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ON WELL-POSEDNESS FOR SOME KORTEWEG-DE VRIES

TYPE EQUATIONS WITH VARIABLE COEFFICIENTS.

LUC MOLINET, RAAFAT TALHOUK AND IBTISSAME ZAITER

Abstract. In this paper, KdV-type equations with time- and space-dependent
coefficients are considered. Assuming that the dispersion coefficient in front
of uxxx is positive and uniformly bounded away from the origin and that a
primitive function of the ratio between the anti-dissipation and the dispersion
coefficients is bounded from below, we prove the existence and uniqueness of
a solution u such that hu belongs to a classical Sobolev space, where h is a
function related to this ratio. The LWP in Hs(R), s > 1/2, in the classical
(Hadamard) sense is also proven under an assumption on the integrability of
this ratio. Our approach combines a change of unknown with dispersive esti-
mates. Note that previous results were restricted to Hs(R), s > 3/2, and only
used the dispersion to compensate the anti-dissipation and not to lower the
Sobolev index required for well-posedness.

1. Introduction and Main Results

1.1. Presentation of the problem. In this paper, we study the Cauchy problem
for the KdV-type equation with variable coefficients




ut + α(t, x)u3x + β(t, x)u2x + γ(t, x)ux + δ(t, x)u

= ǫ(t, x)uux for (t, x) ∈ (0, T )× R

u|t=0
= u0,

(1.1) KdV1

where u = u(t, x), from [0, T ]× R into R, is the unknown function of the problem,
u0 = u0(x), from R into R, is the given initial condition, α = α(t, x) ≥ α0 >
0 ∀ (t, x) ∈ [0, T ] × R, and β, γ, δ, ǫ are real-valued smooth and bounded given
functions with exact regularities that will be precised later. Of course, we will also
require a strong condition on the relation between α and the positive part of β.
This equation covers several important unidirectional models for the water waves
problems at different regimes which take into account the variations of the bottom.
We have in view in particular the example of the KdV equation with variable
coefficients (see for instance [10], [13]) for which β ≡ 0. Looking for solutions of
(1.1) plays an important and significant role in the study of unidirectional limits
for water wave problems with variable depth and topographies.

The study of equations of this type with variable coefficients goes back to the sem-
inal paper of Craig-Kappeler-Strauss [7] where the local well-posedness (LWP) in
high regularity Sobolev spaces is established under the condition that −β ≥ 0. Ac-
tually their results even concern quasilinear version of (1.1). In [2], Akhunov proved
that the associated linear equation is LWP under an assumption on the bounded-
ness uniformly in time and space of the primitive function (t, x) 7→

∫ x

0 r(t, z)dz
where r(·, ·) is the ratio function r(t, z) = β(t, z)/α(t, z). He also showed some
evidences on the sharpness of this assumption. Adaptation of the LWP in high
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regularity Sobolev spaces under this hypothesis for quasilinear and fully nonlinear
generalizations of (1.1) can be found in respectively [1] and [3]. In [8], Israwi and
the second author proved the LWP of (1.1) in Hs(R), s > 3/2, under the same type
of integrability assumption on the ratio function r(t, x). Their method of proof uses
weighted energy estimates.

Up to our knowledge, our approach is the first one that enables to treat low
regularity solutions. Note that, in sharp contrast to [8], we use in a crucial way
the dispersive nature of the equation driven by the third order term not only to
compensate the anti-diffusion term but also to lower the regularity of the resolution
space. We proceed in two steps. In a first step we make a change of unknown in
order to rely the solutions of (1.1) to the solutions of the following KdV-type
equation with a constant coefficient in front of u3x :

ut + u3x − b(t, x)u2x + c(t, x)ux + d(t, x)u = e(t, x)uux + f(t, x)u2

for (t, x) ∈ (0, T )× R

(1.2) KdV2

where b, c, d, e, f are real-valued smooth given functions with this time b ≥ 0. Note
that this change of unknown is related to the gauge method that is used in similar
contexts as in [2], [5], [8]. Actually, at this stage, to ensure that the coefficients e and
f of the nonlinear terms are bounded we will require the boundedness from above
uniformly in [0, T ]×R of −

∫ x

0 r1(t, z) dz where r1 = β1/α is, roughly speaking, the
ratio function between the positive part β1 of β and α (see Hypothesis 3 in Section
3).

We then prove that the Cauchy problem associated with (1.2) is locally well-

posed (1)in Hs(R), s > 1/2, by using the method recently introduced by the first
author and S. Vento in [11] that combines energy’s and Bourgain’s type estimates.
It is worth noticing that terms as c(t, x)ux and −b(t, x)u2x may not be treated by a
classical fixed point argument in Bourgain’s spaces associated with the KdV linear
flow. We would like also to emphasize that we will not require a coercive condition
on b in [0, T ]×R (b ≥ β > 0 on [0, T ]×R) but only the non negativity of b. Actually
we even obtain the unconditional uniqueness in Hs(R) in the case b = 0.

Coming back to (1.1) this proves the existence of a solution u such that hu ∈
C([0, T ];Hs) with T = T (‖hu0‖Hs), where h > 0 defined in (3.8) is a function
related to the ratio function r(·, ·) (see Theorem 3.1). This solution is the unique
solution of (1.1) such that hu belongs in L∞(0, T ;Hs). It is worth pointing out
that we do not need any assumption (except to be bounded and ”smooth”) on the
coefficient β outside a neighborhood of −∞. Actually, as noticed in Remark 3.1,
any smooth and bounded β that is non positive uniformly in time at −∞ would
satisfy our assumption.

Finally to get the LWP of (1.1) in classical Sobolev spaces Hs(R), s > 1/2, we
need not only h but also 1/h to be bounded, that corresponds to require h to be
a classical gauge. This leads to an integrability conditon on R uniformly in time
of the ratio function r1(·, ·). Note that this type of condition, that already appears
in other works on the subject as [2] and [8], is proven to be sharp for the LWP in
Hs(R) of the linear equation in [2]. In particular, it turns out that anti-diffusion
on a compact set will not avoid the local well-posedness of the equation.

To end this introduction, let us recall the linear explanation of this last result
that can be found for instance in [5]. To simplify we concentrate on the linear

(1)In a forthcoming paper we will show how to enhance the LWP result to Hs(R), s ≥ 0, that
will enable to prove a global well-posedness result for a KdV equation with a variable bottom that
is non increasing.
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equation

ut + αu3x + βu2x = 0 .

and we assume that α and β are constant on [0, T ]× [−R,R] with α > 0 and β ≥ 0.
Since a wave packet of amplitude close to A and frequencies close to ξ0 moves to
the left with a speed close to dω

dξ (ξ0) = 3αξ20 , this wave packet will stays in [−R,R]
during about an interval of time ∆t = 2R

αξ20
and thus the effect of the anti-diffusion

will make its amplitude growths to A exp(2R β
α ) that does not depend on ξ0. This

shows that the speed of propagation of wave packets induced by the dispersion term
of order three ∂3x is just sufficient to compensate the growth of the amplitude of
this wave packet induced by the anti-diffusion on a compact set.

1.2. Main results. In the sequel [s] denotes the integer part of the real number s
and for any N ∈ N, CN

b (R) denotes the space of functions f ∈ CN (R) with f , f ′,

.., f (N) bounded.
We first introduce our notion of solutions to (1.1) and (1.2).

Definition 1.1. Assume that α ∈ L∞
T C

3
b , β ∈ L∞

T C
2
b , γ, ǫ ∈ L∞

T C
1
b and δ ∈

L∞(]0, T [×R).
We say that u ∈ L∞

T L
2
x is a weak solution to (1.1) if for any φ ∈ C∞

c (]−T, T [×R)
it holds
∫ T

0

∫

R

u
[
−φt − ∂3x(αφ) + ∂2x(βφ) − ∂x(γφ) + δφ

]
dx dt +

1

2

∫ T

0

∫

R

u2∂x(ǫφ) dx dt

+

∫

R

u0(x)φ(0, x) dx = 0 (1.3) weak1

rem1 Remark 1.1. Note that if u ∈ L∞
T L

2
x is a weak solution to (1.1) then (1.1) is

satisfied in the distributional sense on ]0, T [×R and thus ut ∈ L∞
T H

−3
x . This forces

u to belong to Cw([0, T ];L
2(R)) and (1.3) ensures that u(0) = u0.

We define in the same way the weak solutions to (1.2).

Definition 1.2. Assume that b ∈ L∞
T C

2
b , c, e ∈ L∞

T C
1
b and d, f ∈ L∞(]0, T [×R).

We say that u ∈ L∞
T L

2
x is a weak solution to (1.2) if for any φ ∈ C∞

c (]−T, T [×R)
it holds
∫ T

0

∫

R

u
[
−φt − φ3x − ∂2x(bφ)− ∂x(cφ) + dφ

]
dx dt+

∫ T

0

∫

R

u2
[1
2
∂x(eφ) + f

]
dx dt

+

∫

R

u0(x)φ(0, x) dx = 0 (1.4) weak2

Let us now state our first result.

th2 Theorem 1.1. Let s > 1
2 and T ∈]0,+∞]. Assume that b, c, e in

L∞(]0, T [;C
[s]+2
b (R)) with et in L∞(]0, T [×R) and d, f ∈ L∞(]0, T [;C

[s]+1
b (R)).

Assume moreover that

b ≥ 0 on [0, T ]× R . (1.5)

Then for all u0 ∈ Hs(R), there exist a time 0 < T0 = T0(‖u0‖
H

1
2
+) ≤ T and a

solution u to (1.2) in C([0, T0];H
s) ∩L2

[b](0, T0;H
s+1). This solution is the unique

weak solution of (1.2) that belongs respectively to L∞(0, T0;H
s) ∩L2

[b](0, T0;H
s+1)

and L∞(0, T0;H
s) in respectively the cases b 6≡ 0 and b ≡ 0. Moreover, for any

R > 0 the solution-map u0 7→ u is continuous from the ball of Hs(R) centered at
the origin with radius R into C([0, T0(R)];H

s).

Remark 1.2. L2
[b](0, T0;H

s+1) is defined in Subsection 2.2.
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Remark 1.3. The hypotheses on the coefficients b, c, d, e and f given in the above
statement are not optimal. More accurate hypotheses on the coefficients b, c, d, e
and f involving norms in Zygmund spaces can be found in Remark 4.1.

By a suitable change of unknown we will be able to link the solutions of (1.1) to
the ones of (1.2). As a consequence of the above theorem we then get the following
result for (1.1).

th1 Theorem 1.2. Let s > 1
2 , T ∈]0,+∞] and assume that α ∈ L∞(]0, T [;C

[s]+4
b (R))

with αt ∈ L∞(]0, T [;C
[s]+1
b (R)) β, γ, ǫ in L∞(]0, T [;C

[s]+2
b (R)) with ǫt in L

∞(]0, T [×R)

and δ ∈ L∞(]0, T [;C
[s]+1
b (R)). Assume moreover that

1. There exists α0 > 0 such that for all (t, x) ∈ [0, T ]× R,

α0 ≤ α(t, x) ≤ α−1
0 .

2.

sup
(t,x)∈[0,T ]×R

∣∣∣
∫ x

0

(α−4/3αt)(t, y)dy
∣∣∣ <∞ .

3. β can be decomposed as β = β1+β2 with β2 ≤ 0, β1, β2 ∈ L∞(]0, T [;C
[s]+2
b )

such that

(t, x) 7→
∫ x

0

(α−1β1)(t, y) dy ∈ W 1,∞([0, T ];L∞(R)) .

We set g(t, x) = −β2(t, x)α1/3(t, A(x)) Then for all u0 ∈ Hs(R), there exist a
time 0 < T0 = T0(‖u0‖

H
1
2
+) ≤ T and a solution u to (1.1) in C([0, T0];H

s) ∩
L2
[g](0, T0;H

s+1). This solution is the unique weak solution of (1.1) that belongs

to L∞(0, T0;H
s) ∩ L2

[g](0, T0;H
s+1). For any R > 0 the solution-map u0 7→ u

is continuous from the ball of Hs(R) centered at the origin with radius R into
C([0, T0(R)];H

s).

Remark 1.4. It is worth noticing that point 3. of the above theorem is satisfies if
there exists R > 0 such that

β ≤ 0 on [0, T0]× (R \ [−R,R]) .

Indeed, we can then decompose β as β = β1 + β2 with β1 ≡ 0 on R \ [−R0, R0[ with
R0 > R, that clearly satisfies point 3. This means that, when the anti-dissipation
is confined in a fixed compact set for all t ∈ [0, T ], the Cauchy problem associated
to (1.1) is locally well-posed in the Hadamard sense in Hs.

Remark 1.5. If Hypothesis 3. in Theorem 1.2 holds with β1 = β (i.e. β2 = 0)
then the change of unknown does link the solution to (1.1) to a solution of (1.2)
with b ≡ 0 on R. Therefore, on account of Theorem 1.1, we obtain that in this case
(1.1) is actually unconditionally locally well-posed in Hs(R).

The rest of this paper is organized as follows. In the next section we introduce
some notations, define our resolution spaces and recall some technical lemmas that
will be used in Section 4 to prove estimates on solutions to (1.1). Note that the
proof of some of these lemmas are postponed to the appendix. In Section 3 we
establish the links between the problems (1.1) and (1.2) that enables us to prove
Theorem 1.2 assuming Theorem 1.1. Finally, Sections 4 and 5 are devoted to the
proof of Theorem 1.1.
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2. Notations, function spaces and technical lemmas
sect2sect21

2.1. Notations. For any s ∈ R, we denote [s] the integer part of s. For α ∈ R, α+,
respectively α−, will denote a number slightly greater, respectively lesser, than α.

For (a, b) ∈ (R+)
2, We denote by respectively a ∨ b and a ∧ b the maximum and

the minimum of a and b.
We denote by C(λ1, λ2, . . . ) a nonnegative constant depending on the parameters
λ1, λ2,. . . and whose dependence on the λj is always assumed to be nondecreasing.
Let p be any constant with 1 ≤ p < ∞ and denote Lp = Lp(R) the space of all
Lebesgue-measurable functions f with the standard norm

‖f‖Lp =
( ∫

R

|f(x)|pdx
)1/p

<∞.

The real inner product of any two functions f1 and f2 in the Hilbert space L2(R)
is denoted by

(f1, f2) =

∫

R

f1(x)f2(x)dx.

The space L∞ = L∞(R) consists of all essentially bounded and Lebesgue-measurable
functions f with the norm

‖f‖L∞ = sup |f(x)| <∞.

We denote by W 1,∞(R) = {f ∈ D′(R), s.t. f, ∂xf ∈ L∞(R)} endowed with its
canonical norm.
For any real constant s ≥ 0, Hs = Hs(R) denotes the Sobolev space of all tem-
pered distributions f with the norm ‖f‖Hs = ‖Λsf‖L2 < ∞, where Λ is the
pseudo-differential operator Λ = (1− ∂2x)

1/2.
For any two functions u = u(t, x) and v(t, x) defined on [0, T )×Rwith T > 0, we de-
note the Hs inner product, the Lp-norm and especially the L2-norm, as well as the
Sobolev norm, with respect to the spatial variable x, by (u, v) = (u(t, ·), v(t, ·))Hs ,
‖u‖Lp = ‖u(t, ·)‖Lp, ‖u‖L2 = ‖u(t, ·)‖L2 , and ‖u‖Hs = ‖u(t, ·)‖Hs , respectively.
We denote L∞([0, T );Hs(R)) the space of functions such that u(t, ·) is controlled
in Hs, uniformly for t ∈ [0, T ):

∥∥u
∥∥
L∞([0,T );Hs(R))

= supt∈[0,T ) |u(t, ·)|Hs < ∞.

Finally, Ck(R) denotes the space of k-times continuously differentiable functions.

Throughout the paper, we fix a smooth even bump function η such that

η ∈ C∞
0 (R), 0 ≤ η ≤ 1, η|[−1,1]

= 1 and supp(η) ⊂ [−2, 2]. (2.1) defeta

We set φ(ξ) := η(ξ) − η(2ξ). For l ∈ N \ {0}, we define

φ2l(ξ) := φ(2−lξ) and ψ2l(ξ, τ) = φ2l(τ − ξ3) .

By convention, we also denote

φ1(ξ) := η(ξ) and ψ1(ξ, τ) := η(τ − ξ3).

Any summations over capitalized variables such as N, L, K or M are presumed to
be dyadic. Unless stated otherwise, we work with non-homogeneous decompositions
for space, time and modulation variables, i.e. these variables range over numbers
of the form {2k : k ∈ N} respectively. Then, we have that

∑

N≥1

φN (ξ) = 1 ∀ξ ∈ R, supp (φN ) ⊂ {N
2

≤ |ξ| ≤ 2N}, N ∈ {2k : k ∈ N \ {0}},

and ∑

L≥1

ψL(ξ, τ) = 1 ∀(ξ, τ) ∈ R
2, L ∈ {2k : k ∈ N}.
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Let us now define the following Littlewood-Paley multipliers :

PNu = F−1
x

(
φNFxu

)
, QLu = F−1

(
ψLFu

)
, RKu = F−1

t

(
φKFtu

)
. (2.2) project

We then set

P̃N :=
∑

N/4≤K≤4N

PK , P≥N :=
∑

K≥N

PK , P≤N :=
∑

1≤K≤N

PK , P≪N :=
∑

1≤K≪N

PK ,

P&N :=
∑

K&N

PK , Q≥L :=
∑

K≥L

QK , Q≤L :=
∑

1≤K≤L

QK and Q∼L :=
∑

K∼N

QK .

For brevity we also write uN = PNu, u≤N = P≤Nu, u≥N = P≥Nu, u≪N =
P≪Nu and u&N = P&Nu.

Following [10], to handle coefficient that are not asymptotically flat we will use
the classical Zygmund spaces : for s ∈ R, Cs

∗(R) is the set of all v ∈ S ′(R) such
that

‖v‖Cs
∗
:= sup

N≥1
Ns‖PNv‖L∞ <∞ . (2.3) defZyg

Note that, for all k ∈ N,

Ck+
∗ (R) →֒W k,∞(R) →֒ Ck

∗ (R) .

sect22
2.2. Function Spaces. Let T > 0, b ∈ L∞(]0, T [×R) with b ≥ 0 and θ > −1/2.
We define the sub vector space L2

[b](]0, T [;H
θ+1) of L∞(0, T ;L2(R)) as

L2
[b](]0, T [;H

θ+1) =
{
u ∈ L∞(0, T ;L2(R)), ‖u‖L2

[b]
(]0,T [;Hθ+1) < +∞‖

}

with

‖u‖2L2
[b]

(]0,T [;Hθ+1) =
∑

N>0

〈N〉2θ
∥∥∥
√
b PNux

∥∥∥
2

L2
TL2

x

(2.4) defL2b

For s, θ ∈ R, we introduce the Bourgain spaces Xs,θ related to the linear KdV
equation as the completion of the Schwartz space S(R2) under the norm

‖v‖Xs,θ :=

(∫

R2

〈τ − ξ3〉2θ〈ξ〉2s|v̂(ξ, τ)|2dξdτ
) 1

2

, (2.5) Bourgain

where 〈x〉 := 1 + |x|. Recall that

‖v‖Xs,θ = ‖U(−t)v‖Hs,θ
x,t

where U(t) = exp(−t∂3x) is the generator of the free evolution associated with the
linear KdV equation and where ‖ ·‖Hs,θ

x,t
is the usual space-time Sobolev norm given

by

‖u‖Hs,θ
x,t

:=

(∫

R2

〈τ〉2θ〈ξ〉2s|û(ξ, τ)|2dξdτ
) 1

2

.

We define the function space Y s by Y s = L∞
t H

s
x ∩ Xs−1,1 equipped with its

natural norm

‖u‖Y s = ‖u‖L∞
t Hs

x
+ ‖u‖Xs−1,1 . (2.6) defZs

Finally, we will use restriction in time versions of these spaces. Let T > 0 be a
positive time and Y be a normed space of space-time functions. The restriction
space YT will be the space of functions v : R×]0, T [→ R satisfying

‖v‖YT := inf{‖ṽ‖Y | ṽ : R× R → R, ṽ|R×]0,T [ = v} <∞ .
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2.3. Technical Lemmas. We first recall the following technical lemmas that were
proven in [11].

continuiteQ Lemma 2.1. Let L ≥ 1, 1 ≤ p ≤ ∞ and s ∈ R. The operator Q≤L is bounded in
Lp
tH

s uniformly in L ≥ 1.

For any T > 0, we consider 1T the characteristic function of [0, T ] and use the
decomposition

1T = 1lowT,R + 1highT,R , 1̂lowT,R(τ) = η(τ/R)1̂T (τ) (2.7) ind-dec

for some R > 0.

ihigh-lem Lemma 2.2. For any R > 0 and T > 0 it holds

‖1highT,R ‖L1 . T ∧R−1. (2.8) high

and, for any p ∈ [1,+∞],

‖1lowT,R‖Lp + ‖1highT,R ‖Lp . T 1/p (2.9) low

ilow-lem Lemma 2.3. Let u ∈ L2(R2). Then for any T > 0, R > 0 and L≫ R it holds

‖QL(1
low
T,Ru)‖L2 . ‖Q∼Lu‖L2

We will need product estimates in Sobolev spaces for functions in Sobolev and in
Zygmund spaces (see [4] for (2.10) and [10] for (2.12). The proof of (2.11) follows
exactly the same lines as the one of (2.10)).

product Lemma 2.4. 1. Let (t, s, r) ∈ R3 with s + r > t + 1/2, s + r > 0 and s, r ≥ t.
Then for any f ∈ Hs(R) and g ∈ Hr(R), it holds fg ∈ Ht(R) with

‖fg‖Ht . ‖f‖Hs‖g‖Hr (2.10) estsobo

2. Let (t, s, r) ∈ R3 with s+ r > t, s+ r > 0 and s, r ≥ t. Then for any f ∈ Cs
∗(R)

and g ∈ Hr(R), it holds fg ∈ Ht(R) with

‖fg‖Ht . ‖f‖Cs
∗
‖g‖Hr (2.11) estC

In particular, let s ∈ R, then for any f ∈ C
|s|+
∗ (R) and g ∈ Hs(R), it holds

fg ∈ Hs(R) with

‖fg‖Hs . ‖f‖
C

|s|+
∗

‖g‖Hs (2.12) estCs

We will also need the following lemma on commutator and double commutator
estimates (see ( [ [10], p. 288] the remark in the footnote for (2.13)) that we prove
in the Appendix.

commutator Lemma 2.5. Let f ∈ L∞(R) and g ∈ L2(R). For any N > 0 it holds

‖[PN , P≪Nf ]g‖L2
x
. N−1‖P≪Nfx‖L∞

x
‖P̃Ng‖L2

x
(2.13) commu

and ∥∥∥
[
PN , [PN , P≪Nf ]

]
g
∥∥∥
L2

x

. N−2‖P≪Nfxx‖L∞
x
‖P̃Ng‖L2

x
(2.14) commu2

Moreover, it holds
∫

R

[PN , P≪Nf ]g PNg =
1

2

∫

R

[
PN , [PN , P≪Nf ]

]
P̃Ng P̃Ng (2.15) comcom

Finally we construct a bounded linear operator from Xs−1,1
T ∩ L∞

T H
s
x into Y s

with a bound that does not depend on s and T . For this we follow [12] and
introduce the extension operator ρT defined by

ρT (u)(t) := U(t)η(t)U(−µT (t))u(µT (t)) , (2.16) defrho
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where η is the smooth cut-off function defined in Section 2.1 and µT is the contin-
uous piecewise affine function defined by

µT (t) =





0 for t 6∈]0, 2T [
t for t ∈ [0, T ]

2T − t for t ∈ [T, 2T ]
(2.17) defext

extension Lemma 2.6. Let 0 < T ≤ 2 and s ∈ R. Then,

ρT : Xs−1,1
T ∩ L∞

T H
s
x −→ Y s

u 7→ ρT (u)

is a bounded linear operator, i.e.

‖ρT (u)‖L∞
t Hs

x
+ ‖ρT (u)‖Xs−1,1 . ‖u‖L∞

T Hs
x
+ ‖u‖Xs−1,1

T
, (2.18) extension.1

for all u ∈ Xs−1
T ∩ L∞

T H
s
x.

Moreover, the implicit constant in (2.18) can be chosen independent of 0 < T ≤ 2
and s ∈ R.

3. Transformation of the problem and proof of Theorem 1.2.
sect3

3.1. Link between solutions of (1.1) and (1.2). The main assumption on the
coefficient of the third order term is that it is bounded from above and from below by
positive constants. Of course, we can also treat the case of a negative coefficient by
making the trivial change of unknwon ũ(t, x) = u(t,−x) but this will also change the
sens of the real axis. This would play no role in Theorem 1.2 but would change the
assumption sup(t,x)∈[0,T ]×R−

∫ x

0
β1

α (t, y)dy < ∞ by sup(t,x)∈[0,T ]×R

∫ x

0
β1

α (t, y)dy <
∞ in Theorem 3.1 below.

hyp1 Hypothesis 1. There exists α0 > 0 such that for all (t, x) ∈ [0, T ]× R,

α0 ≤ α(t, x) ≤ α−1
0 .

prop31 Proposition 3.1. Assume that Hypothesis 1 is satisfied and that α ∈ L∞(]0, T [;C3
b (R))

with αt ∈ L∞(]0, T [;Cb(R)) and β ∈ L∞(]0, T [;C2
b (R)). Let A ∈ L∞(]0, T [;C4

b (R))
with At ∈ L∞(]0, T [;C1

b (R)) be defined for (t, x) ∈ [0, T ]× R by

A(t, x) =

∫ x

0

α−1/3(t, y) dy (3.1) defA

and let h > 0 with h ∈ L∞(]0, T [;C3
b (R)) with ht ∈ L∞(]0, T [;Cb(R)). For each

t ∈ [0, T ] we denote by A−1(t, ·) the increasing reciproqual bijection of A(t, ·).
Then u ∈ L∞

T L
2
x is a weak solution to (1.1) if and only if

(t, x) 7→ v(t, x) = h(t, A−1(t, x))u(t, A−1(t, x))

is a weak solution to (1.2) with




b(t, x) = α1/3
(
−βα−1 + αxα

−1 + 3h−1hx

)

c(t, x) = At + α−1/3
(
6h2xh

−2α+ 4
9α

2
xα

−1 + αxhxh
−1 − 3h2xh

−1α− 1
3α2x

−2hxh
−1β − 1

3α
−1αxβ + γ

)

d(t, x) = α
(
−6h3xh

−3 + 6h2xh
−2hx − h3xh

−1
)
+ β

(
2h2xh

−2 − h2xh
−1

)

−γhxh−1 − hth
−1 + δ

e(t, x) = ǫα−1/3h−1 and f(t, x) = −ǫhxh−2 .
(3.2) defb

where all the functions in the right-hand side are evaluated at (t, A−1(t, x)).
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Proof. Since α ≥ α0 > 0 on [0, T ] × R, for each t ∈ [0, T ], A(t, ·) is an in-
creasing bijection of R with no critical point and thus its reciprocal bijection
A−1(t, ·) is well-defined and belong to the same Cn-space. Therefore, since α ∈
L∞(]0, T [;C3

b (R)) with αt ∈ L∞(]0, T [;Cb(R)), it is clear that A and A−1 belong
to L∞(]0, T [;C4

b (R)) ∩W 1,∞([0, T ];C1
b (R))

We first assume that u ∈ C([0, T ];H∞) with ut ∈ L∞(]0, T [;H∞) and we set

V (t, x) = h(t, A−1(t, x)) u(t, A−1(t, x)) (3.3) defV

so that

u(t, x) =
V (t, A(t, x))

h(t, x)

In the calculus below the functions u, h , α, β, γ, δ ǫ will be evaluated at (t, x)
whereas V is evaluated at (t, A(t, x)). Then it holds

ut(t, x) =− hth
−2V + h−1Vt +Ath

−1Vx

ux(t, x) =− hx
h2
V +

α−1/3

h
Vx

u2x(t, x) =α
−2/3h−1V2x −

(h−1

3
α−4/3αx + 2hxh

−2α−1/3
)
Vx

+
(
2h2xh

−3 − h2xh
−2

)
V

u3x(t, x) =α
−1h−1V3x + V2x

(
−h−1α−5/3αx − 3hxh

−2α−2/3
)

+ Vx

(
hxh

−2α−4/3αx +
4

9
h−1α−7/3α2

x − 1

3
h−1α−4/3α2x

− 3h2xh
−2α−1/3 + 6h2xh

−3α−1/3
)

+ V
(
6h2xhxh

−3 − 6h3xh
−4 − h3xh

−2
)

(uux)(t, x) =− h−3hxV
2 + α−1/3h−2V Vx .

Gathering the above identity we thus obtain

h(t, x)
(
ut + αu3x + βu2x + γux + δu− ǫuux

)
(t, x)

= [Vt + V3x − bV2x + cVx + dV − eV Vx − fV 2](t, A(t, x)) (3.4)

with b, c, d, e given by (3.2).
Therefore for φ ∈ L∞(]0, T [;C3

b (R)) with φt ∈ L∞(]0, T [;Cb(R)) and compact
support in [0, T [×R, making use at any fixed t ∈ [0, T ] of the change of variable
y = A−1(t, x) and noticing that A−1

x (t, x) = α1/3(t, A−1(t, x)) we observe that
∫ T

0

∫

R

(

ut + αu3x + βu2x + γux + δu− ǫuux

)

(t, y)φ(t, y) dy

=

∫ T

0

∫

R

h
(

ut + αu3x + βu2x + γux + δu− ǫuux

)

(t, y)
φ

h
(t, y) dy

=

∫ T

0

∫

R

[

h
(

ut + αu3x + βu2x + γux + δu− ǫuux

)φ

h

]

(t,A−1(t, x)) α1/3(t, A−1(t, x)) dx dt

=

∫ T

0

∫

R

(

Vt + V3x − bV2x + cVx + dV − eV Vx − fV
2
)

(t, x)ψ(t, x) dx dt

=

∫ T

0

∫

R

V
[

−ψt − ψ3x − ∂
2
x(bψ)− ∂x(cψ) + dψ

]

+ V
2
[1

2
∂x(eψ) + f

]

dx dt

+

∫

R

V (0, x)ψ(0, x) dx (3.5) weak11
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with ψ(t, x) =
α1/3 φ

h
(t, A−1(t, x)).

Now let u ∈ L∞

T L
2
x be a weak solution to (1.1). Recall that by Remark 1.1, ut ∈

L∞

T H
−3
x . Then by using mollifiers we can approximate u in L∞

T L
2
x by un ∈ C([0, T ] : H∞)

with ut ∈ L∞(]0, T [;H∞) such that un(0) → u0 in L2(R) and un → u ∈ L∞

T L
2
x. Note

that by defining Vn in the same way as V in (3.3) we also have Vn(0) → V0 in L2(R) and
Vn → V ∈ L∞

T L
2
x. Making use of (3.5) and that u is a weak solution to (1.1) we thus get

0 =

∫ T

0

∫

R

(

u
[

−φt − ∂
3
x(αφ) + ∂

2
x(βφ)− ∂x(γφ) + δφ

]

+
1

2
u
2
∂x(ǫφ)

)

(t, x) dx dt

+

∫

R

u0(x)φ(0, x) dx

= lim
n→+∞

∫ T

0

∫

R

(

un

[

−φt − ∂
3
x(αφ) + ∂

2
x(βφ)− ∂x(γφ) + δφ

]

+
1

2
u
2
n∂x(ǫφ)

)

(t, x) dx dt

+

∫

R

un(0, x)φ(0, x) dx

= lim
n→+∞

∫ T

0

∫

R

(

un,t + αun,3x + βun,2x + γun,x + δun − ǫunun,x

)

(t, x)φ(t, x) dx dt

= lim
n→+∞

∫ T

0

∫

R

Vn

[

−ψt − ψ3x − ∂
2
x(bψ)− ∂x(cψ) + dψ

]

+ V
2
n

[1

2
∂x(eψ) + f

]

dx dt

+

∫

R

Vn(0, x)ψ(0, x) dx

=

∫ T

0

∫

R

V
[

−ψt − ψ3x − ∂
2
x(bψ)− ∂x(cψ) + dψ

]

+ V
2
[1

2
∂x(eψ) + f

]

dx dt

+

∫

R

V (0, x)ψ(0, x) dx (3.6)

that proves that u is a weak solution to (1.1) if and only if :
(t, x) 7→ V (t, x) = h(t, A−1(t, x))u(t,A−1(t, x)) is a weak solution to (1.2). Indeed since
α, h ∈ L∞(]0, T [;C3

b (R)), αt, ht ∈ L∞(]0, T [;Cb(R)) with h > 0 and α ≥ α0 > 0, the map

Θ : φ 7→
(

φα1/3

h

)

(t, A−1(t, x))

is a bijection from the space of functions in L∞(]0, T [;C3
b (R)) with time derivative in

L∞(]0, T [;Cb(R)) and compact support in [0, T [×R into itself. The reciprocal bijection is
given by

Θ−1 : ψ 7→
(

ψh

α1/3

)

(t, A(t, x)) .

(1.3) is thus satisfied by all ψ ∈ L∞(]0, T [;C3
b (R)) with ψt ∈ L∞(]0, T [;Cb(R)) and com-

pact support in [0, T [×R that leads to the desired result. �

3.2. Proof of Theorem 1.2 assuming Theorem 1.1. We want to choose h such
that b ≥ 0. For this we decompose β(·, ·) as β1 + β2 with β1 and β2 bounded and
β2 ≤ 0 (Note that we can always take β1 = β and β2 = 0). According to (3.2) it
suffices to take h that satisfies

hx
h

=
1

3
(β1α

−1 − αxα
−1) (3.7) abiir

so that

b = −βα− 2
3 + αxα

− 2
3 + 3

hx
h
α1/3 = −β2α− 2

3 ≥ 0.

Equation (3.7) is satisfied for

h(t, x) =
[α(t, 0)
α(t, x)

]1/3
exp

(1
3

∫ x

0

(β1α
−1)(t, y) dy

)
. (3.8) defh
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For this choice of h we need the coefficients b, c, d, e, f to be bounded to solve
the equation with the help of Theorem 1.1. First we notice that the coefficient c
contains At. The requirement that At is bounded leads to the following hypothesis.

hyp2 Hypothesis 2.

sup
(t,x)∈[0,T ]×R

∣∣∣
∫ x

0

(α−4/3αt)(t, y)dy
∣∣∣ <∞ .

Now, since α ≥ α0 one can check that all the terms hx

h , h2x

h that appear in c

and d are bounded. On the other hand the boundedness of hth
−1 that appears in

the coefficient d requires a new hypothesis. Moreover, in the coefficient e and f
of the nonlinear part, h−1 appears alone. To force hth

−1, e and f to be bounded
we thus add the following hypothesis that ensures in particular that there exists
h0 > 0 such that for (t, x) ∈ [0, T0]× R, h(t, x) ≥ h0.

hyp3 Hypothesis 3. β can be decomposed as β = β1 + β2 with β2 ≤ 0, β1, β2 ∈
L∞([0, T ];C2

b ) , ∂tβ1 ∈ L∞(]0, T [;L∞) such that

sup
(t,x)∈[0,T ]×R

∣∣∣
∫ x

0

∂t(α
−1β1)(t, y)dy

∣∣∣ <∞ .

and

sup
(t,x)∈[0,T ]×R

−
∫ x

0

β1
α
(t, y)dy <∞ .

Now, according to Theorem 1.1, for s > 1/2, (1.2) is locally well-posed in Hs(R),

whenever b ≥ 0 on [0, T ]×R with b, c, e in L∞(0, T ;C
[s]+2
b (R)), et in L

∞(]0, T [×R)

and d, f ∈ L∞(]0, T [;C
[s]+1
b (R)).

In view of (3.2), (3.8) and Hypotheses 1-3, one can easily check that the function
spaces to which α, β, γ, δ, ǫ and β1, β2 belong in the statement of Theorem 1.2 ensure
that b, c, e, d and f belong to the above function spaces. Moreover, this ensures that
u ∈ C([0, T0];H

s) if and only if V (t, x) = h(t, A−1(t, x)) u(t, A−1(t, x)) belongs also
to this space. Therefore, gathering Theorem 1.1 and Proposition 3.1 leads to the
existence of a solution to (1.1) with uniqueness in the space of functions u such
that hu ∈ L∞(0, T0;H

s). More precisely, we can state the following slightly less
restrictive version of Theorem 1.2.

th3 Theorem 3.1. Let s > 1/2 and T ∈]0,+∞] and assume that α ∈ L∞(]0, T [;C
[s]+4
b (R))

with αt ∈ L∞(]0, T [;C
[s]+1
b (R)) β, γ, ǫ in L∞(]0, T [;C

[s]+2
b (R)) with ǫt in L

∞(]0, T [×R)

and δ ∈ L∞(]0, T [;C
[s]+1
b (R)). Assume moreover that

• There exists α0 > 0 such that for all (t, x) ∈ [0, T ]× R,

α0 ≤ α(t, x) ≤ α−1
0 .

•
sup

(t,x)∈[0,T ]×R

∣∣∣
∫ x

0

∂t(α
−1/3)(t, y)dy

∣∣∣ <∞ .

• β can be decomposed as β = β1+β2 with β2 ≤ 0, β1, β2 ∈ L∞(]0, T [;C
[s]+2
b )

such that

sup
(t,x)∈[0,T ]×R

∣∣∣
∫ x

0

∂t(α
−1β1)(t, y)dy

∣∣∣ <∞ .

and

sup
(t,x)∈[0,T ]×R

−
∫ x

0

β1
α
(t, y)dy <∞ .
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We set

h(t, x) =
[α(t, 0)
α(t, x)

]1/3
exp

(1
3

∫ x

0

β1α
−1

)
and g(t, x) = −β2(t, x)α1/3(t, A(x)) .

Then for all u0 ∈ Hs(R), there exist a time 0 < T0 = T0(‖u0‖
H

1
2
+) ≤ T and a

solution u to (1.3) in C([0, T0];H
s)∩L2

[g](0, T0;H
s+1). This solution is the unique

weak solution of (1.1) such that hu belongs to L∞(0, T0;H
s) ∩ L2

[g](0, T0;H
s+1).

remark31 Remark 3.1. It is worth noticing that we can always choose (β1, β2) such that
the hypothesis of integrability on β1α

−1 in the above theorem is satisfied in +∞.
Indeed, β being bounded by hypothesis, taking β2 such that β2 = − supR |β| on R+

it follows that β1 = β − β2 ≥ 0 on R+ and thus
∫ x

0
β1

α (t, y)dy ≥ 0 for any x ∈ R+.
That means that this existence and uniqueness result works with a uniform anti-
diffusion in the neighborhood of +∞. For instance a coefficient β such that β ≥ 1
on [0, T ] × R+. This lost of symmetry between +∞ and −∞ is linked to the fact
that we imposed that α > 0 so that linear waves solutions of ut + αu3x = 0 are
travelling only to the left.

Finally, if we want to get the well-posedness in the Hadamard sense of (1.1) we
need to require a little more on h so that ‖u(t)‖Hs ∼ ‖(hu)(t)‖Hs uniformly on
[0, T0]. This forces h to be situated between two positive values, i.e. there exists
h0, h1 > 0 such that for any (t, x) ∈ [0, T ]× R, h0 ≤ h(t, x) ≤ h1.

For this it suffices to replace Hypothesis 3 by the following one :

hyp4 Hypothesis 4. β can be decomposed as β = β1 + β2 with β2 ≤ 0, β1, β2 ∈
L∞([0, T ];C2

b ) , ∂tβ1 ∈ L∞(]0, T [;L∞) such that

(t, x) 7→
∫ x

0

(α−1β1)(t, y) dy ∈ W 1,∞([0, T ];L∞(R)) .

which leads to Theorem 1.1.

4. Estimates on the solutions to (1.2)
sect4

In this section, we prove the needed estimates on solutions to (1.2) to get the
local well-posedness of (1.2) in Hs(R) for s > 1/2. For this purpose we use the
approach introduced in [11] that mix energy’s and Bourgain’s type estimates.

4.1. An estimate using Bourgain’s type spaces. We start by proving the only
estimate where we need Bourgain’s type spaces. This estimate will be used to bound
the contribution of the nonlinear KdV term euux in the energy estimate. First we
check that under suitable space projections on the functions, we have a good lower
bound on the resonance relation that appears in this contribution.

resolem Lemma 4.1. Let Li ≥ 1 and Ni ≥ 1 be dyadic numbers and ui ∈ L2(R2) for
i ∈ {1, 2, 3, 4}. If N1 ≪ min(N2, N3, N4) then it holds

∫

R2

PN4

(
QL1P≤N1u1QL2PN2u2QL3PN3u3

)
QL4PN4u4 = 0

whenever the following relation is not satisfied :

Lmax ∼ N2N3N4 or (Lmax ≫ N2N3N4 and Lmax ∼ Lmed) (4.1) resonance3

where Lmax = max
i=1,..,4

Li and Lmed = max({L1, L2, L3, L4} − {Lmax}).
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Proof. Applying Plancherel identity, this is a direct consequence of the condition
N1 ≪ min(N2, N3, N4) together with the cubic resonance relation associated with
the KdV propagator :

Ω3(ξ1, ξ2, ξ3) = σ
(
−

3∑

i=1

τi,−
3∑

i=1

ξi

)
+

3∑

i=1

σ(τi, ξi) = −3(ξ2 + ξ3)(ξ1 + ξ3)(ξ1 + ξ2)

where σ(τ, ξ) := τ − ξ3. Note that the conditions on the Ni’s ensure that the above
integrals vanish for Lmax . 1. �

Now we can give our main estimate that uses Bourgain’s type spaces.

lemtriest Lemma 4.2. Assume 0 < T < 1, e ∈ L∞
Tx with et ∈ L∞

Tx and ui ∈ L∞
T H

−1/2 ∩
X

− 3
2 ,1

T , i = 2, 3, 4. Let Nj ∈ 2N, j = 1, 2, 3, 4 with N1 ≪ min(N2, N3, N4). Setting,
for all 0 < t < T ,

I3t = It(e, u2, u3, u4) =

∫ t

0

∫

R

PN4(P≤N1e PN2u2∂xPN3u3)PN4u4 , (4.2) II

it holds

|I3t | . (‖e‖L∞
Tx

+ ‖et‖L∞
Tx
)
[
‖PNrur‖L∞

T L2
x

(∑

i=p,q

‖PNiui‖L2
Tx

)( ∑

i=p,q

‖PNiui‖X−1,1
T

)

+ T
1
16N

− 1
4

p

4∑

i=2

(
‖PNiui‖X−1,1

T
+ ‖PNiui‖L∞

T L2
x

) 4∏

j=2
j 6=i

‖PNjuj‖L∞
T L2

x

]
(4.3) f1

whenever Np ∼ Nq & Nr where (p, q, r) is a permutation of (2, 3, 4).

Proof. We start by noticing that we may also assume that e and et belong to L2
TL

2
x.

Indeed, approximating e by eR = e ηR with ηR = η(·/R) where η is the smooth
non negative compactly supported function defined in (2.1), we notice that for any
t ∈ [0, T ], Lebesgue dominated convergence theorem leads for any N ∈ 2N to

F−1
x (φ≤N ) ∗ eR → F−1

x (φ≤N ) ∗ e = P≤Ne on R,

since F−1
x (φ≤N ) ∈ L1(R) and |e(t) ηR| ≤ |e(t)| ∈ L∞(R). Applying again the

Lebesgue dominated convergence theorem we get

∫ t

0

∫

R

PN4(P≤N1eR PN2u2∂xPN3u3)PN4u4 =

∫ t

0

∫

R

P≤N1eR PN2u2∂xPN3u3P
2
N4
u4

−→
R→+∞

∫ t

0

∫

R

P≤N1e PN2u2∂xPN3u3P
2
N4
u4

= I3t ,

by using that, for any fixed j ∈ N, P2jui ∈ L∞
Tx ∩ L2

Tx. This proves the desired
result since

‖eR‖L∞
tx
+ ‖∂teR‖L∞

tx
≤ ‖e‖L∞

tx
+ ‖∂te‖L∞

tx
, ∀R ≥ 1.

Now we extend the functions e, u2, u3, u4 on the whole time axis. For u2, u3, u4
we use the extension operator ρT defined in Lemma 2.6. On the other hand for
e we use the extension operator ρ̃T defined by ρ̃T (e)(t) = η(t)e(µT (t)) with µT

defined in (2.17) and η defined in (2.1). This extension operator is bounded from

W 1,∞
T L∞

x into W 1,∞
t L∞

x with a bound that does not depend on T > 0. To lighten
the notations, we keep the notation ui for ρT (ui) and e for ρ̃T (e). Fixing t ∈]0, T [
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and setting R = N
3
4
2 N3N

3
4
4 , we then split It as

It(e, u2, u3, u4) = I∞(e, 1hight,R u2, 1t u3, 1t u4) + I∞(e, 1lowt,Ru2, 1
high
t,R u3, 1t u4)

+ I∞(e, 1lowt,Ru2, 1
low
t,Ru3, 1

high
t,R u4) + I∞(e, 1lowt,Ru2, 1

low
t,Ru3, 1

low
t,Ru4)

:= Ihigh,1t + Ihigh,2t + Ihigh,3t + I lowt , (4.4) decIt

where I∞(e, u2, u3, u4) =
∫
R2 PN4(PN1e PN2u2∂xPN3u3)PN4u4. The contribution of

Ihigh,1t is estimated thanks to Lemma 2.2 and Hölder and Bernstein inequalities by

Ihigh,1t . N3‖1hight,R ‖L1‖e‖L∞
tx
‖PN2u2‖L∞

t L4
x
‖PN3u3‖L∞

t L2
x
‖PN4u4‖L∞

t L4
x

. T 1/4(N
3
4
2 N3N

3
4
4 )−

3
4N3(N2N4)

1
4 ‖e‖L∞

tx

4∏

i=2

‖P∼Niui‖L∞
t L2

x

. T 1/4(N2 ∨N3)
− 1

16 ‖e‖L∞
tx

4∏

i=2

‖PNiui‖L∞
t L2

x
(4.5) estIthigh

where we used that the frequency projectors ensure that N2 ∨N4 ∼ N2 ∨N3. The

contribution of Ihigh,2t and Ihigh,3t can be estimated in exactly the same way, using
that‖1lowt,R‖L∞

t
. 1 thanks to (2.9). To evaluate the contribution I lowt we use the

following decomposition :

I∞(e, 1lowt,R u2, u3, u4) = I∞(e,Q&N2N3N4
(1lowt,Ru2), 1

low
t,Ru3, 1

low
t,Ru4)

+ I∞(e,Q≪N2N3N4(1
low
t,Ru2), Q&N2N3N4

(1lowt,Ru3), 1
low
t,Ru4)

+ I∞(e,Q≪N2N3N4(1
low
t,Ru2), Q≪N2N3N4(1

low
t,Ru3), Q&N2N3N4

(1lowt,Ru4))

+ I∞(e,Q≪N2N3N4(1
low
t,Ru2), Q≪N2N3N4(1

low
t,Ru3), Q≪N2N3N4(1

low
t,Ru4))

= I2,lowt + I3,lowt + I4,lowt + I1,lowt , (4.6) AA

To evaluate the contribution I1,lowt we notice that since N3
1 ≪ N1N2N3, Lemma

4.1 ensures that

I1,lowt = I∞(R∼N2N3N4e,Q≪N2N3N4(1
low
t,Ru2), Q≪N2N3N4(1

low
t,Ru3), Q≪N2N3N4(1

low
t,Ru4))

where RK is the projection on the time Fourier variable (see (2.2)). Therefore, by
Bernstein inequality and Lemma 2.1 we get

|I1,lowt | . T (N2N3N4)
−1‖et‖L∞

tx
‖PN2u2‖L∞

tx
N3‖PN3u3‖L∞

t L2
x
‖PN4u4‖L∞

t L2
x

. T (N2 ∨N3)
− 1

2 ‖et‖L∞
tx
‖PN2u2‖L∞

t L2
x

4∏

i=3

‖PNiui‖L∞
t L2

x
(4.7)

Now, to evaluate the other contributions in (4.6) we have to separate different
cases. For the future use of Lemma 2.3, it is worth noticing that since N2, N4 ≫ 1,

R = N
3
4
2 N3N

3
4
4 ≪ N2N3N4.

Case 1 : N4 ∼ N3 & N2. Then I2,lowt can be easily estimated thanks to Lemma
2.3 and (2.9) by

|I2,lowt | .‖e‖L∞
tx
‖Q&N2N3N4

PN2(1
low
t,Ru2)‖L2

tx
N3‖1lowt,RPN3u3‖L2

tx
‖1lowt,RPN4u4‖L∞

tx

.T 1/2(N2N3N4)
−1N2N3N

1
2
4 ‖e‖L∞

tx
‖PN2u2‖X−1,1‖PN3u3‖L∞

t L2
x
‖PN4u4‖L∞

t L2
x

.T
1
2 (N2 ∨N3)

−1/2‖e‖L∞
tx
‖u2‖X−1,1

4∏

i=3

‖PNiui‖L∞
t L2

x
(4.8)
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To estimate the contribution of I3,lowt we notice that Lemma 2.2 together with the
fact that R ≥ N2 ∨N3 ensure that for any w ∈ L∞

t L
2
x

‖1lowt,Rw‖L2
tx

≤ ‖1tw‖L2
tx
+ ‖1hight,R w‖L2

tx
. ‖w‖L2

TL2
x
+ T 1/4(N2 ∨N3)

−1/4‖w‖L∞
T L2

x
.

Therefore Lemmas 2.1 and 2.3 lead to

|I3,lowt | .(N2N3N4)
−1N2

3 ‖e‖L∞
tx
‖PN2u2‖L∞

tx
‖PN3u3‖X−1,1‖1lowt,RPN4u4‖L2

tx

.N
−1/2
2 ‖e‖L∞

tx
‖PN2u2‖L∞

t L2
x

(
‖PN3u3‖X−1,1‖PN4u4‖L2

TL2
x

+ T 1/4(N2 ∨N3)
−1/4‖PN3u3‖X−1,1‖PN4u4‖L∞

T L2
x

)
(4.9)

and I4,lowt can be estimated in exactly the same way by exchanging the role of u3
and u4 to get

|I4,lowt | . N
−1/2
2 ‖e‖L∞

tx
‖PN2u2‖L∞

t L2
x

(
‖PN3u4‖X−1,1‖PN4u3‖L2

TL2
x

+T 1/4(N2 ∨N3)
−1/4‖PN3u4‖X−1,1‖PN4u3‖L∞

T L2
x

)
(4.10)

Gathering (4.4)-(4.10), we obtain (4.3) whenever N4 ∼ N3 & N2.
Case 2 : N2 ∼ N3 & N4. Then we get exactly the same type of estimates just by
exchanging the role of u2 and u4 with respect to the preceding case.
Case 3: N2 ∼ N4 & N3. This case can be treated as the first ones and is even
simplest since the derivative falls on the smallest frequency. We thus omit the
details. �

4.2. A priori estimates in Hs(R). For an initial data in Hs(R), with s > 1/2,
we will construct a solution to (1.2) in Y s

T whereas the estimate of difference of two

solutions emanating from initial data belonging to Hs(R) will take place in Y s−1
T .

estYs Lemma 4.3. Let s > 1/2, 0 < T < 1 and u ∈ L∞
T H

s ∩ L2
[b](]0, T [;H

s+1) be a

solution to (1.2). Then u ∈ Y s
T and the following inequality holds

‖u‖Y s
T
. C

(
‖u‖L2

[b]
(]0,T [;Hs+1) + (1 + ‖u‖

L∞
T H

1
2
+) ‖u‖L∞

T Hs

)
. (4.11) esta1

Moreover, for any couple (u, v) ∈ L∞
T H

s of solutions to (1.2) associated with a
couple of initial data (u0, v0) ∈ (Hs(R))2, it holds

‖u−v‖Y s−1
T

. C
(
‖u−v‖L2

[b]
(]0,T [;Hs)+(1+‖u+v‖L∞

T Hs)‖u−v‖L∞
T Hs−1

)
, (4.12) estdiffXregular

where

C = C
(
s, ‖b‖

L∞
T C

((s+1)∨2)+
∗

, ‖c‖L∞
T Cs+

∗
, ‖d‖L∞

T Cs+
∗
, ‖e‖

L∞
T C

(s∨1)+
∗

, ‖f‖L∞
T Cs+

∗

)
.

Proof. According to the extension Lemma 2.6 it suffices to establish estimates on
the Bourgain’s norms of u and u−v. Standard linear estimates in Bourgain’s spaces
lead to

‖u‖Xs−1,1
T

. ‖u0‖Hs−1 + ‖1T (∂t − ∂3x)u‖Xs−1,0

. ‖u0‖Hs−1 + ‖bux‖L2
THs + ‖bxux‖L2

THs−1 + ‖cu‖L2
THs

+ ‖(−cx + d)u‖L2
THs−1 +

1

2
‖e u2‖L2

THs + ‖(−ex/2 + f)u2‖L2
THs−1 .

According to Lemma 2.4, using that s > 1/2, it holds

‖bxux‖L2
THs−1 . ‖bx‖L∞

T C
|s−1|+
∗

‖ux‖L∞
T Hs−1

‖cu‖L2
THs + ‖cxu‖L2

THs−1 . ‖c‖L∞
T Cs+

∗
‖u‖L∞

T Hs

‖eu2‖L2
THs + ‖exu2‖L2

THs−1 . ‖e‖L∞
T Cs+

∗
‖u‖

L∞
T H

1
2
+‖u‖L∞

T Hs
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‖du‖L2
THs−1 . ‖d‖

L∞
T C

|s−1|+
∗

‖u‖L∞
T Hs and ‖fu2‖L2

THs−1 . ‖f‖
L∞

T C
|s−1|+
∗

‖u‖2L∞
T Hs

Therefore, we get

‖u‖Xs−1,1
T

. ‖u‖L∞
T Hs−1 + C1(1 + ‖u‖

L∞
T H

1
2
+)‖u‖L∞

T
Hs + ‖bux‖L2

THs ,

where C1 = C1(‖bx‖L∞
T C

|s−1|+
∗

, ‖c‖L∞
T Cs+

∗
, ‖d‖

L∞
T C

|s−1|+
∗

, ‖e‖L∞
T Cs+

∗
, ‖f‖

L∞
T C

|s−1|+
∗

).

Now, noticing that Lemma 2.4 also leads for s > 1/2 to

‖bxwx‖L2
THs−2 . ‖bx‖L∞

T C
|s−2|+
∗

‖wx‖L∞
T Hs−2

‖cw‖L2
THs−1 + ‖cxw‖L2

THs−2 . ‖c‖L∞
T Cs+

∗
‖w‖L∞

T Hs−1

‖euw‖L2
THs−1 + ‖exuw‖L2

THs−2 . ‖e‖
L∞

T C
(s∨(2−s))+
∗

‖u‖L∞
T Hs‖w‖L∞

T Hs−1

‖dw‖L2
THs−2 . ‖d‖L∞

T Cs+
∗
‖w‖L∞

T Hs−1 and ‖fu2‖L2
THs−2 . ‖f‖L∞

T Cs+
∗
‖w‖2L∞

T Hs−1 ,

we also get

‖u− v‖Xs−1,1
T

. ‖u0 − v0‖Hs−1 + C2 (1 + ‖u+ v‖L∞
T Hs)‖u− v‖L∞

T Hs−1

+ ‖b ∂x(u− v)‖L2
THs−1

with C2 = C2(‖bx‖L∞
T C

|s−2|+
∗

, ‖c‖L∞
T Cs+

∗
, ‖d‖L∞

T Cs+
∗

+ ‖e‖
L∞

T C
(s∨(2−s))+
∗

, ‖f‖L∞
T Cs+

∗
).

It just remains to get an estimate on ‖∂x(bvx)‖L2
THθ−1 for b ∈ L∞

T C
(s∨(3−s))+
∗ and

v ∈ L∞
T H

θ with θ > −1/2. By using a non homogeneous dyadic decomposition it
holds

‖∂x(bvx)‖2L2
THθ−1 ∼ ‖∂xP.11(bvx)‖2L2

TL2
x
+

∑

N≫1

N2θ‖PN(bvx)‖2L2
TL2

x
.

The first term of the above right-hand side is easily estimated as above by :

‖∂xP.1(bvx)‖L2
TL2

x
. ‖bvx‖H−2 . ‖b‖

L∞
T C

3
2
+

∗

‖v‖
L∞

T H− 1
2
+

Now, for N ≫ 1 we rewrite PN (bux) as

PN (bux) = PN (P&N b ux) + P≪N bPNux + [PN , P≪Nb]ux

= AN +BN + CN .

We have
∑

N≫1

N2θ‖AN‖2L2
Tx

.
∑

N≫1

N2θ‖P&NbP≪Nux‖2L2
Tx

+
∑

N≫1

N2θ
∑

N1&N

‖PN1bP∼N1ux‖2L2
Tx

.
∑

N≫1

N2θ‖P&Nb‖L∞
Tx
N (2−2θ)∨0‖P≪Nux‖2L2

THθ−1

+
∑

N≫1

N2θ
∑

N1&N

‖PN1b‖L∞
Tx
N2−2θ

1 ‖P∼N1ux‖2L2
THθ−1

.
(
‖b‖2

L∞
T C

(1∨θ)+
∗

+ ‖b‖2
L∞

T C
(1∨(1−θ))+
∗

)
‖u‖2L∞

T Hθ . (4.13)

To bound the contribution of BN we observe that
∑

N≫1

N2θ‖BN‖2L2
TL2

x
≤

∑

N≫1

N2θ
(
‖b∂xuN‖L2

TL2
x
+ ‖P&Nb∂xuN‖L2

TL2
x

)2

.
∑

N≫1

N2θ

∫ T

0

∫

R

b2(∂xuN)2 +
∑

N≫1

N2‖P&Nb‖2L∞
Tx
‖uN‖2L2

THθ

≤ ‖u‖2(L2
THθ+1)b

+ ‖bx‖2L∞
Tx
‖u‖2L∞

T Hθ . (4.14)
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Finally to bound the contribution of CN we use (2.13) of Lemma 2.5 to get

∑

N≫1

N2θ‖CN‖2L2
TL2

x
. ‖bx‖2L∞

Tx

∑

N≫1

N2θ‖P̃Nu‖2L2
TL2

x
. ‖bx‖2L∞

Tx
‖u‖2L∞

T Hθ .

(4.15)

Gathering the above estimates we observe that it is enough to have b ∈ L∞
T C

(3−s)+
∗

for 1/2 < s < 3/2 and b ∈ L∞
T C

s+
∗ for s ≥ 3/2. and completes the proof of the

lemma. �

prou Proposition 4.1. Let 0 < T < 2 and u ∈ Y s
T with s > 1/2 be a solution to (1.2)

associated with an initial datum u0 ∈ Hs(R). Then it holds

‖u‖2L∞
T Hs + ‖u‖2L2

[b]
(]0,T [;Hs+1) ≤ ‖u0‖2Hs + C T

1
16 (1 + ‖u‖

Y
1
2
+

T

)‖u‖2Y s
T
. (4.16) estHsregular

where

C = C
(

s, ‖b‖
L∞

T
C

((s+1)∨2)+
∗

, ‖c‖
L∞

T
C

(s∨1)+
∗

, ‖d‖
L∞

T C
s+
∗
, ‖e‖

L∞
T

C
s+1

2
+

∗

, ‖f‖
L∞

T C
s+
∗
, ‖et‖L∞

Tx

)

(4.17) const

Proof. We apply the operator PN withN ∈ 2N dyadic to equation (1.2). On account
of Remark 1.1, it is clear that PNu ∈ C([0, T ];H∞) with ∂tuN ∈ L∞(0, T ;H∞).
Therefore , taking the L2

x-scalar product of the resulting equation with PNu, mul-
tiplying by 〈N〉2s and integrating on ]0, t[ with 0 < t < T we obtain

〈N〉2s‖PNu(t)‖2L2 = 〈N〉2s‖PNu0‖2L2 + 〈N〉2s
∫ t

0

∫

R

PN

(
−bxux − cux − du+ fu2

)
PNu

+ 〈N〉2s
(∫ t

0

∫

R

PN (e uux)PNu+

∫ t

0

∫

R

∂xPN (bux)PNu
)
.

(4.18) estenergy

Now we are going to estimate successively all the terms of the right-hand of
(4.18). Note that, even if s > 1/2, we will give estimates of the linear terms (in u)
valid for s > −1/2 that will be directly usable in Proposition 4.2 when estimating
the difference of two solutions in Hs−1(R).
• Contribution of PN (du).
Making use of Sobolev inequalities, this contribution is easily estimated by :

〈N〉2s
∣∣∣
∫

]0,t[×R

PN (du)PNu
∣∣∣ . 〈N〉2s‖PN (du)‖L2

TL2
x
‖PNu‖L2

TL2
x

. TδN‖du‖L∞
T

Hs‖u‖L∞
T
Hs

. TδN ‖d‖
L∞

T C
|s|+
∗

‖u‖2L∞
T Hs (4.19)

with ‖(δ2j )j≥0‖l1 ≤ 1. In the sequel, we denote by (δq)q≥1 any sequence of real
numbers such that ‖(δ2j )j≥0‖l1 ≤ 1.

• Contribution of PN (fu2).
This term is only estimated for s > 1/2. Proceding exactly as above we get

〈N〉2s
∣∣∣
∫

]0,t[×R

PN (fu2)
)
PNu

∣∣∣ . TδN‖fu2‖L∞
T Hs‖u‖L∞

T Hs

. TδN ‖f‖
L∞

T C
|s|+
∗

(1 + ‖u‖L∞
Tx
)‖u‖2L∞

T Hs . (4.20)
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• Contribution of PN ((bx + c)ux).
For 1 ≤ N . 1, (2.12) leads to

〈N〉2s
∣∣∣
∫ t

0

∫

R

(
PN ((bx + c)ux)

)
PNu

∣∣∣ .
∫ t

0

‖(bx + c)ux‖Hs−1‖u‖Hs

.
(
‖bx‖L∞

T C
|s−1|+
∗

+ ‖c‖
L∞

T C
|s−1|+
∗

)
‖u‖2Hs .

For N ≫ 1, We first notice that

N2s
∣∣∣
∫

]0,t[×R

PN

(
P&N (bx + c)ux

)
PNu

∣∣∣

. N2s
∣∣∣
∫

]0,t[×R

PN

(
P&N (bx + c)P≪Nux

)
PNu

∣∣∣

+N2s
∑

N1&N

∣∣∣
∫

]0,t[×R

PN

(
PN1(bx + c)P∼N1ux

)
PNu

∣∣∣

.

∫ t

0

Ns‖P&N (bx + c)‖L∞
x
N (1−s)∨0‖P≪Nux‖Hs−1‖u‖Hs

+

∫ t

0

Ns
∑

N1&N

‖PN1(bx + c)‖L∞
x
N1−s

1 ‖P∼N1ux‖Hs−1‖u‖Hs

. TδN (‖bx‖L∞
T C

(1∨s∨1−s)+
∗

+ ‖c‖
L∞

T C
(1∨s∨1−s)+
∗

)‖u‖2L∞
T Hs (4.21)

Then we use the commutator estimate (2.13) and integration by parts to get

N2s
∣∣∣
∫

]0,t[×R

PN

(
P≪N (bx + c)ux

)
PNu

∣∣∣ = N2s
∣∣∣
∫

]0,t[×R

P≪N (bxx + cx)(PNu)
2
∣∣∣

+N2s
∣∣∣
∫

]0,t[×R

[PN , P≪N (bx + c)]uxPNu
∣∣∣

. N2s‖bxx + cx‖L∞
Tx
‖P̃Nu‖2L2

TL2
x

. TδN (‖bxx‖L∞
Tx

+ ‖cx‖L∞
Tx
)‖u‖2L∞

T Hs (4.22)

with ‖(δ2j )j≥0‖l1 ≤ 1.

• Contribution of PN (euux).
This term is only estimated for s > 1/2. For 1 ≤ N . 1, we write e ∂x(u

2) =
1
2∂x(eu

2)− 1
2exu

2 to get

〈N〉2s
∣∣∣
∫

]0,t[×R

PN

(
e∂x(u

2)
)
PNu

∣∣∣ . T ‖u‖L∞
T L2

x
(‖exu2‖L∞

T L2
T
+ ‖eu2‖L∞

T L2
x
)

. T ‖e‖L∞
T W 1,∞ ‖u‖2

L∞
T H

1
4
‖u‖L∞

T L2
x

(4.23)
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It thus remains to consider N ≫ 1. We first separate two contributions.
1. The contribution of PN (P&Ne uux). This contribution is easily estimated by

N2s
∣∣∣
∫

]0,t[×R

PN

(
P&Ne ∂x(u

2)
)
PNu

∣∣∣

= N2s
∑

N1≪N

∣∣∣
∫

]0,t[×R

PN

(
P∼Ne PN1∂x(u

2)
)
PNu

∣∣∣

+N2s
∑

N1&N

∣∣∣
∫

]0,t[×R

PN

(
P∼N1e PN1∂x(u

2)
)
PNu

∣∣∣

. N2s

∫ t

0

‖P∼Ne‖L∞
x
‖PNu‖L2

x

∑

N1≪N

N
1/2
1 ‖D1/2

x (u2)‖L2
x

+N2s

∫ t

0

‖PNu‖L2
x

∑

N1&N

‖P∼N1e‖L∞
x
N

1/2
1 ‖D1/2

x (u2)‖L2
x

. δN T ‖e‖
L∞

T C
s+1/2
∗

‖u‖2
L∞

T H
1
2
+
‖u‖L∞

T Hs (4.24)

with ‖(δ2j )j≥0‖l1 ≤ 1.
2. The contribution of PN (P≪Ne uux). We rewrite this term as

PN (P≪Ne uux) =PN

(
P≪Ne P.1u P̃N(ux)

)

+
∑

1≪N2≪N

PN

(
P≪Ne uN2P̃Nux

)

+ PN

(
P≪Ne P̃NuP.1ux

)

+
∑

1≪N3.N1≪N

PN

(
eN1P̃Nu ∂xuN3

)

+
∑

1≪N3.N2

PN

(
P≪N3∧Ne uN2∂xuN3

)

=A+B + C +D + E. (4.25)

First, the contribution of C is easily estimated by

N2s
∣∣∣
∫

]0,t[×R

CPNu
∣∣∣ .

∫ t

0

‖uN‖Hs‖u∼N‖Hs‖e‖L∞
x
‖u‖L∞

T L2
x

. δN T ‖e‖L∞
Tx

‖u‖L∞
T L2

x
‖u‖2L∞

T Hs (4.26) td1

with ‖(δ2j )j≥0‖l1 ≤ 1.
The contribution of D is estimated in the following way :

N2s
∣∣∣
∫

]0,t[×R

DPNu
∣∣∣ = N2s

∣∣∣
∑

1≪N3.N1≪N

∫

]0,t[×R

PN

(
eN1u∼N∂xuN3

)
PNu

∣∣∣

.

∫ t

0

‖uN‖Hs‖u∼N‖Hs

∑

1≤N1≪N

‖eN1‖L∞
x

∑

N3.N1

N3N
0−
3 ‖uN3‖H 1

2
+

. ‖uN‖2L2
THs‖e‖L∞

T C1
∗
‖u‖

L∞
T H

1
2
+

. δN T 1/2‖e‖L∞
T C1

∗
‖u‖

L∞
T H

1
2
+‖u‖2L∞

T Hs (4.27) d1

with ‖(δ2j )j≥0‖l1 ≤ 1.
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To bound the contribution of A we use the commutator estimate (2.13) and
integration by parts to get

N2s
∣∣∣
∫

]0,t[×R

APNu
∣∣∣ . N2s

∣∣∣
∫

]0,t[×R

∂x(P≪NeP.1u)(PNu)
2
∣∣∣

+N2s
∑

N1≪N,N2.1

∣∣∣
∫

]0,t[×R

[PN , P≪NeP.1u]P̃NuxPNu
∣∣∣

. TN2s‖∂x(P≪NeP.1u)‖L∞
Tx
‖P̃Nu‖2L∞

T L2
x

. δN T ‖e‖L∞
T C1+

∗
‖u‖L∞

T L2
x
‖u‖2L∞

T Hs (4.28) cco

with ‖(δ2j )j≥0‖l1 ≤ 1.
To bound the contribution of E , we notice that the integral is of the form (4.2)

so that we can use Lemma 4.2. We separate the contribution E1 of the sum over
N2 ∼ N3 & N and the contribution E2 of the sum over N2 ∼ N ≫ N3. For the
first contribution, Lemma 4.2 leads to

N2s
∣∣∣
∫

]0,t[×R

E1PNu
∣∣∣

.
∑

N2&N

(‖e‖L∞
Tx

+ ‖et‖L∞
Tx
)
[
‖PNu‖L∞

T L2
x
‖P∼N2u‖L2

THs‖P∼N2u‖Xs−1,1
T

+ T
1
16N

− 1
4

2

(
‖PNu‖X−1,1

T
+ ‖PNu‖L∞

T L2
x

)
‖P∼N2u‖2L∞

T Hs

+ T
1
16N

− 1
4

2

(
‖P∼N2u‖Xs−1,1

T
+ ‖P∼N2u‖L∞

T Hs

)
‖P∼N2u‖L∞

T Hs‖PNu‖L∞
T L2

x

]

. N−(0+) (‖e‖L∞
Tx

+ ‖et‖L∞
Tx
)
(
‖u‖L∞

T H0+‖u‖Xs−1,1
T

‖u‖L2
THs

+ T
1
16 ‖u‖Y 0

T
‖u‖2Y s

T

)

. T
1
16N−(0+) (‖e‖L∞

Tx
+ ‖et‖L∞

Tx
)‖u‖Y 0+

T
‖u‖2Y s

T
. (4.29) E1

In the same way Lemma 4.2 leads to

N2s
∣∣∣
∫

]0,t[×R

E2PNu
∣∣∣

.
∑

1≪N3≪N

(‖e‖L∞
Tx

+ ‖et‖L∞
Tx
)
[
‖PN3u‖L∞

T L2
x
‖P∼Nu‖L2

THs‖P∼Nu‖Xs−1,1
T

+ T
1
16N− 1

4 ‖u‖Y 0
T
‖u‖2Y s

T

]

. δN (‖e‖L∞
Tx

+ ‖et‖L∞
Tx
)‖u‖Y 0+

T

(
‖u‖Xs−1,1

T
‖u‖L2

THs + T
1
16 ‖u‖2Y s

T

)

. T
1
16 δN (‖e‖L∞

Tx
+ ‖et‖L∞

Tx
)‖u‖Y 0+

T
‖u‖2Y s

T
, (4.30) E2

with ‖(δ2j )j≥0‖l1 ≤ 1.
Finally we rewrite B as

B =
∑

1≪N2≪N

PN

(
P≪N2e uN2P̃N (ux)

)
+

∑

1≪N2≪N

PN

(
P≪NP&N2

e uN2P̃N (ux)
)

= B1 +B2 . (4.31)

We notice that the integral in the contribution of B1 is of the form of (4.2) with
N3 ∼ N4 & N2 and thus using again Lemma 4.2, we get exactly the same estimate
as for D2.
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To bound the contribution of B2 we use integration by parts and the commutator
estimate (2.13) and proceed as in (4.28) to get

N2s
∣∣∣
∫

]0,t[×R

B2PNu
∣∣∣ . N2s

∑

1≪N2≪N

∣∣∣
∫

]0,t[×R

∂x

(
P≪NP&N2

e uN2

)
(PNu)

2
∣∣∣

+N2s
∑

1≪N2≪N

∣∣∣
∫

]0,t[×R

[PN , P≪NP&N2
e uN2]P̃NuxPNu

∣∣∣

. T
∑

1≪N2≪N

N2s‖∂x(P≪NP&N2
e uN2)‖L∞

Tx
‖P̃Nu‖2L∞

T L2
x

. δN T ‖e‖L∞
T C1+

∗
‖u‖

L∞
T H

1
2
+‖u‖2L∞

T Hs (4.32) cco2

with ‖(δ2j )j≥0‖l1 ≤ 1.

• Contribution of ∂xPN (bux). This term being linear, we will give an estimate for
s > −1/2. Integrating by parts, the contribution of this term can be rewritten as :

〈N〉2s
∫

]0,t[×R

∂xPN (bux)PNu = −〈N〉2s
∫

]0,t[×R

PN (bux)PNux

For 1 ≤ N . 1, it then holds

〈N〉2s
∣∣∣
∫

]0,t[×R

PN (bux)PNux

∣∣∣

. 〈N〉2s
∣∣∣
∫

]0,t[×R

PN (P̃N b ∂xu≪N )PNux

∣∣∣

+ 〈N〉2s
∣∣∣
∑

N1&N

∫

]0,t[×R

P̃N1b ∂xuN1)PNux

∣∣∣

. T ‖b‖L∞
T C0

∗
‖u‖2L∞

T L2
x
+ ‖u‖L∞

T L2
x

∫ t

0

∑

N1&N

N1‖bN1‖L∞
x
‖uN1‖L2

x

. T ‖b‖L∞
T C1

∗
‖u‖2L∞

T L2
x

(4.33)

which is acceptable. For N ≫ 1, we decompose this term as

〈N〉2s
∫

]0,t[×R

∂xPN (bux)PNu

= −〈N〉2s
∫

]0,t[×R

b (PNux)
2 − 〈N〉2s

∫

]0,t[×R

[PN , b]uxPNux (4.34) bb

The first term of the right-hand side is non positive and will give us an estimate on
the L2

[b](0, T ;H
s)-semi norm of u. Note that the contribution of the low frequency

part of u, N . 1, to this semi norm is easily estimated by

∑

1≤N.1

〈N〉2s
∫

]0,t[×R

b(PNux)
2 . ‖b‖L∞

Tx
‖u‖2L∞

T Hs . (4.35) bba

To control the second term of the right-hand side, we perform a frequency de-
composition of b in the following way :

N2s

∫

]0,t[×R

[PN , b]uxPNux = N2s

∫

]0,t[×R

[PN , b&N ]uxPNux

+N2s

∫

]0,t[×R

[PN , b≪N ]uxPNux

= A+B . (4.36)
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A is easily estimated by

|A| ≤ N2s
∑

N1∼N

∣∣∣
∫

]0,t[×R

[PN , bN1 ]P.NuxPNux

∣∣∣

+N2s
∑

N1≫N

∣∣∣
∫

]0,t[×R

PN (bN1P̃N1ux)PNux

∣∣∣

. TNs+1N0∨1−s‖b∼N‖L∞
Tx
‖ux‖2L∞

T Hs−1

+Ns+1‖ux‖L2
THs−1

∑

N1≫N

N−s−1
1 ‖PN1bx‖L∞

T C1
∗
‖P̃N1ux‖L2

THs−1

. δNT ‖bx‖L∞
T Cs∨1

∗
‖u‖2L∞

T Hs (4.37)

that is acceptable. Finally applying (2.15) and (2.14) we easily obtain

|B| . T ‖bxx‖L∞
Tx
‖P̃Nu‖2L2

THs . δNT ‖bxx‖L∞
Tx
‖u‖2L∞

T Hs (4.38) estfin

Gathering (4.18)-(4.38), (4.16) follows. �

4.3. Estimate in Hs−1(R) on the difference of two solutions.

prodif Proposition 4.2. Let 0 < T < 1 and u, v ∈ Y s
T with s > 1/2 be two solutions to

(1.2) associated with two initial data u0, v0 ∈ Hs(R). Then it holds

‖u−v‖2L∞
T Hs−1 +‖u−v‖2L2

[b]
(]0,T [;Hs) . ‖u0−v0‖2Hs−1 +CT

1
16 ‖u+v‖Y s

T
‖u−v‖2

Y s−1
T

.

(4.39) estdiffHsregular

with

C = C
(
s, ‖b‖L∞

T C2∨s
∗
, ‖c‖

L∞
T C

(1∨(s−1)∨(2−s))+
∗

, ‖d‖
L∞

T C
|s−1|+
∗

, ‖e‖
L∞

T C
( 3
2
∨(s+1

2
))+

∗

)

Proof. The difference w = u− v satisfies

wt + w3x − bw2x + cwx + dw =
1

2
e∂x(zw) + fzw (4.40) eq-diff

where z = u + v. We proceed as in the proof of the preceding proposition by
applying the operator PN , with N ∈ 2N, to the above equation, taking the L2

x

scalar product with PNw, multiplying by 〈N〉2(s−1) and integrating on ]0, t[ with
0 < t < T . Clearly the terms coming from the linear part of (1.2) (i.e. the term
where z is not involves) may be treated by the estimates established in the proof
of the preceding proposition. They lead to

〈N〉2(s−1)
∣∣∣
∫

]0,t[×R

PN (dw)PNw
∣∣∣ . TδN ‖d‖

L∞
T C

|s−1|+
∗

‖w‖2L∞
T Hs−1 (4.41)

〈N〉2(s−1)
∣∣∣
∫ t

0

∫

R

(
PN ((bx + c)wx)

)
PNw

∣∣∣

. TδN (‖bx‖L∞
T C

(1∨s−1∨2−s)+
∗

+ ‖c‖
L∞

T C
(1∨s−1∨2−s)+
∗

)‖w‖2L∞
T Hs−1 (4.42)

〈N〉2(s−1)

∫

]0,t[×R

∂xPN (bwx)PNw . ‖b‖L∞
T C2

∗
‖w‖2L∞

T Hs−1 (4.43)

Therefore, proceeding as in the proof of the preceding proposition, we infer that for
N ≥ 1,

‖PNw‖2L∞
T Hs−1 . ‖PNw0‖2Hs−1 + δNT C̃‖w‖2L∞

T Hs−1

+ sup
t∈]0,T [

〈N〉2(s−1)
∣∣∣
∫ t

0

∫

R

PN

(
e∂x(zw) + fzw

)
PNw

∣∣∣ (4.44)
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with

C̃ = C̃
(
s, ‖b‖L∞

T C2∨s
∗
, ‖c‖

L∞
T C

(1∨(s−1)∨(2−s))+
∗

, ‖d‖
L∞

T C
|s−1|+
∗

)

To control the contribution of PN (fzw) we use Lemma 2.4 to get

〈N〉2(s−1)
∣∣∣
∫ t

0

∫

R

PN (fzw)PNw
∣∣∣ . δNT ‖fzw‖L∞

T Hs−1‖w‖L∞
T Hs−1

. δNT ‖fz‖L∞
T Hs‖w‖2L∞

T Hs−1

. δNT ‖f‖L∞
T C

|s|+
∗

‖z‖L∞
T Hs‖w‖2L∞

T Hs−1 (4.45)

It remains to tackle the contribution of PN

(
e∂x(zw)

)
. For 1 ≤ N . 1, we write

e ∂x(zw) =
1
2∂x(ezw)− 1

2exzw to get

N2(s−1)
∣∣∣
∫

]0,t[×R

PN

(
e∂x(zw)

)
PNu

∣∣∣

. T ‖w‖L∞
T Hs−1(‖exzw‖L∞

T H−1 + ‖ezw‖L∞
T H−1)

. T ‖e‖
L∞

T C
3
2
+

∗

‖z‖
L∞

T H
1
2
+‖w‖2

L∞
T H− 1

2
+

(4.46)

since s+ s− 1 > 0.
It thus remains to consider N ≫ 1. Because of the lack of symmetry with respect
to the estimate on u, we consider this time three different contributions.
1. The contribution of PN (P&Ne ∂x(zw)). This contribution is easily estimated by

N2(s−1)
∣∣∣
∫

]0,t[×R

PN

(
P&Ne ∂x(zw)

)
PNw

∣∣∣

= N2(s−1)
∣∣∣
∫

]0,t[×R

PN

(
P∼Ne P≪N∂x(zw)

)
PNw

∣∣∣

+N2(s−1)
∑

N1&N

∣∣∣
∫

]0,t[×R

PN

(
P∼N1e PN1∂x(zw)

)
PNw

∣∣∣

. N2(s−1)

∫ t

0

‖P∼Ne‖L∞
x
‖PNw‖L2

x
N3/2‖zw‖H−1/2

+N2(s−1)

∫ t

0

‖PNw‖L2
x

∑

N1&N

‖P∼N1e‖L∞
x
N2−s

1 ‖∂x(zw)‖Hs−2

. δN T ‖e‖
L∞

T C
((2−s)∨(s+ 1

2
))+

∗

‖z‖L∞
T Hs‖w‖2L∞

T Hs−1 (4.47)

since for s > 1/2, ((2 − s) ∨ 1 ∨ (s+ 1/2) = (2− s) ∨ (s+ 1
2 ). .

2. The contribution of PN (P≪Ne zxw). We rewrite this term as

PN (P≪Ne zxw) =PN

(
P≪Ne P.1w P̃Nzx

)
+ PN

(
P≪Ne P̃NwP.1zx

)

+
∑

1≪N3,N2

PN

(
P≪N2∧N3P≪NewN2∂xzN3

)

+
∑

1≪N3,N2

PN

(
P&N2∧N3

P≪NewN2∂xzN3

)

=A+B + C +D. (4.48) decou

Proceeding as in the proof of (4.26), it is not too difficult to check that the contri-
butions of A and B can be bounded by

N2(s−1)
∣∣∣
∫

]0,t[×R

(A+B)PNw
∣∣∣ . TδN‖e‖L∞

Tx
‖z‖L∞

T Hs‖w‖2L∞
T Hs−1 . (4.49)
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To bound the contribution of C , we notice that the integral is of the form (4.2) so
that we can use Lemma 4.2. Proceeding as in (4.29)-(4.30) we get

N2(s−1)
∣∣∣
∫

]0,t[×R

CPNw
∣∣∣ . T

1
16 δN (‖e‖L∞

Tx
+ ‖et‖L∞

Tx
)‖z‖Y s

T
‖w‖2

Y s−1
T

(4.50)

Finally we rewrite D as

D =
∑

N2≫1

PN

(
P&N2

P≪NewN2P̃Nzx

)
+

∑

N3≫1

PN

(
P&N3

P≪Ne P̃Nw∂xzN3

)

Proceeding as in (4.27) we easily get

N2(s−1)
∣∣∣
∫

]0,t[×R

DPNw
∣∣∣ . TδN‖e‖L∞

T C1
∗
‖z‖L∞

T Hs‖w‖L∞
T Hs−1 (4.51)

3. The contribution of PN (P≪Ne (zwx)). We rewrite this term as

PN (P≪Ne zwx) =PN

(
P≪Ne P̃NzP.1wx

)
+ PN

(
P≪Ne P.1z wx

)

+
∑

1≪N3,N2

PN

(
P≪N2∧N3P≪Ne zN2∂xwN3

)

+
∑

1≪N3,N2

PN

(
P&N2∧N3

P≪Ne zN2∂xwN3

)

=Ã+ B̃ + C̃ + D̃. (4.52)

Proceeding as in (4.26), we easily get

N2(s−1)
∣∣∣
∫

]0,t[×R

ÃPNw
∣∣∣ . TδN‖e‖L∞

Tx
‖z‖L∞

T Hs‖w‖2L∞
T Hs−1 . (4.53)

To bound the contribution of B̃ we proceed as in (4.28), integrating by parts and
using the commutor estimate (2.13) to get

N2(s−1)
∣∣∣
∫

]0,t[×R

B̃PNu
∣∣∣ . δN T ‖e‖L∞

T C1+
∗

‖z‖L∞
T L2

x
‖w‖2L∞

T Hs−1 (4.54) tildeB

Finally the contributions of C̃ and D̃ can be estimated exactly as the ones of C and
D. �

rem41 Remark 4.1. Gathering Lemma 4.3 and Propositions 4.1-4.2 we observe that suf-
ficient hypotheses for these statements to hold are

b ∈ L∞
T C

((s+1)∨2)+
∗ , c ∈ L∞

T C
((2−s)∨s)+
∗ , d ∈ L∞

T C
|s|+
∗

e ∈ L∞
T C

((s+ 1
2 )∨

3
2 )+

∗ , et ∈ L∞
Tx and f ∈ L∞

T C
|s|+
∗

(4.55) hypo2

5. Proof of Theorem 1.1
sect5subsect51

5.1. Uniqueness. Assume (4.55) are fulfilled and u0 ∈ Hs(R) with s > 1/2. Let
u and v be two solutions of (1.2) emanating from u0 that belong to L∞

T H
s ∩

L2
[b](]0, T [;H

s+1) for some T > 0. Then according to Lemma 4.3, u and v belong

to Y s
T and Proposition 4.2 together with (4.12) ensure that for any 0 < T0 ≤ T ∧ 2

it holds

‖u− v‖2L∞
T0

Hs−1 + ‖u− v‖2L2
[b]

(]0,T0[;Hs)

. T
1
16
0 (1 + ‖u+ v‖Y s

T
)3
(
‖u− v‖2L∞

T0
Hs−1 + ‖u− v‖2L2

[b]
(]0,T0[;Hs)

)
.

This forces u ≡ v on some time interval ]0, T1[ with 0 < T1 ≤ T0. Taking now T1
as initial time we can repeat the same argument to get that u ≡ v on ]0, T ∨ 2T1[
and a finite iteration of this argument leads to u ≡ v on ]0, T [. It is worth noticing
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that in the case b ≡ 0, L∞
T H

s ∩ L2
[b](]0, T [;H

s+1) = L∞
T H

s and thus we get the

unconditional uniqueness of (1.2) in Hs(R) for s > 1/2.

5.2. Existence. We make use of the famous existence result of Craig-Kappeler-
Strauss [7] for the general quasilinear KdV type equations :

ut + F (∂3xu, ∂
2
xu, ∂xu, u, x, t) = 0 . (5.1) eqCKS

In this paper, the following assumptions on F are made :
F : R5 × [0, T ] → R is C∞ in all its variables and satisfies

(A1) ∃c > 0 such that ∂1F (y, x, t) ≥ c > 0 for all y ∈ R4, x ∈ R and t ∈ [0, T ].
(A2) ∂2F (y, x, t) ≤ 0.
(A3) All the derivatives of F (y, x, t) are bounded for x ∈ R, t ∈ [0, T ] and y in a

bounded set.
(A4) xN∂jxF (0, x, t) is bounded for all N ≥ 0, j ≥ 0, x ∈ R and t ∈ (0, T ].

Fixing F that satisfies (A1)-(A4), in [7] it is shown that for any k ∈ N with k ≥ 7
and any c0 > 0 there exists T = T (c0) > 0 such that for any u0 ∈ Hk(R), with
‖u0‖H7 ≤ c0, the Cauchy problem associated with (5.1) has a unique local solution
u ∈ L∞(0, T ;Hk(R)).

This implies that for any F satisfying (A1)-(A4) and any u0 ∈ Hk with k ≥ 7,
the unique solution u to (5.1) can be prolonged on a maximal time interval [0, T ∗[
with either

T ∗ = +∞ or lim sup
TրT∗

‖u‖L∞(0,T ;H7) = +∞ . (5.2) alt

We notice that (1.2) corresponds to (5.1) with

F (y, x, t) = y1 − b(t, x)y2 + c(t, x)y3 + d(t, x)y4 − e(t, x)y3y4 − f(t, x)y24

In particular, for any y ∈ R4, x ∈ R and t ∈ [0, T ] we have ∂1F (y, x, t) = 1 and
F (0, x, t) = 0 which ensure that (A1) and (A4) are clearly fulfilled. Moreover, the
hypothesis b ≥ 0 ensures that (A2) is also fulfilled. Therefore, since our coefficient
functions are by hypothesis all bounded on [0, T ]× R, it thus suffice to regularize
them by convoluting in (t, x) with a smooth positive sequence of mollifiers to fulfill
the assumptions (A1)-(A4).

So let the coefficient functions a, b, c, d, e, f satisfying the hypotheses of The-
orem 1.1 and let u0 ∈ Hs(R) with s > 1/2. We first construct the solution
emanating from u0 to (1.2) with a, b, c, d, e replaced by their smooth regulariza-
tions. For this we regularize the initial datum by setting, for any n ∈ N∗, u0,n =
P≤nu0 ∈ H∞(R). According to the existence result of [7] there exists a sequence
(Tn) with 0 < Tn < 1 such that, for any n ∈ N∗, (1.2) has a unique solution
un ∈ L∞(0, Tn;H

∞(R)) emanating from u0,n. Note that (1.2) then implies that
actually un ∈ C([0, Tn];H

∞(R)). Now, applying (4.11) and (4.16) for un on [0, Tn]
we obtain that

‖un‖2L∞
Tn

Hs0+‖un‖2L2
[b]

(]0,Tn[;Hs0+1)

≤ ‖u0‖2Hs + C T
1
16
n

(
1 + ‖u‖2L∞

Tn
Hs0 + ‖u‖L2

[b]
(]0,Tn[;Hs0+1)

)6

for s0 = 1
2+ < s. Using the continuity of T → ‖un‖L∞(0,T ;Hs0 )+‖u‖L2

[b]
(]0,T [;Hs0+1)

this ensures that there exists 0 < T0 = T0(‖u0‖Hs0 ) < 2 such that

‖un‖L∞(0,T2;Hs0 ) + ‖u‖L2
[b]

(]0,T2[;Hs0+1) ≤ 4‖u0,n‖Hs0 for T2 = Tn ∧ T0 .

Using again (4.11) and (4.16), we obtain that, for any fixed n ≥ 0, un is bounded
in L∞

T2
H7. Therefore (5.2) ensures that un can be extended on [0, T0]. Hence, it

holds
‖un‖L∞(0,T0;Hs0 ) + ‖un‖L2

[b]
(0,T0;Hs0+1) ≤ 4‖u0‖Hs0 .
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Applying again (4.11) and (4.16) but at the Hs-regularity this forces

‖un‖L∞(0,T0;Hs) + ‖un‖L2
[b]

(0,T0;Hs+1) . ‖u0‖Hs .

Note that Lemma 4.3 and Proposition 4.2 then ensure that (un) is a Cauchy se-

quence in L∞(0, T0;H
s−1) and thus it is also a Cauchy sequence in L∞(0, T0;H

1
2+).

Let u be the limit of un in L∞(0, T0;H
1
2+). From the above estimates we know

that u ∈ L∞(0, T0;H
s) and it is immediat to check that u satisfies (1.2) at least in

L∞(0, T0;H
s−3).

Now we can pass to the limit on the coefficient functions. Since their regular-
izations are bounded in the function spaces appearing in Remark 4.1, we obtain
the existence of a solution u ∈ L∞(0, T0;H

s) ∩ L2
[b](0, T0;H

s+1) that is the unique

one in this class on account of Subsection 5.1. Now the continuity of u with values
in Hs(R) as well as the continuity of the flow-map in Hs(R) will follow from the
Bona-Smith argument (see [6]). For any ϕ ∈ Hs(R), any integer n ≥ 1 and any
r ≥ 0, straightforward calculations in Fourier space lead to

‖P≤nϕ‖Hs+r
x

. nr‖ϕ‖Hs
x

and ‖ϕ− P≤nϕ‖Hs−r
x

. n−r‖P>nϕ‖Hs
x
. (5.3) init

Let u0 ∈ Hs with s > 1/2 and let T0 = T0(‖u0‖
H

1
2
+) > 0 the associated minimum

time of existence. We denote by un ∈ L∞(0, T0;H
s) the solution of (1.2) emanating

from u0,n = P≤nu0 and for 1 ≤ n1 ≤ n2, we set

w := un1 − un2 .

Then, (4.39)-(4.12) lead to

‖w‖Y s−1
T0

. ‖w(0)‖Hs−1 . n−1
1 ‖P>n1u0‖Hs . (5.4) to1

Moreover, for any r ≥ 0 and s > 1/2 we have

‖uni‖Y s+r
T0

. ‖u0,ni‖Hs+r . nr
i ‖u0‖Hs . (5.5) to2

Next, we observe that w solves the equation

wt + w3x − bw2x + cwx + dw =
1

2
e∂x(w

2) + e∂x(un1w) + fw2 + 2fun1w . (5.6) W

pro3 Proposition 5.1. Let 0 < T < 1 and w ∈ Y s
T with s > 1/2 be a solution to (5.6).

Then it holds

‖w‖2L∞
T Hs . ‖w(0)‖2Hs + C T

1
16

(
(‖un1‖Y s

T
+ ‖un2‖Y s

T
)‖w‖2Y s

T

+‖un1‖L∞
T Hs+1‖w‖L∞

T Hs−1‖w‖L∞
T Hs

)
. (5.7)

Proof. It is a consequence of estimates derived in the proof of Propositions 4.1
and 4.2. Actually because of the loss of symetry we only have to take care of the
contribution of PN (P≪Ne∂xuN1w). We decompose this term as in (4.48) to get

PN (P≪Ne ∂xun1w) =PN

(
P≪Ne P.1w P̃N∂xun1

)
+ PN

(
P≪Ne P̃NwP.1∂xun1

)

+
∑

1≪N3,N2

PN

(
P≪N2∧N3P≪NewN2PN3∂xun1

)

+
∑

1≪N3,N2

PN

(
P&N2∧N3

P≪NewN2PN3∂xun1

)

=A+B + C +D. (5.8) decou2

The contribution of A and B can be easily estimated by

N2s
∣∣∣
∫

]0,t[×R

APNw
∣∣∣ . TδN‖e‖L∞

Tx
‖un1‖L∞

T Hs+1‖w‖L∞
T H−1/2‖w‖L∞

T Hs . (5.9)
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and

N2s
∣∣∣
∫

]0,t[×R

BPNw
∣∣∣ . TδN‖e‖L∞

Tx
‖un1‖L∞

T L2‖w‖2L∞
T Hs . (5.10)

To bound the contribution of C we use again Lemma 4.2 and proceed as in (4.29)-
(4.30) to get

N2s
∣∣∣
∫

]0,t[×R

CPNw
∣∣∣ . T

1
16 δN (‖e‖L∞

Tx
+ ‖et‖L∞

Tx
)‖un1‖Y s

T
‖w‖2Y s

T
(5.11)

Finally we rewrite D as

D =
∑

N2≫1

PN

(
P&N2

P≪NewN2P̃N∂xun1

)
+

∑

N3≫1

PN

(
P&N3

P≪Ne P̃Nw∂xun1

)

= D1 +D2

We easily get

N2s
∣∣∣
∫

]0,t[×R

D1PNw
∣∣∣ . δN

∫ t

0

∑

N2≫1

‖P&N2
e‖L∞

x
‖wN2‖L∞

x
‖un1‖Hs+1‖w‖Hs

. δN

∫ t

0

∑

N2≫1

‖P&N2
e‖L∞

x
N

3
2−s
2 ‖wN2‖Hs−1‖un1‖Hs+1‖w‖Hs

. δNT ‖e‖L∞
x C1

∗
‖un1‖L∞

T Hs+1‖w‖L∞
T Hs−1‖w‖L∞

T
Hs (5.12)

since s > 1/2. In the same way we get

N2s
∣∣∣
∫

]0,t[×R

D2PNw
∣∣∣ . δN

∫ t

0

∑

N3≫1

‖P&N3
e‖L∞

x
‖∂xPN3un1‖L∞

x
‖w‖2Hs

. δN

∫ t

0

∑

N3≫1

‖P&N3
e‖L∞

x
N

3
2−s
3 ‖PN3un1‖Hs‖w‖2Hs

. δNT ‖e‖L∞
x C1

∗
‖u‖L∞

T Hs‖w‖2L∞
T Hs (5.13)

that completes the proof of the proposition. �

Combining (4.12) with (5.7) and (5.5) we get for 0 < T < T0,

‖w‖2Y s
T

. ‖w(0)‖2Hs + T
1
16

[
‖u0‖Hs‖w‖2Y s

T

+n1‖u0‖Hs‖w‖Y s
T
‖w‖Y s−1

T

]
.

Therefore, for T > 0 small enough, (5.4) leads to

‖w‖2Y s
T0

. ‖w(0)‖2Hs + n2
1‖w‖2Y s−1

T0

(5.14)

. ‖P>n1u0‖2Hs → 0 as n1 → 0 .

This shows that {un} is a Cauchy sequence in C([0, T ];Hs) and thus {un} converges
in C([0, T ];Hs) to a solution of (1.2) emanating from u0.Then, the uniqueness
result ensures that u ∈ C([0, T ];Hs). Repeating this argument with u(T ) as initial
data we obtain that u ∈ C([0, T1];H

s) with T1 = max(2T, T0). This leads to
u ∈ C([0, T0];H

s) after finite number of repetitions.

Continuity of the flow map. Let now {uk0} ⊂ Hs(R) be such that uk0 →cont
u0 in Hs(R). We want to prove that the emanating solution uk tends to u in
C([0, T0];H

s). By the triangle inequality, for k large enough,

‖u− uk‖L∞
T0

Hs ≤ ‖u− un‖L∞
T0

Hs + ‖un − ukn‖L∞
T0

Hs + ‖ukn − uk‖L∞
T0

Hs .
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Using the estimate (5.14) on the solution to (5.6) we first infer that

‖u− un‖Y s
T0

+ ‖uk − ukn‖Y s
T0

. ‖P>nu0‖Hs + ‖P>nu
k
0‖Hs

and thus

lim
n→∞

sup
k∈N

(
‖u− uk‖L∞

T0
Hs + ‖uk − ukn‖L∞

T0
Hs

)
= 0 . (5.15) kak1

Next, we notice that (4.39)-(4.12) ensure that

‖un − ukn‖Y s−1
T0

. ‖u0,n − uk0,n‖Hs−1

and thus (5.14) and (5.4) lead to

‖un − ukn‖2Y s
T0

. ‖u0,n − uk0,n‖2Hs + n2‖u0,n − uk0,n‖2Hs−1

. ‖u0 − uk0‖2Hs(1 + n2) . (5.16)

Combining (5.15) and (5.16), we obtain the continuity of the flow map.

6. Appendix

6.1. Proof of Lemma 2.5. We start by proving (2.13). LetN > 0. We follow [10].
By Plancherel and the mean-value theorem,∣∣∣([PN , P≪Nf ]g)(x)

∣∣∣ =
∣∣∣([PN , P≪Nf ]P̃Ng)(x)

∣∣∣

=
∣∣∣
∫

R

F−1
x (ϕN )(x − y)P≪Nf(y)P̃Ng(y) dy

−
∫

R

P≪Nf(x)F−1
x (ϕN )(x− y)P̃Ng(y) dy

∣∣∣

=
∣∣∣
∫

R

(P≪Nf(y)− P≪Nf(x))NF−1
x (ϕ)(N(x − y))P̃Ng(y) dy

∣∣∣

≤ ‖P≪Nfx‖L∞
x

∫

R

N |x− y||F−1
x (ϕ)(N(x − y))||P̃Ng(y)| dy

Therefore, since N | · ||F−1
x (ϕ)(N ·)| = |F−1

x (ϕ′)(N ·)| we deduce from Young’s con-
volution inequalities that∥∥∥[PN , P≪Nf ]g)‖L2 . N−1‖P≪Nfx‖L∞

x
‖P̃Ng‖L2 .

To prove (2.14) we proceed in the same way. We first notice that

IN (x) = ([PN , [PN , P≪Nf ]]g)(x) = ([PN , [PN , P≪Nf ]]P̃Ng)(x)

=

∫

R2

F−1
x (ϕN )(x − y)F−1

x (ϕN )(y − z)
(
P≪Nf(z)− P≪Nf(y)

)
P̃Ng(z) dy dz

−
∫

R2

F−1
x (ϕN )(x− y)F−1

x (ϕN )(y − z)
(
P≪Nf(y)− P≪Nf(x)

)
P̃Ng(z) dy dz

=

∫

R2

F−1
x (ϕN )(x − y)F−1

x (ϕN )(y − z)(z − y)P≪Nfx(αy,z)P̃Ng(z) dy dz

−
∫

R2

F−1
x (ϕN )(x− y)F−1

x (ϕN )(y − z)(y − x)P≪Nfx(αy,x)
)
P̃Ng(z) dy dz

with αy,z ∈ [y, z] and αy,x ∈ [y, x]. Performing the change of variable θ = x+ z− y
in the last integral we get

IN (x) =

∫

R2

F−1
x (ϕN )(x − y)F−1

x (ϕN )(y − z)(z − y)
(
(P≪Nfx(αy,z)

− P≪Nfx(αx,x+z−y)
)
P̃Ng(z) dy dz
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with αx,x+z−y ∈ [x, x + z − y]. Finally, noticing that

|αy,z − αx,x+z−y| ≤ max(|x− y|, |x− z|, x+ z − 2y|) ≤ 2max(|x− y|, |y − z|)
and using again the mean-value theorem we eventually obtain

|IN | ≤ 2‖P≪Nfxx‖L∞
x

[

∫

R2

|z − y|2N2|F−1
x (ϕ)(N(z − y))||F−1

x (ϕ)(N(x − y))||P̃Ng(z)| dy dz

+

∫

R2

|x− y|N |F−1
x (ϕ)(N(x − y))||z − y|N |F−1

x (ϕ)(N(z − y))||P̃Ng(z)| dy dz
]

which yields to the desired result for the same reasons as above.
Finally, to prove (2.15) we first use Parseval identity and the fact that g is

real-valued to obtain∫

R

[PN , P≪Nf ]g PNg

=

∫

R2

(ϕN (ξ1 + ξ2)− ϕN (ξ2))P̂≪Nf(ξ1)ĝ(ξ2)ϕN (ξ1 + ξ2)ĝ(−ξ1 − ξ2) dξ1 dξ2 .

Performing the change of variable (ξ̆1, ξ̆2) = (ξ1,−ξ1 − ξ2) and recalling that ϕN

is an even real valued function we then get
∫

R

[PN , P≪Nf ]g PNg

=

∫

R2

(ϕN (ξ̆2)− ϕN (ξ̆1 + ξ̆2))P̂≪Nf(ξ̆1)ĝ(−ξ̆1 − ξ̆2)ϕN (ξ̆2)ĝ(ξ̆2) dξ̆1 dξ̆2

= −
∫

R

[PN , P≪Nf ]g PNg

+

∫

R2

(ϕN (ξ̆2)− ϕN (ξ̆1 + ξ̆2))
2P̂≪Nf(ξ̆1)ĝ(−ξ̆1 − ξ̆2)ĝ(ξ̆2) dξ̆1 dξ̆2

= −
∫

R

[PN , P≪Nf ]g PNg +

∫

R

[
PN , [PN , P≪Nf ]

]
g g .

This yields (2.15) by noticing that g can be replaced by P̃Ng without changing the
value of

∫
R
[PN , P≪Nf ]g PNg.
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