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ON WELL-POSEDNESS FOR SOME KORTEWEG-DE VRIES
TYPE EQUATIONS WITH VARIABLE COEFFICIENTS.

LUC MOLINET, RAAFAT TALHOUK AND IBTISSAME ZAITER

ABSTRACT. In this paper, KdV-type equations with time- and space-dependent
coefficients are considered. Assuming that the dispersion coefficient in front
of Uggzy is positive and uniformly bounded away from the origin and that a
primitive function of the ratio between the anti-dissipation and the dispersion
coefficients is bounded from below, we prove the existence and uniqueness of
a solution u such that hu belongs to a classical Sobolev space, where h is a
function related to this ratio. The LWP in H*(R), s > 1/2, in the classical
(Hadamard) sense is also proven under an assumption on the integrability of
this ratio. Our approach combines a change of unknown with dispersive esti-
mates. Note that previous results were restricted to H*(R), s > 3/2, and only
used the dispersion to compensate the anti-dissipation and not to lower the
Sobolev index required for well-posedness.

1. INTRODUCTION AND MAIN RESULTS

1.1. Presentation of the problem. In this paper, we study the Cauchy problem
for the KdV-type equation with variable coefficients

us + a(t, x)us, + B(t, ©)ug, + y(t, )uy + 0(t, )u
=e(t,x)uu, for (t,z) € (0,T)xR (1.1)

Ul = U0,

where u = u(t, x), from [0,T] x R into R, is the unknown function of the problem,
ug = up(z), from R into R, is the given initial condition, o = «(t,z) > ag >
0V(t,x) € [0,7T] x R, and S, v, J, € are real-valued smooth and bounded given
functions with exact regularities that will be precised later. Of course, we will also
require a strong condition on the relation between « and the positive part of S.
This equation covers several important unidirectional models for the water waves
problems at different regimes which take into account the variations of the bottom.
We have in view in particular the example of the KdV equation with variable
coefficients (see for instance [10], [13]) for which § = 0. Looking for solutions of
(1.1) plays an important and significant role in the study of unidirectional limits
for water wave problems with variable depth and topographies.

The study of equations of this type with variable coefficients goes back to the sem-
inal paper of Craig-Kappeler-Strauss [7] where the local well-posedness (LWP) in
high regularity Sobolev spaces is established under the condition that —3 > 0. Ac-
tually their results even concern quasilinear version of (1.1). In [2], Akhunov proved
that the associated linear equation is LWP under an assumption on the bounded-
ness uniformly in time and space of the primitive function (¢,z) — fox r(t,z)dz
where r(-,) is the ratio function r(t,z) = S(t,2)/a(t, z). He also showed some
evidences on the sharpness of this assumption. Adaptation of the LWP in high
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regularity Sobolev spaces under this hypothesis for quasilinear and fully nonlinear
generalizations of (1.1) can be found in respectively [1] and [3]. In [8], Israwi and
the second author proved the LWP of (1.1) in H*(R), s > 3/2, under the same type
of integrability assumption on the ratio function (¢, x). Their method of proof uses
weighted energy estimates.

Up to our knowledge, our approach is the first one that enables to treat low
regularity solutions. Note that, in sharp contrast to [8], we use in a crucial way
the dispersive nature of the equation driven by the third order term not only to
compensate the anti-diffusion term but also to lower the regularity of the resolution
space. We proceed in two steps. In a first step we make a change of unknown in
order to rely the solutions of (1.1) to the solutions of the following KdV-type
equation with a constant coefficient in front of us, :

g + Uze — b(t, T)ugy + c(t, )uy + d(t, x)u = e(t, v)uu, + f(t, z)u?

(1.2)
for (t,z) € (0,T) xR

where b, ¢, d, e, f are real-valued smooth given functions with this time b > 0. Note
that this change of unknown is related to the gauge method that is used in similar
contexts as in [2], [5], [8]. Actually, at this stage, to ensure that the coefficients e and
f of the nonlinear terms are bounded we will require the boundedness from above
uniformly in [0,7] x R of — foz r1(t, z) dz where 1 = 1/« is, roughly speaking, the
ratio function between the positive part 51 of 5 and « (see Hypothesis 3 in Section
3).

We then prove that the Cauchy problem associated with (1.2) is locally well-
posed Min H*(R), s > 1/2, by using the method recently introduced by the first
author and S. Vento in [11] that combines energy’s and Bourgain’s type estimates.
It is worth noticing that terms as ¢(t, z)u, and —b(t, x)us, may not be treated by a
classical fixed point argument in Bourgain’s spaces associated with the KdV linear
flow. We would like also to emphasize that we will not require a coercive condition
onbin [0,T]xR (b > 8 > 0on [0,7] xR) but only the non negativity of b. Actually
we even obtain the unconditional uniqueness in H*(R) in the case b = 0.

Coming back to (1.1) this proves the existence of a solution w such that hu €
C([0,T); H?) with T = T(||huol|| s ), where h > 0 defined in (3.8) is a function
related to the ratio function r(-,-) (see Theorem 3.1). This solution is the unique
solution of (1.1) such that hu belongs in L*(0,T; H*). It is worth pointing out
that we do not need any assumption (except to be bounded and ”smooth”) on the
coefficient § outside a neighborhood of —co. Actually, as noticed in Remark 3.1,
any smooth and bounded /S that is non positive uniformly in time at —oo would
satisfy our assumption.

Finally to get the LWP of (1.1) in classical Sobolev spaces H*(R), s > 1/2, we
need not only h but also 1/h to be bounded, that corresponds to require h to be
a classical gauge. This leads to an integrability conditon on R uniformly in time
of the ratio function 71 (-, ). Note that this type of condition, that already appears
in other works on the subject as [2] and [8], is proven to be sharp for the LWP in
H*(R) of the linear equation in [2]. In particular, it turns out that anti-diffusion
on a compact set will not avoid the local well-posedness of the equation.

To end this introduction, let us recall the linear explanation of this last result
that can be found for instance in [5]. To simplify we concentrate on the linear

M a forthcoming paper we will show how to enhance the LWP result to H*(R), s > 0, that
will enable to prove a global well-posedness result for a KdV equation with a variable bottom that
is non increasing.
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equation

Ut + qusy + Pugy =0 .
and we assume that o and 3 are constant on [0, 7] x [-R, R] with a > 0 and 3 > 0.
Since a wave packet of amplitude close to A and frequencies close to £y moves to
the left with a speed close to fli—‘g(fo) = 3a&?, this wave packet will stays in [~ R, R]

during about an interval of time At = 3—?2 and thus the effect of the anti-diffusion
0

will make its amplitude growths to Aexp(QRg) that does not depend on &y. This

shows that the speed of propagation of wave packets induced by the dispersion term

of order three 93 is just sufficient to compensate the growth of the amplitude of

this wave packet induced by the anti-diffusion on a compact set.

1.2. Main results. In the sequel [s] denotes the integer part of the real number s
and for any N € N, C}¥(R) denotes the space of functions f € CN(R) with f, f’,
<., f) bounded.

We first introduce our notion of solutions to (1.1) and (1.2).

Definition 1.1. Assume that o € LECY, B € L¥CE, v,e € LECY and § €
L>(]0, T[xR).

We say that uw € L L? is a weak solution to (1.1) if for any ¢ € C°(]—T, T[xR)
it holds

/OT/Ru[gbtag(awag(ﬂ@ax(w)qu} d:cdtJr%/OT/Ruan(eqb)d:cdt
Jr/Ruo(:c)qﬁ(O,z) dx =0 (1.3)

Remark 1.1. Note that if u € LL2 is a weak solution to (1.1) then (1.1) is
satisfied in the distributional sense on )0, T[xR and thus u, € LSS H, 3. This forces
u to belong to Cyy([0,T]; L*(R)) and (1.3) ensures that u(0) = ug.

We define in the same way the weak solutions to (1.2).

Definition 1.2. Assume that b € L¥CE, c,e € L¥CY and d, f € L>(]0, T[xR).
We say that u € L L2 is a weak solution to (1.2) if for any ¢ € C°(]—T,T[xR)
it holds

/OT/Ru[gbtgbgzag(b@am(c¢)+d¢} d:cdt+/OT/Ru2[%8x(e¢)+f} da dt
+/Ruo(z)¢(0,x) dx =0 (1.4)

Let us now state our first result.

Theorem 1.1. Let s > % and T €]0,+00]. Assume that b, c,e in
L(J0, T[; CFIP2(R)) with e, in L®(J0, T[xR) and d, f € L=(]0,T[; CI'™ (R)).
Assume moreover that

b>0 on[0,T]xR. (1.5)
Then for all ug € H*(R), there exist a time 0 < Ty = T0(||u0||H%+) < T and a
solution u to (1.2) in C ([0, To); H®) N L3,(0, To; H*Y). This solution is the unique

(]
weak solution of (1.2) that belongs respectively to L*°(0,Ty; H®) N L[Qb] (0, To; H+Y)
and L>(0,To; H®) in respectively the cases b Z 0 and b = 0. Moreover, for any
R > 0 the solution-map ug — u is continuous from the ball of H*(R) centered at

the origin with radius R into C([0,To(R)]; H?).
Remark 1.2. L[Qb] (0, To; H*Y) is defined in Subsection 2.2.
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Remark 1.3. The hypotheses on the coefficients b, c,d, e and f given in the above
statement are not optimal. More accurate hypotheses on the coefficients b, c,d, e
and f involving norms in Zygmund spaces can be found in Remark 4.1.

By a suitable change of unknown we will be able to link the solutions of (1.1) to
the ones of (1.2). As a consequence of the above theorem we then get the following
result for (1.1).

Theorem 1.2. Let s > %, T €]0,400] and assume that o € L*°(]0,T7; C£5]+4(R))
with ay € L=()0, T[; CFITHR)) 8,7, € in L=(10, T[; C¥T2(R)) with ¢; in L>(]0, T[xR)
and § € L*=(]0,T7; C’IES]-H(R)). Assume moreover that

1. There exists oy > 0 such that for all (t,x) € [0,T] x R,

ap < aft,x) < agl

sup
(t,z)€[0,T] xR

/(a’4/3at)(t,y)dy <.
0

3. B can be decomposed as B = 1+ B2 with B2 <0, 51, B2 € L*(]0,T]; Cl£8]+2>
such that

(t,x »—)/ “181)(t,y) dy € WH°([0, T]; L=(R)) .

We set g(t,z) = —Bo(t,x)a'/3(t, A(x)) Then for all ug € H*(R), there exist a
time 0 < Ty = T0(||u0HH%+) < T and a solution u to (1.1) in C([0,To]; H®) N

[g] (0, To; H5TY). This solution is the unique weak solution of (1.1) that belongs
to L>(0,To; H®) N L[g](O,TO;HS"'l). For any R > 0 the solution-map uy +— u
is continuous from the ball of H*(R) centered at the origin with radius R into
C([0, To(R)]; H®).

Remark 1.4. It is worth noticing that point 3. of the above theorem is satisfies if
there exists R > 0 such that

<0 on [0,T) x (R\[-R,R]).

Indeed, we can then decompose 8 as B = 1+ B2 with B1 =0 on R\ [—Ro, Ro[ with
Ry > R, that clearly satisfies point 3. This means that, when the anti-dissipation
is confined in a fired compact set for all t € [0,T], the Cauchy problem associated
to (1.1) is locally well-posed in the Hadamard sense in H®.

Remark 1.5. If Hypothesis 3. in Theorem 1.2 holds with 81 = B (i.e. 3 = 0)
then the change of unknown does link the solution to (1.1) to a solution of (1.2)
with b =0 on R. Therefore, on account of Theorem 1.1, we obtain that in this case
(1.1) is actually unconditionally locally well-posed in H®(R).

The rest of this paper is organized as follows. In the next section we introduce
some notations, define our resolution spaces and recall some technical lemmas that
will be used in Section 4 to prove estimates on solutions to (1.1). Note that the
proof of some of these lemmas are postponed to the appendix. In Section 3 we
establish the links between the problems (1.1) and (1.2) that enables us to prove
Theorem 1.2 assuming Theorem 1.1. Finally, Sections 4 and 5 are devoted to the
proof of Theorem 1.1.
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2. NOTATIONS, FUNCTION SPACES AND TECHNICAL LEMMAS

2.1. Notations. For any s € R, we denote [s] the integer part of s. For « € R, a4,
respectively a_, will denote a number slightly greater, respectively lesser, than «.
For (a,b) € (R4)?, We denote by respectively a V b and a A b the maximum and
the minimum of a and b.
We denote by C (A1, A2, ...) a nonnegative constant depending on the parameters
A1, Az,...and whose dependence on the )\; is always assumed to be nondecreasing.
Let p be any constant with 1 < p < oo and denote LP? = LP(R) the space of all
Lebesgue-measurable functions f with the standard norm

1l = ( / F@)Pde) " < co.

The real inner product of any two functions f; and fo in the Hilbert space L?(R)
is denoted by

(flan):/Rfl(-T)fQ(l‘)dl'.

The space L = L*°(R) consists of all essentially bounded and Lebesgue-measurable
functions f with the norm

| £l = sup|f(z)| < oo.
We denote by WH®(R) = {f € D'(R), s.t. f,0,f € L=(R)} endowed with its

canonical norm.

For any real constant s > 0, H* = H*(R) denotes the Sobolev space of all tem-
pered distributions f with the norm | f|lgs = ||ASf||z2 < oo, where A is the
pseudo-differential operator A = (1 — 92)'/2.

For any two functions u = u(t, z) and v(¢, ) defined on [0, 7)) x R with T > 0, we de-
note the H*® inner product, the LP-norm and especially the L2-norm, as well as the
Sobolev norm, with respect to the spatial variable x, by (u,v) = (u(t,-),v(t, ")) m=,

[ulle = llult, )| ze, [[ullz = [Jut; )Lz, and [[ullae = [lu(t, )|, respectively.
We denote L>°([0,7T); H*(R)) the space of functions such that u(¢,-) is controlled
in H*, uniformly for ¢t € [0,T): HuHLw([O,T);HS(R)) = SuP;cio,7) |u(t, )|gs < oo.

Finally, C*(R) denotes the space of k-times continuously differentiable functions.

Throughout the paper, we fix a smooth even bump function 7 such that
neCyR), 0<n<1, m_,,=1 and supp(n) C[-2,2]. (2.1)
We set (&) :=n(§) — n(28). For I € N\ {0}, we define
G (€) :=p(27'¢) and Y (§,7) = g (1 — &%) .

By convention, we also denote

$1(6) :=n(€) and (& 1) = n(r - &).

Any summations over capitalized variables such as N, L, K or M are presumed to
be dyadic. Unless stated otherwise, we work with non-homogeneous decompositions
for space, time and modulation variables, i.e. these variables range over numbers
of the form {2* : k € N} respectively. Then, we have that

S on(©=1 YR, supp(6n) C {5 <[fl SN}, Ne {28 ke N\ {0}),

N>1

and

dwn(€r)=1 V(1) eR? Le{2*:keN)

L>1
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Let us now define the following Littlewood-Paley multipliers :
Pyu=F, (¢nFeu), Qru=F '(¢YrFu), Rgu=F '(pxFu). (2.2)
We then set

PN = ZPK’ PZN = Z PK, PgN = Z PK, P<<N = Z PK,
N/4<K<4N K>N 1<K<N 1I<KKN

Poni= Y P, Qer=) Qx, Qeri= Y, Qx and Quri= Y Qx.

K>N K>L 1<K<L K~N
For brevity we also write uy = Pnu, u<y = P<yu, u>y = Poyu, ueny =
Penyu and uspy = P> pyu.
Following [10], to handle coefficient that are not asymptotically flat we will use

the classical Zygmund spaces : for s € R, C#(R) is the set of all v € §'(R) such
that

lv]|cs == sup N¥||Pyv||pe < 00 (2.3)
N>1

Note that, for all £ € N,
CF(R) — WH(R) — CF(R) .

2.2. Function Spaces. Let T' > 0, b € L*°(]0, T[xR) with b > 0 and § > —1/2.
We define the sub vector space L7, (]0, T; HO+1) of L>(0,T; L*(R)) as

L[Qb] (]O,T[,H‘g'i‘l) = {’U, S LOO(O,TyLQ(R))’ HUHL[ZI)](]O,T[;H9+1) < +OO||}
with

2
el go,rpaosny = D (N |[Vb Py, (2.4)

[b] L2 L2
N>0 T

For s, € R, we introduce the Bourgain spaces XY related to the linear KdV
equation as the completion of the Schwartz space S(R?) under the norm

1
ol e = ( [ 53>29<s>25|6<§,7>|2d5d7> , (2.5)
RQ
where (z) := 1 + |z|. Recall that
ol = NU(<t)oll 20

where U(t) = exp(—td3) is the generator of the free evolution associated with the

linear KdV equation and where || || ;= is the usual space-time Sobolev norm given
.t

by

1
2

lull e = (/R? <T>20<§>25|ﬂ(§77)|2d§d7)

We define the function space Y* by Y* = LHS N X*~ 1! equipped with its
natural norm

lullys = llull gy + [lufxo-1a - (2.6)

Finally, we will use restriction in time versions of these spaces. Let T" > 0 be a
positive time and Y be a normed space of space-time functions. The restriction
space Y will be the space of functions v : Rx]0, T[— R satisfying

lv|lyz == inf{[|7]ly | 0: R xR =R, 0|gxjo,r] = v} < 0.

Bourgain



ihigh-lem

commutator

KORTEWEG-DE VRIES EQUATION WITH VARIABLE COEFFICIENTS 7

2.3. Technical Lemmas. We first recall the following technical lemmas that were
proven in [11].

Lemma 2.1. Let L>1,1<p < oo and s € R. The operator Q<, is bounded in
LYH® uniformly in L > 1.

For any T > 0, we consider 17 the characteristic function of [0,7] and use the
decomposition

Iy = 125+ 175, 1R%(r) = n(r/R)1r(r) (2.7)
for some R > 0.
Lemma 2.2. For any R > 0 and T > 0 it holds

5 ST AR (2.8)
and, for any p € [1,400],
IRl e + 175 e S TP (2.9)

Lemma 2.3. Let u € L?(R?). Then for any T >0, R > 0 and L >> R it holds
1QL(1F %) 2> S 1Q~rullz2

We will need product estimates in Sobolev spaces for functions in Sobolev and in
Zygmund spaces (see [4] for (2.10) and [10] for (2.12). The proof of (2.11) follows
exactly the same lines as the one of (2.10)).

Lemma 2.4. 1. Let (t,s,r) € R® with s+r >t+1/2, s+r > 0 and s,r > t.
Then for any f € H*(R) and g € H"(R), it holds fg € H'(R) with

1 gllae S Nl e gl (2.10)

2. Let (t,s,7) € R® with s+1r >t, s+ >0 and s, > t. Then for any f € C:(R)
and g € H"(R), it holds fg € H'(R) with

19l < N lloz gl (2.11)

In particular, let s € R, then for any f € CLSH(R) and g € H*(R), it holds
fg € H*(R) with

(€}

1fgllme S Afll e+ lgll zs (2.12)

We will also need the following lemma on commutator and double commutator
estimates (see ([ [10], p. 288] the remark in the footnote for (2.13)) that we prove
in the Appendix.

Lemma 2.5. Let f € L*°(R) and g € L*(R). For any N > 0 it holds

11PN, Pen flgllz S N 7Y Pen felloes || Prgllez (2.13)
and
|[Px. 1Py Pensl]g|| , S N3P ol I Pugllna (2.14)
Moreover, it holds
1 .
/[PN,P<<Nf]9 Pyg = 5/[PN, [Pn, P<n f]|Png Png (2.15)
R R

Finally we construct a bounded linear operator from X%ﬁM N LFH; into Y?
with a bound that does not depend on s and 7' . For this we follow [12] and
introduce the extension operator pr defined by

pr(u)(t) := U@)n(t)U(—pr(t))u(pr(t)) , (2.16)

high

comcom
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where 7 is the smooth cut-off function defined in Section 2.1 and pr is the contin-
uous piecewise affine function defined by

0 for t¢¢0,2T]

pr(t) = t for tel0,T] (2.17)

2T —t for te[T,2T]

Lemma 2.6. Let 0 < T <2 and s € R. Then,
pr: X5V N LPHS — YV
u— pr(u)

is a bounded linear operator, i.e.

lor(lzzas + lor@)lxe-a  lulogm: + g, (218)

for allu € X3 N L HE.
Moreover, the implicit constant in (2.18) can be chosen independent of 0 < T < 2
and s € R.

3. TRANSFORMATION OF THE PROBLEM AND PROOF OF THEOREM 1.2.
secC

3.1. Link between solutions of (1.1) and (1.2). The main assumption on the
coefficient of the third order term is that it is bounded from above and from below by
positive constants. Of course, we can also treat the case of a negative coefficient by
making the trivial change of unknwon @(t, ) = u(t, —x) but this will also change the
sens of the real axis. This would play no role in Theorem 1.2 but would change the

assumption sup(, yepo.rjxk — Jy 2 (t,y)dy < 00 by sup, pyefo.ryxr Jy Z(ty)dy <
00 in Theorem 3.1 below.

Hypothesis 1. There ezists ag > 0 such that for all (t,x) € [0,T] x R,
ap < aft,x) < agl .

Proposition 3.1. Assume that Hypothesis 1 is satisfied and that o € L>(]0, T[; C3(R))
with ay € L>(]0, T[; Cy(R)) and B € L>(]0,T[; CZ(R)). Let A € L>=(]0,T[; C}(R))
with Ay € L>(]0,T[; CL(R)) be defined for (t,x) € [0,T] x R by

Atta) = [0 (e, dy (3.1)
0

and let h > 0 with h € L>=(]0,T[; C3(R)) with hy € L*>(]0,T[; Cy(R)). For each
t € [0,T] we denote by A~(t,-) the increasing reciproqual bijection of A(t,-).
Then u € LY L2 is a weak solution to (1.1) if and only if

(t,x) = v(t,z) = h(t, A= (t, ) u(t, A= (t, z))
is a weak solution to (1.2) with
b(t,z) =al/3 (—ﬂoﬁl +aza~l + 3h*1hm)
c(t,x) = A+ a~1/3 (6hih_2a + %aia‘l + aghyh™t — 3hogh~ta — %agz
~2h,h 1B — ta 0y + )
d(t,r) = a(—Ghih*’ ¥ 6hoph2h, — hgzhfl) + ﬂ(zhgir2 - hhh*l)

—yheh™t —hiht + 6
e(t,z) =ea 3h™'  and f(t,x) = —eh,h ™2 .

(3:2)

where all the functions in the right-hand side are evaluated at (t, A=1(t,x)).
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Proof. Since @ > ap > 0 on [0,7] x R, for each t € [0,T], A(¢,-) is an in-
creasing bijection of R with no critical point and thus its reciprocal bijection
A~Y(t,-) is well-defined and belong to the same C"-space. Therefore, since o €
L>(]0,T[; C3(R)) with ay € L>(]0,T[; Cp(R)), it is clear that A and A~' belong
to L= (10, T[; C£(R)) N W=([0, T}; C} (R))

We first assume that v € C([0,T]; H>®) with u; € L>(]0, T[; H*) and we set

V(t,x) = h(t, A7} (t,2)) u(t, A} (t,x)) (3.3)
so that 4 At.2)
Vi(t, A(t,x
u(t,x) = W

In the calculus below the functions u, h,«, 8, v, § € will be evaluated at (¢, )
whereas V' is evaluated at (¢, A(t,x)). Then it holds

ug(t,x) = — hh 2V + b=V, + A;h ™1V,

hy 04*1/3

hfl
U2y (tv :C) :Oé72/3h71V21 B (TO&74/3QI + 2h1h720‘71/3)vz

ug (t, ) =

+ (2h§h—3 - hzzh—2)v
uze(t, ) =a Th ™ Way + Vay (*h71a75/30@ — 3hmh72a72/3)
+ V. (hmh_Qa_4/3az + gh_la_7/3ai — %h_la_‘l/?’agz
— 3hogh~ 2013 ¢ 6h§h—3a—1/3)
+ V(thmhmh_3 —6h3h - hgxh_Q)
(uug)(t,z) = — h3h, V2 + o YV3h72V, .
Gathering the above identity we thus obtain
h(t,x) (ut + ausy + Pusy + yug, + du — euum) (t,z)
= [Vi + Vag — bVay 4 Vi + dV — eV V, — fV?](t, A(t, z)) (3.4)
with b, ¢, d, e given by (3.2).
Therefore for ¢ € L>(]0,T[; C3(R)) with ¢ € L>(]0,T[; C4(R)) and compact

support in [0, T[xR, making use at any fixed ¢ € [0,T] of the change of variable
y = A~'(t, z) and noticing that A;'(t,z) = a'/3(t, A= (t,x)) we observe that

T
/ /(ut + Quze + Buze + Yur + ou — euux) (t, y)o(t,y) dy
o Jr

(t,y)dy

>

T
:/ / h(ut + qusy + Bugeg + Yus + du — euuz) (t,y)
o Jr
_ 5 ¢ -1 1/3 1
= [h (ut + quss + Puge + Yue + du — euux) E] (t, A" (t,z) o /°(t, A" (t,x)) dz dt
o Jr
T
:/ /(Vt 4+ Vap — bVoy +cVy +dV —eVV, — fV2) (t,z)Y(t,z) dx dt
o Jr

- /OT /R V[~ thsa — O200) — 0ulet) + ] + V2[00 (e) + ] dr
+ /R V(0,z)(0,x) dx (3.5)
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/
0 A7 (),

Now let u € LFL2 be a weak solution to (1.1). Recall that by Remark 1.1, u; €
L H; 3. Then by using mollifiers we can approximate u in L L2 by u, € C([0,T] : H*)
with w; € L]0, T[; H*°) such that u,(0) — uo in L*(R) and u, — u € LFL2. Note
that by defining V;, in the same way as V in (3.3) we also have V,,(0) — Vo in L*(R) and
Vi, — V € LFL2. Making use of (3.5) and that u is a weak solution to (1.1) we thus get

with ¢(t, z) =

0= [ [ (u]-60 - 02a0) + (56) - 0.00) + 56] + u0u(e0)) 1) o
+/ o(z)¢(0,z) dx

~ lim / / un [~ 61— 03(a6) + 02(89) — 0u(76) + 66| + JuRda(c6) ) (1, 2) du b

n——+oo

+ /R un(0,2)¢(0, ) dz

T
= lim / / (un,t + QUnp, 3z + ,B'Uzn,2ac + YUn,x + 6'U«n — Gunun,x) (t7 $)¢(t, x) dxdt
R

n—-+oo 0

— lim /T /R Vi [fwt — s — B2(bY) — Bu(c) + d¢] T2 [%a,(ew) T f] da dt

n—+oo [
+ /R Vn(0,2)3(0,x) do
- /OT /R V[~ tsa — B200) — 0ulet) + ] + V2 [S0u(e0) + ] do
+ /R V(0,2)1(0, z) dx (3.6)

that proves that u is a weak solution to (1.1) if and only if :
(t,z) = V(t,x) = h(t, A (t,2))u(t, A" (t,z)) is a weak solution to (1.2). Indeed since
a,h € L=(]0,T[; C3(R)), as, he € L=(]0, T[; C4(R)) with h > 0 and @ > ap > 0, the map

0 : ¢ (¢o;:/3)(t714_1(t7x))

is a bijection from the space of functions in L>(]0,T[; C£(R)) with time derivative in
L*>(]0,T[; Cy»(R)) and compact support in [0, T[XR into itself. The reciprocal bijection is
given by

1 Ph
o' . ywe (al/S)(uA(tw)) .
(1.3) is thus satisfied by all ¢ € L*°(]0, T[; C3 (R)) with +;, € L>(]0, T[; C4»(R)) and com-
pact support in [0, T[XR that leads to the desired result. O

3.2. Proof of Theorem 1.2 assuming Theorem 1.1. We want to choose h such
that b > 0. For this we decompose 3(,-) as 81 + f2 with 8 and B2 bounded and
B2 < 0 (Note that we can always take 81 = 8 and 83 = 0). According to (3.2) it
suffices to take h that satisfies

h, 1 _ _
W= g(ﬁla ' aza) (3.7)
so that
ha
b:—ﬂof%Jrozmof%Jriir = faa” 5>0

Equation (3.7) is satisfied for

h(t,z) = {a(t,O)}1/3 exp (%/Oz(ﬁla‘l)(t,y) dy) : (3.8)

a(t, )
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For this choice of h we need the coefficients b, ¢, d, e, f to be bounded to solve
the equation with the help of Theorem 1.1. First we notice that the coefficient ¢
contains A;. The requirement that A; is bounded leads to the following hypothesis.

Hypothesis 2

sup
(t,z)€[0,T] xR

/z(a%/gat)(t,y)dy <00 .

Now, since o« > ag one can check that all the terms h—}f, hflm that appear in ¢

and d are bounded. On the other hand the boundedness of h;h~! that appears in
the coefficient d requires a new hypothesis. Moreover, in the coefficient e and f
of the nonlinear part, h=! appears alone. To force h;h~!, e and f to be bounded
we thus add the following hypothesis that ensures in particular that there exists
ho > 0 such that for (¢,z) € [0,To] x R, h(t,x) > ho.

Hypothesis 3. 8 can be decomposed as f = [ + P2 with B2 < 0, (1,02 €
L>([0,T);C2) , 081 € L>=(]0,T[; L) such that
/ Or(a™1B1)(t, y)dy| < oo .

sup
(t,2)€[0,T] xR

and

sup / ﬂltydy<oo
(t,2)€[0,T] xR

Now, according to Theorem 1.1, for s > 1/2, (1.2) is locally well-posed in H*(R),
whenever b > 0 on [0, 7] x R with b, ¢,e in L>=(0, T} CIES]+2(R)), e¢ in L*°(]0, T[xR)
and d, f € L=(]0,T[; CI"T (R)).

In view of (3.2), (3.8) and Hypotheses 1-3, one can easily check that the function
spaces to which «;, 3,7, 6, € and §1, B2 belong in the statement of Theorem 1.2 ensure
that b, c, e, d and f belong to the above function spaces. Moreover, this ensures that
u € C([0,To); H*) if and only if V (t,z) = h(t, A=Y (¢, x)) u(t, A=1(t,z)) belongs also
to this space. Therefore, gathering Theorem 1.1 and Proposition 3.1 leads to the
existence of a solution to (1.1) with uniqueness in the space of functions u such
that hu € L°°(0,Tp; H®). More precisely, we can state the following slightly less
restrictive version of Theorem 1.2.

th3| Theorem 3.1. Lets > 1/2 and T €]0, +o0] and assume that o € L>°(]0,T7; C’IES]H(]R))
with ay € L()0, T[; CFITHR)) 8,7, € in L=(10, T[; CET2(R)) with ¢; in L>(]0, T[xR)
and § € L>=(]0,T7; C’IES]-H(R)). Assume moreover that
e There exists ag > 0 such that for all (t,z) € [0,T] x R,

ap < aft,x) < agl

/at 1/‘O’tfydy‘<oo
(t, x)e[o T)xR

e (3 can be decomposed as 3 = 1+ B with B2 <0, 51,82 € L*(]0,T]; C’,ESHQ)
such that

/(%oz ﬂl tydy’<oo

sup
(t,2)€[0,T] xR

and

sup —/ &(t,y)dy<oo.
(t,z)€[0,T]xR 0 «
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We set
At,x) = |

Then for all ug € H*(R), there exist a time 0 < Ty = T0(||UOHH%+) < T and a
solution u to (1.3) in C([0,To]; H®) N LQ}(O,TO; H**Y). This solution is the unique

lg
weak solution of (1.1) such that hu belongs to L>°(0,To; H®) N L% (0, Ty; H*T1).

lq]

Remark 3.1. It is worth noticing that we can always choose (P1,2) such that
the hypothesis of integrability on Bia~ ' in the above theorem is satisfied in +oo.
Indeed, [ being bounded by hypothesis, taking B2 such that B2 = — supg |B| on R4
it follows that 51 = 8 — B2 > 0 on Ry and thus fom %(t,y)dy >0 for any x € Ry.
That means that this existence and uniqueness result works with a uniform anti-
diffusion in the neighborhood of +o0o. For instance a coefficient 5 such that 5 > 1
on [0,T] x Ry. This lost of symmetry between +oco and —oo is linked to the fact
that we imposed that o > 0 so that linear waves solutions of uy + aus, = 0 are
travelling only to the left.

a(t,0) } 1/3

al(t, z) (%/OZ 510‘_1)6”“1 g(t,x) = —Ba(t,x)a3(t, A(z)) .

Finally, if we want to get the well-posedness in the Hadamard sense of (1.1) we
need to require a little more on h so that ||u(t)||g= ~ |[(hu)(t)| gs uniformly on
[0,T5]. This forces h to be situated between two positive values, i.e. there exists
ho, h1 > 0 such that for any (¢,2) € [0,T] x R, ho < h(t,z) < hy.

For this it suffices to replace Hypothesis 3 by the following one :

Hypothesis 4. § can be decomposed as 8 = (1 + P2 with B2 < 0, (1,02 €
L>([0,T);C?) , 061 € L>=(]0,T[; L*°) such that

(t, = >—>/ “1B1)(t,y) dy € Who([0,T]; L=(R)) .

which leads to Theorem 1.1.

4. ESTIMATES ON THE SOLUTIONS TO (1.2)

In this section, we prove the needed estimates on solutions to (1.2) to get the
local well-posedness of (1.2) in H*(R) for s > 1/2. For this purpose we use the
approach introduced in [11] that mix energy’s and Bourgain’s type estimates.

4.1. An estimate using Bourgain’s type spaces. We start by proving the only
estimate where we need Bourgain’s type spaces. This estimate will be used to bound
the contribution of the nonlinear KdV term euu, in the energy estimate. First we
check that under suitable space projections on the functions, we have a good lower
bound on the resonance relation that appears in this contribution.

Lemma 4.1. Let L; > 1 and N; > 1 be dyadic numbers and u; € LQ(RQ) for
i€{1,2,3,4}. If Ny < min(Na, N3, Ny) then it holds

/ Pn, (QL1P§N1U1 Qr,Pn,us QLSPNSUB)QL4PN4U4 =0
R‘Z

whenever the following relation is not satisfied :
Lipaz ~ NaN3Ny or (Lmaz > NoN3Ny and Lyae ~ Lmed) (41)
where Loz =  mnax L; and Lyeq = max({L1, Lo, L3, L4} — { Lmax})-

FRES)

resonance3
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Proof. Applying Plancherel identity, this is a direct consequence of the condition
N; < min(Na, N3, Ny) together with the cubic resonance relation associated with
the KdV propagator :

3
(€1, 62,6) = o~ Zn, Z§Z)+Zan,a ) = —3(& + &)(& + &) (€ + &)
=1 =1

where o(7,£) := 7 — &3, Note that the conditions on the INV;’s ensure that the above
integrals vanish for L. < 1. O

Now we can give our main estimate that uses Bourgain’s type spaces.

Lemma 4.2. Assume 0 < T < 1, e € LS, with e; € L5, and u; € LSH/2 N

_3
XT2’1, i=2,3,4. Let N; € 2%, j =1,2,3,4 with N; < min(Na, N3, Ny). Setting,

forall0<t<T,

t
I} = Ii(e, uz, u3, uy) :/ /PN4(P§N1€PN2U28xPN3u3)PN4U4a (4.2)
0 JR
it holds
1S Ulellug, + lledllg) [1Pv el ez (D2 1Pvwillzs, ) (0 1Pw il ;)
i=p,q 1=p,q
s . 4 4
TH Ny Y (I1Bvll o + 1 Pvilligee) TPy wllogez|  (43)
1=2 j=2
JFi

whenever N, ~ Ny 2 N, where (p,q,r) is a permutation of (2,3,4).

Proof. We start by noticing that we may also assume that e and e; belong to L3.L2.
Indeed, approximating e by eg = engr with ng = n(-/R) where 7 is the smooth
non negative compactly supported function defined in (2.1), we notice that for any
t € [0,T], Lebesgue dominated convergence theorem leads for any N € 2N to

_1(¢§N) *eR — fg:l((ng) xe=P<ye onR,

since Ft(p<n) € LY(R) and |e(t)nr| < |e(t)] € L>=(R). Applying again the
Lebesgue dominated convergence theorem we get

t t
/ /PN4(P§N1€RPN2u25zPN3U3)PN4U4 =/ /P§N16RPN2U/26;EPN3U3PJ%/4U4
0 R

RﬂJroo / /P<N1€PN2’LL2(9 PNSU3PN4’U,4

— 73
f]tv

by using that, for any fixed j € N, Pyu; € L5, N L%,. This proves the desired
result since

lerllzg +10erllrg <llelle + el , VR > 1.

Now we extend the functions e, us, uz,us on the whole time axis. For wuo, ug, u4
we use the extension operator pr defined in Lemma 2.6. On the other hand for
e we use the extension operator pr defined by pr(e)(t) = n(t)e(ur(t)) with pr
defined in (2.17) and 7 defined in (2.1). This extension operator is bounded from
WL into W,"*°L2° with a bound that does not depend on T > 0. To lighten
the notations, we keep the notation u; for pr(u;) and e for pr(e). Fixing t €]0, T
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3 3
and setting R = Ny' N3N, we then split I; as

high l high
Ii(e, ug, uz, ua) = Ioo(e, 1,5 ua, Ly ug, Lyua) + Ioo(e, 105wz, 1,5 " us, 1y ua)
low low high low low low
+ Io(e, 1R ua, 175 us, iy ug) + Lo (€, 1R ua, 175 us, 117 g us)
— IZugh,l +Ithzgh,2 +IZugh,3 +Itlow7 (44)

where I (e, ug, us, ug) = f]R2 Py, (Pn, e Pnyu20, Pnyus) Py, ug. The contribution of

Ith igh-1i5 estimated thanks to Lemma 2.2 and Holder and Bernstein inequalities by

ot < Ngllliﬁﬁ%hl\mHeIILf;HszmlngOLg | PnsusLoo 2 || PnyuallLee 2

4
3 3
< T4 NS Ny N )~ N3(NaNa)# [lell os T 1P, ill o2
=2

4
STYV4(Ny v Na) 716 lel| e [ [ I Pwvwillpeer2 (4.5)
=2

where we used that the frequency projectors ensure that No V Ny ~ N2 V N3. The
contribution of I}"*9"? and I}"9"3 can be estimated in exactly the same way, using
that|\1,lf,’}§||Ltoo < 1 thanks to (2.9). To evaluate the contribution I}°% we use the
following decomposition :
IOO (67 155?5 U2, U3, ’LL4) == IOO (6, Q2N2N3N4 (155?}“%]11‘2)7 ]é,o’télu?” 155?5“4)

+ oo (€, Quena NN, (115 12), @ ny vy vy (1 u3), 1% s

+ I (6, Q<<N2N3N4(1é?gu2>a Q<<N2N3N4(1é?gu3)v QZN2N3N4 (155?}%)’“’4))

+ I (6, Q<<N2N3N4(1é?llgu2)a Q<<N2N3N4(1é?llgu3)v Q<<N2N3N4 (155?1742)11‘4))

— It2,low +I);3,low + I;l,low +Itl,low , (46)

To evaluate the contribution Itl’low

4.1 ensures that

we notice that since Ni < NjN2N3, Lemma

1
Itl ™= Io (R~N2N3N4ea Q<<N2N3N4(1i,oluzju2)a Q<<N2N3N4(1i,oluzju3)v Q<<N2N3N4 (155,01%111‘4))

where R is the projection on the time Fourier variable (see (2.2)). Therefore, by
Bernstein inequality and Lemma 2.1 we get

|11 < T(N2N3Na) " leel pgo || Py izl Lo Na|| Py us | oo 2 [| Py wal| o 2
4
_1
ST(N2V Na)~2lec]l oe || Praualipeere [ I Pwvwill s (4.7)
1=3

Now, to evaluate the other contributions in (4.6) we have to separate different

cases. For the future use of Lemma 2.3, it is worth noticing that since No, Ny > 1,
3 3

R = Nj N3N} < NyN3Ny.

Case 1 : Ny ~ N3 2 Ny. Then If’low can be easily estimated thanks to Lemma

2.3 and (2.9) by

2,1
117 Sllell nos Qs va v vy Prs (1178 u2) || 12, Nl 1075 P us| 12, 1118 Py ual| e

x

1
STY2(NaN3Ny) ™ NaNs N7 lel| peo || Py iz x 10 | Py sl oo 12 [| Py sl pgo 12

4
1 _
T2 (Na v Na) ™ 2le pos lluz )l x -1 [ ] I1Pwwill L e (4.8)
1=3

estIthigh
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To estimate the contribution of I2"*°* we notice that Lemma 2.2 together with the
fact that R > Ns V N3 ensure that for any w € L;’OLi

h
t

IR wllzz, < Lewlzz, + 1178 wll 2, S llwlpazz + T (N v Ng) ™l ez -

Therefore Lemmas 2.1 and 2.3 lead to

1 _
127" S(NaN3Na) 7 N3 llell noe | Py ol s | Pavg sl -0 [ 1578 Prvyuall 2,
—1/2
<Ny Y ||€||L§;||PNQU2||Lg°Lg(||PNSU3||X7171||PN4U4||L2TLg
+ T4 (Ny v Ng) V4| Pryus| x -1 ||PN4U4||L;°L§) (4.9)

and If Lo can be estimated in exactly the same way by exchanging the role of ug
and u4 to get

~

4,1 —1/2
1S Ny el el Pt ez (1| Pyl x—so | Py sl 2
FTYAN, v Na) | Py x| Pusllerz ) (4.10)

Gathering (4.4)-(4.10), we obtain (4.3) whenever Ny ~ N3 2 Ns.

Case 2 : Ny ~ N3 2 N4. Then we get exactly the same type of estimates just by
exchanging the role of uy and wy with respect to the preceding case.

Case 8: Ny ~ Ny 2 Ns. This case can be treated as the first ones and is even

simplest since the derivative falls on the smallest frequency. We thus omit the
details. (]

4.2. A priori estimates in H*(R). For an initial data in H*(R), with s > 1/2,
we will construct a solution to (1.2) in Y7 whereas the estimate of difference of two
solutions emanating from initial data belonging to H*(R) will take place in Y5~

Lemma 4.3. Let s > 1/2, 0 < T < 1 and u € LFH* N L, (10, T[; H**) be a

solution to (1.2). Then u € Y and the following inequality holds

lullvg S C(lullug,qosrres + O+l oy ) el - (4.11)

Moreover, for any couple (u,v) € LFPH?® of solutions to (1.2) associated with a
couple of initial data (ug,vo) € (H*(R))?, it holds

hu—olhyzr S C(llu—vllzs gorise + 0+t ol m) Ju—vl g e ) (412)

where
C = C(s, ||b||L%oC£(s+1)\/2)+, HCHL;cc,f*’ |‘d||L39Cf+’ He||L%OC£sv1>+, Hf|\L%ch+) .

Proof. According to the extension Lemma 2.6 it suffices to establish estimates on
the Bourgain’s norms of v and u—wv. Standard linear estimates in Bourgain’s spaces
lead to

lull x2-1.2 < luoll g2 + 17 (9 — 07)ul| x o120
S llwollgs—r + Ibuall 2. s + 1bztiall Lz e + lleull2.me
+eo + dyulzg s + g lew g+ [ (—ea/2 4+ Pl mecs
According to Lemma 2.4, using that s > 1/2; it holds
1botie Lz o-r S b2l o cto-rit Ntz Lo o
leullzzms + llcaull Lz me S llell oot lull Lo e
lew? |z ms + leat®llz o1 S llell e oo [lull

Lo+ llullog e

| estdiffXregular
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ldullz o1 S Mldll oo s+ lull e e and (| Fu?l| g proms S ISl e o=+ Nullige e
Therefore, we get
lull a1 S llullge e + CL(1+ [luf

st Ml + Douell s e

where C1 = C1([[bell oo pro-11+5 lell ge ozt 1 oo oot el Lo oot s 11 oo o1 )-
Now, noticing that Lemma 2.4 also leads for s > 1/2 to

1bswe Lz o2 S b2l oo lo—2+ el Lie o2

||Cw||L2TH5*1 + ”CerL%HS*Z < ||C||L%°cj+||w”L§$’H5*1

levwl|zz e + lleswwl| Lz o=z Slell oo v+ lull e mellw] Lge mro-s

ldw]| g mro-2 < Nlll po et llwll g re—s and || fu?llpa oz S 1 fll oot Il e pron

we also get

lu—vllys-10 S lluo — vollga—1 + Co (1 + [lu+ vl g ue)

11002 (u = v)l| Lz e

lu — || Lo o1

with G = Co(|[bzl o cto—245 l€ll g oot 1l e oot + llell oo gove=anes 1 fll g ost)-
It just remains to get an estimate on ||0y(bvz)| 12 o1 for b € L%’C,Esv@_s))Jr and
ve LFPH 9 with > —1/2. By using a non homogeneous dyadic decomposition it
holds
102 (bva) 72 gro-1 ~ 1100 P<a1(bva)l172 12 + D N1 Pa(bvs) 172 12 -
N>1
The first term of the above right-hand side is easily estimated as above by :

102 Py (bva)ll Lz 2 S Ibvella—2 S ||b||L%CC§+||v||L&.9H7%+

Now, for N > 1 we rewrite Py (bu;) as
PN(b’UJI) = PN(PszUz) + PenbPnu, + [PN, P<<Nb]um

=Anxy + By +Cn.
We have
> N¥l|AnlEs, S 30 NI PonbPanusliy, + Y N D7 [IPwbPu, sy
N>1 N>1 N>1 Ni1ZN
< 2 NP Panbllng N0 PanvteF -1
N>1
+ Y NN 1PNl NT PN Pany | T2 pro-
N>1 Ni2N
< (1812 . oavors + 1BI2 oo ) Nl e o - (4.13)

To bound the contribution of By we observe that

2
> N*IBNlITa: < Y N20(||b3zuN||L2TLg + ||P3Nb3xUN||L2TLg)
N>1 N>1

T
SN [ RO+ Y NPbl funl
N>1 0 JR N>1

el grovsy, + b l3ss il 20 - (4.14)

IN
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Finally to bound the contribution of Cy we use (2.13) of Lemma 2.5 to get

Y N*UCNIGa e S Iballie, D N*IPyullfase S Ibellfss e po
N>1 N>1
(4.15)

Gathering the above estimates we observe that it is enough to have b € L C£375)+

for 1/2 < s < 3/2 and b € LFC:T for s > 3/2. and completes the proof of the
lemma. ]

Proposition 4.1. Let 0 < T < 2 and u € Y} with s > 1/2 be a solution to (1.2)
associated with an initial datum ug € H*(R). Then it holds

2 2 2 L 2
HU’HLTO?HS + ||u||L[2b](]O,T[;HS+1) S ||UO||H5 + C T16 (1 + ||U||YT%+)HUHY’1€ . (416)
where

€= (50l et el v Ml r el oo Il el )

(4.17)

Proof. We apply the operator Py with N € 2 dyadic to equation (1.2). On account
of Remark 1.1, it is clear that Pyu € C([0,7T]; H*>) with dun € L*>(0,T; H*).
Therefore , taking the L2-scalar product of the resulting equation with Pywu, mul-
tiplying by (V)2¢ and integrating on ]0, [ with 0 < ¢ < T' we obtain

estHsregular

t
(N2 [[Pyvu®)][Z2 = (N)**[|Pruoll7- + <N>28/ / Py (_bmuz = cug — du + qu) Pyu
0 JR

+<N>25(/Ot/RPN(equ)PNu+/Ot/RaIPN(buI)PNu).

(4.18)

Now we are going to estimate successively all the terms of the right-hand of
(4.18). Note that, even if s > 1/2, we will give estimates of the linear terms (in u)
valid for s > —1/2 that will be directly usable in Proposition 4.2 when estimating
the difference of two solutions in H*~1(R).

o Contribution of Pn(du).
Making use of Sobolev inequalities, this contribution is easily estimated by :

<N>25

/ Py (du)Pyu| $ (N)**[| Py (du)| gz 2 | Prull g 22
10,t[xR

S Ton | dull s s |lull Lo s

S ToN lldll e oot ull e 1o (4.19)
with [[(d25);50llp < 1. In the sequel, we denote by (d,4)4>1 any sequence of real
numbers such that ||(d2s);>0l/;r < 1.

e Contribution of Py(fu?).
This term is only estimated for s > 1/2. Proceding exactly as above we get

<N>25

/ PN(fUQ))PNu’ S TN fu?llpse s |ull o me
10,t[xR

S TN NNl et (U4 lull gl ms - (4:20)
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o Contribution of Pn((by + ¢)uy).
For 1 < N <1, (2.12) leads to

<N>2s

AtA(PN((bz+c)uz))PNu‘ 5/(: 1(bs + )t 1o ]| 1

S (Wball e i + llell i ) Il

For N > 1, We first notice that

NQS

/ Pxn (PRN(bz + c)uz)PNu‘
10,¢[xR

S N25

/ Py (PRN(bI +C)P<<NUZ)PNU’
10,t[xR

+N25 Z ’/ PN(PNl(bI+C)PNN1u$)PNU‘
10,t[xR

NiZN

t
S [ N UPobs + o N0 Pt e
0

t
+/ N* > |IPw, (be + ¢) | nge Ny 5| Pyt | o1 ]| 120
0 Ni>N
12

<Ton (Hbgc||L%OC£1\/sv175)4r + ||C||L70?C£1\/sv175)+)H’UJH%%OHS (421)
Then we use the commutator estimate (2.13) and integration by parts to get

N2S

/ Py (P<<N(bm + c)uI)PNU‘ = N2
10,¢[xR

| Pantb+ )Py
10,t[xR

+ N2S

/]O [ [Py, P(be + c)]uzPNu‘
A%

S NQSHbII + CIHL%‘;HPN“H%ZTLEE

SToN (Ibsallrg, + lleallzg ) lulion  (4.22)
T

with [|(025)j>0lln < 1.

e Contribution of Pn(euuy).
This term is only estimated for s > 1/2. For 1 < N < 1, we write e 0,(u?) =
10, (eu?) — 2e,u? to get

<N>2s

L P (60020 Pl £ Tl st + w2
0,t[xR

S TllellLgewres ||U||in%||U||Lg9L§ (4.23)
T
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It thus remains to consider N > 1. We first separate two contributions.
1. The contribution of Py (PZ yeuuy). This contribution is easily estimated by

/ PN(P>N€8I(U2))PNU‘
10,t[xR ~

= N2 Z ’/ PN(PNNGPNI(?I(’LF))PNU‘
N1 <N 10,t[xR

N2S

+N% Y /]O [ RPN(PNNlePNlaz(UQ))PNu’
Nosn 100x

t
1/2
SN [Pz Pl 3 MDY 1
0 N1 <N

t
sn [Py 3 1Pl MDY 00 i
0 Ni>N

S ONTllell pperire ull? oy lull e as (4.24)
T

with [|(027) >0l < 1.
2. The contribution of Py (P« yeuu,). We rewrite this term as

Py (P«neuuy,) =Py (P<<N€ P<ju PN(um))

+ Z Py (P<<N€’U,N2]5N’U,z)
1K N2 <N
+ PN(P<<N€PNUP§1U$)

+ E PN(eNlPNuazuNs)
1<K N3 SN <N

+ E Py (P<<N3 ANCUN, 3xuN3)
1« N3<N>

=A+B+C+D+E. (4.25)

First, the contribution of C' is easily estimated by

N2s

t
[ crwi s [ luslae ol el ooz
10,¢[xR 0
< o Tlelles, ol el o (1.26) [eat

with [|(02i)j>0lln < 1.
The contribution of D is estimated in the following way :

/ DPNu‘ — N2s Z / Py (eNluNNaIUNS)PN’U/‘
10,t[xR 1< N3 <N <N 10,t[xR

t
5/ lun e lumnllas D llenilloe Y NaNg~[lungll 54
0

NQS

1<NT <N Na<N
S lunllZz g lellges Ull oo 3+
SON Tl g UHL?H%JWH%;OHS (4.27)

with [|(d2:)j>0fln < 1.



20 LUC MOLINET, RAAFAT TALHOUK AND IBTISSAME ZAITER

To bound the contribution of A we use the commutator estimate (2.13) and
integration by parts to get

/ APNU‘ < N%
10,t[xR

+ N2 Z / [P, P<<N6P§1u]]5NquNu’
N1 <N,N><1 10,t[xR

S TN*|0u(PenePgyu)| g, 1Pyl 2o 2

N2s

/ az(P<<N€P51u)(PNU)2
10,t[xR

Son T||€||L§9ci+ ullpsere ||U||2L39Hs (4.28)

with |[(025) 0l < 1.

To bound the contribution of E , we notice that the integral is of the form (4.2)
so that we can use Lemma 4.2. We separate the contribution E; of the sum over
Ny ~ N3 2 N and the contribution sy of the sum over Ny ~ N > Nj3. For the
first contribution, Lemma 4.2 leads to

/ Eleu’
10,t[xR

S D (lelleg, + ||€tHL;°I)[HPNUIIL;OL?E||P~NQUIIL2THS||P~NQUHX;—L1

N2S

No>N
_1
+ T8Ny * ([ Paull o + I Pxulligrs )| Ponullis s
_1
+ T NG * ([ Pyl oo + | Pyl e ) | Ponsull e s | Pyl e s |

SNTOD (Jlellrg, + H€t||L;°I)(||U||L39HU+HuHx;*lleuHLZTHS
1
+ T ullygllull3;)
1 —
STHN=OD (lellzg, + ledlzg) lullyorlull3; - (4.29)

In the same way Lemma 4.2 leads to

/ EQPNu’
10,t[xR

Y (|\€||L3f;+HetﬂLﬁ)[||PN3U||L39L§||P~NU||L2THs
1<K N3N

NQS

PNNUHX;*IJ

1 _1
+ TN ulyglluli |

2
Yr

1
< T50n (lelluse, + lleellzglullyor lul? | (4.30)

1
S On (lellzgs, + lledllzgs lullyor (I\UI\X;—IJHUHLZTHS + 175 |u]

with [|(025)j>0lln < 1.
Finally we rewrite B as

B = Z PN (P<<N2€’U,N2]5N(uz)) + Z PN (P<<NPZN2€UN2]5N(U1))
1K N2 <N 1K N2 <N
=B+ Bs . (4.31)

We notice that the integral in the contribution of By is of the form of (4.2) with
N3 ~ N4y 2 Ny and thus using again Lemma 4.2, we get exactly the same estimate
as for Ds.

cco
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To bound the contribution of By we use integration by parts and the commutator
estimate (2.13) and proceed as in (4.28) to get

N2 / BQPNu’ < N2 ‘ / 0, (P<<NP>NzeuN2)(PNu)2‘
10,¢[xR 10,t[xR ~

1K< NN

Y ’/}[ [PN,P<<NP2NzeuN2]PNu$PNu’
0,t[xR

1IN KN
ST Y N*[0.(PenPon,eun,)log, | Prulis
1K< NN
S OnTlell pgeors lul o pygs NullZse (4.32)

with [|(025)j>0lln < 1.

e Contribution of 0, Pn(bu,). This term being linear, we will give an estimate for
s > —1/2. Integrating by parts, the contribution of this term can be rewritten as :

(N)2s / 0y Py (bug ) Pyu = —(N)? / Py (bug) Py,
10,¢[xR 10,t[xR

For 1 < N <1, it then holds

(N)* / Py (buy) Py
10,t[xR

< (N)*

/ PN(PNbaIU<<N)PNUm
10,t[xR

Z / PNlbazuNl)PNux
10,t[xR

Ni1Z2N

4 <N>25

t
SJWngT@WM%?Lg+HUM;w§/" > Nillbw; llee llun: o2
O N>N

STl o llulzers (4.33)

which is acceptable. For N > 1, we decompose this term as

(N)2s /]O [ RamPN(bum)PNu
[

= —(N)QS/ b (Pnug)? — (N)QS/ [Py, blus Pyu,  (4.34)
10,t[xR 10,t[xR

The first term of the right-hand side is non positive and will give us an estimate on
the L[Qb] (0, T; H®)-semi norm of u. Note that the contribution of the low frequency
part of u, N <1, to this semi norm is easily estimated by

S [ by S Wl el (4.39
1<N<1 10,t[xR

To control the second term of the right-hand side, we perform a frequency de-
composition of b in the following way :

NZ / [Pn, bJus Py, = N / [Pn, b> n]ta Py,
10,t[xR 10,t[xR

+N25/] [ [PN,b<<N]’UJIPNuI
0,t[xR

—A+B. (4.36)

cco?2
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A is easily estimated by

Af < NZ Y / [Py, by, | P< ntia Prtig
Ni~N 0,t[xR

+ N?* Z / PN(leleuz)PNUz
NN 10,¢[xR

STN TN lb oyl Lee. ”uIH%?HS*l

+ N ugllz e Y N7 I PN ball iz | Pay el 2 11
N1>N

S ONTIball e osva llullise e (4.37)
that is acceptable. Finally applying (2.15) and (2.14) we easily obtain
|B| S Tllbzallcss, | Pyull7z e S ONT |boallzse, lulFoe 1o (4.38)
Gathering (4.18)-(4.38), (4.16) follows. O
4.3. Estimate in H*"!(R) on the difference of two solutions.

Proposition 4.2. Let 0 < T < 1 and u,v € Y3 with s > 1/2 be two solutions to
(1.2) associated with two initial data ug,vo € H*(R). Then it holds
1
e =0l o + e =22 go,rpey S o —vollfre—s +CT Jut vl lu—vl5, - .
(4.39)
with

€ = O (s, Ibllzgozes el g pove-va-ore Il e lell . igvieein)

C,2

Proof. The difference w = u — v satisfies
1
wy + w3y — bway + cw, + dw = ieam(zw) + fzw (4.40)

where z = u 4+ v. We proceed as in the proof of the preceding proposition by
applying the operator Py, with N € 2N to the above equation, taking the L2
scalar product with Pyw, multiplying by <N>2(5’1) and integrating on |0, ¢[ with
0 <t < T. Clearly the terms coming from the linear part of (1.2) (i.e. the term
where z is not involves) may be treated by the estimates established in the proof
of the preceding proposition. They lead to

NP [ Pyt Pu| £ Tox oo lolfpa s (440
0,¢[xR T r

N>2(S_1)‘/Ot/R(PN((bz +C)wz))PN’w‘

5 Tén (”szL?Cil\/sflvzsz + ||C||L%OC£1VS71V275)+)||1UH%%¢H371 (442)

(4.43)

10,¢[xR

Therefore, proceeding as in the proof of the preceding proposition, we infer that for
N >1,

1Py Wl s S | Pvwollzpe—s + INTCllwl g gy

+ sup <N>2(s—1)‘/0t/RPN(eam(zw)—|—fzw)PNw} (4.44)

t€]0,T[

‘ estdiffHsregular
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with
¢ = C(s, 18l gz lell e piavie- e ||d|\L?CL3,1H)

To control the contribution of Py (fzw) we use Lemma 2.4 to get

t
<N>2<571>‘/ /PN(fzw)PNw‘ S ONT | f20] e pres 0] e e
0 R

SONT | 2l gme wl| e pra-s

S ONTIF N e gtor 2l e e 0l g s (4.45)

It remains to tackle the contribution of Py (e@m(zw)). For 1 < N <1, we write
e 0, (zw) =

10x(ezw) — Leg2w to get

N2(s=1) ’/]O t Py (eam(zw))PNu’

S Tllwll g1 (leazwll g1 + llezwl| g 1)

S Tllef (4.46)

ot Il el s

since s +s—1> 0.

It thus remains to consider NV > 1. Because of the lack of symmetry with respect
to the estimate on u, we consider this time three different contributions.

1. The contribution of Pn(P>ye 0;(2w)). This contribution is easily estimated by

NQ(S*”‘/ Py (P>Neam(zw))PNw‘
0,t[xR ~
= NQ(S_l)‘/ Py (PNNe P<<N8Z(zw))PNw‘
0,t

+ N2(s—1)

Py (PNNle Py, 0, (zw)) PNw}

10,t[xR

Ni2N

t
< N2 / | Ponvellzee | Pl z N¥/2 ] g -1s2

N2 / 1Pxwlze S 1 Panyellne V2200 (20)] o2

N12N

SonTlell, e D 2l g rre 1wl e g (4.47)

since for s > 1/2, (2—s) V1V (s+1/2)=(2—s)V(s+3). .

2. The contribution of Px(P«ne zzw). We rewrite this term as
PN(P<<N€ zmw) =Py (P<<N€ P’gl’w PNZI) + Py (P<<N€ PN’LU PSlzl)

+ E Py (P<<N2/\N3 Penewn, 3zZN3)
1<K N3,N2

+ E Py (P5N2/\N3P<<N€ wNzaIZNS)
1<K N3,N2

=A+B+C+D. (4.48)

Proceeding as in the proof of (4.26), it is not too difficult to check that the contri-
butions of A and B can be bounded by

26| / A+ BIPyu] STox el el s (449
L, X
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To bound the contribution of C', we notice that the integral is of the form (4.2) so
that we can use Lemma 4.2. Proceeding as in (4.29)-(4.30) we get

N [ epyul S THEy (lelug, + ez eyl (450)
10,¢[xR r

Finally we rewrite D as

D = Z PN(P2N2P<<N€’LUN2PNZz) + Z PN(P2N3P<<N€PN’U}6$ZN3)
N2>1 N3>1

Proceeding as in (4.27) we easily get

NQ(S*”’/ DPNw‘ S Tonllellngorllzll g mellwl e e (4.51)
10,t[xR

3. The contribution of Pn(P«ne (zwy)). We rewrite this term as
PN(P<<N6 zwm) ZPN (P<<Ne PNZPf,lwI) + PN (P<<N€ P’glz wz)

+ E Py (P<<N2/\N3 Penezn, 3sz3)
1<K N3,N2

+ Z PN(PRNZAN3P<<N€ZN28CEU}N3)
1<K N3,N>
=A+B+C+D. (4.52)
Proceeding as in (4.26), we easily get

N2(5‘1)‘/] [ Rflevw’ S Tonllellug 12l ngmelwl e o - (4.53)
0,t[x

To bound the contribution of B we proceed as in (4.28), integrating by parts and
using the commutor estimate (2.13) to get

N2 /] [ BPyu| S n Tlelleon ez sl e (4.54)
0,t[x

Finally the contributions of C and D can be estimated exactly as the ones of C' and
D. O

Remark 4.1. Gathering Lemma 4.3 and Propositions 4.1-4.2 we observe that suf-
ficient hypotheses for these statements to hold are
be LeClETOVIT e [TVt g e peocllt

1yy2 4.55
ec L$C£(5+2)V2)+, ee € LT, and f€ L%OCLSH (4.55)

5. PROOF OF THEOREM 1.1

5.1. Uniqueness. Assume (4.55) are fulfilled and ug € H*(R) with s > 1/2. Let
u and v be two solutions of (1.2) emanating from wug that belong to LFH® N
L3,(10,T[; H**) for some T' > 0. Then according to Lemma 4.3, u and v belong

to Y and Proposition 4.2 together with (4.12) ensure that for any 0 < Top < T A2
it holds

e = oIl pro-s + lu = 0lZ2 o,mp )
1
ST b ol (e = ol o + =13 o me)) -

This forces u = v on some time interval |0, 7] with 0 < Ty < T. Taking now T3
as initial time we can repeat the same argument to get that «w = v on |0,7 V 277
and a finite iteration of this argument leads to « = v on ]0, T'[. It is worth noticing
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that in the case b = 0, LFH* N L§, (10, T[; H**') = LFH* and thus we get the
unconditional uniqueness of (1.2) in H*(R) for s > 1/2.

5.2. Existence. We make use of the famous existence result of Craig-Kappeler-
Strauss [7] for the general quasilinear KdV type equations :

ug + F(02u, 0%u, pu, u, x,t) = 0 . (5.1)

In this paper, the following assumptions on F' are made :
F : R® x [0,T] = R is C* in all its variables and satisfies

(A1) Je > 0 such that 1 F(y,z,t) >c>0forally e R*, z € R and ¢ € [0,7T].

(A2) O2F(y,z,t) <0.

(A3) All the derivatives of F(y,z,t) are bounded for z € R, t € [0,7] and y in a

bounded set.

(A4) zNOIF(0,x,t) is bounded for all N >0, 5 >0, z € R and ¢ € (0, 7).
Fixing F' that satisfies (A1)-(A4), in [7] it is shown that for any k € N with & > 7
and any co > 0 there exists T = T'(cg) > 0 such that for any ug € H*(R), with
|luol| g7 < co, the Cauchy problem associated with (5.1) has a unique local solution
u € L0, T; H*(R)).

This implies that for any F satisfying (A1)-(A4) and any ug € H* with k > 7,
the unique solution u to (5.1) can be prolonged on a maximal time interval [0, 7]
with either

T* =+oo or limsup|lullpe(o,r;m7) = +00 . (5.2)
T T

We notice that (1.2) corresponds to (5.1) with

F(y,a,t) = y1 — b(t,x)y2 + c(t, 2)ys + d(t, x)ys — e(t, 2)ysya — f(t,2)y]
In particular, for any y € R* x € R and t € [0,7] we have 9, F(y,z,t) = 1 and
F(0,,t) = 0 which ensure that (A1) and (A4) are clearly fulfilled. Moreover, the
hypothesis b > 0 ensures that (A2) is also fulfilled. Therefore, since our coefficient
functions are by hypothesis all bounded on [0,7] x R, it thus suffice to regularize
them by convoluting in (¢,2) with a smooth positive sequence of mollifiers to fulfill
the assumptions (A1)-(A4).

So let the coefficient functions a,b,c,d, e, f satisfying the hypotheses of The-
orem 1.1 and let uy € H*(R) with s > 1/2. We first construct the solution
emanating from wug to (1.2) with a,b, ¢, d, e replaced by their smooth regulariza-
tions. For this we regularize the initial datum by setting, for any n € N*, up, =
P<pup € H®(R). According to the existence result of [7] there exists a sequence
(T,,) with 0 < T,, < 1 such that, for any n € N* (1.2) has a unique solution
up € L*(0,T,; H*(R)) emanating from wug,. Note that (1.2) then implies that
actually u, € C([0,T,]; H*(R)). Now, applying (4.11) and (4.16) for u,, on [0, T}]
we obtain that

2 2
[[un ||L;°n H<0 +HunHL[2b] (10, T, [;H0+1)

1 6
< luol%e +€ T3 (14 Jull3 e o+l 23, oz, prvosn)

(v
for so = 3+ < s. Using the continuity of T = |[u|| Lo (0,7 #170) + |\u|\L[zb](]O,T[;HSO+1)
this ensures that there exists 0 < Ty = To(||uo||me0) < 2 such that

HUnHLoo(O’TZ;HSO) + HUHL[Zb](]O7T2[;HSO+1) S 4Hu0,nHHso fOI‘ T2 = Tn /\TO .

Using again (4.11) and (4.16), we obtain that, for any fixed n > 0, u,, is bounded
in L H". Therefore (5.2) ensures that u, can be extended on [0,Tp]. Hence, it
holds

1%n | oo (0, 10; 750 ) + ||Un||L[2b](O,Tg;H30+1) < 4 ug||mso -
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Applying again (4.11) and (4.16) but at the H®-regularity this forces

[unllLoo 0,70:m9) + [[tnll L2, 01050541 S Nwoll s -

(b]
Note that Lemma 4.3 and Proposition 4.2 then ensure that (u,) is a Cauchy se-
quence in L (0, To; H*~1) and thus it is also a Cauchy sequence in L> (0, Tp; H2T).
Let u be the limit of w, in L°(0, To; H%*‘). From the above estimates we know
that u € L*°(0, To; H®) and it is immediat to check that u satisfies (1.2) at least in
L0, To; H*73).

Now we can pass to the limit on the coefficient functions. Since their regular-
izations are bounded in the function spaces appearing in Remark 4.1, we obtain

the existence of a solution u € L>(0,Tp; H*) N L[Qb] (0, To; H*T1) that is the unique

one in this class on account of Subsection 5.1. Now the continuity of u with values
in H*(R) as well as the continuity of the flow-map in H*(R) will follow from the
Bona-Smith argument (see [6]). For any ¢ € H*(R), any integer n > 1 and any
r > 0, straightforward calculations in Fourier space lead to

[1P<nllgger S llollay  and [l = Pengllgo—r S 27" [[Ponipllag - (5:3)

Let ug € H* with s > 1/2 and let Ty = To(||uo|| ,1+) > 0 the associated minimum

time of existence. We denote by u,, € L*°(0, Tp; H?) the solution of (1.2) emanating
from ug,, = P<pug and for 1 < n; < no, we set

W= Uy, — Unpy -
Then, (4.39)-(4.12) lead to
lollyz— S 1w (O) [ e S ny I Ponytoll e - (5-4)
Moreover, for any r > 0 and s > 1/2 we have
[undlygsr S lwomllzsrr S nilluolla: - (5.5)
Next, we observe that w solves the equation

1
Wy + Wy — bway + cwy, + dw = 5@81(102) + €0y (Up, w) + fw? + 2fup,w. (5.6)

Proposition 5.1. Let 0 < T < 1 and w € Y with s > 1/2 be a solution to (5.6).
Then it holds

1
lwliem: S lw©)| +CT ((Iluml\YTs+Hun2||YTs)HwIIZYTs
+|\Um|\L%°HS+1||7~UHL%°HS*1H7~U||L%°HS) . (5.7)

Proof. It is a consequence of estimates derived in the proof of Propositions 4.1
and 4.2. Actually because of the loss of symetry we only have to take care of the
contribution of Py (P« nedyun,w). We decompose this term as in (4.48) to get

Pn(PeneOypun,w) =Py (P<<Ne Pojw INDN&CUM) + Py (P<<Ne Pyw PSlazunl)

+ g Py (P<<N2 ANy Penewn, P, 3mun1)
1<K N3,N2

+ E Py (PRNZ/\NSP<<N€ wN2PN36Iun1)
1K N3,N2

=A+B+C+D. (5.8)
The contribution of A and B can be easily estimated by

NQS

x

/] [ APyw| S Tonllel g, lum g e lwll g v llwl g - (5.9)
0,t[xR

init
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and
N25

| Brve| s Toulelug lumllvsoelolfipn- - (510)
10,¢[xR

To bound the contribution of C' we use again Lemma 4.2 and proceed as in (4.29)-
(4.30) to get

N2S

1
/ CPNw‘ ST6N (llellzg, + lleelng ) lun lvallwl (5.11)
10,t[xR
Finally we rewrite D as

D = Z PN(P2N2P<<N€’UJN2PN6$U”1) + Z PN(P2N3P<<N€PN’UJ6ZU”1)
N2>1 N3>1
= D1 + Do

We easily get

N2s

t
[ oipve|son [ 3 IPseli vl o o
10,t[xR 0 No>1

t 3_
< 5N/ D 1P npellee N3~ lwnglleres lltn [|zrosr || 2o
0 No>1
S OonTellrecn

Un, || g genr Wl e llwllge s (5.12)

since s > 1/2. In the same way we get

N2S

t
[ Dapvu|son [ 3 IPsel [0: Pyt
10,t[xR 0 Ng>1

t 3_
Son [ 3 IPonells Nf 1 Pygn e[l
0

N3>1
S onTlell e llull g msllwl e e (5.13)
that completes the proof of the proposition. O

Combining (4.12) with (5.7) and (5.5) we get for 0 < T < Tp,

1
lwlly; < lw(O)F. + 17 {HUOHHusH%;

+naluol g wllv; wHYTH} .

Therefore, for T'> 0 small enough, (5.4) leads to

lwll¥; < w07 +nillw]f. (5.14)
9]

N ||P>’n1uOH§_Is —0asn; —0.

This shows that {u,,} is a Cauchy sequence in C ([0, T]; H®) and thus {u,, } converges

in C([0,7T]; H®) to a solution of (1.2) emanating from wuo.Then, the uniqueness
result ensures that v € C([0,T]; H®). Repeating this argument with «(7") as initial
data we obtain that u € C([0,71]; H®) with 71 = max(2T,Tp). This leads to
u € C([0,To]; H®) after finite number of repetitions.

Continuity of the flow map. Let now {uf} C H*(R) be such that uf —
up in H*(R). We want to prove that the emanating solution u* tends to u in
C([0,Tp]; H®). By the triangle inequality, for k large enough,

lu— ¥l me < lu—unllzg me + lun —upllzg e + lluy — ||z
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Using the estimate (5.14) on the solution to (5.6) we first infer that
lu—unllyz, + llu® —ugllvg S 1Psnuollr: + || Psnug]|a:
and thus

lim sup(||u—u ||L°0Hs + [|u® —unHLoeHs) =0. (5.15)
o0 keN

n— oo

Next, we notice that (4.39)-(4.12) ensure that
lun = ugllyz1 S lluon — ug pll o1
To
and thus (5.14) and (5.4) lead to
ln — b2 S o — bl + 2o — bl
lluo — g7+ (1 +n?). (5.16)
Combining (5.15) and (5.16), we obtain the continuity of the flow map.

6. APPENDIX

6.1. Proof of Lemma 2.5. We start by proving (2.13). Let N > 0. We follow [10].
By Plancherel and the mean-value theorem,

(1P, P f19)(@)| = [(1Px, Pex f1Png)(x)
- ’/Rf; (on)(@ = y)Penf(y) Prg(y) dy
/P<<Nf() Hew) (@ —y)Prgly dy‘
= | [ (Pex ) = P Fa) N (0)(N o = ) Pral) d|

< |Penfull i / Niz — ol F @) (N (@ — 9) | Prg ()| dy

Therefore, since N| - ||[F; () (N-)| = |F; (") (N-)| we deduce from Young’s con-
volution inequalities that

|(Px. Penf19)ll2 S N7 P fulloze | Pavgll e
To prove (2.14) we proceed in the same way. We first notice that
In(z) = ([Pn, [Pn, P<n f1]9)(x) = ([Pn, [Pn, P<n f]]Png)(2)

/R Fem) @ =y F em)y = 2) (Pan £(2) = Pan f(y)) Prg(=) dydz
/R2 FiN — ) F, (on)(y — 2) (P<<Nf(y) — P<<Nf(w))151vg(2) dy dz
/ (& — ) F5  (on)(y — 2)(= — )P fo(0ry =) Prvg(2) dy d

- [ F ema = ) F em)y = ) = 0)Pan fo(0y)) Pr(2) dy

with ay, . € [y, 2] and oy » € [y, z]. Performing the change of variable § = x4+ 2 —y
in the last integral we get

T) = /R2 Fo (on) (@ —y)Fy Hen)(y —2)(z —y) ((P<<Nfz(0<y,z)

— Penfa (Oéz,z+z—y)) IBNg(z) dy dz
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with o 242y € [, + 2z — y]. Finally, noticing that
lay,z = 0z atemy| S max(|z —yl, |z — 2], 2 4+ 2 — 2y]) < 2max(|z — yl, [y — 2])

and using again the mean-value theorem we eventually obtain

1| < 20 P foall e |
L= PN W = )IF W @ = ) gl dyd:

+ /R2 |z — yIN|F; (@) (N (2 — y)llz — yIN|F, () (N (2 — )| Prg(2)| dy dz

which yields to the desired result for the same reasons as above.
Finally, to prove (2.15) we first use Parseval identity and the fact that g is
real-valued to obtain

/[PN,P<<Nf]g Pyg
R

= /}R2 (o (&1 + €2) — on () Pen F(E0)3(E)on (€1 + €2)3(—€1 — &) dEy dés .

Performing the change of variable (&1, &) = (€1, —£1 — &) and recalling that ¢y
is an even real valued function we then get

/R[PN;P<<Nf]9 Png
= [ (on(&) — on (6 + EDPen (a6 — E)on(E)ilé) dr o
= */R[PN,P«Nf]g Png
+ [ (on(@) = oné + &) PanT ()i~ — £)a(é) 461
= —/R[PN,P<<Nf]g PN9+A[PN,[PN,P<<Nf] 99 -

This yields (2.15) by noticing that g can be replaced by IsNg without changing the
value of [,[Pn,P<n flg Png.
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