B — A to prove A. The heuristic turns on the fact that a consequence
B of A corresponds to a necessary condition for the truth of A; if it is also a sufficient
one, then, in a reversal of direction, what was construed as a proposition following
from A is now construed as a proposition from which A follows. It is with an eye
on this subsequent reversal that Pappus glosses ‘analysis’ as a ‘reduction backward’,
and I take it that the latter sets things ‘in natural order’ because, by hypothesis,
when embarking upon this reasoning B was already known, whereas A was not. The
central idea in such a proof of A, then, is its equivalence to B.26 That B implies A
is immediate if B is obtained from A by a chain of equivalences, but other cases
will be more involved.?” Be that as it may, the method will have fulfilled its heuristic

25 As set out in Kolmogorov (1932), which, as he succinctly put it later, ‘was intended to construct
a unified logical apparatus dealing with objects of two types — propositions and problems.” (2019,
p. 452); see also Bernays’ review of Pélya (Bernays 1947, 184-185).

26 This was observed by Leibniz: ‘L’Analyse des Anciens estoit, suivant Pappus, de prendre ce qu’on
demande et d’en tirer des consequences, jusqu’a ce qu’on vienne a quelque chose de donné ou de
connu. J’ay remarqué que pour cet effect il faut que les propositions soyent reciproques, afin que la
demonstration synthetique puisse repasser a rebours par les traces de I’Analyse, mais c’est tousjours
tirer des consequences.” (Leibniz [1705] 1882, p. 466). See also Gardies (2001, pp. 22-27).

27 A discussion of this latter point in the Greek context is Behboud (1994).
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function if one’s proof of A — B at least suggests how to go about proving the
converse.

The overall reasoning process will, in general, involve making guesses, but those
will at least in part be motivated (directly or transitively) by the meaning of A.2% As
Pélya describes it, ‘analysis is devising a plan, synthesis is carrying through the plan’
(2004, p. 146), and this plan is visible in the successful outcome, if there is one. It
also illustrates Rood’s observation (made in a discussion of Kant) that ‘if we look
at proofs from a procedural point of view, then the boundary between discovery and
justification starts to blur. A proof may itself involve various elements of discovery’
(2005, p. 57). This makes proofs by analysis and synthesis highly intelligible and
in that sense natural. When the reasoning steps employed in a successful use of this
heuristic method can be mirrored and made explicit in formal inferences in a suitable
system, the skeleton of a formal proof then is that as those above.

Perhaps one takes an alternative representation of the informal reasoning by
analysis and synthesis to be given by the pair of proofs

] [B]'
[A] :
: A
B B— A B
A—B A

in which, crucially, the proof of A — B does not figure as a subproof in the proof
of A. Indeed, in the corpus of ancient Greek geometry one finds proofs where
only an analysis is presented, or only a synthesis. The analysis sufficed in case
the subsequent synthesis was considered to be obvious,?® the synthesis if the only
interest was in a deductive justification of A.30 But it was realised that giving both
facilitates understanding, and hence can make proofs more convincing. In addition,
there is a rhetorical value to such a double presentation: it ‘[creates] the illusion
that the solution is necessary and emerges naturally out of the problem’. (See for
these two points Netz (2000); the emphasis here is mine.) Evidently a presentation
of neither analysis nor synthesis alone can count as a full rendering of the kind
of reasoning process under discussion, and even the pairwise formalisation above

28 A recent study of ‘motivated proofs’ is Morris (2020).

29 Or, in the case of reductio ad absurdum, superfluous (this is implicit in Pappus’ account, see
Maienpaa (1993, 188n83)).

30 See Knorr (1986, p. 9) for the general point, and its p. 377n89 for some examples. Incidentally,
Knorr received support from Kreisel:

Knorr read the ancient texts so as to reveal new proof strategies; indeed he dated different
bits even of Euclid in terms of a more or less linear development of proof ideas, which
of course does not conform to the present order of the Elements. Oral history: the proof
theorist Georg Kreisel, Knorr’s colleague at Stanford [Knorr joined the faculty in 1979],
strongly encouraged this work. I believe he did so because it pointed not only to the
history of proof but also to the human discovery of capacities for proving. (Hacking
2014, p. 140)

(1.17)

(1.18)
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remains incomplete, as it distributes the representation of the reasoning towards
one conclusion over two proofs. Either stands on its own, and the intended relation
between those two, in (1.17) suggested by the juxtaposition and our choice of the
same schematic letters, is not itself represented formally. In particular, the central
idea of a proof by analysis and synthesis, the equivalence of A to B, is absent.
Combining both trees into one, as in skeleton (1.15), makes it appear, and thereby
Kreisel’s claimed containment relation. That containment is not an artefact of the
representation, but results from an explicitation of the top-level structure of the
informal, intelligible reasoning that it represents.

A whole class of examples of proofs with skeleton (1.15) is generated by a formal
theory for which quantifier elimination has been established constructively, and for
which the quantifier-free statements obtained are decidable. Then an appropriate B
can be found from A without any need for guessing: one has an algorithm that for
every sentence A yields a quantifier-free sentence B such that A < B is provable in
the theory and B is decidable.® A positive outcome of the corresponding decision
procedure for B then leads to a proof of A.32 It need of course not be the case that
the quantifier-free statement is, as a whole, better intelligible to humans than the
quantified equivalent, quite the contrary.

Of course, quantifier elimination and also the analytic-synthetic method exist in
a classical context as much as in a constructive one, and as such cannot count as an
interpretation of (1.3c), which asks for a ‘peculiarity of constructive logic’.3? But in
the case of the analytic-synthetic method, one can be found by narrowing down the
scope.

Consider the characteristic demand of constructive logic that existential state-
ments 3x P(x) be proved by exhibiting an a such that P(a). A well known heuristic
to fulfill that demand can readily seen as an application of the method: assume that
Jx P(x) and then attempt to reason, from the definition of the predicate P and other
available information (axioms and previously obtained theorems) towards condi-
tions that a witness for it must satisfy, in such a way that combining them leads
to conditions that are moreover sufficient. Let a be a hypothetical object satisfying
those conditions; thus one has shown that, if the existential statement has a witness
at all, then a must be one.3* The second part of the attempt consists in establishing

3 E.g., (classical and constructive) Presburger Arithmetic (Presburger 1930; Kleene 1952, pp. 204,
474-475), or the classical theory of real closed fields (Tarski 1948; Lombard and Vesley 1998).

32 Carrying out decision procedures based on quantifier elimination may quickly become unfeasible
for humans and then also for computers; here our concern is with the principle.

33 And, as I read it, of constructive logic. That means that the following theorem of Kreisel himself
(1968c) would not come into consideration: given a certain theory for numbers, functions, lawless
sequences, and species, for any statement A a statement A’ can be found such that A’ contains no
symbols for lawless sequences and A < A’. Kreisel points out (p. 226) that it may well be that A
is evident on the intended interpretation, while A’ is not; in such a case we prove A’ via a proof of
A. This theorem depends on a continuity principle, whose justification is an ontological matter.

34 This is reminiscent of the classically provable ‘dual version of The Drinking Principle’: ‘There
is at least one person such that if anybody drinks, then he does’ (Smullyan 1978, p. 210; Warren,
Diener, and McKubre-Jordens 2018). But here we are reasoning constructively and, in particular,
without appeal to Ex Falso, and conclude something only about a hypothetical object.
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that an a fulfilling these conditions can indeed be constructed. This is how Brouwer
described it in his dissertation:

There is a special case [...] which really seems to presuppose the hypo-
thetical judgment from logic. This occurs where a building in a building
is defined by some relation, without that relation being immediately seen
as a means for constructing it. Here one seems to assume to have effected
the construction looked for, and to deduce from this hypothesis a chain of
hypothetical judgments. But this is no more than apparent; what one is really
doing here, consists in the following: one starts by constructing a system
that fulfills part of the required relations, and tries to deduce from these
relations, by means of tautologies, other relations, in such a way that in the
end the deduced relations, combined with those that have not yet been used,
yield a system of conditions, suitable as a starting-point for the construction
of the system looked for. Only by that construction will it then have been
proved that the original conditions can indeed be satisfied. (Brouwer 1975,
p. 72, emphasis Brouwer, translation modified)33

Brouwer’s main interest here is in the question whether in a mathematics founded
on intuitive givenness, hypothetical constructions can be made sense of at all. His
answer is positive: hypothetical statements should be construed not as propositional
expressions of possible, as yet unknown truths, but as conditions (on constructions).
Conditions that we pose are themselves actual objects, and no bearers of truth or
falsehood.

For the present purpose, the interest is elsewhere, namely in the structure of the
reasoning that Brouwer describes. In a footnote, he give as examples ‘the uniqueness
proofs for transformation groups with given properties by Hilbert and Lie, and also
ordinary elementary problems, such as looking for a common harmonic pair, or the
problems of Apollonius’; the latter being classical examples of the application of
the method of analysis and synthesis.3¢ (Often, the existence of the ‘building’ in
which another ‘building’ is to be constructed is itself given as a hypothesis, and
specified in terms of parameters; then what needs to be proved rather takes a form
like R(n) — Jx P(x,n). See below, at the discussion of (1.23).) Now, as before:
Suppose that the reasoning employed in a successful case can fully be mirrored in
formal inferences in a given system. Then the candidate witness a can be obtained

35 Er is een bijzonder geval [dat ... ] werkelijk het hypothetische oordeel der logica schijnt te
vooronderstellen. Dat is, waar een gebouw in een gebouw door eenige relatie wordt gedefinieerd
zonder dat men daarin direct het middel ziet het te construeeren. Het schijnt, dat men daar onderstelt
dat het gezochte geconstrueerd was, en uit die onderstellingen een keten van hypothetische oordeelen
afleidt. Maar meer dan schijn is dit niet; wat men hier eigenlijk doet, bestaat in het volgende: men
begint met een systeem te construeeren, dat aan een deel der geéischte relaties voldoet, en tracht
uit die relaties door tautologieén andere af te leiden z66, dat tenslotte de afgeleide zich met de
nog achteraf gehoudene laten combineeren tot een stelsel voorwaarden, dat als uitgangspunt voor
de constructie van het gezochte systeem kan dienen. Met die constructie is dan eerst bewezen, dat
werkelijk aan de voorwaarden kan worden voldaan. (Brouwer 1907, pp. 126—-127)

36 Incidentally, Brouwer’s description gives the impression that he had seen the discussion of
analysis and synthesis in Hankel (1874, esp. p. 141).

(1.19)
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from the hypothesis using the inferential resources of the system itself, so that this
formal proof of 3x P(x) begins with a proof of 3x P(x) — P(a). Taking Ix P(x)
for A and P(a) for B, we see that the skeleton of the overall proof is, depending on
how one represents the reasoning, that in (1.14) or (1.15).

Where this works out, the formal system is able to reflect the relation between
the propositions 3x P(x) and P(a) to a greater extent than applications of (EP) are
able to. We refer back to Kreisel’s proof that (EP) is not a necessary condition for
the constructivity of a formal system (p. 7). That proof also shows that closure of a
formal system under the rule (EP) does not guarantee provability in the system of
the corresponding implication: On the one hand, (EP) is a schematic conditional that
is constructively correct also when instantiated with the hypothesis HA + 3x R(x);
this is not changed by the fact that we know that, because of the consistency of
HA, that hypothesis will never be fulfilled. On the other hand, again because of
the consistency of HA, we know that for no ¢ the corresponding implication can be
proved in it.

And even in cases where we have a system with (EP) and + 3x P(x), for some P,
a particular proof in that system of 3x P(x) — P(t), for some ¢, need not proceed
by making explicit a connection between its antecedent and its consequent. HA has
(EP) and contains the axiom A — (B — A). Suppose that we have a P such that
+ Jx P(x). One obtains + P(t) for some ¢ by (EP), and then, via an instantiation
of the axiom with A = P(¢) and B = 3x P(x), + 3x P(x) — P(t). But the axiom
depends on no relation between A and B at all (which for relevantists is the reason
to reject it). It may be observed that nevertheless a relevant connection between
Jx P(x) and ¢ has been exploited, namely the one that is made in the proof, at the
metalevel, of (EP) itself. However, the point is that, while the construction method
for the formal proof of 3x P(x) — P(t) described here depends on that connection,
the formal proof obtained does not represent it.

The relation between constructive existential quantification and the method of
analysis and synthesis naturally extends to choice principles. Given the informal
constructive meaning of the quantifiers,

YxeD3ye D P(x,y)

must be proved by providing a method that transforms any proof of a € D into a b
together with proofs of b € D’ and P(a, b).?” Thus, if such a method is embodied
in a constructive function f: D — D’, a natural way of establishing (1.20) consists
in observing that

VxeD3ye D'P(x,y) & AfVxP(x, f(x))

and then proving the right hand side. If this reasoning can be fully formalised, the
result is a natural formal proof of (1.20) with skeleton (1.15), taking for A and B the
left and right hand sides of (1.21).

37 Pitfalls in justifying such a choice principle for other domains than the natural numbers are
discussed in Troelstra and Dalen (1988, pp. 189-190).
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This naturalness would explain Kreisel’s observation, in correspondence with
Mints in 1973, that various propositions seem easier to prove when understood
constructively than when understood classically. That observation is reported in
Kosheleva and Kreinovich (2015), where an explanation is offered that is based on
the fact that constructively (and under the Church-Turing Thesis), Hg—statements
about the natural numbers are equivalent to Zg-statements

VxeN3IyeNP(x,y) < Je e NVx e NP(x,{e}(x)),

where e is the index of a recursive function and {e}(x) denotes the result of its
application to x. On this reading, the original statement is therefore in the class of
Ag-statements, and should be expected to be easier to prove than on its classical
understanding. This is a special case of that in the preceding paragraph. But it seems
to me that Kreisel will also have had in mind examples of a different kind, in the
theory of recursive ordinals, and depending on specifically intuitionistic notions: see
Kreisel (1965, 2.6141) and Kreisel (1983, pp. 228-229; not in the 1958 version).
Informal existence theorems that depend on a hypothesis are typically of the form

Vx € D(R(x) >3y e D'P(x,y)).

On predicate-logical reconstructions, solved ‘problems’ in ancient Greek geometry
are examples; on this point, see Menn (2002, pp. 202-204). A constructive proof of
such a theorem calls for a method that, dependent on proofs of n € D and R(n),
constructs a proof of 3y € D’P(n,y). To find such a method, one treats these
dependencies as additional information in a parameter n, and may follow the (first
part of the) strategy for proving existential statements without a hypothesis sketched
above. If this works out, one obtains an a such that

Vx € D(R(x) » (3y e D'P(n,y) & (a € D' A P(n,a)))).

If the method for finding a witness for the existential quantifier does not actually
depend on the way in which n € D and R(n) have been proved, it furthermore serves
to establish

Af: D — D'Vx € D(R(x) — P(x, f(x))),
which implies, and is implied by,
VxeD3ye D' (R(x) = P(x,y)).

This leads to a natural formal proof of (1.26) using (1.25) and skeleton (1.15).

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)
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1.3.2 Normalisation as denaturation

In its application to formal proofs, the term ‘analytic’ nowadays is also used with a
different meaning, assigned to it in Smullyan (1965). The difference was remarked
on by Kreisel as soon as it arose. In Mathematical Reviews, he wrote:

The author introduces the very happy terminology of ‘analytic’ deduction,
i.e., deduction involving the analysis (breaking up) of assertions. This re-
places the less elegant ‘deduction rules possessing the subformula property’,
or the quite misleading ‘cut free’ (misleading because it refers to a specific
formalization). The terminology seems good despite its conflict with the
traditional use of ‘analytic’ in contrast to ‘synthetic’ reasoning. (Kreisel,
n.d.)

The conflict consists in the fact that formal proofs that are analytic in this new sense
of the term never prove A via a subproof of A — B, whereas the presence of the
latter is characteristic for formalised Greek analysis as discussed in section 1.3.1.

As the conflict is terminological, it has no bearing on the argument there to the
effect that certain formal proofs with that pattern are natural because the meaningful
proofs by analysis and synthesis that they formalise are. However, for some years
Kreisel made a claim about the relation between analytic proofs in the new sense
and meaningful proofs that would have a bearing on that argument. He also came to
see that the claim was based on a mistake.

The context of his claim is formal systems for which it can be demonstrated that
all their proofs can be ‘normalised’, that is, transformed into ones that are analytic
in the new sense; a corollary of such a demonstration is that these systems have the
properties (DP) and (EP) (p. 7 above). In 1967, Kreisel writes, somewhat tentatively:

[Clonsider now the rule:

With every formal derivation D in F of an existential (numerical) for-
mula, i.e. a closed formula of the form 3x A(x), associate that x which is
supplied by the proof which you understand to be represented by D (x will,
in general, be a term containing parameters).

[...]

Reflection shows that when one thinks through a formal argument D
in Heyting’s system, the thought involved is more closely represented by
the cut free proof D’ associated by means of so-called cut elimination
[8] with D: D’ has the property that if it proves (3 x)A(x), it mentions a
particular A(¢) from which it obtains directly (3 x)A(x). Thus, though D’
may still be understood differently by different people, it is a detailed enough
representation of the intuitive thought to settle the particular question above
(namely, what x is supplied by the proof that we understand to be represented
by D?). All that is needed is this: each of us should convince himself that
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cut elimination provides a correct (i.e. more faithful) analysis of the proof
which D represents for us.38 (Kreisel 1967b, pp. 244-245, italics his)

By 1971, in his review of Gentzen’s Collected Papers, he is fully confident:

To every derivation d there is a normal derivation |d| that expresses the same
proof as d. (Thus ‘normal’ derivations provide canonical representations,
roughly as the numerals provide canonical representations for the natural
numbers.) And natural-deduction systems are distinguished at least to the
following extent: the particular normalization steps for which we get normal
forms that are independent of order, evidently preserve the proof expressed
by the derivation (to which the step is applied). (Kreisel 1971b, p. 245,
original emphasis)

And, in a publication of the same year,

A minimum requirement is then that any derivation can be normalized,
that is transformed into a unique normal form by a series of steps, so-called
‘conversions’, each of which preserves the proof described by the derivation.
This requirement has a formal and an informal part:

(@) The formal problem of establishing that the conversions terminate in
a unique normal form (independent of the order in which they are
applied).

(Bi) The informal recognition (by inspection) that the conversion steps con-
sidered preserve identity, and the informal problem of showing that

(Bii) distinct, that is incongruent normal derivations represent different
proofs (in order to have unique, canonical, representations).

For examples of remarkable progress with the formal problem see the
work of Martin-L6f and Prawitz in this volume.3° The particular conversion
procedures considered evidently satisfy requirement (3i) since each conver-
sion step merely contracts the introduction of a logical symbol immediately
followed by its elimination. Such a contraction clearly does not change the
proof described by the two formal derivations (before and after contraction).

[...]

As stressed by Prawitz [1971], his normalization procedures obviously
preserve identity of proofs.4°

(Kreisel 1971a, pp. 112, 114115, original emphasis)

On the view Kreisel expresses here, two formal proofs that differ in that one is the
normalisation of the other still represent the same (understood) abstract proof. Now,

38 The current view of cut elimination is technical; the view I propose above is probably not shared
generally. But it should be noted that though it is more precise and specific (and, perhaps, wrong
in detail), it is not inconsistent, for instance, with Brouwer’s view, [1], footnote 8, where he speaks
of fully analysed, canonical proofs and stresses that they are infinite structures. [Note MvA: The
reference ‘[1]” is to ‘Uber Definitionsbereiche von Funktionen’ (Brouwer 1927a).]

3 [footnote MVA] Fenstad (1971).

40 [footnote MvA] In fact Prawitz’ attitude in the place Kreisel refers to is more like Troelstra’s: he
speaks of a ‘conjecture’, ‘a reasonable thesis’ (1971, p. 257).

(1.29)
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by Kreisel’s earlier claim quoted in (1.3c) above, there are cases, depending on A,
where a non-normalised formal proof can be said to be the natural one. While these
two ideas are not necessarily in conflict — there may, for a given notion of naturalness,
be both natural and unnatural representations of one and the same object —, they are
so on the strongly procedural view on proofs taken above, according to which formal
proofs are (primarily) construed as representations of acts of reasoning: applying
normalisation rules to a formal proof that reflects an intuitive proof obtained by
acts of analysis and synthesis makes that reflection vanish.#' From this perspective,
one would, in interpreting the method of analysis and synthesis, not exploit the
subformula property of certain formal systems,*? and whether a proof of 3x A(x)
proceeds by presenting an instance would be too crude a criterion for identifying
the thought involved in that proof, contrary to Kreisel’s proposal in (1.28) above.*3
This could of course be turned around, and then Kreisel’s claim would be seen as an
objection to the strongly procedural view on proofs taken here.

However, Kreisel soon came to reject the view expressed in (1.28)—(1.30).
In Kreisel and Takeuti (1974, p. 38n8), with reference to the Gentzen review as
quoted above in (1.29), he calls it ‘even more implausible than appears from [that
review]’, precisely because of the distance of normalised proofs from ‘[t]he faithful
representation of actual reasoning’ (Kreisel and Takeuti 1974, pp. 37, 38n8). And in
an unpublished postscript to that review, he calls the claim ‘evidently false’, accepting
Statman’s diagnosis that he had confused the preservation of identity, i.e.,

dy=dy = |di| =|da|

(if the abstract proofs expressed by the derivations d; and d; are the same, then so
are the abstract proofs expressed by the respective normalisations) and

d=|d|

(the abstract proof expressed by a derivation d is the same as the abstract proof
expressed by the normalisation of d) (Kreisel 1976, pp. 6-7).44

4 In more recent work on the question of the identity of proofs, the presence of lemmas is considered
to be a distinguishing feature; see e.g. Straburger (2019, section 2(a)).

42 Hintikka and Remes (1976) do this; for criticism on this point also e.g. Behboud (1994, p. 61).

43 Interesting middle ground here may be provided by the so-called analytic cut rule, in which
the cut formula has to be a subformula of the assumptions or the conclusion (Smullyan 1968;
D’Agostino and Mondadori 1994).

44 A related question is: How many propositions does an abstract proof prove? Kreisel had a
disagreement over this with Spector, who held that the answer is 1. The occasion for Spector
was a characterisation of intuitionistic connectives as functions on proofs of the propositions they
connect, for use in his proof of the theorem (for intuitionistic logic) that ‘Each propositional function
is equivalent to a formula in the propositional calculus with the same prop[ositional] variables, and
conversely’; it is found in his letter to Kreisel of March 6, 1961, the date on which is, erroneously,
February 6 (Kreisel, 17/4). Kreisel replied (March 22, 1961):

I think the subconscious reason for its plausibility lies in the confusion between informal
proof and the notion of formal derivability. In the case of formal derivability a ‘proof’
(formal derivation) can ‘prove’ only one formula, i.e. one representation of a proposition.



1 Proofs of Avia A —» B 21

1.3.3 Finding the formula A from the formula B

There are also cases where an A is found starting from considerations about a
certain B (or, initially, an open B(x)). A formal context that provides examples here,
depending on arithmetisation, is the Diagonal Lemma or Fixed Point Lemma (for
arithmetic). Consider the following standard formulation and proof:

Theorem 2 (Diagonal Lemma for Formulas) Let S be a system that contains
primitive recursive arithmetic. Then for each formula ¢(x) with only x free there
exists a sentence Y such that S vy < o("y 7).

Proof (after Dalen (2004, p. 251)). Let s(x,y) be a primitive recursive function
such that s("¢7, "t™") = T[t/x]7, so that s is a substitution function specialised to
substitutions for the variable x. Let the predicate o (x, y, z) represent s(x, y) in the
formalism. Define 8(x) = Iy(¢(y) A o(x,x,y)), m = "0(x)7, and ¢ = 0(m). The
definitions give the immediate equivalences

Fy e 0(m),

F6(m) & 3y(e(y) Ao(m,m,y)),
and
Fy o 3y(e(y) Ao(m,m,y)).
As o represents s,
FYy(o(m,m,y) &y =s(m,m)),
and by the definition of m
FVy(o(m,m,y) &y =T00m)").

With this we obtain, from (1.36),

Since different formulae P and Q may express the same assertion (even intuitionistically:
as I usually say: the same proof conditions) it is not plausible to assume this for your
system. (Kreisel, 17/4)

Kreisel wrote to Godel about this discussion on the same day (Kreisel, 50/3); Godel in a letter to
Kreisel of November 15, 1961, notes: ‘Der Begriff der Konjunktion ist ja durchaus symmetrisch
u. es ist nur ein Mangel unseres Schreibmaterials, dass wir ihn unsymmetrisch ausdriicken miissen’
(Kreisel, 50/4). In contrast, on a strongly procedural view, the sense of p A g need not be identified
with that of g A p, for example if the proposition g or a particular proof of it has been found by prior
reflection on p or a proof of it. This situation is analogous to that of the existential quantifier in the
comparison above of a proof and its normalised form: proof conditions are too crude a criterion for
sameness of (proved) assertions once we want the latter to represent aspects of the actual reasoning.
Alternatively, one could introduce a new connective for asymmetric conjunction; see for discussion
and references Barbanera and Martini (1994).

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)
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Fy o 3y(e(y) Ay =T6(m)7),
hence
FY o e(Tom) ),
and then by the definition of i
FY o e(Ty).
O

For the present purpose, I modify this proof slightly, and from (1.38) first obtain,
by predicate logic,

F3y(p(y) Ao (T, y)) © ¢(T0Gm)T) Ao (.7, T6m)7) .
which, since by (1.38)
- or (., "6 () )
then reduces to

F3y(e(y) Ao(m,m,y)) < e("0(m)™).

Now with (1.36) we find ourselves at (1.40) again. The point of this detour is that the
proof now passes, in (1.42), through a proof of the equivalence of a certain existential
statement (namely, ) to one of its instances; so that  is an A as in (1.3c), taking
the right-hand side of (1.42) for B. (This illustrates the reflection on (1.19) above.)

While the proof could be simplified if the language contains a function or term for
s instead if representing it by o, it is the representation that allows for the introduction
of the existential quantifier that my point depends on. Representation brings out the
existential quantification in the notion of functionality. (For a proof simplified in this
sense, see the Diagonal Lemma for Terms and its corollary in section 1.4.2.)

When applying the Diagonal Lemma, one reasons from or toward ¢ via cp('_lp__')
in one step, leaving the passage through the instance of » on which that step depends
implicit (if the theorem is proved in the modified way); and one may have proved
it differently. Be that as it may, if the goal of the application is to establish i itself,
then as long as ¢("y ™) is proved from yet another equivalent, the overall proof of
Y this yields retains the form of skeleton (1.15). For example, consider a proof of
Godel’s incompleteness theorem for a (consistent) system S via an application of
the Diagonal Lemma to — Prg(x). The fixed point i this yields is undecidable in S,
but provable in a suitable system U in a proof with skeleton (1.15), where A is ¢
and B is, for example, Con(S) or the reflection principle Prs(Ty ™) — 1, for closed
y € II). That principle is studied in Kreisel’s joint paper with Lévy (1968). They are
convinced that
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What makes reflection principles useful is that they have a clear intuitive
meaning, and so, if such a principle is provable in U, we have a good chance
of finding a proof. (Kreisel and Lévy 1968, p. 100)

This, in effect, connects reflection principles and the considerations on intelligibility
on p. 11 above.#
A related application of the Diagonal Lemma is

Theorem 3 (Lob) (Lob 1955) Let S be a system that contains recursive arith-
metic_and a provability predicate Prs satisfying certain natural conditions.*¢ If
SkPrs(TeT) — ¢, then S+ .

Where, for given ¢, Lob in his proof had appealed to the Diagonal Lemma to
obtain a fixed point  such that

Fy o (Prs(TyT) = @),
Kreisel devised a variant proof using a fixed point ¢ such that
Py o Prs(Ty — ¢7).

This equivalence does not mean that a natural formal proof of ¢ contains a proof of
¥ — ¢, because of the indirection introduced by the (formal) provability predicate,
which refers to (formal) proofs only through a coding. Similarly, if one first tries to
prove ¥ — ¢ and then appeal to

S+ Prg(TyT) exactly if S + y

to arrive at a proof of ¢, the relation holding between the formal proofs obtained
is not that of containment. This could not be changed by adding an axiom schema
S+ Prs(Ty™) e y to the system, because that is inconsistent, and would not be
changed by adding the admissible rules corresponding to (1.48), because the device
of an admissible rule introduces indirection in its own way: it indirectly presents a
proof that uses only the rules that are constitutive of the system. However, Kreisel
also used his fixed point to prove

Theorem 4 (Formalised Lob) (Kreisel and Takeuti 1974, pp. 44-45) Let S be
a system as required for Lob’s Theorem. Then S + Prs("Prs(Te™) — @) o
Prs("¢™)

Being an equivalence, this is a strengthening of what Formalised Lob’s Theorem
would strictly be. If one now attempts to obtain a formal proof of Prs("Prs("¢™) —

45 By a coincidence, the final manuscript of their paper was accepted within days of Brouwer’s
death (December 8 and December 2, respectively; see Kreisel and Lévy (1968, p. 142)), so that
Kreisel had such applications well in mind when setting out to write the obituary from which (1.3¢)
is taken. A letter from Kreisel to Heyting of February 20, 1967 shows that by then preparation for
Kreisel and Newman (1969) had begun; and a postcard in the same direction of April 14, 1969,
that by then Kreisel was still working on it (Heyting, Bkre 690220, Bkre 690414).

46 See, besides Lob (1955) and Kreisel and Takeuti (1974), e.g. Smoryriski (1991).

(1.45)

(1.46)

(1.47)

(1.48)
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¢™) it would, since the right hand side is conceptually simpler than the left hand
side, be natural to do so via a formal proof of Prs("¢™) (and to obtain the latter, if
¢ € X0, by proving ¢ and appealing to Z?-completeness of S, which is a condition for
Kreisel’s proof). Thus, Prs("Prs("¢7) — ¢7) again is an A exemplifying (1.3c),
found from B = Prg("¢™).4

1.4 Cases independent of a proof of B
1.4.1 ‘Errors’

As we saw in the introduction, the immediate context in which Kreisel makes his
remark (1.3c) is one in which he states that implication, when understood as an
operation on contentual proofs and not (only) a formal connective, invites ‘errors
which are, formally, similar to Russell’s paradox in set theory’. He does not specify
any, but, by the time of writing the Brouwer obituary, he knew, through his own work
and personal contacts:

1. his paradox in an untyped A-calculus enriched with ‘notions’ (section 1.4.4.1);

2. Godel’s Paradox in Church’s system from1932-1933 (intuitionistic version) (sec-
tion 1.4.4.2);

3. Troelstra’s Paradox in the ‘theory of the Creating Subject’ (section 1.4.4.3);

4. Goodman’s Paradox in the ‘theory of constructions’ (section 1.4.4.4).

References are given in the dedicated subsections below. The main interest will
be in how features they have in common make them illustrate Kreisel’s re-
marks (1.3a)—(1.3c):

1. Each of these paradoxes turns on the existence of a particular proof whose
existence is, in effect, concluded to by an application of Lawvere’s Fixed Point
Theorem.

2. In each the existence of that particular proof entails

Ao (A-> 1)

for a certain proposition A.

The (extent of the) formal resemblance to Russell’s Paradox is clear if in the for-
mulation of these two features one takes sets instead of proofs for the objects. The
first feature distinguishes these proof paradoxes from the provability paradoxes, e.g.,

47 1t should be noted that the proof of the equivalence depends, in the direction from right to left,
on the acceptance of A — (B — A). As recalled on p. 7 above, this is not acceptable on every
view of constructive logic.
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“This proposition is not provable’ or the Myhill-Montague Paradox; I will briefly
return to these at the end of this section.*8

It can be argued that in the reasonings embodied in these proof paradoxes an error
has been made, to the extent that it can be argued that (1.49) leads to L. It is a well
known general fact that if one has A and B and a proof of

Ao (A—>B),

then positive implicational logic suffices to prove A and then B from the two entailed
implications

A — (A > B)
and

(A—>B)—>A.
One first derives the contraction of (1.51) by

[A]® A— (A — B)
[A]Y A— B

Ll

A— B

and then composes

(153)  (1.52)
A

Finally,

(1.54)  (1.53)
B

The proof of A from the premiss (1.50) proceeds according to the pattern Kreisel
indicates in his remark (1.3c);*° the presence of that premiss can be seen as a way of
expressing within the proof itself that only ‘some A’ are being considered, namely
those for which that equivalence holds. Also, because of this premiss, the proof of
A does not require us first to prove B, unlike those in sections 1.3.1 and 1.3.3; and
unlike those in section 1.3.1, but like those in section 1.3.3, when setting out to make
inferences from the hypothesis A, the proposition B (or at least the open B(x)) has
already been identified.

43 In their discussion of Goodman’s Paradox, Dean and Kurokawa (2016), following a suggestion
of Weinstein (1983, p. 264), emphasise the (as they are aware, limited) extent to which it resembles
Montague’s; the present approach, the extent to which it is, at the same time, different.
49 Our reason to present the derivation of (1.51) from (1.50) separately from the derivation of
contraction in (1.53) is that we want to refer to the latter also independently of (1.50).

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)
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In the paradoxes at hand, B = L; in Russell’s, moreover A = a € a for a particular
a.SO

In the reconstructions of the proof paradoxes below, the use of logic is limited
to positive implicational logic (as above), applied to (informally) decidable propo-
sitions. While that use of logic is correct on the Proof Explanation, it can be treated
truth-functionally; from an intuitionistic perspective, one would say that the latter
treatment is just another, simpler application of mathematics to the language of
mathematics.

There are of course many A and B for which (1.50) holds unproblematically; as
Van Benthem (1978, p. 50) reminds us, in his discussion of Lob’s Paradox,

(Ao (A—>B)) o AAB

is a tautology.> The present discussion, however, concerns A and B for which the
existence of a proof prior to one of (1.50) is not assumed, and where (1.50) is all we
know about A. The naturalness of this formal proof of A then simply is that of natural
deduction. (We will see that this is somewhat different in the case of Goodman’s
Paradox, where we have an A that is naturally proved via a proof of A — B, but
where a proof that furthermore includes a proof of (A — B) — A, while possible,
passes via a proof of A, and is in that sense not natural.)

There are several ways in which the paradoxes may be avoided by rejecting
something in the above derivation. For example, insisting that hypotheses can be
used only once, as in linear logic, would make contraction (1.53) impossible; the use
of subproofs can be restricted in a way that rules out (1.54) (Fitch 1952, p. 109, and
Rogerson 2007 for further discussion); or one may, more vaguely, suggest that we
have ‘a wrong idea of [the] logical force’ of propositions of the form A — (A — B)
(Geach 1955, p. 72).52 Any such choice leads to narrower conceptions of constructive
proof than the intuitionistic one which Kreisel was interested in, as were the other
originators of the paradoxes discussed below. For them the cause of the problem
must lie in the way in which A was concocted in the first place.

In contrast to proof paradoxes, provability paradoxes turn not on explicitly formu-
lated properties of a particular proof, but on the existence of any proof whatsoever of
a certain self-referential sentence or proposition about provability. Thus they would

50 That it is possible to have a derivation of ‘Russell’s antinomy without negation, with exclusive use
of the positive propositional calculus’ was observed in those terms (in German) by Godel towards
the end of 1940, in his Arbeitsheft 7: ‘Russell Antinomie ohne Negation mit alleiniger Verwendung
d. pos. Aussagenkalkiils’ (Godel, 5¢/19, item 030025, backward direction, p. 7). (A note on p. 12 is
marked January 1, 1941.) He labels contraction, in his version (p D (p 2 ¢)) D> (p D g), with
‘Entscheidende Formel’. He could have gone on to generalise to the paradox found and published
by Curry (1942), but apparently did not.

5t Note that a proof from right to left involves the axiom B — (A — B) that, on their respective
understandings of the Proof Explanation, Heyting would accept, but, arguably, Brouwer would not
(in general); see p. 7 above.

52 Kreisel knew Geach well at the time (letter from Kreisel to Derus, September 3, 2004, in Derus
(2020, p. 127)), and aptly connected Geach’ paradox (a rediscovery of Curry’s Paradox) to Lob’s
paper when writing about the latter for Mathematical Reviews (Kreisel, n.d.); my attention to the
latter fact was drawn by Benthem (1978, p. 55).
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not serve to illustrate Kreisel’s remark (1.3a); but, more importantly for the present
discussion, they do not illustrate his remark (1.3c) either.53 This will be illustrated by
Myhill’s Paradox (Myhill 1960, pp. 469—470).>* Montague’s Paradox was originally
formulated for necessity instead of provability, but is otherwise the same.>> Assume
that we have a formal system containing primitive recursive arithmetic, an informal
provability predicate B on sentences, the reflection axiom schema

FB("pT) - p,
and the inference rule
_L_ R,
B("p™)

where p must have been demonstrated. By the Diagonal Lemma (p. 21 above),>°
there is a sentence pq such that

Fpo e (B(Tpo™) — 1).

53 Independently of Kreisel’s remarks, the main question about provability paradoxes is, in a
Brouwerian setting at least, whether the sentences or propositions that figure in such paradoxes
have any mathematical significance at all (Petrakis (n.d.); Dean (2014, p. 178)).

54 Godel’s Arbeitsheft 16 (Godel, 5¢/28, item 030034) gives on p. 89 what seems to be the first
appearance of Myhill’s Paradox; I do not know whether Godel at some point showed it to Myhill.
The note is undated, but earlier in the notebook, there are notes on his own Russell paper and on
the general theory of relativity. We here use Godel’s notation. The two axioms and the inference
rule that are used for B are as in Godel (1933a), but compared with that note, here the notation
for implication is as the intuitionistic one, and negation as the classical. Instead of a P such that
P = ~B(P), which would be the analogue to (1.60) in the text, the P used is such that ~P = B(P).
Constructively that does not amount to the same; but, as seen in the justification of step 6 below,
Godel reasons classically.

~P = B(P)
[0.] B(P) > BB(P)
1. ~P > B(~P) aus dem Vorhergehenden wegen BP = ~P
2. B(P) > ~B(~P) wegen Ax(ioms) fiir Widerspruchsfreiheit
3. B(P)>~~P wegen 1 2 und Aussagenkalkiil
4. B(P)>~P weil BP = ~P und Aussagenkalkiil
[5.] ~B(P) wegen 3 4 und Aussagenkalkiil
[6.] P wegen ~BP = P
[7.] B(P) wegen Ax(iomensystems)

In step 2 is meant the axiom B(p) D p, and in step 7 the inference rule ‘From demonstrated p,
conclude to B(p)’. In step 3, Godel first had written P instead of ~~P and then crossed it out.
(Transcription from the Gabelsberger MvA.)

55 For comparison of the paradoxes of Goodman and Montague, see Weinstein (1983, pp. 264-265),
Dean (2014, pp. 164-165, p. 188n17), and Dean and Kurokawa (2016, pp. 40-44).

56 The Diagonal Lemma can also be shown using the Fixed Point Theorem (see the next section),
so in that sense Myhill’s Paradox, too, can be seen as an application of the latter.

(1.58)

(1.59)

(1.60)

(1.57)
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Myhill derives a contradiction from (1.58)—(1.60) and classical reasoning, but pos-
itive implicational logic suffices. Decompose (1.60) into two implications. With
contraction provided by (1.53), we then first derive

E(l‘po‘l) — Do pPo — (E(rpo-l) - J_) transitivity
B("po") = (B("po") — 1) ’

— contraction
B("po") — L

use that in

(1.61)  (B("po”) = 1) = po
Po s
——R
B("po™)

and again in

(1.62) (1.61)
1

Although the proof of B(" po ™) in (1.62) proceeds via a (0-step) proof of B(" py7) —
Do, as the latter is a premiss in (1.61), it does not exemplify Kreisel’s remark (1.3c), as
it contains no subproof of (B("pg™) — po) — B("po™). Nor can it be restructured
to that effect, as the rule R cannot be used if there is an open assumption.>’

1.4.2 Lawvere’s Fixed Point Theorem

In the reconstructions of the proof paradoxes below, a central role is played by the
following result.>8

Theorem 5 (Fixed Point Theorem) (Lawvere 1969) Let A and B be any objects in
a category with a terminal object 1 and finite products. Suppose that there exists a
morphism g: A X A — B such that for every f: A — B there existsana: 1 — A
that represents it via g, in the sense that for all x: 1 — A, <a,x >g = x f. Then for
all h: B — B there exists a morphism b: 1 — B such that b = bh.

57 A natural and to my mind correct reaction is to say that this reflects a forgetfulness of this
formalism with respect to the thought it formalises: we justify the inference rule R (1.59) by pointing
to the derivation leading up to its premise, but that derivation is not represented in its conclusion.
Artemov (2001) presents a Logic of Proofs (LP) that corrects this, Fitting (2008) extends that into
Quantified Logic of Proofs (QLP), and Dean (2014) uses the latter to analyse the Myhill-Montague
Paradox. Thereby the provability paradox (which does not mention any particular proof) becomes
a proof paradox (which does). Dean and Kurokawa (2016, section 5.5) discuss their reconstruction
of Goodman’s Paradox in terms of QLP. Note that the Logic of Proofs is not an analysis of the
Proof Explanation (Artemov 2001, pp. 2-3).

58 Thus, these reconstructions add to the many examples given in Yanofsky (2003).
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Proof Leta g and h as described be given. The diagonal morphismA4: A — AXA
sends x: 1 — A to <x,x>. Define the morphism k: A — B as the composition
Aagh:

By hypothesis, k is represented by some a: 1 — A. Now consider ak: 1 — B. By
representation of k, ak = <a, a >g; by definition of k, ak = <a, a >gh. Hence ak
is a b as sought. O

The following points will be useful for the purposes of the present paper:

1. If the hypothesis of the theorem is satisfied constructively, the conclusion holds
constructively.

2. The construction in the proof also goes through if the definition of the f: A — B
depends on parameters, so that for example f,,: A — B leads to a fixed point b,,.
(This plays arole in the reconstruction of Goodman’s Paradox in section 1.4.4.4.)

3. If A and B are objects in a category where the objects are collections, the
existence of amorphisma: 1 — A corresponds to truth of the propositiona € A,
and the composition a f to the application f(a). This is the case everywhere in
the present paper.>®

4. The definition of f: A — B is presupposed in that of a representation a of it,
whence the latter definition is impredicative, as a lies in the range of arguments of
f. A predicative characterisation of provably the same object may or may not be
simultaneously available. If not, then this definition is ‘critically impredicative’.
The use of the term ‘critical’ here comes from Bernays (1962): it is such cases
that raise the question whether the definition is constructively acceptable. (See
section 1.4.5 for a quotation and further discussion.)

5. The condition on g has the form Vf 3a R(f,a). This entails that there be a
choice operation F, i.e., AFYf R(f, F(f)), and we can set a = F(f).®° F is
typed as (A — B) — A; it is a selection functional. The verification that the
element a = F(f) is of type A corresponds to a proof of the proposition A
from proofs of the propositions A — B and (A — B) — A. We saw a similar
situation when discussing proof skeleton (1.14). It also presents a contrast: there,
an element b of B was used towards constructing a selection functional; here, it
is the reverse.

59 In a specifically intuitionistic context, such objects would be either denumerably unfinished
sets or species. For the respective definitions of these concepts, see the comment on (1.127), and
quotation (1.128).

60 The intuitionistic justification of choice principles depends on their being construed intensionally;
results to the effect that choice implies the Principle of the Excluded Middle (Diaconescu 1975;
Goodman and Myhill 1978) require an extensional construal (Martin-Lo6f 2006).

(1.64)
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6. The condition on g is, in asking for a representation of every f: A — B, stronger
than required for the proof, which uses only representability of morphisms
A — B composed like k, with varying /. This was observed in Yanofsky (2003,
p. 378), and is exploited in the proof of the Diagonal Lemma for Terms just
below. ot

7. The proof of the theorem in effect constructs a choice operation H and puts b =
H(h). Thus, YVh3b(b = bh) is proved viaVhIb(b = bh) < IHVYh(H(h) =
H(h)h) and a proof of the right hand side. This yields an overall proof with
skeleton (1.15).

The existence of a representation of each f: A — B via an appropriate g, required
by the hypothesis of the theorem, will have to be justified by an appeal to some general
principle. In Russell’s Paradox, that role is played by unrestricted comprehension.
In the other paradoxes analysed below these are principles of the form:

If we have a performable operation (act) for assigning a construction (ob-
ject) to another construction (object), then to this operation corresponds a
function(al), which is itself a construction (object). 62

The recognised operation serves to define the function(al). Thus, in a category
where the object A is the class of all constructions, and morphisms are performable
operations, the morphisms A — A are themselves very much like elements of A,
and can be identified as such. The resonance of (1.65) with the introduction to
Godel’s Dialectica paper, with its emphasis on ‘Denkgebilde’ (1958, p. 280), is
intended: the concern here is with constructivity as a mode of mental operation,
reflection on which leads to the introduction of constructions as objects. Since the
perspective from which I look at comprehension and principles of the form (1.65) is,
for the present purpose, determined by their role in applications of the Fixed Point
Theorem, I will use the umbrella term ‘representation principles’.

A common alternative to the Fixed Point Theorem in presentations of paradoxes
is the fixed point combinator ¥ = Ay.(Ax.y(xx))(Ax.y(xx)), which has the property
Yz = z(Yz) for any term z. An apposite example in the present context is the
reconstruction of Goodman’s Paradox in Dean and Kurokawa (2016, p. 43). But by

6l As I was finalising the present paper, my attention was drawn (by Andrei Rodin) to the preprint
Roberts (2021). Following up on Yanofsky’s observation, there the general question is answered
what the weakest hypothesis is that allows to prove the conclusion of the Fixed Point Theorem.
Roberts shows that (/) a more general notion of product than the standard one suffices (which enables
him to state, in Example 1, a fixed point result of the same kind that would have been missed under
the original hypothesis), and (ii) quantification over all or certain morphisms f: A — B can be
done away with. However, the conclusion is still dependent on the presence of an element of A that
represents one particular morphism on all of A. (See the hypothesis of his Theorem 14, and the
gloss on it: ‘if there is some ap € A such that F(ap, —) = o o Fo §a°, where the placeholder is
one for elements of A.) That is crucial to my discussion of the Proof Paradoxes in section 1.4.5, as
this means that the impredicativity noted in point 4, on which my diagnosis will depend, remains.
62 Here I am referring to the threefold distinction thematised in Sundholm (1983, p. 164) between
construction as (1) a process as it unfolds in time; (2) an object obtained as the result of such a
process; (3) a construction-process as object (the objectification of a process of construction). For
each one can furthermore distinguish between types and tokens (Atten 2018, pp. 1596-1597).
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itself the existence of such a fixed point term Yz is a syntactical phenomenon in
a formal theory; for an analysis of paradoxes in contentual mathematics, which is
where they are problematic and where they must be resolved, 3 an approach using the
Fixed Point Theorem is more direct, because it shows how fixed points are brought
about in contentual terms.%4

I will end this section with an aside that illustrates of point 6; it is not part of the
discussion of the paradoxes. It is a proof of the Diagonal Lemma for Formulas that
uses the proof of the Fixed Point Theorem while requiring representability only of
k; compared to the version proved in section 1.3.3, this one is for a theory with a
richer language. The proof takes the form of a corollary of a Diagonal Lemma for
Terms.

Theorem 6 (Diagonal Lemma for Terms) (Jeroslow 1973). % Let S be a system that
contains primitive recursive arithmetic and has symbols for all primitive recursive
functions. Then for every formula ¢(x) there is a closed term t such that S + t =

To(t)™

Proof (adapted so as to use the Fixed Point Theorem). In the category of sets, let A
be the set of Godel numbers of the symbols in S for all primitive recursive functions
N — N. Let B be the set of Godel numbers of closed terms in S. Define

g:AXA—>B
< l_x-l’ I_y'l > rx(l_y_|)1
and
h:B— B
l't'l — I—(p(l)-l
Following the proof of the Fixed Point Theorem, k: A — B is defined as Asgh,
which has the action "x7 — "(x("x™)) 7. This action can also be effected by a

certain primitive recursive function a, in the language of S symbolised by a, and
with a7 € A. The latter therefore serves to represent the morphism k via g.6°

63 To my mind, the suggestion favourably brought up in Dean (2020, p. 585) that paradoxes might
be resolvable by mapping them to undecidability results in certain formal theories involves a shift
of topic.

64 Incidentally, the combinator Y can be obtained by putting the Theorem to metamathematical use:
Take for A and for B the set A of A-terms; define g = Ax.D>x(D;x), where the D; are projection
operators; let the representation principle be: morphisms A — A are themselves given by A-terms
(at least the morphisms used in the Fixed Point Theorem, see item 6 on p. 30); and let h, be the
family of morphisms Ax.yx. For each h,, this yields a fixed point (1x.y(xx))(Ax.y(xx)), and
now abstraction on y gives Y. (This derivation has been adapted from Li (2021), were also some
related fixed point combinators are derived.)

65 Jeroslow (1973, p. 360) mentions that it was his referee who had isolated this lemma from one
of the proofs in Jeroslow’s manuscript. Santos (2020, pp. 26, 38) shows that the Diagonal Lemma
for Formulas does not, in turn, entail that for Terms.

%6 By point 6 on p. 30, it suffices here to have a representation principle for morphisms A — B that
are composed like k and that are effectible by a primitive recursive function.

(1.66)

(1.67)
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We now have the fixed point b = "ak = bh = I'<,0(E($))"‘, whence a("a™) =
ro@(a") " andra("a") = "p@(a))". o

In this proof and in that of similar metamathematical theorems, the set A can be

defined predicatively, so that the definition of a representation of k, while impred-
icative, is not critically impredicative.

Corollary 1 (Diagonal Lemma for Formulas) For every formula ¢(x), there is a
Sformula W such that + < ("¢ 7).

Proof Apply the Diagonal Lemma for Terms to ¢(x), and set ¢ = (,o(E(raT"')); then

Fy o p@(Tan) by def. y
Fy o @o(Te(@("a’))") by the Diagonal Lemma for Terms
F o o(TyT) by def. y

1.4.3 Russell’s Paradox

This paradox (Russell 1903) was one of the example reconstructions in Lawvere’s
paper on his Fixed Point Theorem (1969, p. 137). It is included here (i) to enable a
direct comparison of the proof paradoxes below with this well known one, and (ii) as
part of the background to the paradox devised by Kreisel, who actually made that
comparison (as seen in (the discussion of) his (1.79)—(1.80b) below.)

For a set-theoretic version, let A be the universe of all sets, and B the set of
truth-values {T, L}. Define

g:AXA—>B

T ifxey
<Y, X > .
1L ifxey— 1L

According to the unrestricted comprehension principle, for every formula with one
free variable ¢(x), there exists the set {x € A | ¢(x)}. Hence, for arbitrary f: A —
B, there exists the set {x € A | f(x) = T}. That set represents f via g.” If f is given
to us as the characteristic function of a predicate P, then that set is definitionally
equalto {x € A | P(x)}.

Now apply the Fixed Point Theorem, taking for / the negation function

67 The circumstance that here the set is seen as a representation of its characteristic function, instead
of the more usual converse view, is of course a consequence of the category-theoretical view of an
element of a set as a morphism from a terminal object.
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h: B— B
TH L
1 =T

Then k is the characteristic function of the predicate P(x) = x € x — 1, and is
represented by the set a of all sets that do not contain themselves. Evidently, the
impredicativity in the definition of a is critical. The conclusion b = bh here means,
in propositional terms, that a € a < (a € a — L1). Now one one derives L as
in (1.50)—(1.55).

For a property-theoretic version, let A be the universe of all objects, including
properties, and replace € by the exemplification relation €. The unlimited abstraction
axiom states that for every unary predicate P the property Ax.P(x) exists. With
the Fixed Point Theorem, we find the property @ = Ax.(x € x — L) of being not
self-exemplifying, for whicha e a & (a e a — L1).

Russell (1906, pp. 35-36) offered a generalisation of the set-theoretical version;
it is this generalisation that Kreisel appeals to in (1.80a) below. In the present terms:
Let A be the universe of all sets, u, x, and y variables ranging over A,and j: A — A
a morphism such that

Yu(Vx(x eu — P(x)) - Iy(y=jw) AP(Y) A(y €u— 1))).

Russell calls a set u for which the condition holds, as well as the process of applying
J toit, ‘self-reproductive’, in that the result of this application is again a set for which
the condition holds (Russell 1906, p. 36). Define

g:AXA—> B

T ifj(x)ey
<Y, x> o
1L ifjx)ey—> 1L

By unrestricted comprehension, for every f: A — B, there exists the set {z € A |
Ax(z = j(x) A f(x) = T)}. That set represents f via g. Taking for / the negation
mapping, we conclude to the existence of a set a such that j(a) € a & (j(a) € a —
1). The earlier version is the special case where j is the identity map and P(x) is
x € x — L. For let u be any set for which Vx(x € u — (x € x — L1)). Instantiating
x with that « and contracting as in (1.53) yields # € u — L, from which each of
the three conjuncts within the scope of the existential quantifier in (1.70) follows
immediately.

(1.69)

(1.70)

(1.71)
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1.4.4 Proof paradoxes

1.4.4.1 Kreisel’s Paradox

This paradox appears as part of Kreisel’s second presentation of his Theory of
Constructions in his ‘Mathematical logic’ (1965), in a volume edited by Saaty. The
aim of that theory, he explained in the first presentation, was to give ‘a formal
semantic foundation for intuitionistic formal systems in terms of the abstract theory
of constructions’ (Kreisel 1962a, p. 198), beginning with the logic. (The Theory
of the Creating Subject, which figures in section 1.4.4.3 below, was meant to be
developed into an extension.) The value of the exercise was seen not to lie in
conveying the meaning of the intuitionistic constants, but in technical applications
such as independence proofs. As Kreisel related to Heyting in a letter of October 5,
1961, Godel saw a further interest:

Godel regards this whole work as specially interesting from the point of
view of the paradoxes. For, on the one hand we use constructions without
type distinction, on the other, we avoid paradoxes by not allowing proposi-
tions as mathematical objects. (The rules of proof used in the antinomies
are intuitionistic: the question is why X € X cannot be expressed. Type dis-
tinctions are certainly not always observed, e.g. not in your explanation of
the logical constants, in particular of implication.) (Heyting, Bkre 611005)

A version of that last sentence is included in the published paper (Kreisel 1962a,
p- 202), but not of the rest of this remark. %3

Kreisel’s Paradox, as I call it here, is distinct from the paradox that has be-
come known as the ‘Kreisel-Goodman Paradox’, which is only found in Goodman’s
writings (on his modification of Kreisel’s theory),% and will be discussed in sec-
tion 1.4.4.4. The present paradox arises upon Kreisel’s introduction of two of the
main ingredients of his Theory of Constructions, unless further precaution is taken,
which he of course goes on to do. The one is ‘notions, that is, understood, decidable
properties of mathematical objects’, where it is not required that such a decision
can be mechanised (Kreisel 1965, 2.13, 2.14). The other is a convention that, in
appropriate contexts, ensures totality of functions, in the interest of having a theory
with decidable equality. It consists in a modification of the ordinary meaning of
application:

68 | have not found a reply by Heyting in the Heyting or the Kreisel. The Heyting-Kreisel corre-
spondence began in 1952 with a letter from Kreisel, and seems to have ended (with a bang) in
1970; Heyting passed away in 1980. Given that Kreisel attended a lecture by Brouwer as early
as 1946 (Kreisel 1987b, pp. 146), it is regrettable that, for all we know, he did not also begin a
correspondence with him (Brouwer died in 1966). Would the reason really just be that Kreisel did
not like Brouwer and his style (Kreisel 1987b, pp. 146-147)? Two ideas of Brouwer’s that are not
prominent in Heyting’s thinking but that Kreisel had a lively interest in are that of proofs as infinite
objects (see footnote 38 above) and Creating Subject arguments.

69 On this last point, see Dean and Kurokawa (2016, p. 40).



1 Proofs of Avia A —» B 35

2.15. The Meaning of the Primitive Concepts. It is not to be expected that
we have a clear idea of the extension of the concept of mathematical object;
[. . .] But the application operation requires a careful interpretation.

2.151. Total functions. [. . .] [If] for the objects a, b as given or conceived,
no sense is assigned to a(b), then a(b) is put = a, say. (Cf. in type theory: if
no sense is assigned to a € b, we regard a € b as false.) Obviously, for any
proposed axiomatic scheme one has to verify its validity for this convention.
This is illustrated by considering

2.152. The A-Calculus. The naive proposal (parallel to the principle: every
property defines a collection) is this. For every term ¢[x], built up by means
of the application operation from constants and containing the variable x,
there is a function Az¢t[z] for which we have a proof a, : x - (1zt[z])(x) =
t[x].7° This is excluded by the paradoxes. There is a notion 7, 7(x) = 0 if
x # 0, n(x) = 1 if x = 0; it is a notion since any clearly conceived object
either is conceived as 0 or not. Consider the term 77(x(x)); though, by the
convention of 2.151, it is well defined for each x, is there a clearly conceived
object ¢ (c: for Church) with ¢(x) = n(x(x))? No, since ¢(¢) and n(c(c))
are different. In short, the existential assumptions implicit in unrestricted
A-term formation and conversion are not correct. The ‘rule’ c¢: for each x,
take the value n(x(x)) overlooks the tacit convention that, for x = ¢, the
value is also ¢(c). (Kreisel 1965, pp. 124—125, original emphasis)

Upon reading 2.151, to some it will occur to ask: What if ‘a(b)’ takes on a sense
only at a certain point in time? Or what if the sense changes? But one just looks at the
situation at the moment that the application is attempted. Time is made an explicit
parameter in one version of Godel’s Paradox and in Troelstra’s Paradox, discussed
in sections 1.4.4.2 and 1.4.4.3 below.

In his review of Kreisel’s paper for the Journal of Symbolic Logic, Vesley won-
dered ‘whether the system of 2.152 is intended to be a description of calculus of
A-conversion of Church XVII 76 (if so it is a misunderstanding and, in any case, the
attribution of the object ¢ to Church is in error)’.” The perceived misunderstanding
will have turned on the contrast between Church’s calculi — ‘so formulated that it is
possible to abstract from the intended meaning’ (Church 1941, p. 1) — and Kreisel’s
notions, which are properties that are understood. (Church 1941 is the one entry by
Church in Kreisel’s list of references.) For the paradox as such, this does not matter,
as we can view the role of the A-calculus here as a superstructure; and this agrees
better with Church’s earlier system from 1932-1933, with its underlying ‘intuitive
logic’ and postulates (Church 1932, section 4). Whether the attribution of the object
¢ to Church is justified will be addressed in a moment.

To see Kreisel’s Paradox as an application of the Fixed Point Theorem, note that
his proposal at the beginning of 2.152 can take the role of a representation principle.
Kreisel does not introduce an explicit application operation, but it seems faithful to
2.15 and 2.151 to define

70 [Note MvA] Le., we have a proof a, of (Azt[z])(b) =t[x/b], for all b.
7 The Vesley file in the Kreisel (21/6) contains no material related to this review.

(1.73)
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g:AXA—- A
j(x) iffor j and x as given or conceived,
<j, x> a sense is assigned to j(x)
J otherwise

where A is the universe of constructions. The case distinction is decidable (as above:
not necessarily by a mechanism, but by anyone who understands the meaning of
the terms involved), hence g is everywhere defined: that is, even though there is
no construction method for its domain, we see that, whenever we have made two
constructions j and x, we are able to evaluate g.

For h we take Kreisel’s n:

h:A— A

0 ifx#0
1 ifx=0

with the understanding that, since 7 is a notion, / is constructive. Now the Fixed Point
Theorem applied to g and 4 yields a morphism k: A — A whose composition is that
of Kreisel’s n7(x(x)), i.e., of h(g(<x,x>). By the chosen representation principle,
this morphism is represented by a construction of which we have a proof that it
is an everywhere defined function, and which, by reflection, therefore is one. This
function is Kreisel’s c. As c lies in its own domain, self-application makes sense,
and we have g(c,c) = h(g(c,c)). But that is impossible; in terms of propositional
logic,

c(c) =06 (c(c)=0—> 1).

Therefore, the function ¢ does not exist, and neither does the proof that it is total:
the ‘existential assumption’ invoked in 2.152 had given both. Note that the definition
of ¢ is impredicative, and critically so, there being no construction method for the
elements of the universe of constructions.

In the version of his Theory of Constructions that Kreisel goes on to develop,
he keeps the convention 2.151, but introduces in 2.22 a restriction on types in
A-abstraction that renders the representation principle invalid.”

7 ] take it that when Kreisel in his earlier presentation of the Theory of Constructions voiced doubts
about the consistency of one of its variants (Kreisel 1962a, pp. 200, 203), what he saw coming
ahead was a paradox like the one he came to formulate in 2.152. Related to this: In correspondence
with Goodman (Kreisel, 50/3), Kreisel notes that ‘~7 ( pg, x, T) has the properties of Church’s 7,
1(x) # x’. Here py is a construction that proves the extensional equality of T and T (as defined in
a manuscript of Goodman that Kreisel is commenting on), and 7 (a, b, ¢) is the two-valued term
defined in Kreisel (1962a, p. 203), interpreted as ‘the construction a is a proof that b and ¢ are
extensionally equal’. It is not clear to me whether Kreisel means to ascribe 77 to Church or only to
associate it with him, but am inclined to believe the latter, as I have not found it in Church. In that
same folder lies a note (in the handwriting Kreisel used when writing to himself) relating a paradox
of the self-application of Ax.7(p, ~xx, T) to ¢ and 77 as in 2.152 (but without that reference). The
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The formal resemblance of Kreisel’s Paradox to Russell’s is of course clearest
from their reconstructions in terms of the Fixed Point Theorem, and hinted at in less
general terms by Kreisel’s indication, at the beginning of 2.152, of the parallelism
between the function-forming principle formulated there and the principle that every
property defines a collection: it was in terms of that latter principle that he had
presented Russell’s Paradox earlier on in the same paper (see (1.80a) below).” But
of particular interest is to juxtapose 2.151 and 2.152 to the presentation of Russell’s
Paradox in Church’s unpublished Princeton lecture notes ‘Mathematical logic’ from
1935-1936, which runs as follows. There exists a propositional function Ax.~x(x).
Consider the self-application P = (Ax.~x(x))(Ax.~x(x)). Then P converts to ~P
and vice versa, from which it would seem to follow that P is a proposition that is
both true and false.

The conclusion to be drawn is that the range of the independent variable of
some ppfns [i.e., propositional functions] is not and cannot be the universe.
For, in the case of the ppfn Ax.~x(x), the Russell paradox would result, not
only from the assumption that the range of the independent variable of this
ppfn was the universe,

but equally from the assumption that it was possible to define a ppfn f such
that f(a) = {Ax.~x(x)}(a) whenever the expression {Ax.~x(x)}(a) had a
meaning and f(a) = F in all other cases. (Church 1935-36, p. 17)%

The possibility for generating Russell’s Paradox in (1.77b) is not mentioned in
Church’s other presentations (1932, p. 347; 1933, pp. 860-861; 1941, pp. 70-71).
His solution is to say that P is not meaningful because it has no normal form
(Church 1935-36, p. 17; 1941, pp. 15, 70-71), and the same could be said about
f(f). But one now notes that Kreisel, in effect and perhaps in intention, regains
the paradox in (1.77b) by generalising propositional negation to an operation that is
meaningfully applied to any object and that, to put it anachronistically, likewise has

note is not dated, but the page also contains typewritten corrections to what seems to be a version
of the Saaty paper.

73 As far as the presentation of these paradoxes is concerned, one notes that 2.152 and the un-
numbered presentation of Russell’s Paradox on pp. 100-101 contain no explicit reference to one
another.

7 Kreisel of course also knew this passage in Godel, which echoes Church’s:

It should be noted that the theory of types brings in a new idea for the solution of the
paradoxes, especially suited to their intensional form. It consists in blaming the paradoxes
not on the axiom that every propositional function defines a concept or class, but on the
assumption that every concept gives a meaningful proposition, if asserted for any arbitrary
object or objects as arguments. The obvious objection that every concept can be extended
to all arguments, by defining another one which gives a false proposition whenever the
original one was meaningless, can easily be dealt with by pointing out that the concept
‘meaningfully applicable’ need not itself be always meaningfully applicable. (Godel
[1944] 1951, p. 149)

(1.77a)

(1.77b)

(1.78)
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no fixed points.” The role of Kreisel’s function ¢ is analogous to that of Church’s
f, and Kreisel’s convention and Church’s assumption make these functions total in
the same manner. In this sense, while attributing ¢ to Church would be mistaken,
there would be room for associating it with him. (As for 1, see footnote 72.) Coming
to circumstantial evidence, we note that Kreisel wrote the Saaty paper while in
Princeton (Kreisel 1965, p. 191), so he may have discussed the matter with Church
(although no conversation with him is acknowledged), or at least have read Church’s
lecture notes there.”
Kreisel gives a diagnosis of his Paradox in a letter to Godel of April 1, 1968:77

Vielen Dank fiir die angenehmen und niitzlichen Gespriche. Es ist nur
schade, daf} ich bei unserer Diskussion der Church’schen Paradoxie eine,
m.E. wesentliche, Unterscheidung nicht geniigend betont habe, ndmlich
zwischen Verfahren und Funktion (oder Konstruktion).

Eine FunkTioN f ist ein Tupel (Verfahren V¢, Menge D ¢; Einsicht E ¢
daB V¢ auf D ; definiert ist). Noch etwas priziser: Verfahren fiihren immer
(sozusagen hereditdr) von Verfahren + Definitionsmenge zu Verfahren +
Definitionsmenge einerseits, von Einsichten zu Einsichten andererseits. Man
vermischt nicht das Objektive und Subjektive.”

Es gibt natiirlich Verfahren, die sich nur auf Verfahren (ohne Erwihnung
der Definitionsmenge des Arguments) beziehen, z.B. Konstante.

CHURCH’SCHE PARADOXIE (siehe 2.151,2.152 auf S.124-125 des Artikels
»Math. Logic“, in Saaty). Natiirlich ,,beschreibt* n(x(x)) ein Verfahren,
worin die Definitionsmenge D . selbst eingeht (von einem Verfahren V, kann
man nicht entscheiden, ob V, fiir das Argument V, definiert ist und S.125,
Z.3-5, entsprechen keinem Verfahren).”® Nennen wir dieses Verfahren V.,
wie im Saaty Band.

Ehe man zur Church’schen Paradoxie kommt, mufl man noch ein D,
angeben, von dem man weif3, dal V. auf D definiert ist (also eine Einsicht
E., die von D, abhingt).

Alles, was die Church’sche Paradoxie zeigt, ist m.E. dies: Obwohl wir
ein Verfahren V. haben, haben wir mehrere Funktionen, abhingig von D...
Und (V,, D) ist nicht in D.: V, ist also auch auf D, U (V,, D) definiert.

7 The presentation of Russell’s Paradox in (Curry 1934, pp. 588-589) uses N instead of ~, and a
predicate Pr that is true of propositions; thus even more readily suggesting their reinterpretation or
replacement by something more general.

76 The Church file in the Kreisel (3/6) contains no material related to this.

77 A date in the middle of the period during which he was working on the Brouwer obituary.

78 [Note MvA] Godel underlines this sentence heavily and writes next to it: ,,Das ist seine Auflo-
sung*.

7 [Note MvA] The lines referred to occur in 2.151 quoted as (1.73) above: ‘[If] for the objects
a, b as given or conceived, no sense is assigned to a(b), then a(b) is put = a, say.’
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Ist das nicht analog zu Saaty, S.100-101 und Fufinote 4 auf S.101?
Beste Griifle, auch an Thre Frau (der es hoffentlich besser geht)
Ihr sehr ergebener G Kreisel

(Godel, 2a/91, item 011246)

‘Church’s Paradox’ is also the name Godel used for a similar paradox to be
discussed in the next section. Since differences between the paradoxes as presented
by Kreisel and Godel are important here, and these two paradoxes were, in their
specifics, not devised by Church, I will not use the name ‘Church’s Paradox’ for
either.

As Kreisel views things here, a ‘Verfahren’ is an operation that can be carried out
on one or more objects supposed to have been given, and is expressed in a rule with
free variables; unlike a function, it is given without a domain. The paradox is then
used to show that while the operation implicit in the notion 7 is applicable to any
construction, there is no function to the same effect.

At the end, Kreisel compares this to Russell’s Paradox, by referring to the pages
where he had given the latter in a form of the self-reproductivity argument (see (1.70)
above):

[T]here is a genuine problem: what properties define collections, particularly
if properties themselves are to be regarded as objects. This may be shown by
means of the paradoxes. If x is the collection of objects satisfying a property,
take {x} (whose only element is x) to be the property regarded as an object.
Let r (for Russell) be any collection satisfying (Vx)(x € r = x ¢ x), and
sor ¢ r. Thus,Vx(x e rU{r} > x¢x),rU{r} Drbutru{r} #r.In
other words, r is not the collection of all objects satisfying x ¢ x.

The “footnote 4° Kreisel refers to at the end of (1.79) is to this passage and reads:

One of the set theoretic definitions of ordinals takes the empty set 0 to be
zero: a — a U {a} as the successor function (and unions for limits). The
argument above is literally the proof that there is no greatest natural number
(greatest ordinal). (Kreisel 1965, pp. 100-101, original emphasis)

Or, as he put it in his earlier presentation of this analogy,

From this point of view the Russell Paradox does not seem more astonishing
than a child’s assumption that there is a greatest integer: we have overlooked
the fact that not every property has a definite extension. (Kreisel 1958,
p. 157)80

The analogy, then, is that just as collections that have the property ‘being a collection
of elements that do not contain themselves’ or ‘being a collection of ordinals closed
under predecessor’ are self-reproductive, so are collections that have the property
‘being a domain on which V. is defined’; hence, just as not every property has a
definite extension, not every operation (Verfahren) determines a function (construc-
tion).

80 We will come back to this remark on p. 70.

(1.80a)

(1.80b)

(1.81)
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While I have not found a reply letter by Godel, it is highly likely that he and
Kreisel discussed the latter’s diagnosis in one of their phone calls, or on one of
Kreisel’s visits to Princeton.® A plan for one such visit was mentioned by Kreisel
in between the letter of April 1, 1968 and the Buffalo conference, held in August of
that year.82

There is an undated but relevant note by Godel, found in his archive in a folder
titled ‘Undated notes filed with Kreisel corresp(ondence)’. It begins:

Auflosung der Church(’schen) Antin{omie) im Intuit{ionismus). Wie ist
sie in seinem System ausgeschlossen durch Weglassung der intent({ionalen)
Id{een)? Prog{ramm) meiner Dial{ectica) Interpretation erst sinnvoll, wenn
das aufgeklart (ist). Durch Typentheorie.

Wohl folgt: Es ist falsch, dass ich das mit einem Beweis fiir () mei-
ne (d.h. nur Bewusstmachung von etwas schon vorher angewand(tem)).
Sondern der Sinn ist ganz unabhéngig und das Church’sche Ax{iom) konnte

|| nur"durch eine Einsicht erhalten werden. auch 1

Uberhaupt Ax{iom) immer auch fiir diese doppelte Anwendung’

(Godel, 01/97, item 011327, verso)?®3

I read ‘Church’sche Axiom’ as a construal of the principle of A-abstraction as
an axiom schema for asserting the existence of certain functions, and the ‘doppelte
Anwendung’ as a reference to self-application. Godel takes the introduction of typing
and the ensuing restrictions to eclipse part of the universe, such as we can direct
intentions to. We will see, in Fig. 1.2, his insistence on the existence of functions
that we are aware of as everywhere defined, and another expression of the general
view in (1.127). For now we note that it entails a rejection of the solution Kreisel
proposes to his paradox in his letter (1.79).

In Kreisel’s first published remarks on notions and functions after that letter —
the published version of his address at Buffalo — we see that he has abandoned
the categorical distinction he had appealed to between Verfahren and Funktion
(Konstruktion), where the latter comes with a domain of definition but the former

8t In fact, Kreisel has said that ‘My main contact with Godel was in private conversations during
the years I spent at the same Institute, not in correspondence’ (letter of November 2, 2004 to Kai
Kikeld, quoted in Derus (2020, p. 128)).

82 In a letter from Kreisel to Godel, July 11, 1968 (Kreisel, 50/3). Incidentally, Godel did not attend

that meeting, but that is not for lack of trying on organiser Myhill’s part (in his letter of November
9, 1967):

Is there any possible way in which we could persuade you to be here, even for a short
time? We could drive you from Princeton, charter a plane if you’d prefer that, make, of
course, any kind of arrangements for your accomodation and that of your wife that you
would require — in short: the entire resources of the University would be at your disposal;
for we are sure that your presence, for as long or short a time as you would have to say
(ideally the inaugural address; but there would be no obligation for you to say anything)
would contribute more to the success of our conference than that of any other individual.
(Godel, 2b/109, item 011583.5)

83 Transcription Robin Rollinger, Sebastian Luft, and MvA.
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does not. Thus he comes closer to Godel’s view in (1.83) and the footnote in Fig. 1.2.
I take this to be indirect evidence of a discussion with Godel in the meantime.
Kreisel’s view now is as follows.

Let us scrutinize a bit the basic relation:

For some given notion «, the construction (more precisely, judgement) ¢
proves ad for variable d.

[...]

If we think of the variable d as ranging over the, so to speak, absolutely
unattained universe of all constructions, it seems dubious that there should
be any construction (something that we grasp completely) which proves ad,
even if we have convinced ourselves that, for any clearly given d, « is indeed
a well defined notion.

[...]

On the other hand, if we take some particularly simple notion ad, say
Bd > Bd (where I use » for truth functional implication [...]) we simply
have a proof. Whatever else may be in doubt, we have a perfectly clear idea
or ‘schema’ for verifying Sd » Bd. The kind of judgement involved here
plays the same role among proofs as, say, the identity operator plays among
functions. It is simply a mindless ritual to chant: for each type we have a
different identity operator. (Though, trivially, for each domain D the set of
pairs {<x,x>: x € D} depends on D.)

The obvious and immediate conclusion is: just as there are some opera-
tions which are defined for arbitrary operations (in the non-trivial sense of
giving distinct values for ‘lots’ of arguments, e.g. the identity operator, the
composition operator etc.) so there are some notions @ which can be proved
by constructions to hold for unrestricted d. The definition of other operators
depends essentially on a given domain (‘essentially’ in the sense that the
function is made total by a trick of, say, defining its value to be zero outside
the given domain; cf. [21], 2.151, pp. 124-125).

In the case of notions a, the corresponding restriction concerns the
variable d. (Kreisel 1970a, pp. 129-130)

This entails that a diagnosis of his paradox must, unlike the one in (1.79), depend on
something other than typing.

1.4.4.2 Godel’s Paradox (intuitionistic)

There is a paradox associated with Godel that comes in both a classical and an
intuitionistic version; the latter is a proof paradox. They are reproduced here from
Godel’s archive in Fig. 1.1 and Fig. 1.2. These notes were written back to back, and
kept in an envelope marked ‘Antin{omien) des Intuit(ionismus) und der abs(olute)
Beweisbarkeit’.34 (Another intuitionistic paradox in that envelope is reproduced in
Fig. 1.3.) Godel named the classical version ‘Church’s Paradox’, ‘because it is most

84 A pencil note on it states that it was ‘filed with Wang corresp(ondence)’.
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easily set up in Church’s system’ (Wang 1996, p. 279, 8.6.24).85 Wang proposes to
call it ‘Godel’s Paradox’; for the reason given on p. 39 above, so will .

I do not know when Godel first thought of either version, which of the two came
first, or how much time there was between them; but I will suggest that at least the
particular way in which Godel presents the intuitionistic version in Fig. 1.2 is a direct
reaction to Kreisel’s Paradox. In the previous section, it was remarked that Kreisel
may have arrived at his paradox by generalising Church’s quoted in (1.77b) above.
That route was, of course, at any point open to Godel as well. (For the principal
purpose of illustrating the ‘errors’ referred to in Kreisel’s remark (1.3a), obviously
neither the considerations in the present paragraph, nor similar ones below, matter.
But they are motivated by a perceived intrinsic interest, and by the idea that they
may lead to clues as to what, in the sources, should be read in the light of what.)

Godel never published his paradox. Kreisel included the classical version, in a
slightly different presentation, in the proceedings of the Logic Colloquium 69, call-
ing it ‘a standard “functional” paradox’, without an attribution to Godel (Kreisel
1971c, pp. 190-191). Wang included it in his Logical Journey, based on his con-
versation with Godel of October 18, 1972 (Wang 1996, p. 278-279). No mention is
made of Kreisel.8¢ The intuitionistic version is referred to in Wang’s book (p. 279),
but not included.

The paradox is, Godel comments, ‘a simpler version of the familiar paradox of the
concept of not applying to itself” (Wang 1996, p. 279, 8.6.24) — the property-theoretic
version of Russell’s Paradox. Wang’s rendition of the classical version (in 8.6.25)
follows that in Fig. 1.1 very closely; Godel evidently had the latter at hand.8” Having
shown it, Godel made some points that also apply to the intuitionistic version:

8.6.26 The derivation above has no need even of the propositional calculus.
Definition by cases is available in Church’s system.%8 It is easy to find
functions which are everywhere defined. Unlike the classical paradox,??
there is no need to assume initially that the crucial concept (or function) of
not applying to itself is everywhere defined. The paradox is brief, and brevity
makes things more precise. By a slight modification, using provability, it
can be made into an intuitionistic paradox. (Wang 1996, p. 279).

85 Godel reviewed Church (1932) and Church (1933) for the Zentralblatt, but without comments
(1932; 1934). The inconsistency referred to at the end of Godel (1934) will have been the one
established by Kleene and Rosser in the Spring of 1934 — Godel was in Princeton from October
1933 through May 1934 (Kleene 1981, p. 57; Wang 1987, p. 95).

86 That may of course be an artefact of Wang’s representation. But in view of the date, one can’t help
recalling the fact that the to all appearances last letter from Kreisel to Godel was dated October 1,
1972. In that letter, Kreisel had expressed some grievances against Godel, and reflected that ‘Nach
meiner Erfahrung mit vielen Menschen (nicht aufgrund ungepriifter “Theorien”) scheinen die
menschlichen Beziehungen eine gewisse natiirliche Lebensdauer zu haben’. As Parsons comments,
‘It is very probable that they never saw each other again’ (Parsons 2020, pp. 79, 83).

87 Godel wrote on the envelope (in shorthand): ‘erldutert’.

88 [Note MvA] As shown in Kleene (1934).

89 [Footnote MvA] This evidently refers to what Godel called ‘the familiar paradox’ above.
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Bew(eis) (0.):

Df. von E:
E(x)=0wennx #0

E0) =1 dann E(x) # x.
a = b bedeutet: a is the object b

Church Antinomie

Df. 0. Uberall definierte Funktion. sind iiberall definiert

Th. 1. Es gibt iiberall definierte Funktionen, zum Beispiel I (x), E(x), =
(von 2 Variablen).

Df. 2. F.x = F(x) wenn F eine iiberall definierte Funktion ist, sonst
=0. alle

Th 3. .isteine iiberall definierte Funktionund F . x =, F (x) fiir tiberall
definierte Funktion{en) F.

Df 4. H(x) = E(x . x). H ist (eine) iiberall definierte Funktion.

5. H(x)=H .x=E(x.x)
Th. 6. H. H=E(H.H)
andererseits 7 # ”

Fig. 1.1 Godel’s Paradox, classical (Godel, 12/52, collective item 060772). (Transcription from
the Gabelsberger MvA, advised by Robin Rollinger.)

Apparently Godel did not go on to elaborate that last point, and Wang seems not to
have asked.

To see Godel’s Paradox (intuitionistic version) as an application of the Fixed Point
Theorem,° first note the immediate correspondence between the functions in the
former and in the latter:

-=8
E=h

(where the equality is definitional). A is the constructive universe, and the chosen
representation principle is formulated in G6del’s footnote: for every totally defined
operation (performable series of acts) there is a function (which in the argument
is considered as a mathematical object), because these are identified. Note that the
case distinction in the definition of the application operation is decidable, and that
use is made of reflection: if B is a proof that g is everywhere defined, then g is
everywhere defined, therefore it can be applied to x. The composition of Gddel’s
G = E(x . x) is that of the morphism k, which has a representation as an object in
A, namely a = H = < B, G >. The definition of a is critically impredicative: it is an

90 Incidentally, by 1963 at the latest Godel was aware of category theory: he brings it up in a
letter to Bernays of january 9 of that year, including the rumour that someone (i.e., Lawvere) had
formulated the axioms of set theory in category-theoretical terms (Godel 2003a, p. 220). There is
also a reference to Mac Lane’s work in Godel (1964, p. 262n12). I do not know whether Godel
came to know Lawvere (1969) also. (Thanks to Noson Yanofsky for bringing this up.) See also
footnote 134 below.

(1.86)
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Antin{omie) im Intuit{ionismus)

Df iiberall definierte Funktion® (unentscheidbar)
+ Beispiele

Df Wenn f ein Paar < B, g >, B ein Beweis ist dass das Verfahren g iiberall zum Resultat
fiihrt:

f.x=prg(x)

sonst =py 0 Th . ist iiberall definiert.

nachweislich iiberall definiert(es)
(0.) Es gibt ein’E so, dass E (x) # x (siehe Riickseite).
(1.) Es gibtein H so, dass:

H .x=E(x.x).Dannist:
H.H=E(H.H)
andererseits H . H #+ E(H . H)

Bew(eis) (1.):

Es gibt ein iiberall definiertes® Verfahren G so, dass G(x) = E(x . x). Also: es gibt
einen Beweis B der zeigt, dass G ein iiberall definiertes Verfahren ist. H =py < B, G >.
Dann: H . x = G(x) = E(x . x).

*Funktion = Operation = Verfahren (Regel der Verwertbarkeit = Erstellung einer Reihe
von Gedanken).

¢ Godel writes ‘liberall definiertes’ as an insertion after ‘Verfahren’.

Fig. 1.2 Godel’s Paradox, intuitionistic (Godel, 12/52, collective item 060772). The other side is
given in Fig. 1.1. (Transcription from the Gabelsberger MvA, advised by Robin Rollinger.)

object in A, the constructive universe, defined via quantification over A, but there is
no construction method yielding all elements of A.

Although for Godel it was important to comment (because for him it shows some-
thing about the depth of the paradox — see section 1.4.5 below) that no propositional
logic comes in, for our present purpose it should be observed that its conclusion is
readily presented in propositional form:

H. H=0o(H.H=0—- 1).

Godel expresses the same problem in a different way. On the one hand, to the
operations defined in Fig. 1.2 the criterion for informal constructivity applies that he
had formulated in Dialectica: ‘die Ausfiihrbarkeit der Operationen unmittelbar aus
der Kette der Definitionen ersichtlich’ (Godel 1958, p. 283n5). On the other hand,
as he observes in another note in which he gives the same argument in a slightly
different notation:*!

9 Godel now indicates the use of the special application operation with straight brackets, and the
proof with a lowercase letter.
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Also der Versuch der Wertung von H[H] fiihrt auf einen unendlichen
Regress (Church). Also der Beweis b falsch. (Godel, 12/52, collective
item 060772)

The regress arises because an attempt to evaluate H . H, demands an evaluation of
E(H . H); but the latter demands an evaluation of H . H. In Church’s terms referred
to above (p. 37), H . H has no normal form.®? Intuitionistically, the appearance of this
regress means that there is a problem with the proof of the totality of H, which must
be supposed to have shown that a value can be constructed for each argument. A
condition of possibility for this problem to arise is the critical impredicativity of the
definition of H. In fact, the same regress can be found in the other proof paradoxes;
for now, the propositional presentation suffices, and I will postpone a further remark
on this to p. 64 in the section on critical impredicativity.

I read the following remark of Godel to Wang as a comment motivated by his
intuitionistic paradox and the other proof paradoxes discussed here.3

6.1.13 The concept of concept and the concept of absolute proof [briefly,
AP] may be mutually definable.®* What is evident about AP leads to contra-
dictions which are not much different from Russell’s paradox. Intuitionism
is inconsistent if one adds AP to it. AP may be an idea [in the Kantian
sense]: but as soon as one can state and prove things in a systematic way,
we no longer have an idea [but have then a concept]. It is not satisfactory
to concede [before further investigation] that AP or the general concept of
concept is an idea. The paradoxes involving AP are intensional — not seman-
tic — paradoxes. I have discussed AP in my Princeton bicentennial lecture.
(Wang 1996, p. 188, 6.1.13, amendments Wang’s, italics mine)

AP is the concept of proof independent of any particular formal language or system.
It would therefore seem natural to add the concept AP to intuitionism, as intuitionism

92 The role of infinite regress in paradoxes of the Russellian kind was emphasised in Behmann
(1931, pp. 41, 42) and Behmann (1959, p. 112). Bernays drew Godel’s attention to (a different
aspect of) the latter paper in a letter of October 12, 1961 (Godel 2003a, p. 197). But that paper
seems to have played no role in Godel’s thinking, or in his exchanges with Kreisel and Wang.
It was reviewed in Zentralblatt by Ackermann; his criticism was the same as Godel had made,
in correspondence with Behmann, on Behmann’s earlier attempts in this direction: no formalism
is developed and shown to be free of paradoxes (Godel 2003a, p. 34, letter of April 22, 1931;
Ackermann n.d.). Incidentally, Behmann took note of the similarity between Church’s ideas on
normal form and his own on meaningful predication (1959, p. 122n31).

93 Note that Wang’s (re)presentation of their conversations does not contain an explicit connection
between (1.85) and (1.89).

94 [Note MvA] When Godel says that the concept of concept and the concept of absolute proof may
be mutually definable, he is suggesting, in one direction, an inferentialist theory of concepts, but
also, in the other direction, what may be called a conceptualist theory of inference. In particular, the
concept of concept would be that which one understands once one understands the inferences that
are correct for any concept. For Brouwer, any such systematic understanding would intrinsically be
a form of applied mathematics.

(1.88)
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has always explained truth in terms of such a concept of proof.%> (It is rather Godel’s
proposal in the Princeton lecture to introduce it also in classical mathematics that is
innovative.) But, Godel claims, this leads to inconsistency. The similarity between
the phrases in (1.89) that I have emphasised and Kreisel’s earlier (1.3a) leaps to the
eye.¢ Finally, when in (1.89) referring to ‘contradictions which are not so much
different from Russell’s Paradox’, Godel did so while knowing Kreisel’s Paradox
and Goodman’s Paradox, and, very likely, also Troelstra’s Paradox, as seen in the
respective sections here. These are all like Russell’s Paradox in the sense explained
in section 1.4.1.97

There are two circumstances that I find suggestive of the idea that, moreover,
Godel’s (intuitionistic) Paradox, at least in his presentation of it here shown in
Fig. 1.2, was occasioned specifically by Kreisel’s Paradox. First, Godel’s footnote
addresses (and denies) exactly the distinction that Kreisel’s letter to Godel quoted
in (1.79) turns on. Second, in construing functions as pairs, one element of which
is a proof, Godel’s Paradox illustrates the following theme in Kreisel’s paper even
more explicitly than Kreisel’s Paradox:

Finally, isolation of primitive concepts, in terms of which the other can be
defined, and laws (axioms) for these primitives. Current candidates are con-
struction (function) and the application operator with proof as a suppressed
parameter.

which comes with the footnote

As ordinal and order of the cumulative type theory are suppressed in the
practice of set theory. The occurrence of such hidden parameters seems

95 Since it is the role of AP in mathematics that we are here interested in, Godel’s question whether
AP can be treated even independently of any specific system of things (Godel 1946, pp. 152-153)
is left aside. It is discussed in Crocco (2019).

%6 There is independent reason to believe that Godel had seen the latter before making this remark
to Wang in 1972. Kreisel had the habit of sending his work to Godel, but in this case there was no
need to. By the time of Kreisel’s writing (1.3a), Godel had, like him, become a Foreign Member
of the Royal Society (Godel in 1968, Kreisel in 1966) and on December 17, 1969, Kreisel wrote
in a letter: “Wahrscheinlich kriegen Sie bald von der Royal Society die 1969 Obituary Memoirs,
einschlieBlich den Nachruf auf Brouwer, den ich gemeinsam mit dem Topologen M. H. A. Newman
verfafit habe.” (Kreisel, 50/2). The index Dawson (1984) shows on p. 68 that Godel owned the
Society’s Biographical Memoirs for 1968—1977.

97 Of the earlier (voluntarily brief) discussion of (1.89), that in Crocco (2019, p. 571), I note that
it does not give an example of a contradiction that AP leads to, except in its

Remark 2. According to Gddel, intuitionism rejects the use of unrestricted universal
quantifications (all objects, all proofs, etc.) and therefore extensional and intensional
paradoxes do not appear in it. Absolute provability implies reference to all proofs that can
be performed by a human agent in any domain. In this sense it is in contradiction with
intuitionism.

But that contradiction is, in the way in which it arises, not similar to Russell’s Paradox. Furthermore,
the first half of the first sentence is problematic, both in the claim ascribed and in the ascription
(following Wang) of that claim to Godel; see the discussion of (1.127) and (1.128) below.
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essential in work that gives an analysis of informal mathematics. (Kreisel
1965, 2.1, p. 121, original emphasis)

It is certainly essential to intuitionistic mathematics, which by its nature is informal,
that functions are applied only to objects that (actually, or hypothetically) have been
proved to be in their domain.

In the other direction, even on the (as yet unsupported) supposition that Kreisel
knew (the content of) Godel’s Paradox when he set out to write his paper for the
Saaty volume, it is clear that he would have had little direct motivation to include
it: his interest there is in (further) developing an alternative interpretation of formal
intuitionistic logic, not in using the intuitionists’ own understanding. It is only
when introducing the convention in 2.151 for use in his theory of constructions
that he makes a short detour to show his paradox. Similarly, the topic of Kreisel’s
1971 publication in which he presents the classical version of Gddel’s Paradox,
generalisations of recursion theory, would hardly have motivated including Godel’s
intuitionistic Paradox or, for that matter, his own.®® Note also that in that paper,
Kreisel remarks on the problem of evaluating H . H (notated differently), as Godel
does in (1.88) above. Kreisel proposes to ‘look at the steps of the argument by
the light of nature’, which means, in particular, that application of a function rule
presupposes that a value has been assigned to its argument; but, to borrow his words,
one is not given even the remotest hint of how that value is to be determined (1971,
p- 191). Exactly the same could (and, because of its constructive context, should) be
said about his own paradox. However, there was no corresponding remark either in
Kreisel (1965) or in Kreisel’s letter from 1968, as quoted above in (1.73) and (1.79).

To return to Godel’s intuitionistic Paradox, note the variant in Fig. 1.3. In the
definition of F, the condition has to be understood as that on E in Fig. 1.1. The
value of the function f applied to x at time ¢ is notated f(x),, and o, (f) is the
sequence of the arguments to which f has been applied between times 0 and ¢, such
as they were given to us at these moments (i.e., intensionally), and possibly with
repetitions. I take it that Godel labels the definitions of the functions F, ., and G as
theorems because at the same time the existence of these functions is established,
a construal of definitions similar to that in his introduction of ‘reductive proofs’
in the revised Dialectica paper (Godel 1972, p. 275, note hl). These theorems are
themselves established in time.

Note that the case distinction in the definition of the application operation is
decidable, with the particularity that which of the two conditions is proved to hold
may, for the same arguments f and x, change with time. An example of time-
dependency of f . f would be an identity function f, calculated at #37 by the
projection f(f) = mo< f, f > and at t49 as f(f) = f (‘andere Methode’); then for
t>40, (f. f); =0. We will see something very similar in Troelstra’s Paradox.

Godel offered no solutions to his paradoxes; I will come back to that at the end
of section 1.4.5.

98 In fact, there Kreisel (1965) is referred to only once (p. 166), and on another topic.
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Bew(eis)-Begriff im Intuit(ionismus).*
(Zeitabhingigkeit)

Df Eine Funktion ist etwas, von dem erkannt wurde, dass es immer einen definierten Wert
A (f) Sf(x):

hat wenn ein Argument gegeben ist (aber wenn darin (das) Argument zeitlich gegeben

ist, kann sie einen anderen Wert (annehmen))

t=0Th F(x)=0,F(0)=1isteine Funktion o (F) x=y=x=4y
1 Th. (f.x), =0 wennein Wy, (f) (zeitabhingig ist)
= Wert wenn Uy, (f) zeitunabhidngig
. ist eine zeitabhidngige Funktion fiir # > 1
2 Th F(f. fy) isteine Funktion G fiir # > 2
G.fy=F(f.f) giltjederzeit
Th G.G=F(G.G)

Zeitabhdngigkeit von x . y (= Anwendung)
(andere Methode der ,,Einsicht” beziehungsweise des Errechnens)

¢ This title and the parenthesis are the text on one side of the paper, the rest that on the
other.

Fig. 1.3 Godel’s Paradox, time-dependent (Godel, 12/52, collective item 060772). (Transcription
from the Gabelsberger MvA, advised by Robin Rollinger.)

1.4.4.3 Troelstra’s Paradox

Kreisel intended to enrich his Theory of Constructions with axioms for the intuition-
istic ‘thinking subject’, with an eye on reconstructing Brouwer’s so-called ‘Creating
Subject’ arguments (Kreisel 1967a, p. 180).9° Those arguments are another example
of (making explicit, or exploiting) a hidden parameter; see quotation (1.91) above.
There the hidden parameter in question was proof, here time. (There is no reason
these could not be treated together, but there seems to be no experience with that.)

Troelstra added an axiom to Kreisel’s two, and in a modern formulation, the
axioms and their intended meanings are as follows.

Vr(O,A VvV -0,A)

That is, for any stage, it is decidable for the Creating Subject whether by that stage
it has made A evident.
VrVm(O,A — OpemA)

The Creating Subject never forgets what it has made evident.

dAno,A < A

99 Kreisel had received a letter from Kripke in which the latter had proposed a weak version of the
Brouwer-Kripke Schema. See Atten (2018, p. 1588).
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A proposition A is true if and only if the Creating Subject has made A evident by
some stage. From left to right this is a reflection principle: there is a certain proof
for A, therefore A.

These axioms show that about provability in Brouwer’s sense ‘one can state and
prove things in a systematic way’, as Godel might have said it (see quotation (1.89)).

But Troelstra had also found a paradox. He discussed it with Kreisel at the Buffalo
conference in 1968;100 the time span in which Kreisel was preparing his part of the
Brouwer obituary included all of that year (see the end of footnote 45 above). It is
treated in the notes of the lecture series Troelstra gave there, his influential Principles
of Intuitionism (1969), of which, incidentally, Godel owned a copy (Dawson 1984).10t
Troelstra published on it again in Troelstra and Dalen (1988, ch. 16, section 3) and
Troelstra (2018).

For the present purpose, the last publication is the clearest and most useful one.
It is best read as an argument in which we put ourselves in the shining shoes of the
Creating Subject, which thus reasons about itself: 102

Let us now use «, § to denote arbitrary, not necessarily predeterminate, and
not necessarily infinite sequences of natural numbers, and let us consider
statements of the form ‘a is a total sequence’. For example, if « is defined
as a primitive recursive sequence, this conclusion is immediate as soon as «
is defined. If « is initially given to us as a partial recursive function, we may
at a later stage conclude that « is a total sequence, namely if we have found
a proof of this fact. A lawless sequence is from the moment it is initiated a
total sequence.

The original idea for the paradox was as follows. Let o be the n-th total
sequence the C[reating] M[athematician] encounters when running through
the stages of activity; then consider a sequence S defined by

Bn)=a"(n)+1

B is total, and at some stage m S should appear as an @”. But then 8(n) =
a"(n) = @ (n) + 1, a contradiction. This is just a classical diagonalization
argument.

Self-application of functions is not a feature of Troelstra’s background theory, but its
effect is provided for by letting the natural numbers also play the role of indices (a
form of coding) to the encountered sequences N — N (functions). In this argument,
one finds the principles CS1-3 instantiated as follows. CS1: Such an encounter
consists in the act of proving that the sequence is totally defined, and for the Creating
Mathematician it is decidable whether at a given stage it has such an encounter. CS2:

100 Email Troelstra to MvA, May 1, 2016. Troelstra spent the academic year November 1966-
November 1967 with Kreisel at Stanford. Kreisel rarely refers to Troelstra’s Paradox in print; a
place where he does is Kreisel (1972, p. 326).

1ot Dawson’s list shows that he also had Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis (Troelstra 1973a).

102 See Atten (2018) for further discussion and references.

(1.93a)
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A necessary condition for a list of the @” is that these encounters are not forgotten.
CS3 (from left to right): If, at some stage, it is proved that a sequence is totally
defined, then that sequence is totally defined. CS3 (from right to left): If it is true
that 3 is totally defined, then this is proved at some stage m. It is the existence of that
proof that makes Troelstra’s Paradox a proof paradox.

Mark van Atten observed that perhaps £ is not well-defined, because, having
encountered @, we are not certain how long we have to wait before the next
total sequence appears.

That is, in its original formulation Troelstra’s Paradox depends on an appeal to an
unacceptable version of Markov’s Principle: for discussion, see Atten (2017c).

This can be remedied as follows. At stage 0 we take o to be the constant
zero function. As long as no new total sequence is declared at stage n + 1,
we take @*! to be equal to ; and if at stage n + 1 a new total sequence y
is found, we take a”*! to be equal to y. Then we can diagonalize as before.
(Troelstra 2018, p. 14)

The original and the remedied Paradox can be discussed simultaneously. In terms
of the Fixed Point Theorem, the representation principle in them is the instantia-
tion of CS3: every totally defined sequence (function) N — N that the Creating
Mathematician encounters can be correlated to an element of N.

The application operation g is defined as

g:NxXxN->N

<n, x> a(x)

Since the difference between the two versions that Troelstra described lies only in
the way that the list of the o” is constructed, g is the same for both. Note that the
constructivity of g depends, via its dependence on that list, on the decidability of the
appearance, at a given stage, of a total sequence.

The role of the morphism # is here played by the successor function:

h:N—>N

x> x+1

The morphism k: N — N now yielded by the Fixed Point Theorem is a recipe
for assigning a natural number to each natural number, and thus totally defines a
sequence, Troelstra’s 5. The Creating Mathematician has this insight at some stage
of its activity (otherwise it would, intuitionistically, not be true), which means that
B = " for some n. That n represents 8 with respect to g.

We now have the contradiction B(n) = g(n,n) = h(g(n,n)) = g(n,n) + 1. To
relate this to our theme in propositional logic, change # to the two-valued
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h:N—>N

0 ifx#0
1 ifx=0

This yields g(n,n) =0 & g(n,n) = 1, that is,
g(n,n)=0e (g(n,n)=0—-1).

The definition of the n € N that represents 3 is impredicative, as it lies in the
range of the latter’s argument. It is furthermore critically impredicative, because this
n, and any n in an argument <n,x > of g, is viewed here not as a natural number
as such, but as a natural number in the role of an index into the collection of the
encountered total sequences, and in that sense as dependent on the latter. But there
is no construction method for that collection, as the Creating Subject is free to go
about its constructive activity as it pleases. This critical impredicativity exists on
both the original and the remedied formulations of Troelstra’s Paradox.

The paradox can be seen as a special case of the intuitionistic version of Godel’s
Paradox in Fig. 1.2, if one accepts the idea that the definition of f = < B, g > there
may change in the sense that B initially is, say, the object 0, but is identified with
the proof that the operation g always yields a result as soon as there is one.103 If
the relation to time in such a change is made explicit (and we furthermore allow for
partial functions), we get a version of Godel’s time-dependent paradox in Fig. 1.3,
with the application operation

( )y = 0 if by stage ¢, f has not been proved to be total
F-¥0=1 ) ifit has

This definition by cases is governed by a decidable disjunction, with the property
that it is time-dependent which of the two disjuncts is provable. In both Godelian
renderings of Troelstra’s Paradox, the indirect self-reference of Troelstra’s 3 via its
index number is made direct in the application of a function to itself. As alluded to
at the beginning of this section, it can, at present, not be excluded that Godel devised
his paradox after Troelstra and had seen the latter’s, but I have neither positive nor
negative evidence for that.

103 Troelstra writes:

Originally, I used, instead of ‘total sequence’ the notion ‘a total sequence determined by
arecipe’. I used the word ‘recipe’ instead of ‘lawlike’, because I did not want to suggest
that the sequence was recursive, only that it was fixed by a recipe relative to the activity
of the CM in general. But in view of the fact that the CM is completely free in his actions,
a ‘sequence determined by a recipe’ can be as un-predetermined as an arbitrary choice
sequence.

In fact, in the original publication the term had been ‘lawlike’ (Troelstra 1969, p. 105); it was
changed to ‘fixed by a recipe’ in (Troelstra and Dalen 1988, p. 845). Be that as it may, the
subsequent crystalisation into ‘total sequence’ in the 2018 version has the effect of bringing it even
closer to Godel’s Paradox.

(1.96)

(1.97)

(1.99)

(1.98)



(1.100)

(1.101)

(1.102)

52 Van Atten

One thematic solution that Troelstra proposed was to stratify:

To each mathematical assertions and construction we suppose a level (of
self-reflection) to be assigned. [. . .] Assertions which may be understood or
constructions which can be carried out without reference to +, [0,A] are
said to belong to level zero.

Assertions which are described using +,, A for A of level p and construc-
tions of level p, are said to belong to level p + 1. Likewise, constructions
defined relative to +,, A for A of level p are said to be of level p + 1.

[...]

[O]ur paradox cannot be derived anymore.

Indeed, the critically impredicative definition of  is ruled out, as its construction
can now be carried out only at a higher level than that of any collection of sequences
that its definition can legitimately refer to. It is noteworthy that Troelstra proposed it
only as an ‘approach [that] deserves further investigation’ (Troelstra 1969, p. 107),
and when writing about it again in Constructivism in Mathematics, he qualified it as
‘at least as problematic’ as the theory it replaces, unfortunately without expanding
(Troelstra and Dalen 1988, p. 846). In Troelstra (2018), on the other hand, he
describes it neutrally.

1.4.4.4 Goodman’s Paradox

Goodman’s Paradox (which is what is often really meant when speaking of the
‘Kreisel-Goodman paradox’) first appears in the introduction to Goodman’s disser-
tation. He introduces (p. 4) an operation 7, assumed (with Kreisel) to be decidable,
such that

n(g,y) < yis aproof of Vx(g(x)=0),

and combines this with Kreisel’s understanding of intuitionistic implication in (1.1)
above to arrive at a contradiction:

To recapitulate briefly, we have said that a pair (p, f) is a proof of the
proposition A — B justin case p is a proof that, if g is any proof of A, then
f(q) is a proof of B. So far we have no way of excluding the possibility
that ¢ is itself built up in some way from p. It is largely this impredicative
character of implication that makes the theory of constructions interesting
from a technical point of view. Indeed, the most natural formalization of the
conception we have outlined so far is inconsistent. It suffices to construct,
using m, a function f such that f(x) = 0 if and only if x(x) is a proof that
no y proves that f(x) = 0. Now suppose that y proves that f(x) = 0. Then
f(x) =0, and so no y proves that f(x) = 0. This contradiction, together
with the decidability of the proof predicate, shows that no y can prove that
f(x) = 0. Therefore there must be a function g such that, for any x, g(x)
proves that no y proves that f(x) = 0. In particular, g(g) proves that no
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y proves that f(g) = 0. That is, f(g) = 0. Hence there is a proof that
f(g) =0, which is absurd.

Goodman does not spell out how f is constructed, but the formal derivation of
this paradox he went on to give in Goodman (1970),94 which closely follows this
informal one, naturally suggests that it is a fixed point construction. It is that formal
derivation that, read according to its intended interpretation, will be reconstructed
here, in different terms.

For the sake of presentation, certain simplifications are made to abstract from
some of the low-level machinery in Goodman’s own setting, which is an extended
type-free A-calculus. That machinery was there of course to serve the purpose of his
project, a theory of constructions as a foundation for logic and arithmetic, not for its
ease of use in generating a paradox; and it remained in place after Goodman’s repair
(see the end of this section).!05 I presuppose that an arithmetical language has been
fixed and that sufficiently much arithmetic has been developed to implement Godel-
numbering; and I assume that we have an implicational logic for decidable statements
from the outset, whereas Goodman constructs it first. Where the reconstruction does
not simplify is in its attempt to bring out the exact reasoning in Goodman’s Paradox.
(The reader should consult also the rich discussion by Dean and Kurokawa (2016),
and compare their reconstruction and mine.°® They use the combinator Y and their

104 Both Godel and Heyting read that paper closely. Godel’s notes to that paper (and others in
the same volume) are in Godel, 10a/40, collective item 050142. Heyting summarised, in Mathe-
matical Reviews, Goodman’s paper with a fair amount of detail, including the impredicativity and
Goodman’s solution; but, unfortunately, without comments (Heyting, n.d.).

105 The mended theory did not prove viable; see Kreisel (n.d., n.d., n.d.); Weinstein (1983, p. 265);
Dean and Kurokawa (2016, pp. 53-54); Atten (2017a, section 4). Note that Goodman came to hold
a view that is critical of his own efforts in a different and farther-going way:

I myself have been attracted by intuitionism. But I have gradually come to see that, in the
long term, strong intuitionistic convictions undermine one’s actually doing mathematics.
By embracing intuitionism the mathematician is giving up the most powerful motivation
for his work — the search for publicly validated truth. [...] There is a sense in which
intuitionism is inadequate in its own terms, for it overlooks what is introspectively obvious:
that I am interested in my constructions not for their own sake but for the new truths they
enable me to find. [...] Just as the constructions lie behind the symbols and give them
their interest and meaning, so there is something behind the constructions — mathematical
truth.

[...]

Mathematical truth, unlike a mathematical construction, is not something I can hope
to find by introspection. (Goodman 1979, p. 545)

Goodman’s notion of truth is different from Brouwer’s. For a defense of intuitionism against the
charge of solipsism, see Placek (1999) and Atten (2004, ch. 6).

106 T the derivation in Dean and Kurokawa (2016, pp. 43-44), the definiens of 2 (y, x) should be re-
placed with Ay.(7yx O L) and the fixed point equation withY (h(y, x)) = h(y, x) (Y (h(y, x)).
Here D denotes a term representing truth functional implication whose details will depend on which
terms are chosen to represent T and L in the untyped lambda calculus (Goodman 1970, p. 105,
and continued in Barendregt 1984, p. 44) but is otherwise similar to Goodman’s definition of Dy
(Goodman 1970, p. 106). I thank Dean and Kurokawa for correspondence which led to these points.
Since the approach and structure of their reconstruction is left unaltered, these changes make no
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perspective is that of a comparison with (and to) Montague’s Paradox. For the
reason given on p. 30 above, I prefer to use the Fixed Point Theorem, and, as per
section 1.4.1, my emphasis is rather on the paradox’s relation to the propositional
reasoning pattern that Kreisel mentions in (1.3c).)

Let A be the universe of constructions, and B the set of truth-values {T, L},
considered as two arbitrary but distinct constructions. The representation principle
here is: every morphism from A to B is also a construction (an element of A).

Let P be the decidable binary proof predicate, defined on constructions, ‘v is a
construction that proves the proposition whose statement has Gédel-number u’.107

Let f(v,u): AX A — B be the characteristic function of P, and let the family
fv: A — Bbe givenby f, (u) = f(v,u). Part of the assumed decidability of P is the
assumption that P is everywhere defined; if it is, then so are the functions f and f, .

Define an application operation for the f,, by

g:AxA— BA

. jx) ifj=f,, forsomew
<J, x> )
Az.L otherwise

The equality here is intensional. Note that g is everywhere defined because the case
distinction is decidable and the f,, are everywhere defined.
Define the family of morphisms

h,: B* — B4
A2.f(v,z) > Az.f(v(v),"P(v,z) —» L) if v(v) is defined
Az.t[z] & AZ.T in all other cases

Constructivity of the image for all arguments presupposes that, for the chosen value
of the parameter v, it is decidable whether v(v) is defined, and that, if it is defined, f is
constructive (i.e., that P is decidable). Under those presuppositions, 4, is everywhere
defined; I will take the presupposition concerning f as a given, and to find a value
for v such that v(v) is defined is precisely how the argument will proceed. Note the
higher type of 7 compared to that of the analogous morphisms in the other paradoxes
here discussed.

Applying the Fixed Point Theorem to g and #,, we first obtain the morphism
k,: A — BA; by the chosen representation principle, it is represented by an element
of A, which is k,, itself. Then we get the fixed point b,,: A — B = k,k,, and have
b, = g(ky,ky,) = hy,(b,). Hence for all z, the truth values given by b, (z) and
(hy(by))(z) are identical. 103

difference for the discussion of the philosophical questions involved, be it in the reconstruction
itself, or in comparison with other reconstructions. On such a comparison, see footnote 110 below.
107 Goodman, in effect, defines P (v, u) as ‘v is a proof that u(z) = T for all z’.

108 The family &, corresponds to Goodman’s term b (1970, p. 108), the fixed point b,, to his a, and
the equality by, (z) = (h, (by))(z) to his equivalence az = haz. Goodman does not explain how
he arrives at his fixed point; one notes that the term a can be obtained by applying the combinator
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In propositional terms, this identity means that
P(v,z) & P(v(v),"P(v,2) > L7).

On account of the decidability of P, here and in the remainder of this section, the
implication can be interpreted truth-functionally (which for the reductive purpose of
the Theory of Constructions would be required).

As an instance of reflection (‘What is proved, is true’),

Pv(v),"P(v,z) = L) = (P(v,z) = 1),
so with (1.106)
P(v,z) = (P(v,2) = 1),
and by contraction as in (1.53)
P(v,z) — L.

Thus, using the Fixed Point Theorem we have obtained a morphism ¢ that maps any
construction v to a proof of P(v,z) — L for all z, provided that v(v) is defined.

Again by the representation principle, we have ¢ € A, so c¢(c) is defined, whence
it is admissible to choose ¢ as value for the parameter v. If furthermore we choose
an arbitrary zo for z and repeat the above schematic reasoning for those values, 09
we conclude that the construction ¢(c) is a proof of P(c, z9) — L, and hence

P(c(c),"P(c,z0) = L7).
Along the way to (1.112), we obtained instances of (1.106)—(1.109), in particular

P(c,z0) & P(c(c),"P(c,20) = L)

Y to Ay.hyz and abstracting on z. Also, in his explanation on p. 103 why he designs a theory of
partial functions, the term that he shows to be undefined is in effect an application of Y to the term
f as he defines it there. It seems safe to say that Goodman is there adapting Kreisel’s Paradox.

109 On the (constructive) relation between the proof of a general statement and proofs of its instances,
there is Weyl’s well known conception of the former as an ‘Urteilsanweisung’ (Weyl 1921). I should
like to recall here also Freudenthal, who wrote:

der einmal gelieferte allgemeine Beweis dient uns nicht mehr als eine Landkarte, die uns
die Bergbesteigung zwar erleichtert, aber nicht erspart (Freudenthal 1936, p. 116),

with the footnote

Man konnte meinen, da3 dies Immer-wieder-von-neuem-Beweisen nicht néotig ist bei
Hilfssétzen, die sich als explizite Formel darstellen, wie m + n = n + m. In Wirklichkeit
bleibt einem aber weiter nichts iibrig, als die Umordnung, von der diese Formel handelt,
immer wieder, wenn sie notig ist, von neuem vorzunehmen. Natiirlich wird man in der
sprachlichen Darstellung des Beweises das nicht tun, aber das sagt nichts gegen unsere
Feststellung und alles gegen die sprachliche Darstellung.

(1.106)

(1.107)

(1.108)

(1.109)

(1.112)

(1.106")

(1.110)

(1.111)
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and
P(c,z0) — L.

Combined with (1.112) itself, these yield
P(c, z0)
and then
1.

Note that P(c, z9) here is derived via a proof of P(c,zp) — L, which illustrates
one half of Kreisel’s remark (1.3c); but as no proof of (P(c,z9) — L) — P(c, z0)
is involved, it does not illustrate that remark fully. This it has, mutatis mutandis, in
common with the reasoning in Myhill’s Paradox, as reconstructed in (1.61)—(1.63).
As remarked there, that reasoning cannot be restructured to the desired effect. In
contrast, in the present case, where the constructive logic of — is truth-functional,
from (1.113) we could conclude to (P(c, zg) — L) — P(c, z9), and proceed from
there. But that restructured proof, deriving its conclusion twice, would of course not
be natural (see also the remark following (1.56)).

The definition of the representation k. of the morphism k. is critically impredica-
tive, because it depends on a quantification over A, for which there is no construction
method. Goodman’s solution of this paradox was to stratify the universe of construc-
tions, which, in effect, invalidates the definition of the representation. (By footnote
110, the effect he intended was a different one; he did the right thing for the wrong
reason.) His criterion for the stratification is ‘the subject matter of proofs’. That is a
much broader criterion than Troelstra’s of levels of self-reflection (section 1.4.4.3),
and correspondingly more difficult to justify (see the discussions referred to in
footnote 105 above).

0 This is the parallel to the fact in Goodman’s own version that + 7 (gaf)b = T is arrived at
via + w(m(gaf) D1 (KL1))(ff) = T, where b is obtained as an internalisation of the preceding
derivation, and thereby depends on the proof ff (1970, pp. 109). Thus, a proof of the antecedent of an
implication is given that depends on a proof of that implication. In this sense, Goodman’s derivation
of a paradox, and the reconstruction in the text, are such that they at least potentially confirm his
concern over the impredicativity in his initial definition of implication (1970, p. 109); and Goodman
clearly thought that his paradox actually confirms that concern. In contrast, (i) in the text I argue
that there is a second impredicativity in play, that of the representation principle, which remains
implicit in Goodman but which is constructively not acceptable; (i7) if one accepts the argument
discussed around (1.118) below, the impredicativity in implication is constructively acceptable;
(iif) although by (i) and (ii) the problem that Goodman’s Paradox brings to light is different from
the one he thought it was, it so happens that the solution that he proposed (stratification) is also a
solution to the actual problem. Finally, note that in the derivation in the reconstruction of Goodman’s
Paradox in Dean and Kurokawa (2016, pp.43—44) there are no analogues to Goodman’s z and {
(to which correspond v and ¢ in my reconstruction). This absence shows that Goodman’s concern
over impredicativity of implication that motivated his Paradox plays no role in the paradox they
derive. The philosophical significance of this difference would seem to be context-dependent, and
is a question I leave aside here.
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1.4.5 Critical impredicativity

A correct but limited answer to the question why these proof paradoxes arise would
be to say that their contexts satisfy the hypothesis of the Fixed Point Theorem. To see
if a more specific cause can be identified, consider the following common aspects of
the applications of that theorem in these paradoxes: !!

1. Informal reflection. ‘There is a contentual proof of p, therefore p.” This is part
of the informal constructive explanation of truth.

2. Informal decidability. In each of the proof paradoxes as analysed above, the
definitions of the morphism g —in (1.74), (1.86), (1.94), and (1.104) — depends,
for its constructivity, on a notion in Kreisel’s sense. To repeat: such a notion is a
property that is decidable, not necessarily in a mechanical way, but for those who
understand the terms (Kreisel 1965, 2.13, 2.141). The same dependence exists
for h—in (1.75), (1.86), (1.96), and (1.105) —, where in Troelstra’s Paradox (1.96)
this is just the decidable equality on the natural numbers, the simplest property
of the kind that notions were in fact introduced to generalise (Kreisel 1965,
p. 123,2.13).

3. A representation principle. The motivation for accepting the principles figuring
here was given together with (1.65) above.

4. Critical impredicativity. The general reason for the appearance of an impredica-
tive definition in each was given in the comments on the Fixed Point Theorem
(p- 29, point 4); the reason why they are critical, in the discussion of the respec-
tive cases.

I will argue that the problem leading to the paradoxes lies in this last aspect, but
this will depend on a further distinction that separates those cases from the critical
impredicativity that has been associated with the Proof Explanation of logic. I will
not attempt to show that the other three aspects, doing away with any of which would
also block these paradoxes, are beyond doubt (although to traditional intuitionism,
and also to me, in the present cases, they are). Rather, my take will be that rejecting
the fourth is in any case necessary, and clearly is sufficient.

The following discussion is constrained (constricted) by the choice to organise
it, like the present paper as a whole, around Kreisel’s views — here, in particular
remark (1.3b) — and their development. On the one hand, this organisation is natural,
to the extent that Kreisel was one of the main participants in the discussion of the
relations between constructivity and impredicativity, and an influential one at that,
as seen in writings of intuitionists after Brouwer and Heyting such as Troelstra and
Van Dalen (but hardly in those of the Nijmegen School).!2 On the other hand, it
leaves no natural occasion for reflection on what an analysis of the views of Brouwer,
who was neither a participant in that discussion nor among Kreisel’s (epistolary)

1t Compare the analogous section 5 in the discussion of Goodman’s Paradox in Dean and Kurokawa
(2016).

12 Wim Veldman informs me that there has been essentially no direct contact between members of
the Nijmegen School and Kreisel either.
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contacts, 3 might suggest about the matter once these are treated in their own right.
(As a consequence, the questions (7)—(iii) on p. 69 below are raised, but not taken up.)
In contrast, ample attention is given to the views of Godel, which strongly influenced
Kreisel’s thought in question. But in the end we will rather see the emergence of
strong divergences between Kreisel’s and Godel’s views.

1.4.5.1 Impredicativity: some distinctions

An early occasion on which Kreisel brings up impredicativity is his 1959 lecture
‘La prédicativité’ (Kreisel 1960), but there the emphasis is, as the title suggests,
on seeking positive characterisations of predicativity. For the present purpose, more
useful is a complementary lecture in 1962 by (his close contact) Bernays,™ which
refers to Kreisel’s but makes, as its title says, ‘Remarques sur I’imprédicativité’
(Bernays 1962):115

Une définition d’un objet d’une espece S (d’un nombre, d’un point) - en
bref : «d’un S » est imprédicative s’il intervient une quantification par
rapport aux S. C’est I'imprédicativité au sens général.

Le cas critique d’imprédicativité se présente si les conditions suivants
sont remplies :

1. Une définition contenant une quantification par rapport aux S est néces-
saire pour démontrer 1’existence d’un § ayant une certaine propriété.

2. L’espece S n’est pas celle des individus, mais, pour ainsi dire une espece
dérivée : espece de fonctions, de suites, de prédicats, de classes.

The first part of the second condition I take to mean that the members of S are
neither given to us from the outset, nor generated by a construction method. In the
latter cases one speaks of an ‘impredicative specification’ or ‘characterisation’ of an
object. 6

In my view, the term ‘critical’ may be said to apply here in two of its meanings
(in English as well as in the French of the original): 1

13 See footnote 68.

114 Their contact started with a letter from Kreisel in 1947, and lasted until Bernays’ death in 1977.
See for some details Isaacson (2020, p. 109).

U5 There is, of course, no novelty in Bernays’ characterisation of impredicativity; I use it because it
is well-phrased, because I find its terminology useful, and because Bernays’ paper is of historical
interest. (On the latter aspect, see footnote 121 below.)

16 E.g., Ramsey’s definition of a certain man as ‘the tallest in a group’ (Ramsey 1931, p. 41), or
‘the smallest natural number n such that P(n).’

7 As given in, respectively, the Oxford English Dictionary and the Trésor de la langue frangaise
informatisé (http://atilf.atilf.fr/tlf.htm).
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1. ‘Crucial’. In the critical case, quantification over the domain is our only way to
form an intention towards the object defined. 8

2. ‘Of the nature of, or constituting, a crisis’. If the definition of an object is critical
in the first sense, then furthermore the existence of that object can be doubted
or even rejected to the extent that the correctness of critically impredicative
definition itself can.

The standard constructivist objection is that if a definition of an object is critically
impredicative, then this definition cannot be used to guide a construction process of
that object. For then, in order to construct the object, we would first have to construct
the domain quantified over,!® but as this domain contains the object we are in the
process of constructing, we find that we can only complete that process if we already
have completed it. In such cases the circularity of the impredicative definition is
vicious. 120

Returning to Bernays’ text, we see that further on he comments on the Proof
Explanation:

Mais la question se pose si I’intuitionnisme se restreint a des raisonnements
prédicatifs. Je crois que ce n’est pas le cas. En effet, dans les raisonnements
intuitionnistes 1’espéce des preuves, qui, certes, est une espece dérivée,
est employée de facon qu’on peut, au cours d’une preuve, opérer avec la
supposition de 1’existence d’une preuve de quelque assertion — ce qui est
une méthode imprédicative. (Bernays 1962, p. 121)

The example of proof being given to show that intuitionism is not wholly predicative,
itis clear that Bernays means to flag it as a critical impredicativity. But he does not go
on to say that it renders the Proof Explanation non-constructive. On the contrary, upon
finding that alternatives (in metamathematics) such as bar induction or computable
functionals of finite type likewise introduce impredicativity,'?! he concludes:

u8 A critically impredicative definition need not be unique, but equivalents will likewise depend on
such a quantification.

19 There are, of course, certain quantified propositions that can be given constructive meaning
without requiring a construction of the objects in the domain quantified over, namely by an appeal
to a continuity principle or to an essential property of the objects forming that domain; but such
appeals do not serve to describe a unique object in the domain.

120 The debate was opened by Poincaré: ‘Ainsi les définitions qui doivent étres regardées comme
non prédicatives sont celles qui contiennent un cercle vicieux. [...] Une définition qui contient
un cercle vicieux ne définit rien’ (Poincaré 1906, pp. 307, 310). He observed that such definitions
are not eliminable, (1906, p. 316); also Behmann (1931, pp. 40-41). Beth (1962, p. 83) recalled
that the general demand that definitions be eliminable had been made in Pascal’s ‘De I’esprit
géométrique et de I’art de persuader’ of 1658 (Pascal [1658] 1936). Beth’s talk was given at the
Colloque international de Mathématiques, Clermont-Ferrand, June 4-7, 1962, organised there at
the third centenary of Pascal’s death; Bernays’ ‘Remarques’ were presented at the same conference,
but he did not rise to the occasion. Godel ([1944] 1951, p. 136) pointed out that the circularity
poses no problem for realism; on what he thought about its implications for (different kinds of)
constructivism, see (1.129) and subsequent discussion below.

121 For historical context: Bernays writes just after the appearance of Heyting (1956), Kuroda
(1956) — see footnote 122 below —, Godel (1958), Kreisel (1960), and, as he reminiscences to Godel
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Ainsi nos expériences indiquent que la métamathématique ne peut guere
se restreindre dans ses méthodes a des évidences €élémentaires ou méme
seulement prédicatives.

Néanmoins nous pouvons maintenir I’idée de la métamathématique et
aussi rendre justice a la tendance constructive, cependant nous abstenant
dans les méthodes de restrictions innécessaires.

Mais puisqu’il se montre que nous avons a admettre des imprédicativités
dans la métamathématique constructive, d’autant moins il y a de raison
de rejeter en bloc I'imprédicatif dans les mathématiques classiques. Cela
naturellement n’empéche pas que nous tendions généralement a éviter des
imprédicativités inutiles.

By the same reasoning, the Proof Explanation would still be considered constructive.

Critical impredicativity of the Proof Explanation is also what Kreisel has in mind
when he points out, in his remark (1.3b), that it, like Russell’s Paradox, involves a
kind of self-application.?? The quantification may be construed in two ways. The
first is a quantification over all proofs (or over all constructions), as in Kreisel’s (1.1).
Then f: A — B is a proof such that, for all proofs p, if p is a proof of A, then f(p)
is a proof of B. The impredicativity is direct, in that f is itself among the p. The
second is quantification specifically over proofs of A, as in Heyting’s clause (1.2).
In that case the impredicativity is indirect: The informal definition of a proof f of
A — B then does not quantify over a domain of which f itself is an element, but
a proof of A in its domain may contain subproofs of A — B and (A — B) — A.
The latter subproof is defined in terms of a quantification over proofs of A — B,
among which is f.123 This distinction between direct and indirect impredicativity
generalises to other domains and functions. 124

Dean and Kurokawa (2016, p. 32), quoting Kreisel’s (1.3c) but not the preceed-
ing (1.3b), have suggested that a role of (1.3c) precisely is to make one think of the
impredicativity of ‘the pre-theoretical notion of constructive proof which the BHK
interpretation seeks to characterize’, by transference from the formal to the informal.
And, of course, it will; but I think that the primary reason for following up (1.3b)

(Godel 2003a, p. 198), after he had conversations with Spector in Princeton while the latter was
working on his (1962); see also the end of footnote 1 of the latter paper.

122 The first to make this observation about implication (without using the term ‘impredicativity’)
in print seems to have been Kuroda (1956) in his review of Heyting (1956). The first to use that term
in print for this seems to have been Kreisel in his review of Wittgenstein (Kreisel 1958, 147-148).
In Atten (2017a, section 2), I argue that it is not made in Godel (1933b), as sometimes suggested,
but that he did see it as he was working on his functional interpretation.

123 Incidentally, if there is a proof a of A containing a subproof of A — Bbutnotof (A — B) — A,
as in skeleton (1.15), then there also is one that contains both, as in skeleton (1.14), provided that
the inference steps from the subproof of A — B to A remain correct under an open assumption.
(Derivation (1.62) in Myhill’s Paradox above is one where this is not the case.) On either reading, the
appearing impredicativity is critical, for lack of a generation procedure for the respective domains
containing f. The definition of such an a is likewise indirectly impredicative.

124 An alternative term for indirect impredicativity is ‘weak impredicativity’, used by Godel in a
note (Atten 2015, p. 218) and by Demopoulos (2013, p. 224).
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with (1.3c) was a different one. I will come back to that in my closing remark. In
this section, I should like to make some further remarks occasioned by (1.3b) itself.

1.4.5.2 Unproblematic critical impredicativity

Kreisel has argued that although the impredicativity of the definition of a function
f that proves A — B may make it impossible to generate the domain of f, the
constructive acceptability of f need not depend on that possibility to begin with.
Rather, we can accept f as constructive when inspection of the rule in its definition
shows that whatever we come to recognise as a constructive proof of A will, by
applying f to it, be turned into a constructive proof of B. A characteristic (and
general) passage about definitions of proofs and function(al)s by giving a procedure
is:

[Flor an intuitionistic definition, we have to have a proof that the procedure
terminates. For such a proof it may be necessary to have the primitive
notion of a constructive operation of higher type or of a proof considered
as an operation on abstract objects [...] Briefly, to recognize that a given
procedure is a welldefined construction, one may already have to have the
general notion of construction (similarly in classical mathematics: a formula
with quantifiers over sets will in general define a set uniquely only if one
already knows the extension of set, except that in the intuitionistic case it is
never a matter of the extension). This is an impredicativity, but constructive,
provided, of course, one understands the notion involved. (Kreisel 1962b,
p- 318n8, original emphasis)?’

This way of seeing the matter had of course been influenced by Godel and the
latter’s then recent Dialectica paper, itself, at least on Godel’s own preferred under-
standing, a significant rapprochement with intuitionism.!?¢ As Kreisel reminisced in
1987,

Asymmetry between rules and — the ranges of — their arguments. One feature
that Godel emphasized increasingly in conversations during the decade after
[Godel 1958] appeared, was the possibility of exploiting the amorphous
character — or, if preferred, our ignorance — of the totality of all effective
rules. More fully, a rule is accepted only if it is understood to be well defined
for all effective arguments (of appropriate type), even though little is — or
can be — known about this possibly growing totality. This situation is only
superficially paradoxical, to adapt the wording of footnote 1 on p. 283 of

125 This paper was ‘Communicated by Prof. A. Heyting at the meeting of January 27, 1962’. The
Heyting-Kreisel correspondence of January 1962 indicates that the final part of that paper was
revised quite a bit in the weeks before Heyting presented it to the Academy. Kreisel received the
proofs on February 24, and sent the corrected proofs to the Academy on March 8, 1962 (Heyting,
Bkre 620308). Godel’s letter to Kreisel quoted in (1.129) below is of the next day.

126 For discussion of the latter topic, see Atten (2015, section 11.3.5) and the references there.
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[Godel 1958] about propositional and other logical operators — for the class
of propositions — meant by Brouwer and Heyting. (Kreisel 1987b, p. 111)

In that footnote, Godel had written about the concept of computable functional of
finite type:

Man kann dariiber im Zweifel sein, ob wir eine geniigend deutliche Vor-
stellung vom Inhalt dieses Begriffs haben, aber nicht dariiber, ob die weiter
unten angegebenen Axiome fiir ihn gelten. Derselbe scheinbar paradoxe
Sachverhalt besteht auch fiir den der intuitionistischen Logik zugrunde lie-
genden Begriff des inhaltlich richtigen Beweises. (Godel 1958, p. 283n1)

Naturally, Kreisel applied this view also to intuitionistic species: just as a function
gets applied to an object only after that object has been proved to be in its domain,
an object becomes an element of a species only by proving that it has the property
in question. A species therefore depends as little on a construction method for its
elements as a function on a construction method for its domain. The two cases are
essentially the same, as to each species corresponds a characteristic function.

For the exact definition of species, one would have expected Kreisel to refer to
Heyting’s Intuitionism (1956), which was his reference for the explanations of the
logical constants. Heyting defines:

Definition 1. A species is a property which mathematical entities can be
supposed to possess (L. E. J. Brouwer 1918, p. 4; 1924, p. 245; 1952,
p. 142).

Definition 2. After a species S has been defined, any mathematical entity
which has been or might have been defined before S and which satisfies the
condition S, is a member of the species S. (Heyting 1956, p. 37)'%7

But in this case, Kreisel did not follow suit. In his paper introducing the Theory of
Constructions, he defines, without reference to Heyting,

A species of n-tuples of constructions ay, ..., a, is determined by a con-
struction s where s(c,ai,...,a,) = 0if ¢ is a proof that <ay,...,a, >
belong to the species, s(c,ai,...,a,) = 1 otherwise. (Kreisel 1962a,
p- 202)128

and in the Saaty paper he uses the term to name (logically defined) undecided
properties: ‘called species to distinguish them from decidable properties’ (Kreisel
1965, p. 121). But there is nothing corresponding to Heyting’s Definition 2 above of
a member of a species, which Heyting had elucidated as follows:

127 Below we will have occasion to give, in (1.128), the last of Brouwer’s own definitions that
Heyting refers to in Definition 1.

128 The special case for properties of natural numbers had been given in his lecture ‘La prédicativité’
(Kreisel 1960, p. 388), held in November 1959, about a year before that of which ‘Foundations of
intuitionistic logic’ (1962) is the published version.
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Circular definitions are excluded by the condition that the members of
a species S must be definable independently of the definition of §; this
condition is obvious from the constructive point of view. It suggests indeed
an ordination of species which resembles the hierarchy of types. (Heyting
1956, p. 38)

Indeed, Kreisel, in his letter to Heyting from 1962 quoted above in (1.72), had
pointed out that ‘type distinctions are not always observed, e..g. not in your explana-
tion of the logical constants, in particular implication’.1?° By 1968, he speaks of ‘the
impredicative theory of species’, understanding it as the comprehension principle
with intuitionistic logic (Kreisel (1968b, pp. 153); also Kreisel (1968a, p. 351)).
Specifically, he proposes to accept as a principle of second-order arithmetic:

dXVyly e X & Ay],

where X ranges over species of natural numbers, y ranges over natural numbers,
and A may contain quantifiers over species of natural numbers (but not contain the
variable X).130 He elucidates:

For Ay to be intuitionistically meaningful, we must have a notion of: proof
of Ay ([Kreisel 1965], p. 128, 2.31) and this knowledge determines per se a
species X such that Vy(y € X < Ay).

What could go wrong? Of course there is the common place objec-
tion to impredicative notions allegedly connected with the paradoxes; more
precisely we consider here species of arbitrary species instead of sets of
arbitrary sets, and take care to derive the paradoxes intuitionistically. Evi-
dently this objection is as weak here as in the case of set theory since we are
considering species of natural numbers, and not of arbitrary species. Kreisel
(1968Db, pp. 153—-154)13

The paradox arising from accepting species of arbitrary species would be a form of
Russell’s Paradox for properties (section 1.4.3), but for the species considered here
the question of self-membership does not arise. The emphasis on intuitionistic logic
in the derivation of the paradox here serves to diagnose that the cause of the paradox
lies in the theory of species (see section 1.4.1, and Kreisel’s remark (1.72)). Further
on, Kreisel comments, in the spirit of (1.118) and (1.119):

Of course it is not claimed that the impredicative species above are our
constructions in the sense of our having, so to speak, ‘listed’ them all before
speaking about them, ‘listed’ in the idealized sense of having given a rule
of construction indexed by natural numbers or even ordinals. But note that
Heyting’s own interpretation of the logical operations, e.g., of implication,

129 A similar remark is made in the published paper, Kreisel 1962a, p. 202.

130 T ikewise, Troelstra accepts the existence of a least upper bound on species of the so-called
extended reals (Troelstra 1982, pp. 284-285).

Bl See also Kreisel (1970a, pp. 130-131).

(1.123)
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certainly does not refer to any ‘list’ of possible proofs of the antecedent. It
simply assumes that we know what a proof is.

[...]

The moral is not that Heyting’s interpretation is non-constructive! nor
that a more elementary interpretation such as Godel’s (G) [i.e., the Dialectica
interpretation of HA] is foundationally uninteresting. The moral is that its
foundational interest depends on something subtler than mere constructive
validity. (Kreisel 1968b, pp. 154-155)

1.4.5.3 The problematic criticial impredicativity in the proof paradoxes

The critical impredicativity arising in proof paradoxes when reconstructed with the
Fixed Point Theorem can, unlike that in the case of functions, only be construed as
direct, and does not define a species, but an individual object. To clarify this point:

L.

On the one hand, accepting a representation principle as constructive obliges us
to accept its instances as constructive. On the other hand, accepting the critically
impredicative definitions in the Proof Paradoxes does not put us in a position
actually to construct the defined object. This combination presents us (or rather:
we present ourselves) with an obligation that is impossible to fulfill. The infinite
regress that Godel observes in (1.88) is a symptom of this, and parallel regresses
arise in each of the other proof paradoxes. The reason can be stated in terms
of the proof of the Fixed Point Theorem: the contexts in which these paradoxes
arise leave us with no choice for an attempt at constructing the fixed point b but
to construct it as the result of bh, to obtain which requires a construction of the
fixed point b, and so on.

This kind of impossibility is not the one we are presented with in the case of
mathematical negation, when we observe that our attempt at fulfilling a certain
intention directed at a mathematical object with a certain property at some
point is blocked, ‘no longer goes’ (Brouwer 1907, p. 127; trl. Brouwer 1975,
p.- 73). What we observe here is rather a construction process that never really
gets going to begin with. The proposition that such an object exists is therefore
non-mathematical. 32
The separation of cases between direct and indirect impredicativity shows why
the existence of proof paradoxes does not, by analogy, cast doubt on the Proof
Explanation of implication. In the proof paradoxes, the direct impredicativity
cannot be reconstrued as an indirect one. To do that, it must be possible to see the

132 Note that on the Theory of the Creating Subject, a mathematical contradiction can be obtained
from this: if for some predicate P the hypothesis that there is a stage n at which 3 x P(x) is
proved cannot be true, one concludes that =3 x P (x). The argument uses the implication from
right to left in (CS3) on p. 48, or the weaker version A — —- 3 n O, A, and contraposition, taking

A=

Jx P(x). What leads to a block here is that n must be an index into the growing sequence

of effected construction acts (which is an object of second-order mathematics), but cannot be.
Second-order mathematics is described in Brouwer (1907, p. 98n1) (trl. Brouwer 1975, p. 61nl);
see also Atten (2018, p. 1595n54, p. 1598).
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object defined as a function that is not included in its domain, but in Kreisel’s,
Godel’s and Goodman’s Paradoxes the domain is inclusive of all constructions,
and in Troelstra’s the object is not a function to begin with. In contrast, in the
case of implication both construals are possible: one either quantifies over all
constructions, or over the proofs of the antecedent (compare Kreisel’s (1.1) and
Heyting’s (1.2)). This shows that the ‘kind of self-application’ (Kreisel in (1.3b))
in those paradoxes is not the same as that in implication. 33

3. Indeed, in the wake of finding their paradoxes, neither Kreisel, nor Goodman
(both of whom sought a mathematical model of the informal Proof Explanation)
nor Troelstra (who did not, but used it), came to express doubts about the
Proof Explanation. Rather, they blocked their paradoxes by (in effect) rejecting
the critically impredicative definition coming in with the application, in their
particular contexts, of the Fixed Point Theorem: they introduced forms of typing
and stratification.

1.4.5.4 A divergence between Kreisel and Godel

The approach in item 3 is not the one Godel envisaged to block his intuitionistic
paradox.’34 That much is clear from his remark in (1.83) above, and is seen once
again in a comment he makes on intuitionism and paradoxes in general, as reported
by Wang:

Brouwer objects to speaking of all proofs or all constructible objects. Hence
the extensional and the intensional paradoxes do not appear in intuitionism
according to his interpretation. But I think that this exclusion of all, like
the appeal to type theory in the theory of concepts, is arbitrary [from the
intuitionistic standpoint]. (Wang 1996, p. 188, 6.1.15, amendment Wang)

The opening sentence here is, in that exact wording, a half-truth. Brouwer did speak
of ‘the totality of all possible mathematical systems’, as an example of a ‘denumerably
unfinished set’ (Brouwer 1975, p. 82) — in his dissertation, which Godel had read
(Atten 2015, p. 191). A denumerably unfinished set is one of which we can construct

133 Although, by footnote 3 above, I see no reason to discuss Kreisel’s ‘second clause’ exten-
sively here, I do, coming from a different perspective, express my agreement here with Dean and
Kurokawa’s view (2016, section 4.2) that Weinstein (1983, p. 264) was mistaken to suggest that it
is the self-reflexivity in the ‘second clause’ that leads to Goodman’s Paradox. (See also footnote
108 above.)

134 Note the contrast with his view on problems that may arise in category theory from the self-
applicability of categories: ‘It does not seem [. . .] that anything is lost from the mathematical content
of the theory if categories of different levels are distinguished. If there existed mathematically
interesting proofs that would not go through under this interpretation, then the paradoxes of set
theory would become a serious problem for mathematics’ (Godel 1964, p. 262n12); and similarly
in his letter to Bernays of January 9, 1963 (Gddel 2003a, p. 220). Behind this is a distinction
Godel draws between (i) ordinary mathematics, which is concerned with the extensional, and
where bounded quantifiers suffice, and (i) logic, which is concerned with the intensional (general
concepts) and where self-reference may occur (Wang 1996, p. 253: 8.1.11 and 8.1.12; p. 270:
8.5.3-8.5.7).
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a denumerable subset and have a method to extend any such subset; ‘from a strictly
mathematical point of view this set does not exist as a whole, nor does its power exist;
however we can introduce these words here as an expression for a known intention’
(Brouwer 1975, p. 82). (Note that a denumerably unfinished set can be the domain
or range of a constructively acceptable morphism.) What Brouwer objected to is the
introduction of a species — an existing mathematical object — of all proofs, or of all
constructible objects, because he required that the definition of a species take the
form of a (not necessarily decidable) separation, and hence be predicative: 13

mathematical species [are] properties supposable for mathematical entities
previously acquired, and satisfying the condition that, if they hold for a
certain mathematical entity, they also hold for all mathematical entities
which have been defined to be equal to it, relations of equality having
to be symmetric, reflexive and transitive; mathematical entities previously
acquired for which the property holds are called the elements of the species.
(Brouwer 1952, p. 142, original emphasis)

The qualification in italics was not present in Brouwer’s published definitions before
Brouwer (1947),13¢ and it can be investigated whether it is a stronger qualification
than that imposed on elements in Heyting’s ‘Definition 2’ in (1.121) above.'3” Ei-
ther way, the ensuing predicativity was also the essence of Brouwer’s remarks on
denumerably unfinished collections and of his reaction to Russell’s Paradox, both
formulated in his dissertation (Brouwer 1907, pp. 148-149, 162-163), which, as re-
marked above, Godel had studied. Once one forbids species with members whose
definition is critically impredicative, the proof paradoxes as well as the Russell para-
dox are all blocked. Surely that was what Godel had in mind in the first sentence
of (1.127), and one begins to wonder whether ‘speaking’ might be Wang’s mis-
hearing or misremembering of Godel saying ‘species’.’3® This would also give a
precise sense to Godel’s qualification of arbitrariness, the idea being that if intu-
itionism accepts impredicativity in the Proof Explanation (as observed, for example,
in Bernays’ remark (1.116) above) then why not also in the definition of species?
Indeed, Brouwer’s theory of well-ordered species has generally been considered to
be impredicative (see also footnote 148 below).

135 As is evident from the previous footnote, that is not the case for a denumerably unfinished set.

136 Note that Godel would have been able to read that, as he read Dutch. But as yet, I have no
evidence that he knew the paper.

137 See on this point Atten (2017a, section 3).

133 Wang made notes during and after the conversations, but no tape recordings (Wang 1996,
p. 135). “Since I do not have a verbatim record of Godel’s own words, there are bound to be
misrepresentations’ (Wang 1996, p. 129). The possibility evoked here is reminiscent of Wang’s
‘Rotterdam’ when mentioning Godel’s 1939 lectures at Notre Dame (Wang 1981, p. 655). (See also
Parsons’ comment on this in Godel (2003b, p. 392).)
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Godel insists on the intensional conception of quantification in intuitionism in a
letter to Kreisel of March 9, 1962, in a discussion of his Russell paper:

Was das vicious circle betrifft, so habe ich ja selbst auf p134 gesagt, dass es
sogar fiir die konstruktive Mathematik nicht in vollen Umfang gilt (vgl. die
Formulierung auf p133). Dabei ist ja unter ,,Konstruktivismus* in meiner
ganzen Arbeit der Russell-Poincaré-Weylsche ,,Halbintuitionismus*139 zu
verstehen, der in einer Hinsicht weiter, in einer andern (insbes{ondere)
hinsichtlich des Imprédikativen) enger ist als der Intuitionismus. In dem
letzteren kommt ja der Begriff der Totalitét tiberhaupt nicht vor u(nd) auch
die Quantoren sind intensional zu interpretieren (vgl. p136 oben). Es besteht
daher kein Grund, weshalb das vic(ious) circ(le) princ(iple) (intensional
formuliert) im Intuit(ionismus) gelten sollte. (Kreisel, 50/1, underlining
Godel) 40

In the paper, Godel had stated the vicious circle principle as ‘no totality can
contain members definable only in terms of this totality, or members involving or
presupposing this totality’, and remarked that, for each choice among ‘definable
only in terms of’, ‘involving’, and ‘presupposing’, one in fact obtains a different
principle (Godel [1944] 1951, pp. 133, 135). The intensional formulation is that in
terms of definability. In it, intuitionism would replace the extensional ‘totality’ by the
intensional species, but then Gédel sees no objection to a species having members
that are definable only in terms of that species. Kreisel’s acceptance of impredicative
definitions as in (1.118)—(1.119) above is based on this idea.

Not long after that letter, Godel made the point in print, in a note he added to the
1964 reprint of that paper: !

The author wishes to note [...] that the term ‘constructivistic’ in this pa-
per is used for a strictly anti-realistic kind of constructivism. Its meaning,
therefore, is not identical with that used in current discussions on the foun-
dations of mathematics. If applied to the actual development of logic and
mathematics it is equivalent with a certain kind of ‘predicativity’ and hence
different both from ‘intuitionistically admissible’ and from ‘constructive’ in
the sense of the Hilbert School. (Benacerraf and Putnam 1964, p. 211)

139 Die finite Mathematik scheint mir in einem gewissen Sinn der Durchschnitt von Intuition(ismus)
u(nd) Halbintuit{(ionismus) zu sein.

140 n the letter of January 31, 1962 to which Godel is replying, Kreisel (letter of January 31, 1962
(Kreisel, 50/2)) had said that he had read the Russell paper again, and found the argument there
that the vicious circle principle should apply to constructive mathematics (Godel [1944] 1951,
pp- 136-137) not convincing, on the ground of the considerations in the Dialectica paper. But that
is, as we see, not the kind of constructivism Godel had meant.

14 He expanded and revised that note in 1972, and only that version is included in Gédel (1990).
But see the next footnote for a related note that is included there.
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Godel here sees, by implication, an element (not a ‘vestige’!) of realism in the
intuitionistic position;*2 and we see that (1.129) and (1.130) confirm the correctness
of Wang’s amendment to (1.127).

The paradoxes that drew attention to the problematic character of the impredica-
tive species of all proofs or all constructions — the proof paradoxes of section 1.4.4 —
all appeared in print, and were discussed among the protagonists, over a period of a
few years after (1.130). In 1969, Godel stated where he wanted to look for a solution
to paradoxes, in a letter to Kreisel (July 25):

Die Scott-schen Bedenken gegen imprad(ikativen) Spezies u(nd) den all-
gemeinen Beweisbarkeitsbegriff*3 scheinen mir beim heutigen Stand der
Wissenschaft durchaus berechtigt.'** Wie die Antinomien zeigen, > verste-
hen wir diese sehr allgemeinen Begriffe heute noch nicht. Erst nach einer
genauen phinomenolog(ischen) Analyse, welche die Antinomien auf eine
vollkommen einleuchtende Weise auflost, werden sie vertrauenerweckend
sein. (Kreisel, 50/2, emphasis Godel)

These lines were written at the time of Godel’s undergirding his Dialectica Interpre-
tation by Husserl’s phenomenology, first, more specifically, as a contribution to intu-
itionism, then in the form of a theory of ‘reductive proof” (Atten 2015, pp. 210-222).
This is no coincidence, of course: philosophical questions around impredicativity
and proof are raised just as much by the concept of computable functional; see, e.g.,
Godel’s (1.120) above. One thinks of Husserl: ‘Fiir die apriorischen Disziplinen,
die innerhalb der Phianomenologie zur Begriindung kommen (z.B. als mathemati-
sche Wissenschaften) [kann es] keine ,Paradoxien®, keine ,Grundlagenkrisen‘ geben’
(Husserl 1962, p. 297).146

142 Tn a note kept with an offprint of the Russell paper, Godel specified an ‘antireal(istic) kind of
constr(uctivism)’ as one for which

the starting point and the means of constr(uction) are to be exclusively sensual & material
(e.g. symbols, their perc{eptual) prop(erties) & rel{ations) and the actual or imagined
handling of them), not the element(ary) operations and int{uitions) of a new & irreducible
entity called mind. (Godel 1990, p. 320)

In Sundholm and Atten (2008, p. 71), intuitionism and platonism were likened to one another as
forms of ‘ontological descriptivism’ (there, as opposed to meaning-theoretical approaches).

143 This refers to Scott’s thinking, which he discussed with Godel and Kreisel, that led to ,,Con-
structive validity* (1970); see its p. 239 and p. 241 (where, however, no explicit argument against
quantification over species is given). See also footnote 150 below.

144 [Note MvA] Kreisel comments: ‘Scott, in [Scott 1970], p. 239, 1.-10 to 1.-9, expresses very
clearly similar misgivings about the role of proofs in constructive foundations. Pushed beyond
reason [...] Scott’s view blocks any chance, at least at present, of a non-circular explanation of
implication.” (Kreisel 1971a, p. 124n8)

145 [Note MvA] Here Godel may also have had paradoxes such as Myhill-Montague in mind (see
the end of section 1.4.1).

146 On his ‘reductive proof’, which Godel introduced around the time of (1.132), he observed in a
note dated February 11, 1974:

Meine Dial(ectica) Arbeit mit dem Begriff des reduktiven Beweis(es) gibt keine die
Parad(oxien) ausschlieBende Interpretation (daher die Fundierung nicht wesentlich bes-
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Godel’s expectation in (1.132) is that an analysis such as he envisages will have the
effect of validating impredicative species and a general notion of proof.#” Brouwer,
on the other hand, at least in his explicit statements, and presumably on the basis
of his further analysis, accepts a general concept of proof, but not impredicatively
defined species, e.g. (1.128) above. It has been a matter of debate (i) whether
in Brouwerian intuitionism, as practised, critical impredicativities nevertheless do
occur; 8 (ii) whether, given Brouwer’s views on mathematical existence and truth,
they should be avoided; and (iii) whether, if they should, intuitionism would still be
able to develop satisfactory understandings of, in particular, implication and of well-
orderings. A treatment of those questions lies outside the scope of the present paper.
For references, a discussion, and an attempt at a contribution, see Atten (2017a).

As for Kreisel, already at the time of receiving Godel’s letter with (1.132) in it,
his thinking was developing in quite the opposite (deflationary) direction, in every
respect. Having given his analysis of impredicative species quoted in (1.84) above,
he recommended leaving it at that:

The analysis above, like the interpretation of the logical operations intended
by Brouwer and formulated by Heyting, uses notions which are more ab-
stract than those of familiar constructive mathematics [. . .] The analysis has
enough coherence and substance to suggest that there is something deflnite
to understand here [. . .] But do we want to know about it, not only subjec-
tively, but for getting on with the business of constructive mathematics? Not
the possibility of understanding intuitionistic concepts, but their usefulness
is the true issue. Dramatic exaggerations would only lead to the kind of let-

ser als Heyting und zwar deswegen, weil zum Beispiel der allgemeine Begriff der bere-
chenbaren zahlentheoretischen Funktion vorkommt und dieser von irgendeiner Def(ini-
tions )-Kette spricht (also die Def(inition) x € a = ~x € x kann vorkommen). (Godel,
10a/40, item 050136, transcription from the Gabelsberger Eva-Maria Engelen.))

This note was first published, and discussed, in Atten (2015, p. 222-224).

47 A view that I cannot go into here, but that is highly interesting for comparison and contrast with
Godel’s, is that of those who wished to accept both impredicative species and the Curry-Howard
isomorphism. This combination was proved inconsistent by Girard (1972); see also Coquand (1986).
Generally, the conclusion was that impredicative species had to go (Martin-Lo6f 2008, p. 250), and
this opened the way to Martin-L6f’s Constructive Type Theory as we know it today. Godel, on
the contrary, had accepted, from early on, as the object correlate to a general notion of proof, one
universe of all proofs. He (and Kreisel) criticised Howard’s manuscript for not analysing what a
construction is (Wadler 2014, p. 11). (Incidentally, Bill Howard told me that Godel and he never
discussed impredicativity in the Proof Explanation explicitly (Atten 2015, p. 193n10).)

143 In his notebook Max Phil IV of May 1941-April 1942, Godel lists as impredicativities in Brouwer
the sum species of an arbitrary species (of species) and the definition of ordinal numbers (Godel,
6b/67, item 030090, p. 154). See, e.g., Brouwer’s definition of the ‘Vereinigungsspecies’ (and note
the use of S, as for ‘Summe’) in Brouwer (1925, p. 247), and the definition of well-ordered species,
which is fundamental to Brouwer’s theory of ordinal numbers, in Brouwer (1927b, pp. 451, 456).
In the former definition, the implicit quantification over species is not universal but existential;
Godel in effect applies to the sum species the observation that Poincaré (1906, p. 315) had made
on Zermelo’s sum set. Note that Godel does not mention implication; perhaps because in Brouwer
the Proof Explanation is operative, but implicit (Atten 2017b, section 3.1).

(1.134)
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down which Russell felt after he (or rather, according to his autobiography,
after Whitehead) finished Principia. (Kreisel 1970a, p. 131)1°

In fact, Godel’s (1.132) was written after he had seen this recommendation, and no
doubt (also) records his reaction to it.’5® And while Kreisel initially had come to
see, no doubt because of their conversations, a role for phenomenological analysis
in foundations just as Godel does in (1.132) — see Kreisel 1969, p. 97; 1970, p. 489;
and 1971, p. 151 — such calls are absent from his later writings. !

Finally, as we saw in (1.81), a comment from 1958 and among Kreisel’s first on
the paradoxes, he looked at Russell’s and concluded that it arises from an oversight:
not every property has a definite extension. He there also stated that this take, while
‘illuminating’, ‘does not seem to lend itself to generalisation’. It seems that initially
he nevertheless hoped that such a generalisation would be found; thus in 1967 he
writes that

149 The qualification ‘dramatic exaggeration’ predicts Kreisel’s reaction to the elaboration of the
Dialectica paper that Godel was working on at that very moment. Kreisel always considered the
1958 version a ‘gem’ (Kreisel 1987b, p. 108), but, reviewing volume 2 of the Collected Works,
considers the added notes in the 1972 version ‘particularly ethereal’, and opines that, while it is
not difficult to see the philosophical gain achieved ‘when the “gain” is measured by the canons of
academic epistemology’, ‘[t]his leaves open what gain, if any, there is for a more realistic view (of
knowledge)’ (Kreisel 1990, p. 615).

150 The details are these. From February 20-25, 1969, Scott had written (and then sent) Godel a
long letter further clarifying his (Scott’s) theory of constructions. This included reservations about
quantification over species, e.g.,

A distinction is possible in intuitionistic logic that is not possible in classical logic —
namely, functions are sharp while species are fuzzy. (At the moment I cannot find less
colloquial language to express this point.) That makes it possible to say that we can
imagine the whole function space N — N but not the whole space of subspecies of N. (Of
course, N — 2 gives the space of detachable subspecies of N, but we are also interested
in the undecidable subspecies.) Somehow the introduction of new mathematical objects
(higher-type objects, say) allows for the formulation of ever new properties of integers
making it impossible to comprehend all subspecies into one totality. That is a vague idea,
I admit, but I would like to see how you or Kreisel can argue that it is unreasonable.
(Godel, 3a/155, item 012275, pp. 28-29)

(I thank Dana Scott for his permission to quote.) Scott sent a copy to Kreisel. I have not seen a
responding letter from Kreisel to Scott, but a letter from Kreisel to Godel of March 10, 1969 (Godel,
2a/92, item 011262) shows that Kreisel then asked Myhill, one of the editors of the Buffalo volume,
to send Godel the typescript of Kreisel (1970a). In that letter, Kreisel commented that at least some of
Scott’s objections seem to be incorrect, for the reasons given in section 5 of that paper (without there
naming Scott). ‘Ubrigens sind Thnen die Uberlegungen von §5 hochstwahrscheinlich sowieso nicht
fremd’ (a reference, I take it, to the conversations Kreisel reports in (1.119)). Godel gave his view
on Scott’s reservations to Kreisel first — this is (1.132) above — and only on December 18 to Scott,
in a similar but somewhat more practical manner: ‘I share your strongly intensional viewpoint as to
intuitionistic mathematics and (pending further clarification) your distrust in unlimited functions,
and quantification over all (intensional) subspecies, or over all proofs or propositions. I think it
makes very good sense first to develop a theory of functions (i.e., procedures) with limited domains,
but including transfinite types.’ (Godel, 3a/155, item 012279, p. 1).

51 As he explained later, he did not read Husserl because he was, in fact, ‘interested in other things’
(1998, pp. 100, 105).
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in Zermelo’s work [. . .] the intuitive analysis of the crude mixture of notions,
namely the description of the type structure, led to the good axioms [. . .]
And a similar conceptual analysis will be needed for solving the problem of
the paradoxes. (Kreisel 1967a, p. 145)

But by 1971, at the beginning of a long ‘Autobiographical remark on the (functional)
paradoxes’, a turn sets in:

Speaking for myself, I simply do not find the paradoxes dramatic: halfway
through the argument, that is well before any hint of a paradox appears, my
attention begins to wander as in free association. (Kreisel 1971c, p. 188)

And in 1973 he holds:

For contrary to popular opinion I have the impression that paradoxes occur
when we have not even begun to think, when we are playing with words,
and their resolution is generally not fruitful: after all, how much more does
the child really know about the concept of number when he realizes that
there is no greatest? (Kreisel 1973, p. 265)

Not fruitful - in view of the above one is inclined to add: unlike Zermelo’s analysis
of set.152 Kreisel makes the contrast with Godel explicit in his retrospective Salzburg
essay:

Evidently, if such simple and familiar points are overlooked in the manufac-
ture of paradoxes, there is good reason to doubt Godel’s high expectations
from a solution of the paradoxes. (Kreisel 1987a, pp. 95-96)

The change in Kreisel’s view on the paradoxes described here happened soon
after he had written the Brouwer memoir, and I take this to explain why he seems
never to have taken up the matter of (1.3b) again.

152 Kreisel (1967a, p. 144n1) still expressed his opposition to the view, there ascribed to Rasiowa
and Sikorski (1963), of the paradoxes as a ‘dead (fruitless) issue’. Also note how close the spirit of
Kreisel’s (1.138) to that of this passage in Brouwer:

It can be shown, however, that these paradoxes result from the same error as that of
Epimenides, namely, that they arise where regularities in the language that accompanies
mathematics are extended over a language of mathematical words that does not accompany
mathematics; that, further, logistics too is concerned with the mathematical language
instead of with mathematics itself, thus does not clarify mathematics itself; that, finally,
all paradoxes disappear, when one restricts oneself to speaking only of systems that
explicitly can be built out of the Ur-intuition. [Brouwer 1908, p. 155; trl. Atten and
Sundholm 2017, p. 17]

Weyl, too, has drawn this contrast, in his remarks on Godel ([1944] 1951):

[O]ne must know that Godel takes the paradoxes very seriously; they reveal to him ‘the
amazing fact that our logical intuitions are self-contradictory’. This attitude towards the
paradoxes is of course at complete variance with the view of Brouwer who blames the
paradoxes not on some transcendental logical intuition which deceives us, but on a gross
error inadvertently committed in the passage from finite to infinite sets. I confess that in
this respect I remain steadfastly on the side of Brouwer. (Weyl 1946, p. 211)

(1.136)

(1.137)

(1.138)

(1.141)

(1.139)

(1.140)
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1.5 Closing remarks

To the best of my knowledge, Kreisel never specified what A he had in mind in (1.3c¢);
if indeed he never did, then the question why not is one that only he could have
answered. 3> What I have tried to do here is to address the systematic question about
the architecture of certain proofs that his remark raises, but in a way that is informed
by its archaeology, looking for examples that Kreisel knew in any case for other
reasons, or that occur in contexts that he was particularly familiar with. Within the
context of Natural Deduction, we found four kinds of examples of A of which a
natural formal proof, as a matter of constructive logic, contains a proof of A — B:

1. A of the form JxP(x) for which we find, mechanically or otherwise, an a such
that 3xP(x) < P(a).

2. AoftheformVx e D3y e D'P(x,y).

3. A for which we have a prior proof of A & (A — B). By contracting the
implication from left to right, leaving the implication from right to left as is, and
applying Curry’s insight, this reduces to the next case.

4. A corresponding to the type of an object a that has been defined as F(f), with
f:A—> BandF : (A — B) — A;in other words, when an object is defined by
applying a selection functional in whose range it lies. Here it is natural to prove
that a has type A via proofs for the types of f and F, in the sense that thereby
the components of the proof reflect the components of the defining application.
Note that all applications of Lawvere’s Fixed Point Theorem provide such a
context, by point 5 on p. 29.

The latter two fit Kreisel’s (1.3c) immediately, whereas in the first two it depends on
how one represents the informal reasoning whether also a proof of (A — B) — Ais
literally contained in the proof of A. If it is, then these first two cases also reduce to
the fourth. In all four cases, normalisation of the resulting proof would not preserve
the identified naturalness of the latter.

A question I need to return to is that of the relation between remarks (1.3b)
and (1.3c). As mentioned at the beginning of section 1.4.5, I agree with Dean and
Kurokawa that (1.3c) will draw attention to the idea of impredicativity of implication,
which is a way in which proofs are about themselves, as stated in (1.3b). However,
Kreisel could have done that in a more direct way, without also invoking the contrast
between the formal and the non-formal, or that between the natural and the non-
natural. The point of inserting the parenthetical remark (1.3c), such as I understand
it, will also serve as conclusion to the present paper as a whole. It is to make clear
that for certain A, a formal proof that depends on a proof of A — B is not a merely
theoretical, and in that sense unnatural possibility, to be taken into account only
to test the generality of some theoretical interpretation or explanation of the pre-
theoretical notion ‘constructive proof of A’, but one that, when formalising natural
informal proofs, is to be expected.

153 T suspect there may be more about the matter in his correspondence with William Howard,
which began in 1965 and which was rather voluminous (Shell-Gellasch 2003, p. 39).
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