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ABSTRACT 

For three decades now, knowledge-based scoring functions that operate through the “potential of 

mean force” (PMF) approach have continuously proven useful for studying protein structures. 

Although these statistical potentials are not to be confused with their physics-based counterparts of 

the same name—i.e. PMFs obtained by molecular dynamics simulations—their particular success in 

assessing the native-like character of protein structure predictions has lead authors to consider the 

computed scores as approximations of the free energy. However, this physical justification is a 

matter of controversy since the beginning. Alternative interpretations based on Bayes’ theorem have 

been proposed, but the misleading formalism that invokes the inverse Boltzmann law remains 

recurrent in the literature. In this article, we present a conceptually new method for ranking protein 

structure models by quality, which is (i) independent of any physics-based explanation and (ii) 

relevant to statistics and to a general definition of information gain. The theoretical development 

described in this study provides new insights into how statistical PMFs work, in comparison with 

our approach. To prove the concept, we have built interatomic distance-dependent scoring 

functions, based on the former and new equations, and compared their performance on an 

independent benchmark of 60,000 protein structures. The results demonstrate that our new 

formalism outperforms statistical PMFs in evaluating the quality of protein structural decoys. 

Therefore, this original type of score offers a possibility to improve the success of statistical PMFs 

in the various fields of structural biology where they are applied. The open-source code is available 

for download at https://gitlab.rpbs.univ-paris-diderot.fr/src/ig-score. 
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1. INTRODUCTION 

Predicting the three-dimensional structure of a protein is only useful if the model produced is close 

enough to the native conformation of the macromolecule. According to Anfinsen’s hypothesis, the 

latter is assumed to be the one with the lowest free energy, in the native conditions [1]. Therefore, 

being able to discriminate the best model among a set of predicted protein structures requires a 

scoring function that would behave like free energy, i.e. a scoring function whose global minimum 

would correspond to the native conformation. Free energy estimation may be achieved by 

generating ensembles of protein conformations, from which the lowest free energy structure can be 

calculated by using physics-inspired molecular force fields. However, such conformational 

sampling is computationally costly, which makes these physics-based methods only applicable to a 

few proteins at a time. Three decades ago, a faster approach has been proposed by M. J. Sippl [2], 

which consists in constructing scoring functions from interatomic distance (r) distributions 

observed in a dataset of experimentally determined protein structures, as: 

 

ūi , j(r )= − kT ln[f i , j

OBS
(r)

f i , j

REF
(r )]

 (1) 

 

where ūi,j(r) is the estimated free energy of interaction between atoms i and j, fi,j
OBS(r) is the 

observed probability (i.e. frequency) of the atoms i and j being separated by a distance r (discretized 

into bins), fi,j
REF(r) is a reference frequency aimed at eliminating the sampling bias, k the Boltzmann 

constant, and T the temperature. The pseudo-energy of the whole protein is thus computed by 

summing the ūi,j(r) of every pairwise distance observed in the structure. In this article, for the 30th 

anniversary of this knowledge-based approach, we present a new information-theoretic view of its 

functioning, and propose an improvement in both theory and practice. 
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Since 1990 [2], these distance-dependent statistical potentials—also called “potentials of mean 

force” (PMF) by analogy with the potentials used in the physics of liquids [3,4]—have been 

continuously applied to model quality assessment, as well as to various problems in structural 

biology, mainly ab initio protein folding [5–11], molecular docking [12,13], and fold recognition 

[14–16]. In addition to interatomic distances, other structural features of proteins have been used, 

such as dihedral angle values, or solvent accessibility. Then, with the emergence of machine 

learning approaches, such scores resulting from the statistics of various structural descriptors have 

been combined into composite scoring functions [17–21]. Most recently, statistical potentials have 

drawn attention by their use in a deep learning-based approach for predicting protein structures 

[22]. 

 

The relatively good correlation of these scores with the free energy variation of protein folding, as 

well as the presence of a logarithm in the formula, have lead authors to describe this approach as 

resulting from the inverse Boltzmann law. However, this physical explanation has been criticized 

and demonstrated as being invalid on several points [23,24], notably the fact that the atomic system 

of a polypeptide chain is not fairly comparable to that of a liquid. Moreover, computing both 

fi,j
OBS(r) and fi,j

REF(r) on native conformations does not allow interpreting the score as a free energy 

variation between the unfolded and the folded states. Another point concerns the kT factor, which is 

(most often) not taken into account and replaced by an arbitrary value, thus further invalidating the 

physical interpretation. In 1997, Baker and co-workers qualitatively showed that statistical 

potentials should actually be seen as an application of Bayes’ theorem to the conditional 

probabilities of pairwise distances [7]. In this view, the fi,j
OBS(r)/fi,j

REF(r) factor in Eq. 1 is equivalent 

to the ratio of the posterior to prior probabilities p(r|i,j)/p(r)—where p(r|i,j) and p(r) are the 

probabilities of observing two atoms at a distance r, with and without the knowledge of the atom 

types (i and j), respectively—thus quantifying the Bayesian updating. Hamelryck and co-workers 
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later proposed a quantitative explanation [25–27], according to which statistical PMFs approximate 

Jeffrey's conditioning (or probability kinematics) [28,29], an alternative updating rule. A 

consequence of this is the non-necessity for data in the training set to follow a Boltzmann 

distribution. Despite the pertinence of this probabilistic framework, the misleading justification 

based on physics is still recurrent in the literature (e.g. [30–34]), presumably because it does not 

interfere with the practical success of statistical potentials. 

 

Here, we propose a new formalism that is conceptually advantageous over the popular 30-year-old 

statistical potentials, as it is disconnected from any physical interpretation, while being more 

relevant to probabilistic reasoning. As a proof of concept, we have built two scoring functions, 

respectively based on the new and the PMF equations, and compared their performance at ranking 

predicted structures of proteins by their quality. Using the reference dataset 3DRobot (n=60,200 

structures) [35], we show that the scoring function built with our new formalism is more accurate 

than statistical PMFs, based on three types of performance evaluation. Finally, in our theoretical 

development, we also propose an explanation of what this new score measures regarding 

information—defined here as the quantitative property that is incorporated into the statistical model 

to update the prior probability. 
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2. METHODS 

2.1. Theory 

There are two critical elements in Eq. 1, the first being how the reference state fi,j
REF(r) is defined. 

The most straightforward way to do so is to calculate fi,j
REF(r) as the weighted arithmetic mean of all 

fi,j
OBS(r) [36]. It is actually the same calculation as for fi,j

OBS(r), except that the atom types are 

indistinct. Formally, the reference state could thus be written as fx,x
OBS(r), where x is an atom of any 

type. Throughout the years, various improvements have been brought to this approach (see [37] for 

a review and comparative test), for example by taking into account the radius of gyration of each 

native structures, as the size of the proteins included in the training dataset is an obvious bias for the 

resulting interatomic distance distributions. The other critical part in Eq. 1 is the logarithm, as it is a 

source of confusion between statistical potentials and Boltzmannian statistical mechanics. 

Boltzmann's entropy formula can be derived from classical mechanics. The logarithm thus appears 

when applying the second law of thermodynamics to the Hamiltonian of a model system made of a 

single particle moving in a U-shaped potential [38]. In statistical potentials, the logarithm was 

presumably introduced for computational convenience, as it maps multiplication into addition, and 

for facilitating interpretation of the results: e.g. log(fi,j
OBS(r)/fi,j

REF(r)) takes the values +1 and −1, for 

frequency ratios 10/1 and 1/10, respectively. However, to the best of our knowledge, it has never 

been raised—in the context of structural biology—that Eq. 1 is also equivalent to a calculation of a 

relative difference between fi,j
OBS(r) and fi,j

REF(r). Indeed, the statistical PMF formalism in Eq. 1 can 

alternatively be written (with kT=1) as: 

 

− ln[f i , j

OBS
(r)

f i , j

REF
(r )]= −

f i , j

OBS
(r )− f i , j

REF
(r)

L [f i , j

OBS
(r) , f i , j

REF
(r )]  (2) 
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where L[fi,j
OBS(r), fi,j

REF(r)] is the logarithmic mean of fi,j
OBS(r) and fi,j

REF(r). Given that fi,j
REF(r) is 

computed based on the average of all fi,j
OBS(r), calculating any type of mean between the two values 

fi,j
OBS(r) and fi,j

REF(r) is irrelevant. Instead, the frequency difference fi,j
OBS(r)−fi,j

REF(r) should simply 

be divided by fi,j
REF(r). The latter would then properly play its part as a reference. Therefore, we 

propose here to change the PMF formalism, and compute the score of a whole protein structure as: 

 

score= −∑
i , j

f i , j
OBS

(r )− f i , j
REF

( r)

f i , j

REF
(r )  (3) 

 

In addition of being more statistically sound, this new formalism avoids any confusion with the 

Boltzmann distribution law, as it does no longer contain any logarithm. Another non-negligible 

advantage is that it does not require any “pseudo-count” calculation procedure. The latter is 

otherwise necessary, as the logarithm function is undefined for zero. Beyond its theoretical 

advantages, the practical validity of this new formalism is demonstrated in the present article 

through an extensive benchmarking of model quality assessment. 

 

Since the new formalism is disconnected from physics, the score produced can no longer be viewed 

as an approximation of the free energy, and one may wonder what property is measured here. In 

what follows, we propose an explanation of how our scoring function works. In a distance 

distribution obtained from native conformations, in which all atom types are indistinct, observing 

two atoms (belonging to residues separated by at least three positions) at a distance of 2 Å can be 

thought surprising. However, this observation becomes less surprising, when considering only the 

subdistribution of the cysteine atoms, as these residues can form disulfide bonds. This decrease in 

the surprise is measured in both Eq. 2 and Eq. 3 by the frequency difference Δf(r) = 

fi,j
OBS(r)−fi,j

REF(r) = fi,j
OBS(r)−fx,x

OBS(r). This change in the observed probabilities actually quantifies 
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the information gain provided by the knowledge of the residue type. The more the surprise 

decreases, the more negative Δf(r) is, and the more native-like is the observed interaction. 

Conversely, an increase in how surprising the observation is (Δf(r) > 0) after knowing the residue 

type indicates a non-native interaction. To evaluate an entire protein model, all the Δf(r) for all atom 

pairs in the structure have to be added. However, summing all the Δf(r) requires distinguishing, for 

example, a 0.2−0.4 difference from a 0.7−0.9 one. This is achieved through a relative difference 

calculation, i.e. through dividing fi,j
OBS(r)−fi,j

REF(r) by a reference. In the PMF formalism as written 

in Eq. 2, this reference is the unnecesary logarithmic mean between fi,j
OBS(r) and fi,j

REF(r). In Eq. 3, 

we have simply replaced this logarithmic mean and used, instead, fi,j
REF(r) as a reference. We named 

the calculated score “total information gain” (TIG), which is expressed as a dimensionless quantity. 

 

Here, we call attention to the fact that, independently of the probabilistic framework, the property 

quantified by Sippl’s PMFs should also be interpreted as an information gain (rather than a pseudo-

energy), but only when restricting the definition of information to the Shannon “surprisal”. Indeed, 

Eq. 1 can be alternatively written (with kT=1) as: 

 

− ln( f i , j
OBS

(r ))− [− ln(f i , j
REF

(r ))]= I i , j
OBS

(r )− I i , j
REF

( r )= ΔI i , j (r )
 (4) 

 

where Ii,j
OBS(r) and Ii,j

REF(r) are the surprisals of observing two atoms i and j at a distance r, for the 

observed and reference distributions, respectively, and ΔIi,j(r) is the corresponding information gain. 

Thus, a total information gain is calculated by summing every ΔIi,j(r) for every combination of 

atoms i and j found in the evaluated structural model. Also of note is the fact that the variation of 

Shannon entropy (i.e. the average amount of information) is simply obtained by dividing this total 

information gain by the total number of interatomic distances in the evaluated protein structure. 

However, this aspect will not be developed further in the present article. 
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Finally, to further demonstrate the irrelevance of the logarithmic mean in Eq. 2, we have built two 

“mock” scoring functions, in which this mean is replaced by either the arithmetic mean of  fi,j
OBS(r) 

and fi,j
REF(r), or only the highest of the two frequencies. We refer to these scores as “MCK1” and 

“MCK2”, respectively. Formally, they are expressed as: 

 

mock score1= −∑
i , j

f i , j
OBS

(r )− f i , j
REF

(r )

[ f i , j

OBS
(r )+f i , j

REF
(r )]/2  (5) 

 

mock score2= −∑
i , j

f i , j
OBS

(r )− f i , j
REF

(r )

max [ f i , j

OBS
(r ) , f i , j

REF
(r )]  (6) 

 

and their accuracies have been measured in the benchmarking procedure described below. 

 

2.2. Implementation and training procedure 

To test the formalism of Eq. 3, we have modified the C++ open source code of MyPMFs [39], a 

computational tool from our previous work, which allows users to generate PMFs from any dataset 

of protein structures. The source code used for the present article is freely available for download, 

from the RPBS  repository, at https://gitlab.rpbs.univ-paris-diderot.fr/src/ig-score. 

 

To build our scoring function, we have defined a set of native protein structures as follows: (i) from 

the PISCES website (http://dunbrack.fccc.edu/PISCES.php) we have downloaded a precompiled list 

of 3,768 PDB chains of resolution ≤1.6 Å (X-ray structures only), R-factor ≤0.25, and sequence 

identity ≤20%; (ii) we only kept the 1,973 protein chains of lengths ranging from 80 to 250 

residues; (iii) to ensure independence from the benchmark dataset, we have eliminated the 56 
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protein chains that share more than 20% sequence identity with any of the 200 proteins from the 

3DRobot dataset [35]. This last step has been carried out using the standalone version of PISCES 

[40]. The resulting list of 1,917 protein chains is available in the supplementary materials. 

 

To compare the formalisms of Eq. 1 and Eq. 3, we have trained two scoring functions, to which we 

will refer as “PMF” and “TIG”, respectively. For both, the reference state fi,j
REF(r) has been 

calculated as the weighted arithmetic mean of all fi,j
OBS(r) [36], using all-atom representation of the 

native structures. The interatomic distance distributions have been computed for distance bins of 0.5 

Å, and a distance cutoff of 15.0 Å. The distances between atoms belonging to residues i and i+1, 

i+2, or i+3 have not been taken into account [41]. The frequencies have been obtained by using 

kernel density estimations, as implemented in the R standard library (version 3.2.3). The 

bandwidths of the Gaussian kernels have been selected with the Scott’s rule-of-thumb [42]. The 

same procedure has been followed for the MCK1 and MCK2 scores. 

 

2.3. Benchmarking procedure 

Each scoring function has been assessed based on its ability to rank structural models by quality as 

measured by their TM-score [43] to the native structure, which takes values between 0 and 1 (the 

higher the TM-score, the higher the model quality). As a benchmark, we used the 60,200 structures 

from the 3DRobot dataset [35], which represents 200 non-homologous proteins (48 α-, 40 β-, and 

112 α/β-single-domain structures), each having 300 decoys and 1 native conformation. Additionally, 

we used predicted protein structures from the CASP13 experiment (2018). We selected models 

corresponding to targets in both the template-based modeling and free modeling categories, taking 

every model produced by every group. This represents a total of 52,296 models from 133 targets. 

 



11 

Each scoring function was evaluated through a pairwise ranking of the decoys for each of the 200 

proteins from 3DRobot, or each of the 133 CASP13 targets. This allowed to calculate the accuracy 

of each method as the proportion (in %) of correct pairwise rankings. As the difficulty of ranking 

models may vary depending on their qualities, four subsets of the 3DRobot and CASP13 datasets 

have been defined, based on the TM-score to the native: “near-native”, “good”, “medium”, and 

“poor” quality models are defined by three thresholds at 0.8, 0.6, 0.4, respectively. Since comparing 

two very similar models is pointless, another threshold for the minimal TM-score difference 

between the compared models has been defined at 0.1. The other performance criterion used in this 

study is the average ranking, as predicted by the scoring function, for the aforementioned “near-

native” and “good” categories of models (the higher the rank, the better), as well as for the “poor” 

ones (the lower the rank, the better). The statistical significance of the observed differences between 

accuracies was determined by comparing the distributions of correct and wrong rankings, using the 

Wilcoxon signed-rank test, with an α error of 0.05. The exact same procedure has been carried out 

using the global distance test total score (GDT_TS) [44] instead of the TM-score. Since these two 

measures are calculated on the Cα of the protein structures, the scoring with the statistical potentials 

was restricted to this atom type. 

 

To compare both the PMF and TIG scores with an external reference from the literature, we have 

included the DOPE [45] and GOAP scores [46] into the benchmark. The former is the most cited of 

all model quality assessment programs, while the latter is a more recent and high-performing 

statistical potential. Similarly to the scoring functions that we have built here, the only structural 

features that are quantified by DOPE are the interatomic distances, using the same distance bins and 

cutoff (0.5 Å and 15.0 Å, respectively; see above). GOAP is both distance- and angle-dependent: 

for each heavy atom in interacting pairs, it uses the relative orientation of the corresponding planes. 

For the computing fi,j
REF(r), DOPE and GOAP take into account either the radius of gyration or the 
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molecular volume of each protein structure from the training set, which eliminates the bias on the 

interatomic distances—the distance distributions may vary a lot, depending on the sizes of the 

proteins included in the dataset. Thus, the difference between DOPE/GOAP and PMF/TIG lies in (i) 

the training datasets, (ii) the calculation of the reference state and (iii), only in the case of GOAP, 

the dependence on orientation. 
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3. RESULTS AND DISCUSSION 

1. Performance: pairwise model ranking 

The TIG scoring function is supposed to be more accurate than Sippl’s statistical potentials (Eq. 1), 

as it is built on the new approach (Eq. 3). To demonstrate its practical superiority, we have 

compared its performance with those of our PMF score, through two different tests. The first one 

evaluates the ability of the method to rank pairs of models taken from the 3DRobot dataset. The 

results of this benchmarking procedure are presented in Table 1. They include the accuracies of the 

DOPE, MCK1, and MCK2 scores (for GOAP, see the next paragraph). Overall, it appears that TIG 

is the best of these five methods, whereas PMF is the worst. To our surprise, the two mock scores 

systematically outperform PMF, although they were designed only to prove the irrelevance of 

combining fi,j
OBS(r) and fi,j

REF(r) as a statistical reference. On the whole, the results obtained with 

the mock scores are also significantly better than those produced by DOPE. This indicates that the 

logarithmic mean could be advantageously replaced by other types of means, such as the arithmetic 

mean used in MCK1. 

 

Table 1. Accuracy in ranking pairs of decoy structures from 3DRobot. A 50.0% value would 

correspond to a random ranking. The “near-native”, “good”, “medium”, and “poor” model qualities 

correspond to score (TM-score or GDT_TS) intervals [1.0, 0.8[, [0.8, 0.6[, [0.6, 0.4[, and [0.4, 0.0], 

respectively. 
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This article describes how Sippl’s formalism can be comprehended and improved, in light of 

probability and information theories. The simple TIG and mock scores have been designed for that 

purpose. However, to give the reader an idea of the performance that a more complex scoring 

function can achieve, our benchmark includes a sixth method, GOAP, which ranks among the best 

statistical potentials [46]. The results obtained with GOAP are dramatically better than those 

produced with any of the other methods. In particular, GOAP outperforms TIG by ~20% on the 

near-native decoys. On the “Good” category, this difference is still >10%, when taking either the 

TM-score or the GDT_TS as a reference. On the two other categories of model quality, GOAP is 

also the most accurate method. This significant superiority is consistent with what has been 

previously observed on other datasets of decoys [46], where GOAP outperformed the OPUS-PSP 

potential [47] by ~15%. The latter was itself reported as more accurate than statistical potentials of 

lower complexity (i.e. which use less information), such as DFIRE [48], RWplus [49], and dDFIRE 

[50,51]. Thus, the results obtained with GOAP were expected and can be explained by the greater 

amount of stereochemical information it uses: the orientation and, in a lesser extent, the volume of 

the protein molecules. Here, it should be highlighted that the only unbiased comparison—to provide 

insights into the improvement brought about by the new formalism—is the one between PMF and 

TIG, as these scoring functions are equally complex. It is also the case for the two mock scores, 

which have been specially designed for the sake of fair comparison. 

Accuracy (%)
Model quality Score PMF MCK1 MCK2 DOPE TIG GOAP
Near-native

TM-score

67.8 69.5 70.3 67 71.6 91.5
Good 70.6 73.3 74.2 71.4 75.1 86.8
Medium 71.2 72.9 73.6 75.6 75.2 80.8
Poor 68.4 69.2 70.1 71.4 70.6 76.2
Near-native

GDT_TS

63.5 64.8 65.7 61.8 67 88
Good 68.3 69.7 70.6 67.9 70.8 85.3
Medium 73.5 75.3 75.8 76.5 77 86.5
Poor 66.8 68.3 68.8 71.1 70.2 76
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The ranking of the methods is similar to the CASP13 benchmark, although every accuracy is higher 

(Table S1). On this dataset, PMF is systematically outperformed by the two mock scores, which are 

themselves outperformed by TIG. The latter is not significantly better than DOPE on this dataset, 

but GOAP is still far more accurate than the other five methods. Compared to 3DRobot, the 

differences between the methods are aggravated for the poor quality models, whereas they are non-

significant for the near-native ones. Moreover, the quality of the models appears to have a different 

influence over the accuracy: (i) the most difficult models to rank are those of near-native and poor 

quality in 3DRobot versus those of medium quality in CASP13; (ii) the easiest to rank are those of 

good and medium quality in 3DRobot versus those of near-native quality in CASP13. Only the 

performances of GOAP are consistent between the two datasets: the higher the model quality, the 

higher the accuracy. All these discrepancies presumably arise from the different origins of the two 

datasets. The 3DRobot set has been specifically designed for benchmarking purposes: for each 

protein, the native structure has been uniformly altered to generate exactly 300 decoys. Models 

from CASP13 are produced by different competing research groups, so that there is no control over 

their quality, nor over their number. Nevertheless, both series of results lead to the same conclusion 

regarding the improvement brought about the TIG formalism over the statistical PMFs. Finally, 

although not statistically balanced, the CASP13 dataset provides actual predictions of protein 

structures, unlike the decoys of 3DRobots, i.e. native structures of altered quality. Thus, cases of 

success and failure of TIG, selected from both CASP13 and 3DRobot, are presented in Figure 1. 
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Figure 1. Examples of protein models correctly and incorrectly ranked with the information-gain 

based approach, TIG. For each example, the better and worse models are represented in blue and 

red, respectively. (A) Predicted structures of the CASP13 target T1006 (magnetosome protein 

MamM) correctly ranked by TIG, but incorrectly ranked by the PMF, mock, and DOPE scoring 

functions. (B) Decoy structures of the ATP-binding subunit ClpC1 of the Clp protease (PDB code 

3wdeA) from the 3DRobot dataset, which are correctly ranked by all methods except TIG. (C) 

Predicted structures of the target T0971 (terfestatin biosynthesis enzyme TerC), for which only TIG 

fails. (D) Decoy structures of the DUB domain of the human zinc metalloprotease AMSH-LP (PDB 

code 2znrA), for which only TIG succeeds. 

 

 

2. Performance: average predicted rank 

To confirm the above benchmarking results, a second test has been performed. It consists in 

observing how the models are ranked by a scoring function, depending on their actual quality as 

measured by either the TM-score or the GDT_TS. The results of this second benchmarking 

procedure are presented in Table 2. For the “near-native” and “good” models, the lower the value 

presented in Table 2 (i.e. the higher the rank), the better; conversely, for models of “poor” quality, 

the lower the rank, the better. Taken as a whole, these results further validate the new formalism, as 
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TIG significantly outperforms the other methods except GOAP. Indeed, TIG is better because it (i) 

ranks higher the near-native models, as well as the good models (although only when defined with 

the GDT_TS) and (ii) ranks lower the models of poor quality. Again, the mock scores 

systematically outperform PMF, and DOPE is the only score that rivals or bests TIG (at ranking 

good models). In agreement with the accuracies reported in Table 1, the performance of GOAP is 

far superior to those of the other methods, on the near-native and poor models. This is, however, not 

the case for the good models, which shows that the quality category influences the average 

predicted rank differently than the accuracy. In general, this second test is less discriminating than 

the pairwise ranking, since the observed differences are less significant. 

 

As for the first test, the results contain some discrepancies between the TM-score- and GTD_TS-

based categories. This shows the difficulty of defining thresholds to categorize model quality. As 

both the TM-score and GDT_TS take values between 0 and 1, we used the same thresholds for 

these two scores. The >0.8 limit for the near-native models was defined based on a major and recent 

study, which defined conformations with a TM-score >0.7 as “high-accuracy” predicted structures 

[22]. We defined the <0.4 limit for the models of poor quality, based on the previously studied 

significance of a TM-score of 0.5 [52]. However, our categorization of the model quality seems 

appropriate, given that the tested methods have more difficulty ranking the near-native and poor 

models (for different reasons), than the ones of good or medium quality. 

 

Table 2. Ranks predicted by the TIG, DOPE, mock, and PMF scores, averaged for three categories 

of models. For the “near-native” and “good” models, the lower the value (the higher the rank), the 

better the performance. Conversely, for models of “poor” quality, the lower the rank, the better. 
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3. Performance: correlation between predicted and true quality measures 

To further validate the information gain-based approach, the correlations between the scores 

produced by PMF or TIG and the corresponding TM-scores have been investigated, for the decoys 

of 3DRobot. Averaged on the 200 proteins (×300 decoys), the Pearson correlation coefficients are 

−0.719 and −0.782, for PMF and TIG, respectively. This makes TIG equal to dDFIRE, by referring 

to performances previously reported in the literature [53]. Like GOAP, the dDFIRE statistical 

potential is both orientation- and distance-dependent, and uses protein molecular volume in the 

calculation of the reference state. However, unlike GOAP, it is based on a coarse grained 

representation of the protein structures. It should be noted here that dDFIRE is the lowest-

performing program among those tested in [53], where SVMQA is the best, followed by OPUS-

PSP, GOAP, and RWplus. Nevertheless, the outcome of this comparison is that TIG can match a 

more complex method, such as dDFIRE. These results also confirm the improvement brought about 

the TIG formalism over Sippl’s PMFs. Finally, as the 200 proteins from 3DRobot have been 

selected for their diversity, the difficulty to assess the decoys may vary from one protein to another. 

This is illustrated by Figure 2, in which values of the TM-score are plotted against those of the TIG 

score, for proteins that show various levels of correlation. In these examples, the dispersion of the 

predicted quality goes higher, as the true quality goes lower. This is consistent with the intuition that 

the more altered is a decoy structure, the more uncertain is the prediction of its quality. 

Average predicted rank
Model quality Score PMF MCK1 MCK2 DOPE TIG GOAP
Near-native

TM-score
68.1 64.8 63.9 67.1 61.9 46.3

Good 123.4 122.3 122.2 120.5 121.9 123.6
Near-native

GDT_TS
63.1 59.5 58.4 61.5 55.9 38.4

Good 102.5 100.6 100.2 101 100 98.1
Poor TM-score 222.9 226.2 227 229.1 229.3 237.3
Poor GDT_TS 222 224.9 225.5 226.3 227.3 234.8
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Figure 2. Predicted quality (TIG score) of decoy structures from 3DRobot plotted against their true 

quality (TM-score). The Pearson correlation coefficient r is given for each example. (A) Conserved 

domain of nonstructural protein 3 (nsP3) from SARS coronavirus (PDB code 2acfA; 182 residues). 

(B) Dihydroneopterin aldolase from Escherichia coli (PDB code 2o90A; 122 residues). (C) 

Catalytic domain of the DNA glycosylase MutY (PDB code 1munA; 225 residues). (D) Protoglobin 

from Methanosarcina acetivorans (PDB code 3qzxA; 195 residues). 

 

 

4. Qualitative analysis: score profiles 

As the new formalism has been designed to be independent of any physics-based interpretation, it is 

interesting to analyze the score profiles of our TIG function, given that we will not attempt to draw 

any analogy with physical interatomic potentials (e.g. the Lennard-Jones or Morse potentials). 
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Compared with the PMF profiles, a first observation is that most profiles are actually very similar. 

Therefore, Figure 3 presents the TIG and PMF profiles for the four pairs of residues that differ the 

most, namely the Cys-Cys, Asp-Glu, Val-Val, and Lys-Arg residue pairs. Strikingly, one can observe 

that the attractive part of the profile (i.e. the negative score well) is always stronger for TIG than for 

PMF. This is simply due to the fact that, for x and y ∈ ]0, 1], the −ln(x/y) function from Eq. 1 takes 

values that are always greater than those of −(x−y)/y from Eq. 3. Therefore, the scores computed are 

systematically lower with TIG than with PMF. It is important to note that this difference is not 

related to the better performance of the new formalism, as our benchmark was only aimed at testing 

the ability of the scoring functions to rank models, rather than to assess their absolute quality. In 

other words, it is not valid to compare the two scores computed by TIG and PMF for each structure, 

and conclude that TIG always evaluates the structure as more native-like. 

 



21 

 

Figure 3. Score profiles from the TIG (blue) and PMF (green) methods. The interacting atoms are 

the Cα of the (A) Cys-Cys, (B) Asp-Glu, (C) Val-Val, and (D) Lys-Arg residue pairs. 

 

 

Another remarkable feature of the score profiles concerns their repulsive part, on the left side of 

each plot. Both TIG and PMF functions are undefined for fi,j
REF(r) = 0, which requires arbitrarily 

setting a default value of the score (here equal to +10). However, due to the logarithm in the 

formula, only PMF is undefined for fi,j
OBS(r) = 0, which also requires a default value (again set to 

+10). For fi,j
OBS(r) = 0, the TIG scoring function is defined and takes the value +1, which makes its 

repulsive part composed of two plateaus, at +1 and +10. The +1 plateau corresponds to an 

interatomic distance that has never been observed for the particular atom pair, but otherwise exists 
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in the training set of native conformations. The +10 plateau, however, corresponds to an interatomic 

distance that has never been observed within the experimental structures, whatever the type of 

atoms. Although it seems useful to distinguish these two cases, with a higher penalty for the second 

one, this repulsive part with either one or two plateaus presumably does not affect the results of our 

benchmarking procedure. Indeed, only protein models of very poor quality would contain such 

abnormal interatomic distances. Nevertheless, the importance of this parameter—which can be 

applied to both TIG and PMF formalisms—remains to be investigated. Interestingly, the right sides 

of the plots indicate that the information gain is limited for two residues spaced by more than 10 Å, 

as the score fluctuates around zero. This suggests that similar performances could be achieved at a 

lower computational cost, by restricting calculations to shorter interatomic distances (see section 

below). Finally, from a qualitative point of view, these profiles produced by TIG do not seem to 

show any unexpected features. For the Asp-Glu and Lys-Arg residue pairs (Figure 1B and 1D, 

respectively), the positive peak at ~7 Å is consistent with their presumably repulsive interaction. 

Similarly, in the Val-Val (Figure 1C) profile, the negative well at ~6 Å can be attributed to the 

attractive interaction between two hydrophobic residues, and the very negative profile of the Cys-

Cys (Figure 1A) pair reflects the possibility of forming disulfide bonds. 
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4. CONCLUSIONS AND PERSPECTIVES 

The new formalism presented here was developed to be more statistically relevant than Sippl’s 

PMFs. Thus, the better performances observed on the benchmark were actually expected. Through 

the inclusion of the two mock scoring functions, this study was also aimed at shedding light on how 

the statistical PMFs actually work by summing relative frequency differences, which correspond to 

information gains. It should be noted that we used here a general definition of information that 

quantifies the Bayesian updating and is, therefore, different than the particular Shannon surprisal 

(also called “self-information”). Importantly, the conceptual improvement brought here is only valid 

when fi,j
OBS(r) is computed from a subdistribution of fi,j

REF(r). When the prior and posterior 

distributions are of equal complexity, the logarithmic mean of fi,j
OBS(r) and fi,j

REF(r) holds relevant. 

However, the advantage of dividing by a logarithmic mean in Eq. 2, rather than by a generalized 

mean (the special cases of which being the arithmetic, geometric, and harmonic means) still has to 

be demonstrated. 

 

In their original form, as devised by Sippl 30 years ago, the statistical potentials used only the 

distance between each pair of atoms to represent protein structures. Through the lens of probability 

theory, Bakers’s and Hamelryck’s research groups later showed how any other descriptors can be 

successfully used: typically, solvent accessibility or torsion angles. More exotic structural properties 

have also been exploited, e.g. lipid bilayer depth to build a potential aimed at evaluating structural 

models of transmembrane proteins [54]. Nevertheless, in the particular case of scoring functions 

that are only based on interatomic distances (like TIG), the performances might find their roots not 

only in Bayes’ theorem, but also in the representation of the problem. Reducing a protein 3D 

structure to a set of pairwise distances allows the use of graph theory. Protein conformations can 

thus be modeled as amino acid (weighted or unweighted) graphs and are referred to as “protein 

contact networks” (PCNs; see [55] for a review). Similarly to the TIG formalism, methods based on 
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PCNs are not related to physics and, yet, are able to rank decoys [56]. Authors have later combined 

such graph-theoretic approach with support vector machine in order to accurately assess the quality 

of structural models [57]. As a consequence of these results, generalizing the TIG concept and 

confirming its relevance regarding statistics would require to rule out the PCN representation as a 

source of performance. This would mean evaluating the accuracy of TIG scoring functions that 

would be built on other structural features than distances. The resulting scoring functions could be 

used as knowledge-based terms, combined with physics-based terms, into a composite energy 

function, such as that developed for the Rosetta modeling software [58]. The weight of all terms 

would be optimized to fit experimental structural and thermodynamic data. Alternatively, the 

elementary scores could be included in non-linear statistical models, thanks to machine learning and 

deep learning techniques, as it can yield highly accurate quality assessment programs [53,59,60]. 

 

The development of a distance-dependent scoring function relies on several parameters, such as the 

distance bin width, the minimum and maximum distance thresholds, and the minimum number of 

sequence positions separating the residues of the two interacting atoms. Behind the setting of these 

values lies the question of how to treat long-range interactions and local contacts. Here, we 

considered distances ranging from 0 to 15 Å in order to be comparable with DOPE, but authors use 

a 4-8 Å range, following the aforementioned PCNs approach [55]. Attempts to determine optimal 

values for these parameters have been made [61]. However, the training dataset and, more 

importantly, the benchmark then used were too small to draw any permanent conclusion. Such a 

study could be redone with the computational tool used for developing the TIG score, as it allows to 

create a custom scoring function, while setting the different thresholds with user-selected values. 

Interestingly, the results obtained with GOAP show that a method based only on interatomic 

distances, orientation, and molecular volume can achieve high accuracy—especially for near-native 

decoys. This would indicate that a limited number of parameters are sufficient to model the process 
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of protein folding and stability. Such knowledge-based scoring functions, as estimators of protein 

free energy, could thus be considered as “sloppy models”, i.e. models whose behavior depends on a 

relatively small number of combinations of parameters. Although this theoretical framework has 

gained popularity in recent years for explaining phenomena in physics and biology (see [62]), it 

remains unused as a means to study protein structures. 

 

We proved our concept for the ranking of predicted structures according to their quality. However, 

there are several other applications that could be explored—like protein-protein docking, for 

example. An interesting use of statistical potentials consists in training them on a particular type of 

native protein conformations, in order to gain insight into the rules that govern the relative 

positioning of residues within these protein structures. For example, this has recently been done for 

transmembrane protein structures [63]. As we provide here an open-source standalone version of 

our program, we hope that it will find usefulness in studying pairwise interactions within user-

selected protein structures. Finally, this study focused on statistical pairwise potentials. Similarly to 

their physics-based counterparts, these two-body potentials are inherently limited in their 

representation of the intra-protein interactions. Further investigations should therefore be carried on 

many-body potentials. 
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