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Renormalization group optimized λϕ4 pressure
at next-to-next-to-leading order
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We investigate the renormalization group optimized perturbation theory (RGOPT) at the next-to-next-to-
leading order (NNLO) for the thermal scalar field theory. From comparing three thus available successive
RGOPT orders, we illustrate the efficient resummation and very good apparent convergence properties of
the method. In particular, the remnant renormalization scale dependence of thermodynamical quantities is
drastically improved as compared to both standard perturbative expansions and other related resummation
methods, such as the screened perturbation theory. Our present results thus constitute a useful first NNLO
illustration in view of NNLO applications of this approach to the more involved thermal QCD.

DOI: 10.1103/PhysRevD.104.096012

I. INTRODUCTION

For thermodynamical quantities at equilibrium and a
weakly coupled theory, one could hope at first that a
perturbative expansion would give reliable results. In
contrast, as is well-known, for a massless theory, infrared
divergences spoil a naive perturbation theory (PT) approach
in thermal field theories. Even though those infrared
divergences can be efficiently resummed (see, e.g., [1–3]
for reviews), it leads to nonanalytical terms in the coupling,
which happen to give poorly convergent successive orders,
even when pushed to the highest perturbative order
available and showing increasingly sizeable remnant scale
dependence. This situation is notoriously illustrated for
asymptotically free thermal QCD, where lattice simulations
(LS) offer a powerful genuinely nonperturbative alternative
to bypassing those issues. At least so far, LS has been very
successful in the description of the nonperturbative physics
of the QCD phase transitions at finite temperatures and near
vanishing or small baryonic densities [4]. Nevertheless,
the famous numerical sign problem [5] at finite density
(equivalently at finite chemical potential) prevents LS to
successfully describe compressed baryonic matter at suffi-
ciently high densities and to explore a large part of the QCD
phase diagram. More generally, despite the very success of
LS, it is still highly desirable to explore more analytical
improvements of thermal PT. Accordingly, many efforts
have been devoted in the past to overcome the generically
observed issues of poor PT convergence. Apart from the

most important case of QCD, the above mentioned behav-
ior is generic for any thermal quantum field theory, and
typically, the scalar λϕ4 interaction is often used as a
simpler model to study new alternative approaches.
Although the λϕ4 model is not asymptotically free, it
shares some important features with thermal QCD.
Typically, the dynamical generation of a thermal screening
mass mD ∼

ffiffiffi
λ

p
T impacts the relevant expansion of ther-

modynamical quantities, such as the pressure that exhibit
weak expansion terms λð2pþ1Þ=2, p ≥ 1.
Various approximations attempting to more efficiently

resum thermal perturbative expansions have been devel-
oped and refined over the years, typically the screened
perturbation theory (SPT) [6,7], the nonperturbative
renormalization group (NPRG) [8] approach, the two-
particle irreducible (2PI) formalism [9–11], or other
approaches [12]. In particular, for the λϕ4 model, SPT
essentially redefines the weak expansion about a quasipar-
ticle mass, avoiding in this way infrared divergences from
the start. It has been investigated up to three-loop [13–15]
and even four-loop orders [16]. SPT may also be viewed as
a particular case, in the thermal context, of the so-called
optimized perturbation theory (OPT),1 in which more
generally the (thermal or nonthermal) perturbative expan-
sion is redefined about an unphysical test mass parameter,
fixed by a variational prescription, that provides a resum-
mation of perturbative expansion. The generalization of
SPT tailored to treat the much more involved thermal gauge
theories [20], the hard thermal loop perturbation theory
(HTLpt) [21], has been pushed to three-loop order [22,23].
The three-loop results [23] agreement with LS is quitePublished by the American Physical Society under the terms of
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1OPTand its many variants appear under different names in the
literature [17–19].
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remarkable down to about twice the critical temperature,
for a renormalization scale choice ∼2πT. However, both
SPT and HTLpt exhibit a very sizeable remnant scale
dependence at NNLO, that definitely call for further
improvement.
More recently, OPT at vanishing temperatures and

densities was extended to the so-called renormalization
group optimized perturbation theory (RGOPT) [24,25].
The basic novelty is that it restores perturbative RG
invariance at all stages of calculations, in particular when
fixing the variational mass parameter, by solving the (mass)
optimization prescription consistently with the RG equa-
tion. At vanishing temperatures and densities, it has given
precise first principle determinations [25] of the basic QCD
scale (ΛMS) or related coupling αS and of the quark
condensate [26,27]. The RGOPT was extended at finite
temperatures for the scalar λϕ4 in [28,29] and for the
nonlinear sigma model (NLSM) in [30], showing how it
substantially reduces the generic scale dependence and
convergence problem of thermal perturbation theories at
increasing perturbative orders. More recently, the RGOPT
in the quark sector contribution to the QCD pressure was
investigated at NLO, for finite densities and vanishing
temperatures [31], and at finite temperature and density
[32,33], leading to drastic improvements with respect to
both perturbative QCD and HTLpt, specially at nonzero
temperature. In the present work, as a first step to inves-
tigate the RGOPT in thermal theories beyond NLO, we
explore the three-loop order (NNLO) for the technically
simpler scalar λϕ4 model pressure. We investigate the
stability and convergence properties of the method, also
assessing the remnant renormalization scale dependence
improvement as compared to standard PT, and to SPT.
The paper is organized as follows. In Sec. II, we briefly

review the standard thermal perturbative pressure of the λϕ4

model up to NNLO, to set our conventions and basic
expressions that serve as a starting point for our construc-
tion. In Sec. III, we recall the main ingredients of the
RGOPT construction and some previous NLO results from
[28,29]. Our main new NNLO results are derived and
illustrated in Sec. IV, while finally some conclusions and
outlook are given in Sec. V. Some additional technical
ingredients can be found in three appendixes.

II. REVIEW OF STANDARD (MASSIVE)
THERMAL PERTURBATIVE EXPANSION

We consider the Lagrangian for one neutral scalar field
with a quartic interaction,

L ¼ 1

2
∂μϕ∂μϕ −

m2

2
ϕ2 −

λ

4!
ϕ4; ð2:1Þ

where a generic mass term m is arbitrary at this stage.

A. Free energy up to NNLO

We first recall the result [2,13] for the two-loop free
energy (equivalently, minus the pressure) including a mass
term, corresponding to the first two graphs2 in Fig. 1,

F 0 ¼
1

2

XZ
P
lnðP2 þm2

0Þ þ
λ0
8

�XZ
P

1

P2 þm2
0

�
2

þ F 2l;ct
0 ;

ð2:2Þ

where in the imaginary time formalism P2 ¼ ω2
n þ p2,

ωn ¼ 2πTn (n ¼ 0;�1;…) represents the bosonic
Matsubara frequencies. The sum integral in Eq. (2.2) is
defined as usual as the sum over Matsubara frequencies
times remaining integration over the three momentum,
using dimensional regularization and the MS renormaliza-
tion scheme,

XZ
P
≡ T

X
n

�
μ2eγE

4π

�
ϵ
Z

d3−2ϵp
ð2πÞ3−2ϵ : ð2:3Þ

The three-loop contributions involves the basic last two
graphs in Fig. 1 and read

F 3l
0 ¼−

λ20
48

�
3

�XZ
p

1

P2þm2
0

�
2XZ

q

1

ðQ2þm2
0Þ2

þ
XZ

pqr

1

ðP2þm2
0ÞðQ2þm2

0ÞðR2þm2
0ÞððPþQþRÞ2þm2

0Þ
�
þF 3l;ct

0 : ð2:4Þ

We recall that the renormalization is most easily performed
as follows. First, applying mutiplicative renormalization to
the (bare) coupling and mass in expressions above, as

λ0 ¼ λZλ; m0 ¼ mZm; ð2:5Þ

where Zλ, Zm are the standard coupling and mass counter-
terms for the massive λϕ4 model, given for completeness,
respectively, in Eqs. (B5), (B6) in Appendix B. Those are

+

O(1) λ O( )λ2O(  )

+

2

O( )λ22
+

FIG. 1. Free energy diagrams up to NNLO in λϕ4 model.

2In Fig. 1, counterterm graphs are omitted for simplicity.
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expanded for the relevant three-loop order case here to the
perturbative order λ2. The remaining divergences are then
removed by an additive renormalization from the vacuum
energy counterterms [13], formally represented as F 2l;ct

0 ,
F 3l;ct

0 in the above expressions, and also given for com-
pleteness in Eq. (B7) in Appendix B.
Once the mass, coupling, and vacuum energy counter-

terms have been accounted to cancel the original diver-
gences, one obtains the (MS scheme) renormalized free
energy. The one- and two-loop contributions read [2,13]

ð4πÞ2FNLO ¼ E0 −
1

8
m4ð3þ 2LÞ − T4

2
J0

�
m
T

�

þ 1

8

�
λ

16π2

��
ðLþ 1Þm2 − T2J1

�
m
T

��
2

;

ð2:6Þ

where L≡ lnðμ2=m2Þ, and we explicitly separated the
thermal and nonthermal contributions. Here and in all
related renormalized expressions below, μ stands for the
arbitrary renormalization scale introduced by dimensional
regularization in the MS scheme, Eq. (2.3), and λ≡ λðμÞ.
Note carefully that E0 in Eq. (2.6) represents a finite
vacuum energy term, to be speficied below, that plays a
crucial role in our approach as will be reexamined in
Sec. II B.

The standard (dimensionless) thermal integrals appear-
ing in Eq. (2.6) and below are given by

JnðxÞ ¼ 4
Γ½1=2�

Γ½5=2 − n�
Z

∞

0

dt
t4−2nffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ x2

p 1

e
ffiffiffiffiffiffiffiffiffi
t2þx2

p
− 1

; ð2:7Þ

where t ¼ p=T and x ¼ m=T. Different integrals can be
easily related by employing derivatives, such as

Jnþ1ðxÞ ¼ −
1

2x
∂
∂x JnðxÞ: ð2:8Þ

Also, a high-T expansion [2], such as

J0ðxÞ ≃
16

45
π4 − 4

π2

3
x2 þ 8

π

3
x3

þ x4
�
ln

�
x
4π

�
þ γE −

3

4

�
þOðx6Þ; ð2:9Þ

is often a rather good approximation as long as x≲ 1,
i.e., m ≪ T.
Next, the NNLO contribution involves the additional

genuine massive three-loop second integral in Eq. (2.4),
first calculated in [34]. After algebra, the complete three-
loop contribution can be expressed as [13]

F3l ¼ −
1

48

�
λ

16π2

�
2
�
m4

�
5L3 þ 17L2 þ 41

2
L − 23 −

23

12
π2 þ 2ζð3Þ þ c0 þ 3ðLþ 1Þ2J2

�
m
T

��

−m2T2J1

�
m
T

��
12L2 þ 28L − 12 − π2 − 4c1 þ 6ðLþ 1ÞJ2

�
m
T

��

þ T4

�
3

�
3Lþ 4þ J2

�
m
T

��
J21

�
m
T

�
þ 6K2

�
m
T

�
þ 4K3

�
m
T

���
; ð2:10Þ

where

c0 ¼
275

12
þ 23

2
ζð2Þ − 2ζð3Þ ≃ 39.429; c1 ¼ −

59

8
−
3

2
ζð2Þ ≃ −9.8424; ð2:11Þ

and it involves two irreducible, respectively, two-loop K2ðm=TÞ and three-loop K3ðm=TÞ integrals, given explicitly in
Ref. [34], reproduced for self-containedness in Eqs. (C1), (C4) in Appendix C.
To complete this subsection on basic thermal perturbative expressions, for an easier latter reference and comparison

purpose, we also recall the expression of the (massless) PT pressure [1,35,36] up to NNLO,

P
P0

¼ 1 −
5

4

�
λ

16π2

�
þ 5

ffiffiffi
6

p

3

�
λ

16π2

�
3=2

þ 15

4

�
λ

16π2

�
2
�
ln

μ

2πT
þ 0.40

�
þOðλ5=2Þ; ð2:12Þ

where P0 ¼ ðπ2=90ÞT4 is the ideal bosonic gas pressure.
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B. Perturbatively RG-invariant massive free energy

At this stage, an important feature is that the (massive)
free energy is lacking RG invariance. Namely, applying to
Eq. (2.6), with E0 ¼ 0, the standard RG operator,

μ
d
dμ

¼ μ
∂
∂μþ βðλÞ ∂

∂λþ γmðλÞm
∂
∂m ; ð2:13Þ

with βðλÞ, γmðλÞ given in Eqs. (B1), (B2), yields a remnant
contribution of leading (one-loop) order: −ðm4=2Þ ln μ, for
arbitrary m. Indeed, the latter term is not compensated by
the lowest orders terms from βðλÞ or γmðλÞ in Eq. (2.13),
those being at least of next order Oðλm4Þ. This is a
manifestation that perturbative RG invariance generally
occurs from cancellations between terms from the RG
equation at an order λk and the explicit μ dependence at the
next order λkþ1. Nevertheless, perturbative RG invariance
can easily be restored by adding the finite vacuum energy
term E0 to the action, although this term is usually ignored
and minimally set to zero in the (thermal) literature
[13,21,22]. Following Refs. [28,29], the easiest way to
construct a (perturbatively) RG-invariant renormalized
vacuum energy is to determine E0 order by order as a
perturbative series from the reminder of Eq. (2.13) applied
on the non-RG-invariant finite part of Eq. (2.6),

μ
d
dμ

E0ðλ; mÞ≡ −Remnantðλ; mÞ

¼ −μ
d
dμ

½F 0ðE0 ≡ 0Þjfinite�: ð2:14Þ

Accordingly, E0 has the form,

E0ðλ; mÞ ¼ −
m4

λ

X
k≥0

skλk; ð2:15Þ

where the coefficients sk can be determined at successive
orders from knowing the (single) powers of ln μ at order
kþ 1 (or equivalently, the single poles in 1=ϵ of the
unrenormalized expression) [25]. This procedure leaves
non-RG-invariant remnant terms of higher orders, which
may be treated similarly once higher order terms are
considered. Explicitly, we obtain [28]

s0 ¼
1

2ðb0 − 4γ0Þ
¼ 8π2

s1 ¼
ðb1 − 4γ1Þ

8γ0ðb0 − 4γ0Þ
¼ −1; ð2:16Þ

and similarly, for the next orders presently relevant,

s2 ¼
96π2ðb0 − 128π2ðð1þ 4s1Þγ1 − s0ðb2 − 4γ2ÞÞ − 41

12288π4ðb0 þ 4γ0Þ

¼ 23þ 36ζ½3�
480π2

≃ 0.01399;

s3 ¼
−709þ 12π4 − 2628ζð3Þ − 5400ζð5Þ

720ð16π2Þ2 : ð2:17Þ

The explicit RG coefficients in intermediate expressions
emphasizes the general form of these results, while the s3
expression is specific to the N ¼ 1 λϕ4 model.
We stress that the previous construction, being only

dependent on the renormalization procedure, does not
depend on temperature-dependent contributions: at arbi-
trary perturbative orders, the sk coefficients are determined
from the T ¼ 0 contributions only. Indeed, as Eq. (2.14)
suggests, its rhs precisely defines the vacuum energy
anomalous dimension that has been calculated even to
the five-loop order for the general OðNÞ scalar model [37].
Our independent results for the sk are fully consistent with
[37]. A subtlety is that according to Eq. (2.15), sk is strictly
required for perturbative RG invariance at the order λk, but
contributes at the order λk−1. So at an order λk, one may
choose minimally to include only s0;…sk, or more com-
pletely include also skþ1, incorporating in this way a higher
order RG dependence within the resulting expression.

III. RGOPT λϕ4 PRESSURE AT LO AND NLO

In this section, we briefly recall the RGOPT construc-
tion, as investigated for the λϕ4 model in [28,29] at LO and
NLO, before extending our approach to the technically
more involved NNLO. We also underline some important
features that were not plainly discussed in [28]. After
restoring in a first stage perturbative RG invariance of the
massive free energy, leading to the crucial additional term
in Eq. (2.15), one performs on the resulting complete
expression, the variational modification, according to

F 0ðm2 → m2ð1 − δÞ2a; λ → δλÞ; ð3:1Þ

where m is from now an arbitrary variational mass, and the
crucial role of the exponent a will be specified just next.
One then reexpands Eq. (3.1) to successive orders, δk, at the
same order as the original perturbative expression, and set
δ → 1 afterwards. This leaves a remnant m dependence at
any order k, that may be conveniently fixed by a stationarity
prescription [19],

∂F ðkÞ
0

∂m ðm; λ; δ ¼ 1Þjm≡m̃ ≡ 0; ð3:2Þ

thus determining a dressed mass m̃ðλÞ with a “nonpertur-
bative” (all order) λ dependence. In OPT [17] or similarly
SPT [7] applications, the linear δ expansion has been
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mostly used, i.e., assuming a ¼ 1=2 in Eq. (3.1), and that
corresponds to the “add and subtract a mass” intuitive
prescription with one mass being treated as an interaction
term. Yet it was pointed out that the rather drastic
modification implied by Eq. (3.1) is generally not com-
patible with RG invariance [28]: in contrast, a can be
uniquely fixed [25,28] by (re)imposing RG invariance now
for the variationally modified perturbative expansion. Once
combined with Eq. (3.2), the RG Eq. (2.13) takes the
massless form,

�
μ
∂
∂μþ βðλÞ ∂

∂λ
�
F ðkÞ

0 ðm; λ; a; δ ¼ 1Þ ¼ 0; ð3:3Þ

that at leading RG order uniquely fixes [25,28]

a ¼ γ0
b0

; ð3:4Þ

simply in terms of the universal (renormalization scheme
independent) first order RG coefficients.3

At higher orders, Eq. (3.3) is no longer exactly fulfilled
and can be thus used to determine an RG-compatible
dressed mass, m̃RGðλ; TÞ, as a possible alternative to the
OPT Eq. (3.2). Importantly, Eq. (3.4) guarantees in addition
that either Eq. (3.2) or Eq. (3.3) have at least one
(essentially unique) solution matching the T ¼ 0 perturba-
tive behavior [25,28] for λ → 0, i.e., infrared freedom in the
present case: λðμ ≪ mÞ ≃ ½b0 lnðm=μÞ�−1.

A. LO RGOPT

For a simple illustration, let us briefly recall the one-loop
results [28,29], thus considering the LO term in Eq. (2.2),
including solely the first order subtraction term,
E0 ¼ −ðm4=λÞs0, with s0 given in Eq. (2.16). Performing
(3.1), expanding to leading order δ0 consistently, and taking
afterwards δ → 1 yields

ð4πÞ2F δ0
0 ¼ −m4

�
1

2b0λ
þ
�
3

8
þ 1

4
ln

μ2

m2

��
−
T4

2
J0

�
m
T

�
:

ð3:5Þ

At this leadingorder, Eq. (3.3) is satisfied exactly, so that only
Eq. (3.2) can determine a nontrivial dressed thermal mass. It
is convenient to introduce first the one-loop renormalized
self-energy, including all the relevant T dependence, ΣR,
explicitly [1,13],

ΣRðmÞ ¼ γ0λ

�
m2

�
ln
m2

μ2
− 1

�
þ T2J1

�
m
T

��
: ð3:6Þ

Then the exact solution of Eq. (3.2), using Eq. (2.8), is given
by the self-consistent gap equation,

m̃2 ¼ 1

2

�
b0
γ0

�
ΣRðm̃2Þ ¼ ð4πÞ2b0 ΣRðm̃2Þ: ð3:7Þ

Accordingly, m̃ is exactly (one-loop) RG invariant: λ≡ λðμÞ
being given by the “exact” (one-loop) running,

1

λðμÞ ¼
1

λðμ0Þ
− b0 ln

μ

μ0
; ð3:8Þ

the free energy Eq. (3.5), and therefore, m̃ in Eq. (3.7), only
depend on the combination 1=ðb0λðμÞÞ þ 1=2 lnðμ2=m2Þ
that is μ independent. Let us remark at this stage that
some interesting qualitative similarities were observed
[28] between those (one-loop) RGOPT results and the
(two-loop) 2PI resummation approach in [9,10], although
our construction is basically very different.
To get more insight on some properties of the solution of

Eq. (3.7), one may conveniently use the high-temperature
expansion of the relevant JnðxÞ, from Eq. (2.9) with
x≡m=T.4 Accordingly, Eq. (3.7) simplifies to a quadratic
equation for x, with a unique physical (x > 0) solution,

x̃ ¼ m̃ð1Þ

T
¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

3
ð 1
b0λ

þ LTÞ
q

− 1

1
b0λ

þ LT

≃ π

ffiffiffiffiffiffiffiffiffiffi
2

3
b0λ

r
− πb0λþOðλ3=2Þ; ð3:9Þ

with LT ≡ ln½μeγE=ð4πTÞ�. Perturbatively at high temper-
ature, the variationally determined mass Eq. (3.9) has the
form of a screening mass, m̃2 ∼OðλT2Þ, but note that this
variational mass parameter is unrelated to the physical
Debye mass [36] definition. The corresponding one-loop
RGOPT pressure, from Eq. (3.5), reads

Pð1Þ

P0

ðx̃Þ ¼ 1 −
15

4π2
x̃2 þ 15

2π3
x̃3

þ 45

16π4

�
1

b0λ
þ LT

�
x̃4 þOðx̃6Þ: ð3:10Þ

Equations (3.7)–(3.10) clearly involve an all order depend-
ence in λ, and RG invariance is once more manifest since
from Eq. (3.8), 1=ðb0λðμÞÞ þ LT is μ independent.
Accordingly, Eqs. (3.9) and (3.10) only depend on the

3At higher orders, one could generalize the interpolation
ð1 − δÞa with δ2 and higher order terms without spoiling the
crucial RG properties guaranteed from Eq. (3.4). But this would
involve extra arbitrary variational parameters with no compelling
reasons. We thus keep the simpler form Eq. (3.4) at successive
orders for sensible comparisons.

4At the one-loop order, this approximation is valid at the 0.1%
level even for x ≲ 1, sufficient for our purpose since the RGOPT
one-loop solution m̃=T happens to always lies in this range.

RENORMALIZATION GROUP OPTIMIZED λϕ4 … PHYS. REV. D 104, 096012 (2021)

096012-5



single parameter b0λðμ0Þ, where μ0 is some reference scale,
typically μ0 ¼ 2πT0.
Expanding perturbatively Eq. (3.10), one obtains for the

first few orders,

Pð1Þ

P0

¼ 1 −
5

4
αþ 5

ffiffiffi
6

p

3
α3=2 þ 5

4
ðLT − 6Þα2 þOðα5=2Þ;

ð3:11Þ

whereα≡ b0λ. Note in particular that Eq. (3.11) contains the
nonanalytic term∼λ3=2, that originates from the bosonic zero
mode resummation, but here is readily obtained from RG
properties. Expanding Eq. (3.9) at higher orders, it is easily
seen that it entails the nonanalytic terms λð2pþ1Þ=2,p ≥ 1 at all
orders. Incidentally, it is worth mentioning that the higher
orders beyond Eq. (3.11) obtained from Eq. (3.9) correctly
reproduce all orders of theOðNÞ scalar model largeN results
[e.g., Eq. (5.8) of [38] ] [once including higher order Oðx6Þ
terms, not given in Eq. (2.9)], as can be checked upon
identifying the correct large-N b0 ¼ 1=ð16π2Þ value [38].
Accordingly, although the LORGOPT is essentially built on
the very first one-loop graph of Fig. 1 augmented by the
optimized RG construction as above described, it happens to
correctly resum thewhole set of “foam” graphs as illustrated
in Fig. 2.

B. NLO RGOPT

The NLO (two-loop) Oðδ1Þ contribution to the free
energy, for δ ¼ 1, takes a rather compact form in terms of
ΣR in Eq. (3.6),

F δ1
0 ¼ Eδ1

0

ð4πÞ2 þ
T
2

XZ
p
lnðω2

n þ ω2
pÞjfinite

−
�
2γ0
b0

�
m2

λ
ΣR þ Σ2

R

2λ
; ð3:12Þ

where the subscript on the integral term means to taking
its corresponding finite (renormalized) expression. Equa-
tion (2.15) gives explicitly,

Eδ1
0 ¼ −m4

�
1

3b0λ
þ s1

3

�
: ð3:13Þ

The exact two-loop OPTand RG Eqs. (3.2) and (3.3) can be
written compactly as [28]5

fNLOOPT ¼ 2

3
h

�
−s1 −

1

b0λ

�
þ 2

3
Sþ Σ0

R

2m

�
S −

1

3λ

�
¼ 0;

ð3:14Þ

fNLORG ¼ h

�
1

6
þ
�
b1
3b0

− S

�
λ

�
þ 1

2
βð2ÞðλÞS2 ¼ 0; ð3:15Þ

with h≡ ð4πÞ−2, βð2ÞðλÞ ¼ b0λ2 þ b1λ3, and we introduced
the reduced (dimensionless) self-energy,

Sðm; μ; TÞ≡ ΣR=ðm2λÞ; ð3:16Þ

with, from Eq. (3.6),

Σ0
R ≡ ∂m2ðΣRÞ ¼ λðSþm2S0Þ
¼ γ0λ½lnðm2=μ2Þ − J2ðm=TÞ�: ð3:17Þ

At this stage, at NLO, in principle, we could use three
different possible prescriptions to obtain a thermally dressed
mass m̃ðλ; TÞ as a function of the coupling, as investigated in
details in [28]: either the OPT Eq. (3.14) or alternatively, the
(massless) RG Eq. (3.15) or else the full RG, Eq. (2.13). The
latter is not an independent equation, being a linear combi-
nation of Eqs. (3.14) and (3.15),

fNLOfull RG ≡ fRG þ 2γmðλÞfOPT ¼ 0: ð3:18Þ

We speculate that if one could calculate to all orders, the
solutions of those different prescriptions would presumably
converge towards a unique, nonperturbatively dressed mass
m̃ðg; TÞ [as it happens [24] in the large-N limit of theOðNÞ
Gross-Neveumodel, where the original perturbative series is
known to all orders]. But due to the inherent perturbative
truncations, those prescriptions give formally different sol-
utions, thus providing useful variants of the method. The
resulting NLO solutions for m̃=T and P=P0, once reex-
panded, are perturbatively consistent with Eqs. (3.9), (3.10)
for the first order term but contain modifications at higher
orders [28]. More precisely, in the standard OPT/SPT
prescription, a ¼ 1=2 in Eq. (3.1) typically, the solution
ofEq. (3.2)would beapriorivery different from theRGones
of Eq. (3.3) or Eq. (3.18). But a remarkable consequence of
Eq. (3.4) is that all the three solutions have the same leading
term (in λ) given by the LO term in Eq. (3.9). However, for
rather large gð2πTÞ ≲ 1 reference coupling and μ ¼ 4πT,

FIG. 2. The graphs being resummed at first nontrival RGOPT
order.

5Note a typo in Eq. (7.2) of Ref. [28], corrected in Eq. (3.14),
that does not affect any numerical results.
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the OPTEq. (3.14) no longer gives a real solution: in fact, the
possible occurrence of nonreal solutions at higher orders is a
recurrent burden of such a variational approach, quite
generically expected from the nonlinear m dependence if
requiring to solve m̃ðλ; TÞ exactly. Alternatively, using
Eq. (3.15) to determine m̃ðλ; TÞ gives an unphysical solution
atNLO [28], beingdriven towards theNLOUVfixedpoint at
λ ¼ −b0=b1 (an artifact of the scalar model two-loop beta
function approximation due to b1 < 0). These features lead
us to rather consider the third option at NLO, taking the full
RG Eq. (2.13), explicitly Eq. (3.18) at NLO, that happens to
give real solutions, at least in amuch larger range of coupling
values.6

The NLO pressure P=P0 with exact T dependence
obtained from Eq. (3.18), as a function of the reference
coupling g≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λð2πTÞ=24p
, is illustrated in Fig. 3, with a

scale dependence πT ≤ μ ≤ 4πT using the exact two-loop
running Eq. (B8). It is compared with the LO RGOPT,
Eq. (3.10), and importantly, also with the PT pressure,
Eq. (2.12), respectively, truncated at the lowest OðλÞ ∼ g2

and next Oðλ3=2Þ ∼ g3 orders. We recall that the latter
nonanalytic terms, obtained from resummation of a certain
class of individually infrared divergent (massless) graphs,
are largely responsible for the poorly convergent, oscillat-
ing behavior of successive perturbative orders, as illus-
trated. In contrast, going from LO to NLO RGOPT appears
very stable, despite the fact that both approximations also
incorporate Oðλ3=2Þ ∼ g3 contributions (as well as arbitrary
higher order contributions as above explained). Moreover,
the reduction of the remnant scale dependence as compared
to standard PT pressure is also sizeable, although a
moderate residual scale dependence appears at NLO,

visible on the figure for g≳ 0.6. A more accurate analysis
[28] shows that at NLO, the remnant scale dependence
reappears first at the perturbative order λ3. As mentioned
above, the exact scale invariance obtained at (one-loop) LO
RGOPT (as illustrated in Fig. 3, where the dotted line has
no visible width) results from the peculiar form of the exact
running coupling Eq. (3.8) perfectly matching Eqs. (3.9),
(3.10), since the latter only depends on b0. In contrast, at
NLO and beyond, Pðm̃ðλÞ; T; μÞ inevitably has a remnant
scale dependence, basically because the subtractions in
Eq. (2.15) only guarantee RG invariance up to remnant
higher order terms, ∼m4λ2 at NLO. It is a nontrivial
consequence of the subsequent variational modification in
Eq. (3.1) that it also preserves this RG invariance at the same
level, i.e., up to basically neglected terms of formally higher
orders.
The LO and NLO RGOPT pressures in Fig. 3 trivially

reproduce the Stefan-Boltzmann limit for λ → 0; see
Eq. (3.10). But one can notice that beyondmoderate coupling
values, they differ rather importantly from the PT pressure:
this is more pronounced in such a plot, often conventionally
used [1] to illustrate different approximations to PðλÞ, but
where theϕ4 model is not fully specified by fixing a physical
input scale μ ¼ T0 and corresponding λðT0Þ value. Note
however that upon expressing our results in terms of a more
physical mass scale, namely solving, e.g., Eq. (3.2) for λ̃ðmÞ
with a resulting Pðm=TÞ, and inserting the physical Debye
screening massmðλÞ [36], correctly reproduces [28] the first
two terms of the standard PT pressure Eq. (2.12). Yet the
RGOPT pressure crucially differs from PT at higher orders;
otherwise, it would merely reproduce the same PT behavior
and issues. Thus, it is important to use the exact (all order)
m̃ðλ; TÞ solution from Eqs. (3.14) or (3.15) that corresponds
to the results shown in Fig. 3. (In contrast, using low orders
perturbative reexpansions of theRGOPT m̃ðλÞ solution leads
to a behavior more similar to the PT pressure, showing large
differences between successive orders and a larger scale
dependence.)
In Fig. 3, we also compare with the NLO SPT results

elaborated in Ref. [13]. Note that all the relevant SPT
expressions can be obtained consistently by 1) discarding
the vacuum energy subtraction E0 in Eq. (2.6); 2) taking a ¼
1=2 in Eq. (3.1), expanding the result to order δ, and setting
δ → 1; and finally, 3) calculating the variational mass gap,
Eq. (3.2) that gives explicitly,7

m2
SPT ¼ ΣR; ð3:19Þ

see Eq. (3.6), to be solved self-consistently for m̃SPT.
Alternatively, a simpler prescription was also used in
Ref. [13], taking instead the (NLO) perturbative Debye
screening mass [36],

FIG. 3. LO (dotted lines) and NLO (dashed, green) RGOPT
pressure P=P0ðg≡

ffiffiffiffiffiffiffiffiffiffi
λ=24

p Þ versus Oðg2Þ and Oðg3=2Þ PT, and
NLO SPT (for two different prescriptions, see main text). The
different bands give the scale dependence for πT ≤ μ ≤ 4πT.

6In RGOPT applications to thermal QCD [31,33], at NLO,
nonreal solutions occur at increasing QCD coupling values for all
the prescriptions, an issue that can be circumvented at the price of
more elaborate prescriptions, based on renormalization scheme
changes.

7Equation (3.19) is what is called the tadpole prescription in
Ref. [13].

RENORMALIZATION GROUP OPTIMIZED λϕ4 … PHYS. REV. D 104, 096012 (2021)

096012-7



m2
D ¼ λ

24
T2

�
1 −

3

π

�
λ

24

�
1=2

�
; ð3:20Þ

therefore, we illustrate these two SPT prescriptions in Fig. 3.
As compared to the two lowest orders of standard PT shown,
the SPTpressure is significantlymore stable andwith a better
remnant scale dependence that reflects its more elaborate
resummation properties. The SPT pressure values obtained
from the two prescriptions are quite close, but using the
variational mass gap gives a much better remnant scale
dependence than using the PT Debye mass. The RGOPT
remnant scale dependence at NLO is however significantly
reduced in comparison: more precisely, for the largest shown
(rescaled) coupling g ¼ 1, the relative P=P0 variation for
πT ≤ μ ≤ 4πT is ≃8%, 1.5%, 0.8%, and 0.4%, respectively,
for the Oðg3Þ PT, SPT with screening PT mass, SPT with
variational mass gap, and RGOPT.

IV. RGOPT λϕ4 PRESSURE AT NNLO

Coming back to the basic free energy in Eq. (2.2), if
neglecting the subtraction terms in Eq. (2.15), the formal
lack of RG invariance from unmatched m4 ln μ terms
remains relatively screened at one- and two-loop orders
of thermal perturbative expansions for sufficiently small
coupling, since perturbatively m4 ∼ λ2. This can essentially
explain why the remnant scale dependence of SPT remains
quite moderate even at NLO, see Fig. 3, so that in
comparison the NLO RGOPT improvement by merely a
factor of 2 is not spectacular. But conversely, this can
largely explain why a very sizeable scale dependence
resurfaces for the NNLO SPT pressure [13], where the
formally same order genuine three-loop λ2 contributions are
considered. In contrast, the RGOPT scale dependence is
expected to further improve at higher orders, at least
formally: being built on perturbatively restored RG invari-
ance of the free energy at order m4λk for arbitrary m, the
resulting mass gap exhibits a leading remnant scale
dependence as m̃2 ∼ λT2ð1þ � � � þOðλk ln μÞÞ. Thus, the
dominant scale dependence in the free energy, coming from
the leading term ∼s0m4=λ, is expected to appear first only
at Oðλkþ1Þ. Nevertheless, this expected trend could be
largely spoiled, either by large perturbative coefficients
(generically expected to grow at higher orders) or by the
well-known thermal PT issues due to infrared divergent
bosonic zero modes. It is thus important to investigate more
explicitly the outcome of our construction at NNLO, where
standard thermal PT starts to badly behave, to delineate the
RGOPT scale dependence improvement that can be
actually obtained. Moreover, concerning the λϕ4 model,
the peculiar sign alternating beta-function coefficients bi
from one- to three-loop orders, see Eq. (B3), implies that
considering the running coupling alone, at the three-loop
order, has a comparatively worse scale dependence than at
the two-loop order, as illustrated in Fig. 4. This feature

tends to partly counteract the benefits of our RG-improved
construction, when comparing NLO with NNLO.8

Applying the variational modification from Eqs. (3.1),
(3.4) to the complete three-loop free energy, sum of
Eq. (2.6) and Eq. (2.10), expanded consistently now to
order δ2, and taking δ → 1, gives after algebra,

ð4πÞ2F δ2
0 ¼ Eδ2

0 −
m4

8

�
3þ2Lþ8

�
γ0
b0

�
2

ðLþJ2Þ
�
−
T4

2
J0

þ γ0
b0

�
γ0
b0

−
3

2

�
m2ΣR

γ0λ
þ m2

32π2b0
ΣRðLþJ2Þ

þ Σ2
R

128π2γ20λ
þF3l; ð4:1Þ

omitting the argument m=T in thermal functions Ji, with
L≡ lnðμ2=m2Þ and ΣR defined in Eq. (3.6). The original
Oðλ2Þ perturbative contribution, designated by F3l in
Eq. (4.1), is already defined in Eq. (2.10), those terms
being unaffected by Eq. (3.1) at the δ2 reexpansion order.
The subtraction contributions in Eq. (4.1) after the mod-
ifications from Eq. (3.1) read explicitly, using γ0=b0 ¼ 1=6,

Eδ2
0 ¼ −m4

�
14

81

s0
λ
þ 2

9
s1 þ

1

3
s2λþ s3λ2

�
: ð4:2Þ

The explicit expressions at NNLO for the RG and OPT
Eqs. (3.3), (3.2) can be obtained straightforwardly from
Eq. (4.1) after algebra. They are more involved than their
NLO analogs in Eqs. (3.14), (3.15) and not particularly
telling: some relevant expressions are given explicitly in
Appendix A.

FIG. 4. Relative scale dependence at successive orders of the
running coupling in the λϕ4 model, given, respectively, at one-,
two- and three-loop orders by Eqs. (3.8), (B8), and (B11), with
g≡ ffiffiffiffiffiffiffiffiffiffi

λ=24
p

and πT ≤ μ ≤ 4πT.

8We expect the corresponding behavior in QCD to be better,
since the first three QCD beta-function coefficients have the same
sign.
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Similarly to the NLO, at this stage without examining
further constraints, one may a priori use any of the three
possible (not independent) prescriptions to obtain the
NNLO dressed optimized mass m̃ðλ; TÞ: namely taking
the solution of the OPT Eq. (3.2) or the massless RG
Eq. (3.3) or the full RG Eq. (2.13). One may further exploit
the freedom to incorporate the highest order subtraction
term s3 of Eq. (2.17) or not, the latter being formally a
three-loop contribution but depending on four-loop RG
coefficients, thus not necessary for NNLO RG invariance.
The latter flexibility happens to give a relatively simple
handle to circumvent the annoyance of possibly nonreal
NNLO solutions that occur only at relatively large cou-
plings in the λϕ4 model, quite similar to what happens at
NLO. The behavior of those solutions for the different
prescriptions is detailed in Appendix A for completeness.
As an outcome, in order to maximize the range of

coupling and scale πT ≤ μ ≤ 4πT values where real sol-
utions are obtained, it is appropriate to minimally neglect s3
if using the OPT Eq. (3.2), and incorporating s3 ≠ 0 when
using the RG Eq. (3.3). We mention that at NNLO, the full
RG Eq. (2.13) gives no real solutions, at least for the
relevant scale choice μ ¼ 4πT that maximizes the values of
gðμÞ for a reference coupling g≡ gð2πTÞ. [Actually one
could recover real solutions only if truncating Eq. (2.13)
maximally, keeping only Oðg2Þ terms, but one then loses
the crucial perturbative-matching properties, so that the
corresponding solutions have to be rejected.] Some of these
features could be intuitively expected: incorporating higher
orders, either via s3 ≠ 0 or taking the more involved exact
Eq. (2.13), renders the expression even more nonlinear in
m, favoring the occurrence of nonreal solutions. But for the
massless RG Eq. (3.3), provided that it has real solutions,
incorporating s3 could be expected to give better results,
since the subtraction coefficients in Eq. (2.17) entering the
pressure are originating directly from the RG coefficients.
Figure 5 illustrates as a function of the (rescaled)

coupling g our two different prescriptions thus retained
at NNLO: respectively, applying to Eq. (4.1) the OPT
Eq. (3.2) or the RG Eq. (3.3) [shown explicitly in Eq. (A1)],
with resulting (unique) perturbatively matching exact
solutions m̃OPTðλ; TÞ and m̃RGðλ; TÞ, respectively. As is
seen, despite being rather different functions of the cou-
pling, they have similar very moderate scale dependence.
Similarly to what happens at NLO, the RG solution is
generically giving a slightly better scale dependence than
the OPT one, since the former embeds more directly the
perturbative RG properties. The previous exact m̃ solu-
tions9 are then inserted within Eq. (4.1) to give the physical
pressure. Figure 6 illustrates the corresponding pressures
obtained from the two alternative OPT and RG mass

prescriptions. As one can see, despite the quite different
m̃ðgÞ in Fig. 5, the corresponding OPT and RG pressures
are very close and similar in shape, and have comparable
very moderate scale dependence. This feature appears as a
very good indication of the previously mentioned expected
convergence at a higher order of those a priori different
prescriptions.
We illustrate our main results at successive LO, NLO,

and NNLO in Fig. 7, compared with the PT pressure,
Eq. (2.12), and SPT pressure at successive orders. The
NNLO PT, with successive terms up to Oðλ2Þ, has a
substantially larger remnant scale dependence than the
Oðλ3=2Þ PT in Fig. 3. Concerning the SPT, at NNLO, we
only show the results from using the mass gap Eq. (3.19),
following the very same prescription as in [13], namely
using also Eq. (3.19) at NNLO. [N.B. using the perturbative
screeening mass instead, Eq. (3.20), gives a much larger
scale dependence, that we do not illustrate.] In contrast,
one can see that the RGOPT pressure is remarkably stable
from comparing LO to NLO and NNLO, and has a very

FIG. 5. NNLO (three-loops) m̃ from the OPT prescription
Eq. (3.2) (with s3 ¼ 0) and RG prescription Eqs. (3.3) and (A1)
(with s3 ≠ 0) as a function of g≡ ffiffiffiffiffiffiffiffiffiffi

λ=24
p

, with the scale
dependence πT ≤ μ ≤ 4πT.

FIG. 6. Comparison of NNLO pressure P=Pideal for the OPT
and RG m̃ prescriptions (with s3 ¼ 0 and s3 ≠ 0, respectively), as
a function of g≡ ffiffiffiffiffiffiffiffiffiffi

λ=24
p

with πT ≤ μ ≤ 4πT. NB: the lower
pressure values correspond to the largest μ ¼ 4πT values due to
infrared freedom of λϕ4.

9At NNLO, we use the exact expressions of all thermal
integrals, in particular, Eqs. (C1), (C4), as their high-T expres-
sions in Eqs. (C7), (C8) are not very good approximations.
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moderate remnant scale dependence at NNLO, almost
invisible at the figure scale until a relatively large
g ≃ 0.8. Actually, the improvement from NLO to NNLO
becomes only moderate for relatively large coupling values
0.9≲ g≲ 1, that we understand as the countereffect from
the worse scale dependence of the sole NNLO running
coupling as above explained; see Fig. 4. Overall, the scale
dependence is drastically improved as compared to PT
and SPT.
We remark finally that in principle a yet more involved

prescription could be to combine Eqs. (3.2) and (3.3), thus
determining variational dressed mass and coupling, as was
indeed investigated at zero temperature in [25] and briefly
explored at finite temperature at NLO in [28]. However, due
to the much more involved (very nonlinear) m, T depend-
ences, besides the numerical complications to simultane-
ously solve those nonlinear equations at finite T, one issue is
that the range where both equations have a (common) real
solution happens to be much more restricted. To extend this
range would need at least to exploit more complicated
prescriptions with renormalization scheme changes intro-
ducing extra variational parameters, generalizing what was
done for QCD in [31,33], that is beyond our present scope.

V. CONCLUSIONS AND OUTLOOK

We have illustrated in the λϕ4 model up to NNLO how
the RGOPT resummation of thermal perturbative expan-
sions, consistently maintaining perturbative RG invariance,
leads to drastically improved convergence and remnant
renormalization scale dependence at successive orders, as

compared with PT and with related thermal perturbative
resummation approaches such as SPT. In particular,
RGOPT remains very stable from NLO to NNLO up to
relatively large coupling values. We have compared two
different prescriptions a priori available in our framework
to defining a resummed dressed mass at a given order, that
give very close and stable results. As could be intuitively
expected, the prescription defining the dressed mass from
the RG Eq. (3.3), thus more directly embedding RG
properties, appears to give a slightly better remnant scale
dependence than the more traditional variational mass
prescription from Eq. (3.2) optimizing the pressure.
The RGOPT has been applied recently at NLO in

thermal QCD [32,33], yet only in the quark sector, thus
treating the gluon contributions apart purely perturbatively,
due to some present technical limitations. Although such a
relatively simple approximation shows a very good agree-
ment with lattice simulations down to relatively low
temperatures near the pseudotransition, it is clearly an
important next step to extend our approach to similarly treat
the crucial gluon sector, largely responsible for the poorly
convergent weak coupling expansion of thermal QCD, due
to zero mode infrared divergences that start to show up at
NNLO. Since the very stable NNLO RGOPT properties
here demonstrated for the scalar model entails an appro-
priate resummation to all orders of infrared divergent
bosonic zero modes, we anticipate similarly good proper-
ties to hold also in the QCD gluon sector, once the technical
(computational) difficulties to readily adapt the RGOPT
approach to the gluon sector will be overcome. More
precisely, the RG-restoring subtraction contributions analo-
gous to Eq. (2.15), necessarily involve gluon mass terms.
The well-known explicitly gauge-invariant framework that
entails, among other features, a screening gluon mass term
consistent at finite temperature, is the HTL nonlocal
Lagrangian formalism [20]. However, the contributions
analogous to Eq. (2.15) require at NLO some very involved
HTL integral calculations, not yet fully available in the
literature, that we leave for future work.

APPENDIX A: PROPERTIES OF RG AND OPT
SOLUTIONS AT NNLO

This Appendix examines in some details the properties
of the different possible prescriptions at NNLO. We first
give the explicit expression of the NNLO RG Eq. (3.3),
straightforward to obtain after algebra from Eq. (4.1) that
takes the rather compact form,

fNNLORG ¼ −
m4

2

�
1 − 6

γ0
b0

þ 8

�
γ0
b0

�
2
�
þ m2

16π2b0
ðΣR −m2γ0λðLþ J2ÞÞ −

m2ΣR

32π2γ0
þ G3l

þ βð3ÞðλÞ
�

m2ΣR

32π2b0λ
ðLþ J2Þ þ

Σ2
R

128π2γ20λ
2
þ 2

λ
F3l −m4

�
−
14

81

s0
λ2

þ s2
3
þ 2s3λ

��
¼ 0; ðA1Þ

FIG. 7. RGOPT pressure at successive LO,NLO,NNLO orders
versus NLO,NNLO PT and NLO,NNLO SPT pressures, with
(g≡ ffiffiffiffiffiffiffiffiffiffi

λ=24
p

), πT ≤ μ ≤ 4πT. NB: the lower pressure values
correspond to the largest μ ¼ 4πT values due to infrared freedom
of λϕ4.
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where

G3l ¼ −
1

24

�
λ

16π2

�
2
�
m4

�
15L2 þ 34Lþ 41

2
þ 6ðLþ 1ÞJ2

�
−m2T2J1ð24Lþ 28þ 6J2Þ þ 9T4J21

�
; ðA2Þ

βð3ÞðλÞ ¼ λ2ðb0 þ b1λþ b2λ2Þ; ðA3Þ

with F3l given in Eq. (2.10) and ΣR in Eq. (3.6). The OPT
Eq. (3.2) at NNLO is similarly easily obtained from
Eq. (4.1), but it gives a somewhat more lengthy expression
that we thus refrain to give explicitly.
Figure 8 illustrates, for s3 ¼ 0 (top) and s3 ≠ 0 (bottom),

the behavior of these exact RG Eq. (A1) and OPT (3.2),
respectively, as function of m for two representative g≡ffiffiffiffiffiffiffiffiffiffi
λ=24

p
values and for the renormalization scale μ ¼ 4πT,

giving the largest coupling for a given g input, thus the most
problematic case for sufficiently large g. For the simpler
s3 ¼ 0 prescription, the RG equation has a unique pertur-
bative-matching solution for 0 < g≲ :75 (for μ ¼ 4πT),

but above this maximal g value, an inflection point appears
that pushes the previous perturbative-matching solution to
complex values, although being close to real values as can
be seen in Fig. 8 (top). Note also that another RG solution
appears at a higher mass value, but the latter is not matching
standard perturbative behavior, so it has to be rejected.
Rather similar features are obtained for μ ¼ 2πT, but the
disappearance of the real perturbative-matching solution is
delayed to higher g≳ 0.95 values. In contrast for s3 ≠ 0, a
similar behavior is obtained but the disappearance of a real
perturbative-matching RG solution is delayed to substan-
tially higher g≳ 1 values for any μ ≤ 4πT: accordingly, for
0 < g ≤ 1 and πT ≤ μ ≤ 4πT the perturbative-matching
solution is real and unique. The OPT equation has a unique
perturbative-matching solution for both s3 ¼ 0 or s3 ≠ 0,
and we adopt the simpler minimal choice s3 ¼ 0 for our
NNLO results. Notice that despite their very different
expressions, the RG and OPT equations give m̃ solutions
that are rather close to each other. (Even when the RG
solution is not real, it is seen to be very close to the OPT
real one.)
Finally, note that the full RG Eq. (2.13) has no real

solutions for 0 < g ≤ 1 for μ ¼ 4πT: the latter is not
illustrated on Fig. 8, but its shape looks quite similar to
the RG one in the range where the latter gives complex
solutions (also being close to give a real solution).

APPENDIX B: RG INGREDIENTS AND
COUNTERTERMS

Our normalization for the beta function and mass
anomalous dimensions are, respectively,

βðλÞ≡ dλ
d ln μ

¼ b0λ2 þ b1λ3 þ b2λ4 þ � � � ðB1Þ

and

γmðλÞ≡ d lnm
d ln μ

¼ γ0λþ γ1λ
2 þ γ2λ

3 þ � � � ; ðB2Þ

where up to the three-loop order [39],

FIG. 8. Top panel: OPT (dashed lines) and RG (thick lines)
equations at NNLO as a function of m, for s3 ¼ 0, taking three-
loop order running coupling gð4πTÞ (g≡ ffiffiffiffiffiffiffiffiffiffi

λ=24
p

) for two
different values of the reference coupling, gð2πTÞ ¼ 0.6
and gð2πTÞ ¼ 0.8, respectively. Bottom panel: same captions
for s3 ≠ 0.
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ð4πÞ2b0 ¼ 3; ð4πÞ4b1 ¼ −17=3; ð4πÞ6b2 ¼
3915þ 2592ζð3Þ

216
; ðB3Þ

ð4πÞ2γ0 ¼ 1=2; ð4πÞ4γ1 ¼ −5=12; ð4πÞ6γ2 ¼
7

4
: ðB4Þ

Next, the coupling and mass counterterm are expressed as perturbative λ and 1=ϵ expansions, with (d ¼ 4 − 2ϵ),
λ0 ≡ μ2ϵλZλ, m0 ≡mZm (where only the λ2 terms are needed at the three-loop order),

Zλ ¼ 1þ b0
2ϵ

λþ
��

b0
2ϵ

�
2

þ b1
4ϵ

�
λ2 þOðλ3Þ ðB5Þ

Zm ¼ 1þ γ0
2ϵ

λþ
�
γ0ðγ0 þ b0Þ

8ϵ2
þ γ1
4ϵ

�
λ2 þOðλ3Þ: ðB6Þ

The necessary additional vacuum energy counterterms up to three loop order read [37] in our normalization conventions,

ð4πÞ2ΔF 0 ¼ m4

�
1

4ϵ
þ
�

λ

16π2

�
1

8ϵ2
þ
�

λ

16π2

�
2
�

5

48ϵ3
−

5

72ϵ2
þ 1

96ϵ

��
: ðB7Þ

Next, the (exact) two-loop running coupling used in the numerics is

λð2-loopÞðμÞ ¼ λðμ0Þ
fWðλðμ0Þ; ln μ

μ0
Þ ; ðB8Þ

with

fWðλ; LμÞ ¼ 1 − b0Lμλþ
b1
b0

λ ln

�
fW

1þ b1
b0
λf−1W

1þ b1
b0
λ

�
¼ −

b1
b0

λ

�
1þW

�
−
�
1þ b0

b1λ

�
e−½1þ

b0
b1λ

ð1−b0λLÞ�
��

; ðB9Þ

where Lμ ≡ lnðμ=μ0Þ andWðxÞ≡ lnðW=xÞ is the Lambert implicit function. For the range of coupling values illustrated in

our main figures, g≡ ffiffiffiffiffiffiffiffiffiffi
λ=24

p ≲ 1, Eqs. (B8), (B9) do not give much visible differences with a simpler perturbatively
truncated expansion at order λ3,

λ−1ðμÞ ≃ λ−1ðμ0Þ − b0Lμ − ðb1LμÞλ −
�
1

2
b0b1L2

μ

�
λ2 −

�
1

2
b21L

2
μ þ

1

3
b20b1L

3
μ

�
λ3 þOðλ4Þ: ðB10Þ

At the three-loop order, we used quite similarly an exact integral giving the running coupling λðμÞ as a more involved
implicit function, numerically solved for μ as a function of μ0. For coupling values not too large, there is not much visible
differences with a more common perturbatively truncated running coupling,

λð3-loopÞðμÞ ¼ λðμ0Þ
f3L

;

f3L ¼ 1 − b0Lμλ − b1Lμλ
2 −

�
b0

b1
2
L2
μ þ b2Lμ

�
λ3

þ Lμ

6b20
ð6b1ðb21 − 2b0b2Þ − 3b20ðb21 þ 2b0b2ÞLμ − 2b40b1L

2
μÞλ4: ðB11Þ

APPENDIX C: TWO- AND THREE-LOOP IRREDUCIBLE INTEGRALS

For completeness, we reproduce here the explicit expressions of the thermal three-loop massive integrals K2 and K3,
originally calculated in [34], and entering Eq. (2.10),
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K2

�
m
T

�
¼ −

32

T4

Z
∞

0

dpp
nðEpÞ
Ep

Z
p

0

dq q
nðEqÞ
Eq

Z
pþq

p−q
dk k

X
σ¼−1;þ1

f2ðEσ; kÞ; ðC1Þ

where Ep ¼ ðp2 þm2Þ1=2, nðxÞ ¼ ðex=T − 1Þ−1,

f2ðE; kÞ ¼
�
E2 −M2

k

E2 − k2

�1
2

ln
ðE2 − k2Þ12 þ ðE2 −M2

kÞ
1
2

ðE2 − k2Þ12 − ðE2 −M2
kÞ

1
2

; k2 < E2 − 4m2

¼ 2

�
M2

k − E2

E2 − k2

�1
2

arctan

�
E2 − k2

M2
k − E2

�1
2

; E2 − 4m2 < k2 < E2

¼
�
M2

k − E2

k2 − E2

�1
2

ln
ðM2

k − E2Þ12 þ ðk2 − E2Þ12
ðM2

k − E2Þ12 − ðk2 − E2Þ12 ; E2 < k2 ðC2Þ

and

M2
k ¼ 4m2 þ k2; k≡ jpþ qj;

Eσðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q
: ðC3Þ

K3

�
m
T

�
¼ 96

T4

Z
∞

0

dpp
nðEpÞ
Ep

Z
p

0

dq q
nðEqÞ
Eq

Z
q

0

dr r
nðErÞ
Er

×
X

σ;τ¼−1;þ1

ff3ðEστ; pþ qþ rÞ − f3ðEστ; pþ q − rÞ − f3ðEστ; p − qþ rÞ þ f3ðEστ; p − q − rÞg; ðC4Þ

where

f3ðE; pÞ ¼ p ln
m2 − E2 þ p2

m2
þ 2ðm2 − E2Þ12 arctan p

ðm2 − E2Þ12 ; E2 < m2

¼ p ln
jE2 −m2 − p2j

m2
þ ðE2 −m2Þ12 ln ðE2 −m2Þ12 þ p

jðE2 −m2Þ12 − pj ; E2 > m2 ðC5Þ

and

Eστðp; q; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q
þ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þm2

p
: ðC6Þ

In the limit x≡m=T → 0, Eqs. (C1), (C4) can be expressed analytically as

K2ðxÞ ≃
ð4πÞ4
72

�
ln xþ 1

2
þ ζ0ð−1Þ

ζð−1Þ
�
− 372.65xðln xþ 1.4658Þ; ðC7Þ

K3ðxÞ ≃
ð4πÞ4
48

�
−

7

15
þ ζ0ð−1Þ

ζð−1Þ −
ζ0ð−3Þ
ζð−3Þ

�
þ 1600.0xðln xþ 1.3045Þ: ðC8Þ

For the numerical results, we rather use the exact expressions Eqs. (C1), (C4).
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