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Abstract 

Protein engineering or candidate therapeutic peptide optimization are processes in which the 

identification of relevant sequence variants is critical. Starting from one amino-acid sequence, the 

choice of the substitutions must meet the objective of not disrupting the structure of the protein, not 

impacting the main functional properties of the starting entity, while also meeting the condition to 

enhance some expected property such as thermal stability, resistance to degradation, ... Here, we 

introduce a new approach of sequence evolution that focuses on the objective of not disrupting the 

structure of the initial protein by embedding a point to point control on the preservation of the local 

structure at each position in the sequence. For 6 mini-proteins, we find that, starting from a single 

sequence, our simple approach intrinsically contains information about site-specific rate heterogeneity 

of substitution, and that it is able to reproduce sequence diversity as can be observed in the sequences 

available in the Uniref repository. We show that our approach is able to provide information about 

positions not to substitute and about substitutions not to perform at a given position to maintain 

structure integrity. Overall, our results demonstrate that point to point preservation of the local structure 

along a sequence is an important determinant of sequence evolution. 

 

1. Introduction 

 

Protein or peptide engineering or design, as well as therapeutic candidate peptide identification and 

optimization are processes in which the identification of relevant sequence variants is critical. Indeed, 

even not considering the insertion of un-natural amino-acids, the choice of substitutions must face the 

objective of not disrupting the structure of the protein, while meeting the condition to enhance some 

expected property such as stability, resistance to degradation, reduced immune response, among others. 

Ways to identify such substitutions include experimental techniques such as phage display (1), directed 

mutagenesis (2), and more recently deep mutation scanning (3). Due to progress in understanding the 

determinants of protein folding and increasing amount of data about related sequences, computational 

approaches to assist the design have also been developed. Among these, the simulation of sequence 

evolution along a phylogenetic tree has been the subject of intense efforts during the past decades (4-7). 

Such simulation techniques are now able to deal with different rates of substitution along sequences 

(8), consider co-evolution for some (9), and models to manage indels have emerged (4). Apart from the 

fundamental goal of deciphering the rules underlying protein family sequence evolution, these 

approaches also have implications for enhanced sequence alignment for instance (10-12).  

 

These techniques based on the analysis of sequences alone can however reveal to be limited for protein 

engineering. In the context of sequence optimization, the search for sequence variants might escape the 

rules of natural evolution, and phylogenetic inference is not always possible in the context of de novo 

protein design, e.g. for the design of un-natural proteins. Finally, structural constraints, although 

implicitly contained along sequence evolution might require more direct consideration. Explicit 

account for structure has led to the field of computational protein design, in which the impact of 

candidate substitutions on the free energy of folding of the protein is usually questioned to drive the 

process (13). Indeed, various techniques to question the relationship between the sequence space and 
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the structure space, have been developed in the perspective of protein design or engineering. These 

include sophisticated protocols (see 14), such as Rosetta-design (15), protocols based on the dead end 

elimination theorem (e.g. 16), protocols focusing accurately on the relationship between evolution and 

side chain-packing (17), coarse grained models (e.g. 18), to cite some, or a combination of the 

simulation of protein sequence evolution under the constraint of explicit structural context (19). Of 

note, 3D based-techniques have led to successful applications in protein design (20-22). 

 

In the context of sequence optimization of therapeutic peptide/protein candidates, a primary objective, 

beyond the goals of enhancing peptide stability and bioactivity, is the preservation of the 3D 

conformation among the sequence variants, not to disrupt the geometry of the functional interactions 

with a target. Thus means to identify which substitutions are likely to disrupt or to preserve those 

interactions are highly desirable. In particular, it is well-known that some sites of the protein sequence 

are much more sensitive for this than others. For example, in protein folding, a few key residues force 

the chain to adopt a rudimentary native-like architecture (23). In sequence evolution, the phylogenetic 

tree is characterized by a few tree-invariant positions - detectable by Evolutionary Tracing (24), and   

tree determinants (25) that correspond to functionally important residues in the structure. Therefore, it 

is essential to identify those key residues and delineate the sequence space that preserves the 3D 

conformation in their vicinity. Although protein design techniques coupled to molecular simulations 

techniques can fulfill such a goal, such protocols are hardly tractable to test the complete space of 

sequences that rapidly growths with peptide size.  

 

Here, we introduce a mid term strategy which does not rely on sophisticated phylogenetic inference nor 

on explicit structure consideration. We use the concept of structural alphabet (26), a discrete model of 

local structure, to constrain a very simple protocol for sequence evolution. Our previous works have 

demonstrated the identification and use of the concept of structural alphabet, and the fact that divergent 

profiles tend to correspond to divergent structures, as illustrated by a fragment search strategy 

exploiting this trend (27). This is the first time that our structural alphabet is applied to the effect of 

mutations of the same structure. We show that it provides, at a limited computational cost, sequence 

sampling consistent to that observed in the subset of the natural sequences identified and that it 

provides information about critical positions, ie. conserved positions not to substitute or position 

specific disruptive amino-acids substitutions.  

 

2. Theory 
 

2.1 Structural alphabet (SA) 

 

A structural alphabet (SA) can be considered as a generalized secondary structure in which each region 

of a protein can be associated to one specific conformation, or “SA-letter” of the alphabet. Thus, a 

structure can be transposed into an optimal string of SA-letters expected to describes accurately enough 

the series of the local conformations - two different strings should be able to distinguish between small 

conformational changes and hopefuly provide a basis to regenerate the 3D conformation. Here, we use 

a structural alphabet made of 27 SA-letters that have been identified using Hidden Markov Models 

(26). Each SA-letter corresponds to a fragment of four amino-acids of the protein, and is described by 

four distance descriptors and the SA-letters overlap by three amino-acids. Thus, the conformation of a 

protein of size L amino-acids can be described by a string a SA-letters of size L-3.  

 

Given the amino-acid sequence of L amino-acids, it is possible to predict the probability that each 

series of 4 amino acid is associated with each of the 27 SA-letters, i.e.  a SA-profile of size 27(L-3) 

values. In such profile, each of the 27 probabilities associated to position l correspond to estimates of 



p(SA/aa), i.e. probabilities of the SA letters given information of the amino-acids. Briefly, for a given 

protein sequence, a sequence profile is first generated using PSI-BLAST. It is then used to predict an 

SA-profile. This prediction is performed by a Support Vector Machine (SVM) that was trained to 

reproduce the SA-profiles extracted from known structures. Here, we use a 2012’ update of the SVM 

predictor that was described in (28), learnt over a collection of proteins of size more than 80 amino 

acids. Of note, those profiles have been demonstrated effective for the de novo modeling of peptides, 

using different strategies to exploit the information they contain (29). 

 

Interestingly, the SA-profiles make a link between sequence and structure, and their variations are 

likely to reflect how the substitutions in the amino-acid sequence can impact the 3D structure of the 

protein. They contain information specific of the structure, the profiles of two proteins of dissimilar 

folds being dissimilar and the profiles of tow proteins of similar fold being similar. We have shown in a 

previous study (27) that using the Jensen Shannon divergence (JS) as a measure of profile dissimilarity, 

it is possible to identify, for low values of JS, protein fragments that have similar conformations. Our 

purpose here is to use SA-profile divergence as a control over the preservation of the structure of the 

target after an amino-acid substitution, to ensure a position by position preservation of the local 

conformation associated to the initial amino-acid sequence. For the purpose of illustration, Figure 1 

shows the relationship between the JS and the RMSD for a fragment of 4 amino acids taken from the 

structure of the GCC-box binding domain (PDB(30): 3GCC), positions 151-155 aligned with random 

fragments of a collection of proteins. One clearly sees that small JS value (resp. large JS values) tend to 

be associated with small RMSD values (resp. large RMSD values). Note that there are a few cases for 

which the RMSD is large while the JS is low, which is in agreement with the well known observation 

that small fragment with identical sequences can adopt different conformations (31). Conversely some 

fragments come with a large JS value (different sequences) and small RMSD values, again consistent 

with previous observations. Importantly, in the present study, we do not consider unrelated fragments, 

but we make evolve  one specific sequence, which is expected to prevent the occurrence of such 

singular behaviors. Figure 2 illustrates how a SA-profile can be affected by one single mutation. Here, 

we present the impact of the A53T mutation of the α-Synuclein, reported to impact the local 

conformation around position 53 (32). One clearly sees that just one single substitution results in large 

differences in the SA-profile around position 53, not affecting, as could be expected other parts of the 

profile (JS values of more than 0.13). Note that in our SA model, the probability distributions 

correspond in fact to overlapping fragments of 4 amino acids. Thus, one amino acid contributes to 4 

consecutive probability distributions.  

 

3. Methods 
 

3.1 Sequence evolution 
 

Figure 3 presents an overview of the procedure. The protocol to simulate sequence evolution is similar 

to a Monte Carlo procedure. Starting from the sequence of a target protein, it will generate substitution 

events that are accepted or not, simulating a random walk in the sequence space. For each substituted 

sequence, a SA-profile is predicted and compared to the SA-profile generated with the initial sequence. 

Acceptation of substitutions is performed according to the expected structural divergence as measured 

by JS. 

 

The core simulation of sequence evolution is made according to the scheme proposed by PSeqGen (33) 

or CS-PseqGen (34). The JTT substitution matrix is used to allow for different rates of substitutions 

depending on the type of amino acids. Since we are interested in the substitution events disregarding 

any molecular clock or any phylogenetic model, evolutionary time is considered as infinite, meaning 



each step results in selecting a substitution, similarly to a Monte Carlo inspired process. Site-specific 

rate heterogeneity is not considered either, since in the context of protein design, it is largely unknown. 

Substitution acceptance is controlled as detailed below. In total, simulations are defined by an initial 

sequence and a number of substitutions to generate.  

 

Acceptance or reject of the substitutions is controlled by the estimation of the expected impact of a 

substitution on the preservation of the local structure of the target, i.e. on the dissimilarity of the SA-

profiles before and after substitution, using JS as follows: 

 

                          JS(SAPref, SAPcur) < JScut-off: accept, reject otherwise 

 

where SAPref corresponds to the SA-profile of the initial sequence, SAPcur  to the SA-profile of the 

current sequence and the JScut-off value corresponds to the value above which the divergence is 

considered as too large to guarantee structure preservation. Varying the value of this cut-off can be 

assimilated to varying the temperature of the Monte-carlo.  

 

SA-profiles associated with an amino-acid sequence of size L consist in L-3 probability distributions, 

each of 27 values. For each pair of distributions belonging to SAPref
l, SAPcur

l, , where l varies from 1 to 

L-3, we use JS(l) as a mesure of the dissimilarity. As mentioned above, a particular position l in the 

sequence contributes to the SA-profiles of four positions (l .. l+3), which requires to check the JS at 

those four positions. For sake of simplicity, we measure the JS for all of the L-3 positions, and to 

combine the L-3 JS values, we consider: 

 

 JS(SAPref, SAPcur) = max(JS(l), l = 1 .. L-3) 

 

where the maximum stands to ensure that, given a cutoff value, for no profile the deviation is more than 

this value. 

 

Of note, the observed variability over independent simulations is, in our experience, rather weak and is 

not discussed any further here. Also note that for each substitution event, we perform a full SVM 

prediction which requires itself a psi-blast and thus simulations of 3000 substitution events take 

between one and two days each on a standard workstation. 

 

3.2 Amino-acid profile divergence 
 

Once simulations performed, one needs means to analyze the diversity of the sequence generated. To 

estimate the number of amino acids occurring at a given position l in the sequence, we use the number 

of equivalent amino-acids defined as: 

 

 Neq(l) = 1/pmax(l) 

 

where pmax(l) corresponds to the maximum of the occurrence probabilities associated  with the 20 

amino-acids at position l in the sequence. These values are averaged over the L positions of the 

sequence to get an estimate of the diversity over all positions.  

 

The comparison of the two profiles made of L distributions of 20 probabilities is a difficult issue. Here, 

we simply consider the correlation coefficient of the two vectors made of the L . 20 values, which we 

found more intuitive than criteria such as the average JS  or the average dot product over the L 

positions.  



 

 

3.3 Test sets 
 

To assess the performance of our procedure, we have chosen 6 peptides and mini-proteins of known 

structure, not intrinsically disordered, and of varied topologies. Table 1 provides details on their size, 

secondary structure, and sequence. Such small sized proteins have the advantage of not belonging to 

the range of size used to learn the SVM. We emphasize, however, that although we assess the protocol 

on such small proteins, the procedure is very general and applicable to larger proteins, as illustrated 

Figure 2 for the α-Synuclein, a protein of 140 amino acids. 

 

As a reference for “naturally observed” sequence variation, we have considered the sequence variants 

made of the homologs of these targets found either in the Protein Data Bank, or in the Uniprot 

repository. For the later case, since our aim here is to estimate the acceptable substitutions in terms of 

amino-acids, we have build profiles considering entries of the Uniref 90 subset, to discard too identical 

sequences.  The procedure was as follows: 

 

1/ search uniref90 using blastp (35) 

2/ retrieve the entries of the hits 

3/ perform a multiple alignment of the hits using clustal omega (36) 

4/ identify the region of the alignment matching the query and extract the corresponding profiles 

 

Name PDB  s2 L Seq. 

Transactivation domain 

of CRE-BP1/ATF-2 
1bhi α2β 38 MSDDKPFLCTAPGCGQRFTNEDHLAVHKHKHEMTLKFG 

N-terminal leucine-

repeat region of 

hepatitis delta antigen 

1by0 α 27 RKKLEELERDLRKLKKKIKKLEEDNPW 

C-terminal UBA 

domain of the human 

homologue of 

RAD23A 

1dv0 α3 47 GSQEKEAIERLKALGFPESLVIQAYFACEKNENLAANFLLSQNFDDE 

Bomain X of measle 

phosphoprotein 

2k9d α3 44 VIRSIIKSSRLEEDRKRYLMTLLDDIKGANDLAKFHQMLVKIIM 

FAF-1 UBA Domain 3e21 α3 45 GSMDREMILADFQACTGIENIDEAITLLEQNNWDLVAAINGVIPQ 

first WW domain of 

Nedd4-2 

1wr3 β3 36 GSPPLPPGWEEKVDNLGRTYYVNHNNRSTQWHRPSL 

 

Table 1: Name: the name of the protein. PDB: PDB identifier of the structure. s2: secondary structure 

topology. L: size (amino-acids). Seq.: amino acid sequence. 

 

 

4. Results and discussion 

 

 



4.1 Sequence divergence depends on the JS cut-off value 
 

Figure 4 depicts, for the transactivation domain of CRE-BP1/ATF-2 (PDB: 1bhi), the evolution of the 

JS and of the sequence identity as a function of the number of substitution events. As could be 

expected, one observes a fluctuation of JS between low and large values (top inset, red) whereas JS of 

the accepted sequences remains under the limit imposed of 0.12 (top inset, black). Interestingly, one 

also observes that the sequence identity of the sequences generated, when compared to the initial 

sequence, rapidly decreases down to values close to only 10-20% (black), which corresponds to the 

twilight zone in terms of homology. Small discrepancies are observed between the sequences accepted 

and those generated, on average, as can be observed for instance around step 200. A control simulation 

using the same procedure, but not applying any JS constraint shows that rapidly, sequence diverge in a 

random manner (gray).  

 

Varying the value of the JS cut-off impacts, as expected, the degree of divergence of the sequences. 

Indeed, lower value of JS cut-off results (JS cut-off 0.08, green) in exploring sequences with higher 

sequence identities, given that a more strict control on the impact of substitutions on the predicted local 

conformations results in rejecting more substitutions. 

 

Similar behaviors are observed for the other targets of the test set, and are summarized in Table 1 that 

reports, for all targets, the lowest sequence identity reached during the simulations. Overall, the results 

show that the procedure is able to reach explore sequences diverging down to close to 10-20 % 

sequence identity.  

  

4.2  Constrained simulated sequence evolution intrinsically embeds site-specific rate 

heterogeneity of substitution 

 

Figure 5 presents, for 1bhi, a logo representation of the distribution of the 20 amino-acids per site. 

Figure 5B-D present logos corresponding to subsets of sequences obtained from a simulation of 3000 

events driven by a JS cut-off of 0.12, using as second step filters JS cut-off values of 0.12, 0.10 and 

0.08, respectively. The size of the subsets is of 892, 256 and 29 sequences, respectively.  As a reference, 

Figure 5A presents the results of an unconstrained simulation of 892 events, i.e. a size identical to the 

subset depicted Figure 5B. Figures 5E and 5F correspond to the logos obtained from the PDB (13 

sequences only) and uniref90 (323 sequences), using blastp (see methods). 

  

A first observation is that compared to the unconstrained simulation , that leads to a rather flat profile, 

the logo profiles differ largely.  In Figure 5B, positions 6, 14, 18 and 31, associated with amino acids P, 

C, F and H, respectively, appear more conserved than other positions (Neq < 1.3). Interestingly, 

considering lower JS cut-off values (Figure 5C-D), the number of positions with Neq < 1.3 increases to 

encompass progressively also positions 7, 19, 22. According to the design of our procedure, this 

suggests that these amino acids are probably critical to maintain the local conformation at these 

positions. Looking at the structure of 1bhi (Figure 6), one notes that these positions are located at the 

extremities of secondary structure elements. Positions 9, 14, 27 and 31 correspond to the cysteines and 

histidines involved in the coordination of the zinc ion (not present in the structure). 

 

Looking at the profile generated using homologues of the PDB (Figure 5E), only positions 9, 14, 18, 

20, 22, 27 and 31 are associated with Neq values less than 1.3. Despite the weak number of sequences,  

those positions match rather well the results of the simulation. Note that, since we could not identify 

homologues with known structure for all 6 cases, we do not discuss the PDB profiles for the other 

targets. 



 

Looking at the distributions obtained for uniref90, one observes that not only positions 6-7, 14, 18, 22 

and 31 are conserved, but in fact positions 6-7, 9, 11-14, 16-18, 21-24, 27, and 29-37. Apart from C-ter 

residues 32-37 that are involved in the functional interaction with kinases, as reported by ELM (37), 

those residues correspond to amino acids located at the interface between the secondary structure 

elements, most being involved in long range interactions stabilizing the overall conformations. Hence, 

the observed heterogeneity obtained from simulations constrained by JS seems to effectively contain 

information about key residues that are required for the preservation of the secondary structure 

elements.   

 

4.3 Sequence divergence is target dependent. 
  

We now consider all proteins of the test set. Table 2 reports for all targets the number of sequences 

accepted for different JS cut-off values, and the average Neq values of the profiles. Note that all 

simulations have been performed using JS of 0.12. For JS values below 0.12, the numbers correspond 

to the subsets of the simulated sequences matching the JS condition. It is striking that the numbers 

depend on each target, meaning target sequence/topology has an impact on the simulated evolution. 

 

 1bhi 1by0 1dv0 2k9d 3e21 1wr3 

JS # Neq # Neq # Neq # Neq # Neq # Neq 

0.12 892 3.12 836 1.98 1048 3.02 1307 3.02 677 2.30 1126 3.05 

0.10 256 2.89 632 2.00 566 3. 356 2.89 186 2.23 535 3.04 

0.08 58 2.20 405 1.98 178 2.87 80 2.33 27 1.75 79 2.45 

0.06 6 1.13 172 1.85 29 2.08 11 1.22 8 1.06 11 1.13 

0.04 0 - 46 1.75 4 1.03 9 1.07 2 1.02 3 1.02 

uniref90 323 1.36 171 1.38 332 1.16 18 1.74 232 2.19 237 1.05 

JSu 0.075 0.032 0.047 0.075 0.12 0.06 

JS2 0.08  (#:649) 0.04 (#: 608) 0.05 (#: 538) 0.08 (#: 1110)) 0.12 {#: 677) 0.07 (#: 887) 

JSu2 0.05  (#:28) 0.025 (#: 38) 0.025 (#: 18) 0.05 (#: 96) 0.12 (#: 677) 0.035 (#: 16) 

r 0.84 0.87 0.86 0.63 0.77 0.77 

 

Table2: #: Number of sequences accepted at the given JS value, and the associated Neq. Simulations of 3000 substitution 

events were performed using JS=0.12. Uniref90: corresponding values observed among homolog sequences of uniref90. 

JSu: JS values for which simulated Neq is identical to that of uniref90. JS2:  JS cut-off values used for the second stage 

simulations (section 4.4). JSu2: JSu for the second stage simulations. r: Correlation coefficient between second stage and 

uniref90 profiles.  
 

If, for a JS-cutoff value of 0.12, the observed variation in the number of sequences is rather limited 

(acceptance rate of substitution events between 22 and 43 %), larger variations are observed for lower 

JS cut-off values. For instance for 0.08, the number of sequence varies between 405 and 27 (acceptance 

rate between 13 and 0.9%), and the Neq values vary between 2.87 and 1.75, without any obvious 

relation to the number of accepted substitutions.  

Finally, if we consider the values of Neq obtained for the uniprot90 homologs, they look rather small 

(between 1.05 and 2.19) compared to the values obtained from the simulations. For the simulations,  

values of Neq similar to those observed for uniprot90 are obtained for rather low values of JS - between 



0.03 and 0.12 (JSu), but again one observes a strong dependence on the specifics of each particular 

case.  

 

 

4.4 JS controlled sequence evolution can mimmick sequence divergence observed in natural 

sequences. 

 

In order to get a better agreement between the simulations and the observations of uniref90, we have 

performed second stage simulations using JS values for the Neq were close to that of uniref90 (Table 2, 

JSu2 values). Note that these new cut-off values guide the search into new regions of the sequence 

space, and thus, we do not expect the Neq values to be preserved, thus JS2 values were chosen slightly 

larger than the JSu values. A first observation about these simulations is that indeed, the acceptance rate 

is, as expected much larger for lower JS values (between 18 and 37% – see Table2) than that observed 

for the initial simulations, which confirms a better sampling of the sequence space for the targeted 

divergence, the minimum number of accepted substitution events being of 538, when it was below 100, 

for the first series of simulations. The minimal sequence identities for the accepted sequence were of 

23, 37, 32, 20, 31 and 25% for 1bhi, 1by0, 1dv0 2k9d, 3e21 and 1wr3, respectively. 

 

Figure 7 shows for each of the 6 targets, the logos obtained for the JSu2 values, i.e. for average Neq 

values similar to those obtained for uniref90. There is a good visual agreement between the logos of the 

simulations and uniref90, and the r values vary between 0.63 and 0.77 (see Table 2), which is highly 

significant (p < 10-10). Note however that the number of sequences, even if much larger than that of the 

first series of simulations, remains low, except for 2k9d and 3e21 for which the r values, even  if a bit 

lower remain very significant. Of note, this low number of accepted sequences is also conditioned by 

the weak Neq values observed for uniref90. We have further verified that for series of 1000 tests 

permuting the series of 20 probabilities for one of the profiles, the distribution of r values is close to 0-

0.1 on average. Overall, this suggests that our simple procedure is able to mimmick accurately enough 

the sequence fluctuations as observed in uniref90.  

 

Looking at the positions highly conserved (Neq < 1.1) it is striking that most of them are located at the 

termination of secondary structures, which suggest that the approach is probably sensitive enough to 

detect that these regions are critical for structure preservation. This is even more true when looking at 

residues conserved for slightly larger values of JS cut-offs (magenta in Figure 7). Overall, the positions 

highly conserved identified by our protocol correspond to 31 over 55 (56 %) of the positions highly 

conserved observed in the uniref90 distributions. As illustrated upper for the 1bhi case, constraints on 

sequence can occur due to several reasons not related to the preservation of the local structure.  

 

Finally, another outcome of the approach  is that it also provides for each position in the sequence, 

information about the substitutions that have been rejected. Figure 7 also presents, for all 6 cases the 

logos of the amino acids that were not accepted by the JS cut-off, and were excluded at least once with 

a JS value of more than 0.3 (chosen large enough compared to the JS cut-off values to get confident 

enough a local conformational change is  expected). It is interesting to compare these amino acids to 

those present in the uniref sequences. For instance, at 1by0 conserved position 22, D was rejected 

several times by our protocol, whereas E was preserved. D is not present either in the uniref profile. At 

position 10 of 1dv0, the uniref profile has a conserved position with R, when our simulations report 

occurrences of R,K and M, and A, L, T and V where rejected. For 3e21 position 10, the uniref contains 

occurrences of D, N, S, E, accepted amino acids of the simulations contain D, N, E and G, A, H, R, S, 

T, Y were rejected. Another such similar example is observed at 1wr3 position 28. In few cases, 

however, some rejected amino acids are observed in the uniref profiles. Such a situation occurs for 



2k9d position 10, where the simulations accepted R, H, K, uniref contains occurrences of N, H, K, R 

and rejected amino-acids include N.  Several causes can explain such events, including epistatis effects 

(occurrence of N conditioned by the occurrence of another amino-acid close in the sequence to 

preserve local structure), or insufficient accuracy of the SVM prediction for some sequence motifs, to 

mention two of them. Such cases are however rare, and concern mostly amino acids occurring with 

weak frequencies in the uniref90 profiles. Over the 6 targets of our test set, the average cumulated 

probabilities of such amino acids if of only 6.7%.   

 

5. Discussion and perspectives 

 

In the present study, we have introduced a new paradigm to simulate protein sequence evolution. It 

builds on the concept of structural alphabet – a kind a generalized secondary structure – used as a 

means to constrain a very basic procedure to sequence evolution. The underlying hypothesis is that the 

limitation of the divergence between two structural alphabet profiles ensures the point to point 

preservation of the local conformation along the sequence. Surprizingly, we find that this very  simple 

procedure is able, for the mini-proteins of our test set, to result in generating sequences which 

significantly fit sequence diversity as observed among uniref90. Indeed, we find that our procedure is 

able to grab the specifics of the heterogeneity of rate among sites, and of the nature of the amino-acids 

at those sites. This being only induced by the constraint on the divergence between the structural 

alphabet profiles implies that the point to point control of the preservation of the local structure of a 

target is an important determinant of sequence evolution. To the best of our knowledge, our procedure 

is the first procedure to directly address this question, and this clearly opens the door to further 

investigations on the amount by which sequence evolution is controlled by such local constraints versus 

longer range interactions. One has however to consider carefully the present results. For one part, we 

have tested so far a limited number of targets, and in addition,  some optimizations can already be 

foreseen. A special  point is about the heterogeneity in the JS cut-off values depending on the targets. 

Probably, it could be of interest to study the convergence of our simulations for a larger number of 

cycles of simulations – here, only two were performed. A comparison and/or combination with the 

results of simulation procedure along a phylogenetic tree could also reveal informative. 

 

It is difficult to compare the results of our protocol to those of former approaches described to measure 

the impact of mutations, as their objectives differ largely. The aim of the approaches developed so far 

has usually been to predict the impact of substitutions on protein stability. This includes local 

conformation preservation considerations, but also longer range effects involved in the stabilization of 

the structure, such as  the interactions between secondary structure elements, or more complex effects. 

Here our main focus is only about the preservation of the local structure, disregarding  longer range 

effect. It is thus expected that our results are more specific than those of other approaches. In addition, 

most of former approaches, such as Backrub (38), Rosetta-Design (15) or POP-Music (39) require the 

3D coordinates of the protein while we consider here only the sequence. We discuss briefly our results 

in the light of the results obtained by the INPS server (40) – based on sequence and the very recent 

SAAMBE-3D server (41) – based on structure. Considering for instance the 1by0 target, both INPS 

and SAAMBE-3D predict that the subsitution E22D is slightly destabilizing, while it is not accepted by 

our protocol, nor observed in unriref90, which seems consistent. At position 10 of 1dv0, SAAMBE-3D 

predicts all substitutions to be destabilizing - which is consistent the full preservation of K in uniref90, 

while INPS predicts that substitutions of R into A, T, K or M would decrease the stability of the protein 

and that substitutions into L or V would increase the stability. Our results suggest that substitutions of 

K into R or M are compatible with local structure preservation, occurrences of A, L, T or V being never 

observed. For 2K9D position 10, the same kind of observations can be done. R10H, R10N, R10K 

substitutions are all predicted to decrease the stability by both INPS and SAAMBE-3D, while our 



procedure suggests that R10K and R10H preserve local structure, and all are observed in uniref90. In 

fact, it is fully possible that some substitutions that destabilize the global structure do not affect the 

local structure and are still compatible with the preservation of the local structure. It is also to be noted 

that servers such as INPS or SAAMBE-3D consider the impact of single mutations, all other amino 

acids being preserved, while our procedure makes the complete sequence evolve, and thus, some 

substitutions can be accepted conditional to previous events in the neighborhood of a site. We also 

recall that our procedure focusing on the preservation of 3D-structure comes with no quantification of 

the impact of the substitutions on stability or on  function.  

 

Indeed, a motivation for developing this procedure was the perspective to assist sequence optimization, 

as can be needed for the development of a candidate therapeutic peptide or mini-protein. Two questions  

can be posed in such context. The first is to identify which positions in the sequence should not be 

modified to ensure the preservation of the conformation of the candidate. To this respect, it is 

interesting that the observed heterogeneity of substitution rates over positions obtained from our 

simulations make it possible, from a single sequence, to identity positions at which substitutions seem 

risky. A second is to propose, for positions at which we find some diversity, which substitutions are 

likely. Numerous protocols and prediction approaches have been developed to this aim (see for instance 

42-43). Here, a particularity of our approach, which is not quantitative, is probably to return 

information about which residue substitutions were not accepted at a given position. Although our 

results clearly show that rejected substitutions depend on the context of the neighboring residues since 

false rejections were observed at a frequency of close to 7%, we put emphasis on the fact that our 

procedure is based on single mutation events only, whereas more sophisticated ways to simulate 

evolution could be setup, for instance considering co-evolution.  All together, we however hope that 

our procedure of sequence evolution under the constraint of the point to point preservation of local 

structure already meets the objective of assisting sequence optimization.    
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Figure 1: JS as a function of RMSD, using as seed the fragment 151-154 - 4 amino acids - of the GCC-

box binding domain (PDB: 3GCC) with all fragments of 77 small proteins. 

 

 

 

 

 

 

 

 

 

Figure 2: SA-profiles of the α-Synuclein, wild type (top) and A53T mutation (bottom). Each column 

corresponds to the probability distribution of the 27 letters. SA-letters are sorted from most helical (red) 

to most extended conformations (green). Details of the probability distributions around position 53 are 

provided as insets. Of note, SA letters correspond to fragments of 4 amino-acids. Thus the A53 position 

is associated with HGVA, GVAT VATV and ATVA fragments, facing the H, G, V and A columns, 

respectively.  

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Flowchart of a simulation  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Evolution of the sequence identity to the initial sequence as a function of the number of 

substitution events. Gray: control without the use of the JS constraint (JS = 1.) Black: JS = 012, 

accepted sequences. Blue: JS = 12, all sequences. Green: JS = 0.08, accepted sequences. 
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Figure 5: Logo representations of the accepted sequence variants of 1bhi. A: control simulation, JS = 

1. B: JS = 0.12. C, D, subsets of sequence of B for JS=0.10, 0.08, respectively. E: homologs of known 

structure deposited in the PDB. F: homologs identified in  uniref90 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Example of 1bhi. Simulations using JS=0.12. The amino acids at the conserved positions 

(Neq < 1.3) are depicted in green. Amino acids conserved in the uniref90 profiles are depicted in blue.   
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Figure 7: Results obtained for simulations calibrated according to the uniref90 Neq.  

Left: For each target, we present le logo of the accepted sequences of the simulation (top), the uniref90 

logo (bottom). The middle logo reports the distribution of the amino acids that have been 

systematically rejected during the simulations. For sake of clarity, the first residues of the targets are 

numbered as 1.  

Right: Conserved (Neq < 1.1) residues as obtained from the simulations. Cyan residues depict residues 

that are still conserved in the subset of sequences using JS + 0.02, when possible (i.e. except for 3e21) 

 

 

 

 

 

 

 

 

 

 

 

 

 






