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Abstract  10 

Biological systems are disturbed by several factors that are defined by the exposome. 11 

Environmental substances, including endocrine disruptors (EDs), represent the chemical 12 

exposome. These stressors may alter biological systems, that could lead to toxic health 13 

effects. Even if scientific evidence provide links between diverse environmental substances 14 

and disorders, innovative approaches, including alternative methods to animal testing, are 15 

still needed to address the complexity of the chemical mechanisms of action. Network 16 

science appears to be a valuable approach for helping to decipher a comprehensive 17 

assessment of the chemical exposome. A computational protein system-system association 18 

network (pS-SAN), based on various data sources such as chemical-protein interactions, 19 

chemical-system links, and protein-tissue associations was developed. The integrative 20 

systems toxicological model was applied to three EDs, to predict potential biological systems 21 

they may perturb. The results revealed that several systems may be disturbed by theses EDs, 22 

such as the kidney, liver and endocrine systems. The presented network-based approach 23 
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highlights an opportunity to shift the paradigm of chemical risk assessment towards a better 24 

understanding of chemical toxicology mechanisms. 25 

 26 
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  30 



Introduction 31 

Through their entire life, humans are exposed to various hazardous substances from diverse 32 

sources such as their environment, diet or medical treatment to cite but a few sources. All of 33 

them represent the chemical part of the exposome (Wild, 2005). The interplay between 34 

genes, lifestyle, chemical exposure and disease etiology is now well accepted (Judson et al., 35 

2012), and integration of the genome and the exposome is a novel paradigm in toxicology 36 

(Barouki et al., 2018)(Vermeulen et al., 2020). Evidence on the impact of some of these 37 

chemicals on human health have considerably increased over the last years. Notably several 38 

health outcomes, such as cancers, metabolic disorders, neurocognitive functions, infertility, 39 

immune diseases, and allergies have been associated with chemical exposure such as 40 

endocrine disruptors (EDs) and persistent organic pollutant (POPs) (Landrigan et al., 2018) 41 

(Agier et al., 2019) (Wu et al., 2020). Even if some mechanisms of action have been 42 

identified by biological experiments and computational predictive models, there is still a 43 

need to develop integrative test methods, which include in vitro, non-vertebrate in vivo, and 44 

in silico models to detect EDs (Audouze et al., 2020). In the context of reduction, refinement 45 

and replacement of animal use (3Rs), more and more European and US directives support 46 

the move from traditional animal models to new approach methodologies (NAMs) in 47 

chemical risk assessment (Bopp et al., 2019). Such alternative methods, including integrated 48 

approaches to testing and assessment (IATAs) allow evaluating large numbers of 49 

uncharacterized substances including EDs, and also reducing time and cost of current 50 

approaches (Sakuratani et al., 2018)(Audouze et al., 2020). One of the most challenging 51 

problems in biomedical research and chemical risk assessment is to understand the 52 

underlying mechanisms of complex diseases, and several programs have been launched on 53 

these purposes. For example, the OECD has recently developed the concept of adverse 54 



outcome pathway (AOP) to support toxicity evidence with mechanistic pathways and mode 55 

of action for chemical safety and risk assessment (Ankley et al., 2010)(Leist et al., 2017). 56 

Also, the National Research Council in US outlined a general strategy for non-animal testing 57 

approaches: Toxicity testing in the 21th Century in 2007 (Tox21)(Krewski et al., 2010), which 58 

have recommended to include, among others, computational toxicology and in silico 59 

approaches in future assessments of toxicity as an inexpensive and efficient tool for 60 

screening purposes (Knudsen et al., 2013). While computational studies cannot substitute 61 

for in vitro or in vivo testing, they can help in the assessment of human health risks and 62 

prioritization of chemicals. Computational systems biology models allow identification of 63 

linkages between chemicals and diseases. For example, associations of in vitro assays and 64 

AOPs to test chemicals with potential toxicological effects have been reported, as well as 65 

computational approaches compiling several and different sources of information(Knapen et 66 

al., 2015) (Browne et al., 2017) (Pittman et al., 2018)(Aguayo-Orozco et al., 2019)(Carvaillo et 67 

al., 2019)(Rugard et al., 2020)(Jornod et al., 2020). One limitation of these models is that 68 

they are specific to adverse outcome, cell line, or available knowledge, and not on an entire 69 

tissue or system. A recent study, showed that even if genes carrying mutations associated 70 

with genetic diseases are present in all human cells, clinical manifestations of such diseases 71 

are tissues-specific, and need a whole functional subnetwork of genes to be expressed in 72 

that tissue (Kitsak et al., 2016). We propose an innovative computational strategy to predict 73 

chemical effect at the human systems level. Based on the integration of chemical-toxicity 74 

effects, chemical-protein interactions, protein-tissue expressions and tissue-toxicity 75 

relations, an integrative model was developed to predict systems targeted by chemicals that 76 

are highly associated to adverse outcomes. As a proof of concept, the developed p-SSAN 77 



model was applied to three compounds, acetaminophen, valproic acid and 2,3,7,8-78 

tetrachlorodibenzo-p-dioxin (TCDD), suspected to have endocrine-disrupting properties.  79 



Materials and Methods 80 

Chemical-system associations 81 

We extracted data from the Registry of Toxic Effects of Chemical Substances (RTECS) from 82 

Biova (http://accelrys.com/products/collaborative-science/databases/bioactivity-83 

databases/rtecs.html). The RTCES database is a comprehensive resource of toxicity 84 

information, compiling known and available data (including affected systems) for 85 

environmental chemicals (more than 174,000 chemical substances) such as drugs, food 86 

additives, pesticides, fungicides, plastics, household products, etc. In the present study, a 87 

biological system is defined by a code from the RTECS database classification (e.g. the 88 

reproductive system that includes ‘effects on embryo or fetus’; ‘effects on fertility’) (Table 89 

1). Only human data related information was considered.  90 

To avoid problem due to multiple chemical names and synonyms, and to facilitate further 91 

data analysis, chemicals were annotated with a RTCES identifier, and a canonical SMILES 92 

code (Simplified Molecular-Input Line-Entry System) characterizing the structure of a 93 

substance. All canonical SMILES were converted into IUPAC International Chemical Identifier 94 

(InChiKey), a standard and universal way to encode chemicals. Finally, for each unique 95 

compound, the PubChem identifier (CID) was kept as final chemical identifier. All different 96 

steps (and the following ones) were performed using scripts in python. 97 

 98 

Chemical-protein associations 99 

The available chemical-protein associations knowledge were extracted using the STITCH 100 

database (version 5) (Babin and Gibbons, 2009). The STITCH database contains integrated 101 

information from various disparate data sources. It combines interactions between 430,000 102 

chemicals and proteins, for various living organisms. 103 



To capture the most reliable information, only interactions that reached at least a 104 

confidence score >0.4 were extracted, which is the medium confidence score according to 105 

STITCH (in a range between 0 and 1). Moreover, only interactions involving human proteins 106 

were kept. All chemicals extracted from STITCH were also encoded with an InChiKey, and 107 

annotated to CID in order to facilitate the chemicals mapping from STITCH to RTCES. To 108 

facilitate data integration, proteins were mapped to their corresponding Ensembl ID (ENSP 109 

ID). 110 

 111 

Protein-system associations 112 

First, association between proteins and systems was performed using the previously 113 

compiled chemical-system and chemical-protein information, using the CID identifier of the 114 

chemicals. In a second step, to mimic the true biological organization and function, i.e. all 115 

proteins are not expressed in all systems, we went one step further to keep only the 116 

relevant information and avoid false positive. To filter the data, we used the Human Protein 117 

Atlas (HPA) database (https://www.proteinatlas.org ) (Thul et al., 2017). The HPA database is 118 

divided in three sub-atlas, that are the tissue atlas, the pathology atlas, and the cell atlas. For 119 

our study, only the tissue atlas was considered. The tissue atlas contains information related 120 

to 76 different cell types, corresponding to 44 non-disease human tissue types covering all 121 

major parts of the human body, and protein expression data covering 15,297 of the protein 122 

coding genes. It includes data for genes and their corresponding Ensembl gene annotations 123 

(ENSG ID), tissues and their relationships at several levels of expression (non-detected, 124 

uncertain, low, medium, high). Only information for normal tissues with gene expression 125 

levels ‘medium’ and ‘high’ were kept in our study. Then, the 24 systems from RTCES were 126 

manually mapped to the 55 tissues from the HPA database (for example, ‘epididymis’ and 127 



‘testis’ were mapped to the ‘reproductive’ system). For some systems, such as ‘biochemical’ 128 

or ‘chronic data’ it was no possible to map them to tissues. Therefore, we conserved these 129 

systems separately. The relations between tissues and systems are described in Table 2. 130 

Overall, the mapping of chemical-protein-system from the different sources of data 131 

represents the foundation of our integrative toxicological systems network. 132 

 133 

High confidence human system-system association network models 134 

Using the chemical-system and protein-system information collected and matched from the 135 

various data sources, two human system-system association based-network models (S-SAN) 136 

were developed. A first model using the chemical information, named cS-SAN (chemical 137 

system-system association network), and a second model using the protein information, 138 

called pS-SAN (protein system-system association network). To generate high confidence 139 

models, a previously described computational network biology approach was used (Audouze 140 

et al., 2010). In both S-SAN models, each system is depicted by a node, and links between 141 

them are represented by an edge. Edges represent any system-system pairs where at least 142 

one shared chemical (cS-SAN) or protein (pS-SAN) was identified. For both models, non-143 

redundant lists of information were verified, meaning that if systems X and Z were 144 

connected, two possibilities may be present into the network (X-Z and Z-X). Only one of 145 

these associations was kept to create the S-SANs. 146 

 147 

Probabilistic score 148 

To reduce noise, and select the most significant system-system associations in both models, 149 

we assigned a probabilistic score (pS) to each generated system-system pair, based from 150 

previous experience (Audouze et al., 2010; Taboureau & Audouze, 2016). This score is based 151 



on the probability that a chemical or a protein linked to a system A will also affect the other 152 

system B. The systems are represented by S1 , S2, … Sn. For each system, a set of chemicals or 153 

proteins is associated: 154 

Chemx := { c ∈ Chemicals|c is associated with Sx } 155 

Protx := { c ∈ Proteins|c is associated with Sx } 156 

This probabilistic score (pS) between a pair of systems is calculated by the following 157 

equations (using the chemicals for the cS-SAN and the proteins for the pS-SAN models: 158 

            | Chema ∩ Chemb  |                                         | Prota ∩ Protb  | 159 

pS (Sa, Sb) =   _________________                   pS (Sa, Sb) =   _________________              160 

                        |  Chema ∪ Chemb |                                         |  Prota ∪ Protb | 161 

   162 

A higher pS score indicates a stronger association. 163 

 164 

Prediction of human systems affected by endocrine-disrupting chemicals 165 

Chemical data: Three widely used chemicals were selected due to their potential endocrine 166 

disrupting activities, and tested on the developed pS-SAN model. Acetaminophen (AC), also 167 

known as paracetamol, is an analgesic used to treat pain and fever (Konkel, 2018). Studies 168 

have shown that mild analgesics could have an impact on human health, and may cause 169 

multiple endocrine disturbances in the male reproductive systems via for example the 170 

inhibition of the prostaglandin pathways (Kristensen et al., 2011). Valproic acid (VA), is a 171 

seizures and antiepileptic drug that has been shown to affect the metabolic and endocrine 172 

systems resulting in hormonal disturbances and incidence of some metabolic diseases. 173 

Among its serious known adverse effects, VA has been associated to human abnormalities 174 

such as hypospadias, and body weight gain (Raghavan et al., 2018)(Verrotti et al., 2011). 175 

TCDD is a dioxin, well known as a contaminant of agent orange, a herbicide that was among 176 

other, released during the Seveso disaster. TCDD have been demonstrated to alter the 177 



endocrine immune and the nervous systems. Exposure to TCDD may lead to various adverse 178 

effects on human, linked to for example to reproduction, development, hepatotoxicity, 179 

diabetes and cancer (Yoshioka and Tohyama, 2019). 180 

 181 

Prediction using protein complexes 182 

To predict which system(s) can be affected by these three EDs, known chemical-protein links 183 

were extracted from the Comparative Toxicogenomics Database (CTD) (Davis et al., 2017). 184 

The CTD is a database providing manually curated information regarding chemical 185 

gene/protein associations (1,518,440 unique associations for all organisms covered). Only 186 

information regarding curated data and human proteins were retained. Then, to assess 187 

systems potentially affected by a chemical, over-representation analysis (ORA) were 188 

performed. Using the developed protein system-system network (pS-SAN), statistical 189 

significance based on hypergeometric distribution was calculated individually for each of the 190 

three EDs, using their protein lists extracted from the CTD database. A significance level of 191 

0.05 after Bonferroni correction for multiple testing of the p-values was used to select the 192 

most relevant associations (Lee and Lee, 2018). As results, systems were associated to each 193 

of the three EDs, via their protein lists. Only the single most significant system associated to 194 

each ED was reported. The workflow of the approach is depicted in Figure 1. 195 

 196 

  197 



Results and discussion 198 

System-system association network in the chemical space (cS-SAN) 199 

From the RTECS database, toxicity information was extracted for 52,625 chemicals that are 200 

annotated to 24 systems (Table 1), with a total of 91,846 associations. We noticed that many 201 

chemicals are annotated to more than one toxicological system. Therefore, to have an 202 

overview, and to assess the systems highly impacted by those chemicals, a chemical system-203 

system associations network (cS-SAN) was developed, using the 24 human systems and all 204 

chemicals reported in RTECS. The resulting cS-SAN appeared to be a complex graph 205 

containing a total of 271 unique associations between the 24 systems (see details Table S1). 206 

Based on the pS score, only 16 systems, among the 24 systems, had high significant 207 

associations (pS > 0.07) via 27 connections (Figure 2). The maximum of shared compounds 208 

was 5434, between the behavioral and lungs systems; whereas the minimum of shared 209 

chemicals was three (between the musculoskeletal system - vascular system, and the 210 

immunological system - nervous system associations; both having a low pS). Among the 211 

identified associations between systems, some are already known. For example, the high 212 

association between mutagenic and tumorigenic is coherent as it is widely accepted that 213 

tumorigenesis is a multistep process, depending on a sequential accumulation of mutations 214 

within tissue cells (Ashkenazi et al., 2008). Similarly, many chemicals that induce liver injury 215 

are also known to induce kidney injury, that is reflected by the liver-kidney association 216 

(Regner and Singbartl, 2016). Another strong association is observed between reproductive 217 

and specific developmental abnormal, which has already been demonstrated in various 218 

living organisms, including humans for some EDs (Krysiak-Baltyn et al., 2012)(Kinch et al., 219 

2016)(Radke et al., 2018)(Ullah et al., 2019). In contrast, the association lungs-behavioral 220 

was more surprising, and no clear evidence was retrieved in the literature. That may be a 221 



consequence of the broad definition of behavioral in RTECS, that consider for example 222 

anticonvulsant, sleep, euphoria, tremor, food intake, ataxia, analgesia, headache and 223 

alteration of classical conditioning. 224 

 225 

System-system association network in the protein space (pS-SAN) 226 

To explore potential mode of action of chemicals, and predict which systems may be 227 

affected by chemical exposure, a second model called pS-SAN (protein system-system 228 

associations network) was developed. This model is based on the known protein information 229 

related to the chemicals, and their associated systems. To create the model, each compound 230 

described in RTECS database was matched with the chemicals from STITCH database, that 231 

allowed extraction of protein information. From STITCH, a total of 7205 unique human 232 

proteins were compiled, for which 4735 unique compounds have been reported as being 233 

bioactive, for a total of 695,293 associations. However, some of these proteins might not be 234 

expressed in the system associated to the chemicals in RTECS. To limit the number of false 235 

positive protein-system associations, the protein expression in each tissue was collected 236 

from the HPA database, and only proteins showing moderate and high expression in a tissue 237 

correlated to one system described in RTECS were kept. As results, we obtained a total of 238 

122,636 associations between 3162 proteins and 55 human tissues, that were mapped to 239 

the 24 systems from RTCES (Table 2). Therefore, the pS-SAN model was generated using 240 

3162 human proteins bioactive to the 4735 selected chemicals and, known to be expressed 241 

(when information was available) in the 24 studies systems. The resulting pS-SAN model had 242 

274 links between the 24 systems (Table S2). Based on the probability score (pS > 0.07), only 243 

14 systems, among the 24, connected via 48 links had highly significant associations (Figure 244 

3). The maximum of shared proteins was 2143 between the reproductive and 245 



gastrointestinal systems, whereas the minimum of shared proteins is three as deciphered for 246 

associations between the musculoskeletal and nervous systems and, the cardiac and 247 

nutritional systems. Compare to the cS-SAN model, the interactions between the systems 248 

give different information. Strong associations are observed between different systems such 249 

as between endocrine-kidney, sense organs & special senses-blood, and kidney-250 

gastrointestinal.  251 

 252 

Deciphering novel links between endocrine disruptors and biological systems 253 

The developed pS-SAN model was used to assess which system(s) can be affected by a 254 

chemical via protein complexes. As examples, we tested three EDs (AC, VA, and TCDD), to 255 

which protein bioactivities have been reported. For each ED, known chemical-protein links 256 

were extracted from the Comparative Toxicogenomics Database (CTD). Considering only 257 

information regarding curated data and human proteins, respectively 15,269, 7456 and 3985 258 

proteins for VA, AC and TCDD were extracted. Each of the protein sets was independently 259 

screened against the pS-SAN model, to identify and, to prioritize the systems that may be 260 

significantly perturbed (Table 3). 261 

 262 

Acetaminophen, the most commonly used analgesic drug in the world, was predicted to be 263 

highly connected to the liver, kidney, endocrine, lungs, and gastrointestinal systems. Several 264 

increasing concerns exist over long-term adverse effects from AC exposure. Recent studies 265 

have reported some evidence on renal, pulmonary, endocrine, neurobehavioral, skin 266 

reactions and cardiovascular toxicity (McCrae et al., 2018) (Kennon-McGill and McGill, 2018), 267 

such supporting the significant prediction from the pS-SAN model. Another study reported 268 

some evidence that mild analgesic can have endocrine disruptive properties able to alter 269 



animal and human reproduction function (Kristensen et al., 2016). Regarding the medication 270 

valproic acid, significant associations with the brain, the endocrine, the kidney, the liver, the 271 

lungs and the peripheral nerve and sensation were retrieved. Looking at the literature, 272 

manifestations of VA toxicity such as cerebral edema, respiratory depression, metabolic and 273 

hematologic derangements and liver toxicity were reported, therefore supporting the pS-274 

SAN predictions (Sztajnkrycer, 2002). For the last screened chemical, the TCDD, associations 275 

to systems were less statistically significant i.e. kidney, specific developmental 276 

abnormalities, chronic data, biochemical and behavioral. Looking at the literature, in human, 277 

no clear evidence has been described so far. Nevertheless, some studies have shown some 278 

impact on the expression of some genes in kidney and peripheral blood abnormalities in 279 

mice (Fujisawa et al., 2018)(Wang et al., 2019). Looking at the compiled lists of proteins for 280 

the three EDs, a total of 17,160 unique proteins was retrieved, with disparate overlaps 281 

between the compounds (Figure 4). AC and VA had more common proteins that TCDD and 282 

VA/AC, that can be explained as these compounds belong to different chemical classes 283 

(drugs for VA and AC, pesticide for TCDD), and therefore were designed to have different 284 

modes of action. 285 

 286 

Discussion 287 

Network science has shown some benefit in human disease analysis, following the 288 

assumption that the functions of molecular components in a human cell are closely 289 

connected, and that a disease is rarely a consequence of a unique genetic variation, but a 290 

consequence of perturbations of complex intracellular and extracellular networks linking 291 

tissues and organ systems(Barabási et al., 2011). Such perturbations can be caused by 292 

diverse sources –not genetic- such as chemical exposure, physical stress, psychological 293 



stress, etc. that are defined as the exposome, which corresponds to the totality of exposure 294 

over the lifetime. Concepts integrating both genetics and environmental factors will be 295 

beneficial for prediction of health and also therapies (Barouki et al., 2018). Toxicity can be 296 

presumed to be a linkage of perturbations at several layers of complexity. Integration of 297 

different types of large datasets into systems chemical toxicology, using network sciences, 298 

can help to explore and to assess chemical toxicities. Although some studies have 299 

demonstrated that the development of systems chemical toxicology models with the 300 

application of computational network biology may help in the understanding of chemical 301 

toxicity in human (Nie et al., 2015)(Hartung et al., 2017)(Taboureau and Audouze, 2016), the 302 

ability to assess chemical toxicity at an early stage remains a tremendous challenge for the 303 

regulatory agencies. New concepts and technologies are still needed to identify precise 304 

chemical health risk. The present study supports the concept of Integrated Approaches to 305 

Testing and Assessment (IATA) proposed by OECD [OECD (2017), Guidance Document on the 306 

Reporting of Defined Approaches to be Used Within Integrated Approaches to Testing and 307 

Assessment, OECD Series on Testing and Assessment, No. 255, OECD Publishing, Paris, 308 

(Sakuratani et al., 2018), that consists to integrate different types of data, and to perform 309 

hazard identification and safety assessment of chemicals(Casati, 2018). 310 

The RTECS database allows to have access to a large set of chemicals with their assessment 311 

to a panel of toxicity endpoints. However, their mechanisms of action at the molecular level, 312 

and at the tissue level were not characterized. A chemical is more likely to cause toxicity in 313 

the organ/tissue where it is more likely to accumulate, and our study is a first step in a 314 

translational linkage among different data layers (proteins, tissues, systems). It allows to 315 

explore in a systematic way the effect of a chemical exposure in a human system. The 316 

proposed approach is highly depending on the aggregated data. Moreover, the curation of 317 



these diverse sources of information is a key issue in the interpretation of the outcomes. We 318 

are aware that our toxicological system network has some limitations in term of chemical-319 

protein bioactivities and protein-tissue annotations. To improve such predictive modeling, 320 

toxicokinetic information of a molecule, gene expression data of proteins and, pathways 321 

annotations could be other sources of knowledge to consider. Furthermore, one must take 322 

into consideration the so-called ‘Matthew effect”, that reflects the difference, in term of 323 

available documentation and scientific literature, between well investigated chemicals and 324 

less well studied environmental compounds(Grandjean et al., 2011). We can see such 325 

contrast with our case studies i.e. acetaminophen (largely studied, 28,340 publications in 326 

PubMed, May 14, 2020) and TCDD (less studied, 9939 publications in PubMed, May 14, 327 

2020). 328 

 329 

Conclusion 330 

The ability to assess chemical toxicity at an early stage remains a tremendous challenge for 331 

the regulatory agencies. A better understanding of the effects for a molecule at a multiscale 332 

of the biological organization (cell, tissue, and organ) may lead to a better identification of 333 

chemical mode of action, allowing to offer a better knowledge for future drug development 334 

and for risk assessment of environmental pollutants. With the developed integrative 335 

toxicological systems network, possible linkage between chemicals and systems may be 336 

deciphered, allowing to suggest potential risk of toxicity. With the development of exposure 337 

science, the access of population-level observations and generation of IATA, new insights on 338 

human toxicity effects are expected to pave the way of chemical risk assessment.  339 
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Tables 544 

Table 1. List of the human systems used to build the systems toxicological models. In the 545 

‘comments’ field are more detailed terms associated to ‘system name’. 546 

System name Comments 

Behavioral Irritability, sleep, euphoria, hallucination… 

Biochemical Enzyme inhibition (esterase…), induction, change of level, effect on co-enzyme 

(vitamin B, folate…) 

Blood  

Brain Brain and coverings 

Cardiac  

Chronic data Changes in ovarian/prostate/testicular/uterine weight 

Endocrine Androgenic, estrogenic, diabetes mellitus… 

Gastrointestinal  

Immunological incl. allergic  

Kidney Kidney, ureter and bladder 

Liver  

Lung Lung, thorax and respiration 

Musculoskeletal  

Mutagenic  

Negative mutagenic  

Nervous system  

Nutritional and gross metabolic Dehydration, weight loss/gain 

Peripheral nerve and sensation  

Reproductive Effects on embryo or fetus, effects on fertility, effects on newborn, maternal 

effects, paternal effects  

Sense organs and special senses Nose, eye, ear and taste 

Skin and appendages Skin, hair, nails 

Specific developmental abnormalities  

Tumorigenic  

Vascular  

 547 

 548 



Table 2. Mapping of the systems to tissues. Systems were extracted from the RTECS 549 

database, and tissues from the HPA database. Correspondences were done manually, based 550 

on both, databases and mining of the literature. ND (no data), meaning that no tissue 551 

information was retrieved for the corresponding system. 552 

Tissues Systems Tissues Systems 

adrenal gland endocrine placenta reproductive 

appendix gastrointestinal prostate reproductive 

bone marrow 

immunological including 

allergic rectum gastrointestinal 

breast reproductive retina 

sense organs and special 

senses 

bronchus lungs salivary gland gastrointestinal 

caudate brain seminal vesicle reproductive 

cerebellum brain skeletal muscle musculoskeletal 

cerebral cortex brain skin skin and appendages 

cervix, uterine reproductive skin 1 skin and appendages 

colon gastrointestinal skin 2 skin and appendages 

duodenum gastrointestinal small intestine gastrointestinal 

endometrium 1 reproductive smooth muscle peripheral nerve and sensation 

endometrium 2 reproductive soft tissue 1 peripheral nerve and sensation 

epididymis reproductive soft tissue 2 peripheral nerve and sensation 

esophagus gastrointestinal spleen blood 

eye 

sense organs and special 

senses stomach 1 gastrointestinal 

fallopian tube reproductive stomach 2 gastrointestinal 

gallbladder kidney testis reproductive 

hair skin and appendages thyroid gland endocrine 

heart muscle cardiac tonsil 

sense organs and special 

senses 

hippocampus brain urinary bladder kidney 

hypothalamus brain vagina reproductive 

kidney kidney n.d. behavioral 

lactating breast reproductive n.d. biochemical 



liver liver n.d. chronic data 

lung lungs n.d. mutagenic 

lymph node blood n.d. negative mutagenic 

nasopharynx lungs n.d. nervous system 

oral mucosa gastrointestinal n.d. nutritional and gross metabolic 

ovary reproductive n.d. 

specific developmental 

abnormalities 

pancreas gastrointestinal n.d. tumorigenic 

parathyroid gland endocrine n.d. vascular 

pituitary gland endocrine   

 553 

 554 

Table 3. Chemical-system associations results based on pS-SAN model. In italic, systems not 555 

related to tissues in HPA. NS (non-significant) after p-val correction (at 5%). 556 

Systems name AC TCDD VA 

Behavioral NS 0.025 NS 

Biochemical NS 0.0031 NS 

Blood 2.29e-11 NS 9.81e-05 

Brain 3.62e-09 NS 3.67e-20 

Cardiac 1.01e-13 NS 1.85e-08 

Chronic Data NS 1.01e-06 NS 

Endocrine 5.43e-22 NS 6.06e-16 

Gastrointestinal 1.38e-20 NS 4.61e-07 

Immunological Including Allergic 7.92e-10 NS 0.00036 

Kidney 2.32e-33 0.00087 5.37e-18 

Liver 6.73e-37 NS 3.69e-09 

Lungs 2.09e-21 NS 5.17e-11 

Musculoskeletal 1.54e-09 NS 1.18e-05 

Mutagenic NS NS NS 



Negative Mutagenic 0.0022 NS NS 

Nervous System NS NS NS 

Nutritional and Gross Metabolic NS NS NS 

Peripheral Nerve and Sensation 9.50e-13 NS 9.81e-18 

Reproductive 1.86e-13 NS 4.32e-09 

Sense Organs and Special Senses 2.87e-11 NS 0.0027 

Skin and Appendages 3.28e-14 NS 1.94e-07 

Specific Developmental Abnormalities NS 6.05e-06 NS 

Tumorigenic NS NS NS 

Vascular NS NS NS 

 557 
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Figures 559 

 560 

Figure 1: Workflow of the procedure implemented to develop the integrative toxicological 561 

network, that allow to predict biological systems affected by endocrine-disrupting 562 

chemicals. 1 Data: Systems that are known to be affected by environmental chemicals were 563 

extracted from the RTECS database, and proteins targeted by these chemicals were 564 

compiled from the STITCH database. Proteins were filtered using the Human Protein Atlas 565 

(HPA) database, to kept only the tissues and systems where proteins are known to be 566 

expressed. 2 Model: using the gathered chemical-protein-system information, an integrative 567 

systems toxicology model named pS-SAN (protein system-system association network) was 568 

performed. In this model, systems (blue circles) were associated by pairs based on their 569 

common proteins, that are affected by chemicals. 3. Prediction: the developed model was 570 

used to predict systems that can be affected by a compound, here an endocrine-disrupting 571 

chemical (ED), by statistical analysis on its known proteins from the Comparative 572 

Toxicogenomics Database (CTD). 573 

 574 

 575 



 576 

Figure 2: Representation of the top significant system-system associations network based 577 

on the chemical information (cS-SAN). Each node corresponds to a unique system. Systems 578 

are connected in the chemical space, meaning that two systems are associated if they 579 

shared at least one chemical. The edges represent the associations between the systems. 580 

The width of the edges is according to the calculated probabilistic scores (pS), which is 581 

proportional to the number of shared chemicals. 582 
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 584 

Figure 3:  Representation of the top significant system-system associations network based 585 

on the protein information (pS-SAN). Each node corresponds to a unique system. Systems 586 

are connected in the protein space, meaning that two systems are associated if they shared 587 

at least one protein. The edges represent the associations between the systems. The width 588 

of the edges is according to the calculated probabilistic scores (pS), which is proportional to 589 

the number of common proteins. 590 

 591 



 592 

Figure 4. Venn diagram showing the total number of proteins associated to the three 593 

endocrine-disrupting chemicals. The figure illustrates the number of proteins compiled from 594 

the CTD database, which is equivalent to the sum of values in each respective circle for each 595 

chemical. An overlapping shows the number of proteins commons between chemicals. The 596 

number at the center represents a total number of proteins targeted by all three 597 

compounds. 598 

 599 



Environmental 
chemical 
exposure

System-system 
network

Chemical 
toxicity predictionEndocrine

Kidney

Musculoskeletal

Liver

Cardiac

Peripheral Nerve and Sensation

Immunological Including Allergic

Sense Organs and Special Senses

Gastroinstestinal

Reproductive

Brain

Blood

Skin and Appendages

Lungs




