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RESUME 20 
 21 
Together with local chromatin structure, gene accessibility and the presence of transcription 22 
factors, gene positioning is implicated in gene expression regulation. Although the basic mech-23 
anisms are expected to be conserved in eukaryotes, little is known about the role of gene 24 
positioning in plant cells, mainly due to the lack of a highly resolutive approach. In this manu-25 
script, we adapted the use of the ANCHOR system to perform real-time single-locus detec-26 
tion in planta. ANCHOR is a DNA-labelling tool derived from the chromosome partitioning sys-27 
tem presents in many bacterial species. We demonstrate its suitability to monitor a single-28 
locus in planta and used this approach to track chromatin mobility during cell differentiation 29 
in Arabidopsis thaliana root epidermal cells. Finally, we discuss the potential of this approach 30 
to investigate the role of gene positioning during transcription and DNA repair in plants. 31 

 32 
INTRODUCTION 33 
 34 
In Eukaryotes, genetic information is encoded in the chromatin, a complex structure composed 35 
of DNA packed around an octamer of histones in the nucleus. Chromosome territories form large 36 
compartments in the nucleus, themselves containing chromatin domains harbouring different 37 
epigenetic signatures (Santos et al., 2020; Pontvianne and Grob, 2020; Nguyen and Bosco, 2015). 38 
In these domains, the positioning and accessibility of genes are very dynamic in response to 39 
several key biological processes that include gene transcription, genome replication and DNA 40 
repair for example. Fluorescence in situ Hybridization (FISH) approaches such as padlock-FISH 41 
enable to detect a single-copy locus using fixed plant material (Feng et al., 2014). However, im-42 
aging techniques using non-living organisms is insufficient to track spatial and temporal dynam-43 
ics of loci. Live-cell imaging approaches allow gene positioning visualization during these differ-44 
ent processes, providing key elements for their understanding (Shaban and Seeber, 2020; 45 
Dumur et al., 2019). 46 
 47 
Microscopic detection of genomic loci in plants is possible through the use of different strategies 48 
including zinc-finger based imaging, transcription activator–like effectors (TALE) and 49 
CRISPR/Cas9 (Khosravi et al., 2020; Fujimoto et al., 2016; Lindhout et al., 2007). Unfortunately, 50 
these techniques have been restricted to follow the dynamics of highly repeated regions 51 
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(centromeric repeats, telomeric sequences and ribosomal RNA genes). Monitoring of a single 52 
locus in living plants is possible thanks to the addition of lacO motifs to which the transcription 53 
factor LacI, fused to a fluorescent protein, can bind (Fang and Spector, 2007; Kato and Lam, 54 
2003). Live-cell imaging of FLOWERING LOCUS C (FLC) alleles associated to lacO (FLC-LacO) could 55 
be performed to demonstrate that FLC-LacO repression during vernalization provokes their 56 
physical clustering (Rosa et al., 2013). In addition, the Tet repressor protein fused to a fluores-57 
cent protein could also be used to label a genomic region containing numerous Tet operator 58 
sequences (Matzke et al., 2005). In both cases, amplification of the signal is directly linked to the 59 
multiplicity of the targeted sequences. However, these repetitions often affect local chromatin 60 
organization and can trigger silencing of the reporter gene (Watanabe et al., 2005). Thus, a 61 
standardized and robust technique for tracking the dynamic of a single locus is still not available. 62 
 63 
The ANCHOR system is a DNA-labeling tool derived and optimized from chromosome partition-64 
ing complex of bacteria. A single-copy of parS -1 kb long fragment- serves as a binding platform 65 
for ParB proteins (Dubarry et al., 2006). Natural ParS sequence is composed of 4 canonical in-66 
verted repeat sequences that are bound via the helix-turn-helix (HTH) motif present in ParB 67 
(Funnell, 2016). Upon binding, oligomerization of ParB proteins then propagates over the ParS 68 
sequence and adjacent DNA (Figure 1A). Importantly, oligomerized ParB are loosely associated 69 
and can be displaced transiently and easily upon transcription or DNA repair (Saad et al., 2014). 70 
This phenomenon is also described as the caging step (Funnell, 2016). This system has been 71 
adapted successfully to monitor a unique locus in living yeast and human cells using a fluores-72 
cent-tagged ParB (Germier et al., 2017). This approach is also able to visualize DNA viruses in 73 
human cells (Gallardo et al., 2020; Mariamé et al., 2018; Komatsu et al., 2018; Blanco-Rodriguez 74 
et al., 2020; Hinsberger et al., 2020). In this manuscript, we demonstrate that the ANCHOR sys-75 
tem can also be used to visualize a single-locus in fixed and living plant tissues. Using this ap-76 
proach, we also show that chromatin mobility is different in differentiated cells compared to 77 
meristematic cells of plants. 78 
 79 
MATERIAL AND METHODS 80 
 81 
Plant Materials and Growth Conditions 82 
 83 
Arabidopsis thaliana ecotype Col-0 was used in this study. lacO/LacI line used comes from the 84 
following source (Matzke et al., 2005). To test the ANCHOR system, Arabidopsis thaliana (Col-0) 85 
plants were transformed by agroinfiltration using the floral dip protocol (Clough and Bent, 1998), 86 
using Agrobacterium tumefaciens GV3101 strain. Transformants were grown on soil and sprayed 87 
with Basta herbicide for selection (10 mg/L). All the plant material used here was grown in con-88 
trol growth chambers on soil at 21°C with a daylight period of 16 hr/day. The transformant 2F 89 
(T2F) line was crossed to Col-0  wild-type plants expressing the histone variant H2A.W fused to 90 
red fluorescent protein (RFP) (Yelagandula et al., 2014). The T2F line used in this study is heter-91 
ozygote for the ANCHOR transgene, except in the data presented in (Figure 2), where homozy-92 
gous lines have been used. 93 
 94 
For in vitro growth, seeds were surface sterilized in 5% v/v sodium hypochlorite for 5 min and 95 
rinsed three times in sterile distilled water. Seeds were stratified at 4°C for 48 h in the darkness 96 
and plated on Murashige and Skoog (MS) medium. Seedlings were placed in a growth cabinet 97 
(16 hours light, 22°C) for 1 week in vertically oriented Petri dish before imaging.  98 
 99 
Plasmid construction 100 
 101 
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A cassette allowing the expression of ParB has been synthetized by Genescript®. The nature and 102 
sequences of the ANCHOR system are confidential and the property of NeoVirTech SAS. The 103 
cassette was cloned into the pEarleyGate302 vector (Earley et al., 2006). 104 
 105 
Nanopore sequencing 106 
 107 
Genomic DNA preparation was performed as previously described in (Picart-Picolo et al., 2020). 108 
Library preparation was performed using the 1D Genomic DNA by ligation kit SQK-LSK109 (Ox-109 
ford Nanopore Technologies), following the manufacturer's instructions. The R9.5 ONT flow-cell 110 
FLO-MIN106D (Oxford Nanopore Technologies) was used. We obtained 1.93 Gb of sequences 111 
(11X coverage) with an average read length of 3, 675kb for ANCHOR T2F line. ONT reads map-112 
ping the transgene were mapped, filtered and aligned using Geneious® software (Kearse et al., 113 
2012).  114 
 115 
Cytogenetic Analyses 116 
 117 
For cytogenetic analyses, nuclei were isolated from 3- or 4-week-old plants as previously de-118 
scribed (Pontvianne et al., 2012). Briefly, fresh leaves were fixed in 4% formaldehyde in Tris 119 
buffer (10 mM Tris-HCL at pH 7.5, 10 mM EDTA, 100 mM NaCl) for 20 min, then chopped with a 120 
razor blade in 0.5 mL of LB01 buffer (15 mM Tris-HCl at pH 7.5, 2 mM NaEDTA, 0.5 mM spermine, 121 
80 mM KCl, 20 mM NaCl, 0.1% Triton X-100). The lysate was filtered through a 30-μm cell strainer 122 
(BD Falcon), and 12 μL of sorting buffer (100 mM Tris-HCl at pH 7.5, 50 mM KCl, 2 mM MgCl2, 123 
0.05% Tween-20, 5% sucrose) was added per 3 μL of cell/nuclei suspension (Pontvianne et al., 124 
2012), and spread on a polylysine slide. After air drying, samples were post-fixed in 2% formal-125 
dehyde in Phosphate Buffer (PBS) for 5 minutes and then washed twice with water before being 126 
air-dried. Slides were then mounted in Vectashield at 1 µg/ml of DAPI and seal them with nail 127 
polish.  128 
 129 
Nuclei with different levels of ploidy were isolated as described in (Pontvianne et al., 2016), ex-130 
cept that propidium iodide was used to stain the nuclei, together with RNase to a final concen-131 
tration of 10 µg/ml. A S3 cell sorter (Biorad®) with 488nm and 561nm 100 mW dual-lasers was 132 
used to sort the nuclei. Immunolocalization experiments were performed as described previ-133 
ously (Durut et al., 2014) using anti-H3K27me3 or anti-H3Ac antibodies (Abcam) to a 1/1000 134 
dilution. Zeiss LSM 700 confocal was used to generate images presented in (Figure 1), while 135 
Zeiss LSM 800 with an Airyscan module was used to generate images from (Figure 2), (Figure 3) 136 
and (Figure 4A) with a 63x objective, N.A. 1.4 and pixel size 0.028x0.028x0.160 µm3. Live-cell 137 
imaging presented in (Figure 4B) were performed using a spinning disk Zeiss Cell ob-138 
server equipped with a high-speed Yokogawa CSUX1spinning disk confocal, an ORCA-flash 4.0 139 
digital camera (Hamamatsu) and a ×40 water objective N.A. 1.2. Green Fluorescent Protein 140 
(GFP) was excited at 488 nm. 141 
 142 
Live-cell Imaging 143 
 144 
In (Figure 5), time-lapse imaging of Arabidopsis thaliana roots has been carried out using a Zeiss 145 
LSM 780 confocal microscope using a 63x water immersion objectives (1.20 NA). For visualiza-146 
tion of root cell contours stained with propidium iodide, an excitation line of 488 nm was used 147 
and signal was detected at wavelengths of 580 to 700nm. For observation of GFP expression, we 148 
used respectively a 488-nm excitation line and a BP filter of 505-550 nm. For all experiments, 149 
images were acquired every 6 s taking a series of 3 optical sections with Z-step of 2 μm for 5 150 
min. Each movie has a format of 512 × 512 pixels and a 3× zoom factor. 151 
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The 7-d-old seedlings were mounted in water, or propidium iodide, between slide and cover slip 152 
and sealed with 0.12-mm-thick SecureSeal Adhesive tape (Grace Bio-Labs), to avoid root move-153 
ments and drying during imaging.  154 
 155 
Mean square displacement analysis  156 
 157 
All the movies have been analysed with Fiji software (NIH, Bethesda, MD, 158 
http://rsb.info.nih.gov/ij/) and with the plugin SpotTracker 2D (obtained from http://bigwww.epfl 159 
.ch/sage/soft/spottracker). Mean square displacement (MSD) analysis was performed as de-160 
scribed in (Meschichi and Rosa, 2021). All quantitative measurements represent averages from at 161 
least 9 cells. From the MSD plot, we calculated the radius of constraint by the square root of the 162 
plateau of the MSD curve multiplied by 5/4. Data-sets where tested for normality using the 163 
Shapiro-Wilks test. Parametric analyses were done with the standard Student’s t test to deter-164 
mine the statistical significance of results. For statistical analysis, we used the GraphPad Prism 8.3 165 
software. 166 
 167 
 168 
RESULTS 169 
 170 
Development of the ANCHOR system 171 
 172 
Our goal was to adapt and facilitate the use of the ANCHOR system in plants. We therefore 173 
combined the two elements of the ANCHOR system (ParB and its target sequence parS) into a 174 
single transgene. A ParB gene whose coding sequence has been optimized for Arabidopsis tha-175 
liana was fused in frame to a GFP and triple FLAG-tag (ParB:GFP:3XFLAG) to allow detection in 176 
living and fixed nuclei (Figure 1B). ParB:GFP:3XFLAG expression was placed under the control of 177 
a promoter allowing ubiquitous expression. At the 3' end of the ParB construct, we added the 178 
1kb-long ParB target sequence parS separated by a 1.5 kb-long spacer sequence to prevent po-179 
tential interference of ParB gene transcriptional activity. Such design allows rapid selection of 180 
transgenic plants containing the two linked ANCHOR elements. In addition, detection of parS-181 
ParB:GFP signals would suggest that ParB:GFP transcription is possible even in the event of local 182 
caging of ParB:GFP proteins.  183 
 Wild-type Col-0 plants were transformed with the transgene and selected using Basta 184 
herbicide by spray. Fixed nuclei isolated from eight different T1 transformants revealed the pres-185 
ence of parS-ParB:GFP foci in five of them (Figure 1C). To test the robustness of the detection 186 
approach, we then analysed the entire root-tip from one ANCHOR line comprising a single copy 187 
insertion at generation T2 (T2F; Figure 1D). One parS-ParB:GFP signal was detectable in almost 188 
all nuclei analysed. Importantly, the signal-to-noise ratio is high, which allows easy detection of 189 
the specific signal (Figure 1D).  190 
 To further characterize the ability of the ANCHOR system to follow a single-locus in 191 
planta, it is important to know the exact location of the transgene. We performed long-read 192 
Nanopore sequencing on an ANCHOR line with one single insertion (T2F), and extracted all long 193 
reads corresponding to the transgene to map its location in the genome. Sequence analyses 194 
revealed that the transgene could be located on the lower arm of chromosome 5, at position 23 195 
675 998 bp, in an intergenic region (Figure 1E). This position is flanked by a region enriched in 196 
active chromatin marks and a region enriched with Histone 3 trimethylated Lysine 27 197 
(H3K27me3), a repressive mark deposit by the Polycomb repressive complex 2 (PRC2) (Figure 198 
S1) (Sequeira-Mendes et al., 2014).  199 
 200 
Detection of parS-ParB foci in fixed cells 201 
 202 
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 As presented in (Figure 1D), one unique focus was usually detected in root tip cells, some-203 
times appearing as a doublet. Because the ANCHOR system is based on protein aggregation, we 204 
wondered whether analysing ANCHOR signals in endoreplicated cells would lead to an increase 205 
number of detected foci. We isolated 2C , 4C and 16C cells by fluorescent-assisted cell sorting 206 
after propidium iodide labelling and RNAse treatment. We stained sorted nuclei with DAPI and 207 
observed parS-ParB:GFP signals in sorted nuclei. We could see an higher amount of parS-208 
ParB:GFP signals in sorted nuclei presenting a higher endoreplication rate (Figure 2A and S2A). 209 
Although these data suggest that the ANCHOR system is suitable to detect multiple loci simulta-210 
neously, additional experiments are required to fully demonstrate that this reporting system 211 
does not lead to aberrant locus aggregation.  212 
 213 
 In the T2F line, the transgene is located on an arm of the chromosome 5, in a region 214 
enriched in H3K27me3 deposited by the PRC2, but flanked by a genomic region enriched with 215 
active chromatin marks (Figure S1). Although T-DNA transgene insertion may affect locally this 216 
peculiar chromatin environment (Rajeevkumar et al., 2015), we tested the possibility to combine 217 
both immunostaining and parS-ParB:GFP signals detection. Immunostaining experiments were 218 
performed on isolated leaf nuclei from 3-week-old plants using either an antibody against His-219 
tone 3 acetylated (H3Ac) active mark or H3K27me3 repressive mark. As expected, the tested 220 
histone marks and parS-ParB:GFP signals are excluded from heterochromatic foci stained by 221 
DAPI and corresponding to the centromeric, pericentromeric and nucleolus organizer regions 222 
(Figures 2B-C). Although no clear overlap could be detected between parS-ParB:GFP signals and 223 
H3K27me3 marks, at least partial overlap can be seen between parS-ParB:GFP signals and H3Ac 224 
marks (Figures 2B-C and S4). This result is expected since active transcription is necessary to 225 
produce ParB:GFP proteins. Although we cannot conclude about the specific chromatin state 226 
surrounding the transgene insertion site in T2F, this experiment demonstrate our ability to de-227 
tect parS-ParB:GFP signals and immunodetection approach simultaneously. 228 
 229 
 230 
Detection of parS-ParB foci in live-cell imaging 231 
 232 
 Previous studies demonstrated that global genome organisation can be cell specific and 233 
vary during plant development (Pontvianne and Liu, 2019). We therefore tested our ability to 234 
detect parS-ParB:GFP signals in different cell-types, directly in planta. To allow simultaneous 235 
visualization of heterochromatin and parS-ParB:GFP signals directly in living cells, we crossed 236 
the T2F line with another A. thaliana Col-0 line expressing the Histone 2A variant H2A.W, fused 237 
to the Red Fluorescent Protein (RFP) (Yelagandula et al., 2014). Plants were grown on MS media 238 
directly in petri dish compatible with confocal imaging. We analysed several tissues, including 239 
meristematic and differentiated root cells, leaf cells, trichome cells, but also pollen grains from 240 
plant grown on soil.  We were able to detect parS-ParB:GFP signals in all cell-types tested (Figure 241 
3 and S3). As expected, parS-ParB:GFP signals are excluded from heterochromatin area, labelled 242 
by H2A.W:RFP signals. Note that in certain cell-types, the nuclear area can be seen due to non-243 
associated ParB proteins that are diffusing in the nucleoplasm.  244 
 The ANCHOR system does not require high DNA accessibility to allow parS-ParB:GFP 245 
signals visualization. In a highly condensed chromatin context like during mitosis, we could still 246 
detect parS-ParB:GFP signals in condensed chromosomes, although signal is usually less bright 247 
than in the neighboring cells (Figure 4A).  248 
 Finally, we tested our ability to perform live-cell imaging of the parS-ParB:GFP signals in 249 
planta. We analysed parS-ParB:GFP dynamics in living roots using a Zeiss Cell Observer Spinning 250 
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disk microscope (Figure 3B). Although bleaching can alter the signal detection over time, we 251 
were able to detect the ParB:GFP signals at multiple time points and track its relative nuclear 252 
position, as previously reported in human and yeast cells (Saad et al., 2014; Germier et al., 2017). 253 
Movies showing the parS-ParB:GFP signals detection in live meristematic or elongated cells can 254 
be find as supplementary data (Suppl. Movies 1 and 2).  Altogether, our data demonstrate that 255 
the ANCHOR system is suitable for live-cell imaging in planta. 256 
  257 
Studying chromosome mobility using the ANCHOR system 258 
 259 

It is now clear that higher-order organisation of the chromatin exerts an important influ-260 
ence on genomic function during cell differentiation (Arai et al., 2017). For instance, in Arabidop-261 
sis thaliana, histone exchange dynamics was shown to decrease gradually as cells progressively 262 
differentiate (Rosa et al., 2013). However, how chromosomes and the chromatin fibre move 263 
during cell differentiation is not well studied in plants. We took advantage of our ANCHOR DNA 264 
labelling system to monitor chromatin mobility changes upon cell differentiation in the T2F line. 265 
In particular, we measured mobility of parS-ParB:GFP foci in meristematic and differentiated 266 
cells from the root epidermis (Figure 5A) through live-cell imaging using confocal microscopy, 267 
and quantified the mobility using mean square displacement (MSD) analysis (Meschichi and 268 
Rosa, 2021). Interestingly, the chromatin mobility on meristematic cells was higher than in dif-269 
ferentiated cells (Figure 5B, Suppl. Movies 1 and 2). These differences were statistically signifi-270 
cant as shown by a much higher radius of constraint (Figure 5C). These results may support the 271 
idea that the chromatin in undifferentiated cells holds a more dynamic conformation (Rosa et 272 
al., 2013; Arai et al., 2017; Meshorer et al., 2006). However, additional experiments would be 273 
required to further validate the biological relevance of this result.   274 

Because until now, single-locus dynamics in plants was mostly possible through the use 275 
of the lacO/LacI system (Figure 5D) we thought to compare chromatin mobility in meristematic 276 
cells using the ANCHOR and the lacO/LacI systems. Interestingly, both methods revealed a very 277 
similar MSD curve. Indeed, a MSD curve where the maximum values asymptotically reach a plat-278 
eau, indicates that chromatin moves in a subdiffusive manner, which is typical for chromosomal 279 
loci tracked in interphase nuclei (Seeber et al., 2018). Additionally, the curves resulted in com-280 
parable measurements of radius of constraint (Figure 5E,F), meaning that the chromatin envi-281 
ronment for these two insertion lines may be similar. While comparison with additional lines 282 
with different chromosomal locations would be interesting, the results presented here illustrate 283 
that the ANCHOR system can be used to monitor single-locus and is suitable to study chromo-284 
some organisation and dynamics in plants. 285 
 286 
DISCUSSION AND PERSPECTIVES 287 
 288 
 In this manuscript, we describe a novel method to monitor a single-copy locus in planta. 289 
In comparison with existing strategies, the advantage of the ANCHOR system is the absence of 290 
repeated elements in the target sequence. This aspect is especially important in plants due to 291 
the existence of plant-specific silencing systems (Watanabe et al., 2005; Grob and Grossniklaus, 292 
2019; Matzke et al., 2015). ParS sequence is indeed only 1 kb-long and could potentially be 293 
shorten to 200 bp (NeoVirtech, personal communication). In addition, several reports in yeast 294 
and animal cells have already demonstrated the innocuity of the ANCHOR system to endogenous 295 
processes such as transcription and replication (Germier et al., 2018). This particularity makes 296 
the ANCHOR system very suitable to monitor single-copy genes in its native genomic environ-297 
ment. In this study, ANCHOR lines were generated by T-DNA insertion. Five out of eight inde-298 
pendent lines showed strong ANCHOR signals. This could indicate that ANCHOR insertion site is 299 
important to be functional. However, we cannot conclude whether or not the ANCHOR system 300 
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is suitable to monitor a genomic locus located in a heterochromatic environment. Absence of 301 
parS-ParB:GFP foci could indeed be a consequence of a lack of ParB:GFP expression, which do 302 
not mean that ParS accessibility is compromised. Have a separate transgene for parB:GFP ex-303 
pression and parS detection would be necessary to address this point. In addition, T-DNA 304 
transgenes and Agrobacterium-directed transformation can be a source of genomic and epige-305 
nomic instability, both in cis and in trans (Rajeevkumar et al., 2015). Moreover, they can also 306 
modify the nuclear architecture of their insertion site (Grob and Grossniklaus, 2019). To specifi-307 
cally monitor dynamics of selected single loci, the parS sequence would need to be inserted at 308 
a precise position within the desired locus. A recent approach that combine CRISPR-Cas9 tech-309 
nology and a homologous recombination-donor cassette can generate knock-in Arabidopsis tha-310 
liana plants (Wolter et al., 2018; Miki et al., 2018; Merker et al., 2020). The implementation of 311 
the parS knock-in strategy will really improve the innocuity of this approach on the local chro-312 
matin state and should strongly reduce any bias on its nuclear positioning. 313 
 Another advantage of the ANCHOR approach is the possibility to use simultaneously dif-314 
ferent combination of parS-ParB. ParB binding on parS sequence is indeed species-specific and 315 
several combinations have successfully been used separately or simultaneously so far. In this 316 
study, we used a specific parS-ParB , but additional specific combination could be used. In the-317 
ory, up to three combinations could be used simultaneously (Saad et al., 2014, NeoVirTech 318 
peronnal communication), although an important preliminary work would be required for plant 319 
material preparation. For instance, two alleles from the same gene could be differentially la-320 
belled to monitor their potential associations while being expressed or silenced. This is an im-321 
portant question since previous observations suggest that allele aggregation could participate 322 
in gene transcriptional regulation (Rosa et al., 2013). These colour combinations could also be 323 
used to follow the distance of two proximal regions during DNA repair for example, as already 324 
shown in yeast (Saad et al., 2014) or to label borders of a genomic regions that can undergo 325 
different chromatin states during stress or development. This system will provide a useful tool 326 
to study the spatial organisation and the dynamic behavior of chromatin at the single locus level. 327 
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 Figures legend 482 
 483 

Figure 1 : Description of the ANCHOR system in planta  484 
A. Schematic representation of the ANCHOR system. ParB proteins fused to GFP can directly bound 485 
to parS sequence as a dimer. parS-ParB interactions provoke a conformational change in ParB pro-486 
teins that induce their oligomerization along the flanking genomic region. B. Cassette used to trans-487 
form Arabidopsis thaliana Col-0 plants to test the ANCHOR system in planta. A strong and ubiqui-488 
tous promoter is used to express the ParB protein fused to GFP and three FLAG tags. After a Termi-489 
nator sequence, a 1.5 kb-long spacer sequence has been added to separate the ParB:GFP open 490 
reading frame and the 1 kb-long parS sequence. Detection of a parS-ParB:GFP focus (Green) in an 491 
isolated leaf nucleus (C) and in fixed root tissues (D) of A. thaliana plants containing the ANCHOR 492 
cassette described in B. Nuclear DNA is labelled with DAPI (blue). Bar = 5 µm. E. Position of the 493 
transgene in the ANCHOR line T2F in the Arabidopsis genome using Nanopore sequencing. The 494 
transgene presented in B is inserted on chromosome 5, position 23.675.998 pb. 495 
 496 
Figure 2 : Detection of parS-ParB foci in cells with different ploidy levels and after immunolocal-497 
ization experiments” 498 
A. Detection of parS-ParB:GFP foci (Green) in fixed and sorted nuclei according to their ploidy levels 499 
by Fluorescent-Assisted Cell Sorting (FACS). Nuclear DNA is labeled with DAPI (grey). Enlarged view 500 
of the parS-ParB:GFP foci are presented to facilitate signal visualisation. Bar = 1 µm. B-C. Detection 501 
of parS-ParB:GFP foci (Green) and post-translationally modified histones (red) in fixed and isolated 502 
nuclei from A. thaliana Col-0 plants T2F. The image correspond to a confocal 2D stack. Nuclear DNA 503 
is labeled with DAPI (grey). Trimethylated H3K27 signals are shown in the panel B, while acetylated 504 
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H3 are shown in the panel C. Enlarged views of the parS-ParB:GFP foci are presented to facilitate 505 
signal visualization. Bar = 2 µm. 506 
 507 
Figure 3: ANCHOR system is suitable to monitor a single-copy locus in live and in different tissues 508 
Schematic representation of an Arabidopsis thaliana plant illustrating the different tissues in 509 
which parS-ParB: GFP signals have been detected by live-cell imaging. ParB:GFP signals are in 510 
green and H2A.W:RFP is shown in red. Scale bars = 5 µm. 511 
 512 
Figure 4: Monitoring parS-ParB:GFP in live during mitosis or during a time-course 513 
A. Detection of parS-ParB:GFP foci (green) and H2A.W:RFP (red) in mitotic cells. Scale Bars = 5 µm 514 
B. ANCHOR system enables time-lapse tracking of a single-locus in live roots by confocal imaging. 515 
Time-lapse acquisition of parS-ParB:GFP signals (grey) in an endoreplicated root cell over 5 min. 516 
 517 
Figure 5: Analysing chromatin mobility using the ANCHOR system. 518 
A. Representative images of ParB-parS line in meristematic (upper panel) and differentiation zone 519 
(bottom panel) showing nuclear signal with spots (cyan). Propidium Iodide (PI) staining (ma-520 
genta). Bars = 10 μm. B. MSD analysis for ParB-parS  lines based on time-lapse experiments of nu-521 
clei in the meristematic and differentiated zone. 3D stacks were taken at 6 sec intervals for 5min. 522 
Values represent mean ± SEM from 54 and 9 cells, respectively. C. Calculated radius of constraint 523 
for MSD curves depicted in B. Values represent means ± SEM. Student’s t test, ***P < 0.001. D. 524 
Representative image of lacO/LacI line in meristematic region showing nuclear signal with spots 525 
(cyan). Propidium Iodide (PI) staining (magenta). Bar = 10 μm. E. MSD analysis for lacO/LacI and 526 
ParB-parS lines based on time lapse experiment of nuclei in the meristematic zone. Values repre-527 
sent means ± SEM from 116 and 54 cells, respectively. F. Calculated radius of constraint for MSD 528 
curves depicted in E. Values represent means ± SEM.  529 
 530 
 531 

 Supplemental figures legend 532 
 533 
Figure S1: Chromatin states flanking the insertion site in T2F ANCHOR line. 534 
A. Snapshot of the chromatin states enriched in the region flanking the transgene insertion site in 535 
the line T2F (https://jbrowse.arabidopsis.org/). B. Histogram representing the relative enrichment 536 
of each chromatin state in the 5 kb upstream and downstream region of the transgene insertion 537 
site in the line T2F.  538 
 539 
Figure S2 : Detection of parS-ParB foci in cells with different ploidy levels 540 
Detection of parS-ParB:GFP foci (Green) in fixed and sorted nuclei according to their ploidy levels 541 
by Fluorescent-Assisted Cell Sorting (FACS). Nuclear DNA is labeled with DAPI (grey).  542 
 543 
Figure S3: Pollen and trichome cell. 544 
Confocal images of the parS-ParB:GFP signal in a trichome cell (top panels) or in pollen cells (bottom 545 
panels). Images on the right are saturated to show the trichome contour or the pollen grains.  546 
 547 
Figure S4: Co-localization of parS-ParB foci with H3Ac and H3K27me3 marks 548 
Detection of parS-ParB:GFP foci (Green) and post-translationally modified histones (red) in fixed 549 
and isolated nuclei from A. thaliana Col-0 plants T2F. Nuclear DNA is labeled with DAPI (grey). Tri-550 
methylated H3K27 signals are shown in the panel A, while acetylated H3 are shown in the panel B. 551 
C and D panels show the relative intensity of each signal.  552 
 553 
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