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Hypersphere Fitting from Noisy Data Using an EM
Algorithm

Julien Lesouple, Barbara Pilastre, Yoann Altmann, Member, IEEE, and Jean-Yves Tourneret, Fellow, IEEE

Abstract—This letter studies a new expectation maximization
(EM) algorithm to solve the problem of circle, sphere and
more generally hypersphere fitting. This algorithm relies on the
introduction of random latent vectors having a priori indepen-
dent von Mises-Fisher distributions defined on the hypersphere.
This statistical model leads to a complete data likelihood whose
expected value, conditioned on the observed data, has a Von
Mises-Fisher distribution. As a result, the inference problem can
be solved with a simple EM algorithm. The performance of the
resulting hypersphere fitting algorithm is evaluated for circle and
sphere fitting.

Index Terms—Hypersphere Fitting, Maximum Likelihood Es-
timation, Expectation-Maximization Algorithm, von Mises-Fisher
distribution.

I. INTRODUCTION

F ITTING a circle, a sphere or more generally an hyper-
sphere to a noisy point cloud is a recurrent problem in

many applications including object tracking [1]–[3], robotics
[4]–[6] or image processing and pattern recognition [7]–[9].
Popular methods available in the literature are based on least
squares [10]–[14] or maximum likelihood (ML) estimation
[15], [16]. In the 2D case (circle fitting), the introduction
of latent variables corresponding to the true location of the
measurements on the circle allows the ML estimator of the
center and radius of the circle to be approximated using a
simple iterative algorithm [15]. In this paper, we extend this
strategy to hypersphere fitting and introduce latent vectors
defined as affine transformations of random vectors distributed
according to a von Mises-Fisher distribution. These latent
vectors allow the hypersphere fitting problem to be solved
using a new expectation-maximization (EM) algorithm, which
is the main contribution of this letter.

This letter is organized as follows. Section II introduces the
ML formulation of the hypersphere fitting problem and the
corresponding new EM algorithm. Section III evaluates the
performance of this EM algorithm for circle and sphere fitting
via a comparison with state-of-the-art methods on simulated
data. Conclusion and future works are reported in Section IV.
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II. A NEW EM ALGORITHM FOR HYPERSPHERE FITTING

A. Problem Formulation
Consider n noisy measurements zi ∈ Rd, i = 1, ..., n

located around a hypersphere with radius r and center c ∈ Rd.
We assume that the noise realizations corrupting the obser-
vations are mutually independent and distributed according
to the same isotropic multivariate Gaussian distribution. The
hypersphere fitting problem can then be formulated as an ML
estimation problem by introducing latent vectors xi ∈ Rd, i =
1, ..., n corresponding to the true (and unknown) locations of
the n points on the sphere, corrupted by an additive white
Gaussian noise ni, i.e.,

zi = xi + ni, (1)

where ni ∼ N (0d, σ
2Id), 0d is the zero vector of Rd, σ2 is

the unknown noise variance and Id is the d×d identity matrix.
Since the vectors xi are assumed to lie on the hypersphere
of center c and radius r, they can be represented as affine
transformations of unit vectors ui ∈ Rd (i.e., located on the
hypersphere Hd of Rd defined by ‖ui‖2 = 1) such that

xi = c+ rui. (2)

These vectors ui are assigned a von Mises-Fisher prior distri-
bution denoted as ui ∼ vMFd(ui;µ, κ) with density

fd(ui;µ, κ) = Cd(κ) exp
(
κµTui

)
1H(ui), (3)

where µ ∈ Rd is the mean direction (with ‖µ‖ = 1), κ ≥ 0
is the concentration parameter and Cd(κ) is a normalization
constant. Note that this distribution reduces to the uniform
distribution on the hypersphere for κ = 0. The hypersphere
fitting problem thus consists of estimating the radius r and
center c of the hypersphere Hd (and possibly the noise
variance σ2) from the measurements Z = {z1, ...,zn}, given
that the latent vectors ui, i = 1, ..., n are also unknown.

B. Likelihood and complete likelihood
The conditional distribution of zi given ui is a Gaussian

distribution with mean vector xi = c + rui and covariance
matrix σ2Id, i.e.,

zi|ui,θ ∼ N (c+ rui, σ
2Id), (4)

where θ = (r, cT , σ2)T contains the unknown parameters
of interest of the proposed statistical model. The (marginal)
likelihood of this model, which does not involve the latent
vectors ui, is

L (θ;Z) =

n∏
i=1

p(zi|θ) =
n∏
i=1

∫
Hd

p(zi,ui|θ)dui. (5)
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Straightforward computations allow p(zi,ui|θ) to be com-
puted as follows

p(zi,ui|θ) = p(zi|ui,θ)p(ui)

∝ (2πσ2)−
d
2 exp

(
− 1

2σ2

[
‖zi − c‖22 + r2

])
× exp

(
r(zi − c)Tui + σ2κµTui

σ2

)
, (6)

where ∝ means “proportional to”. This density can be inte-
grated with respect to ui, using

∫
Hd

fd(ui;µi, κi)dui = 1,
where fd(ui;µi, κi) is the density of the Von Mises-Fisher
distribution vMFd(ui;µi, κi) defined in (3) whose parameters
are defined as

κi =
‖δi‖2
σ2

, µi =
δi
‖δi‖2

(7)

with δi = r(zi − c) + σ2κµ. This leads to the following
likelihood

L (θ;Z) =

n∏
i=1

∫
Hd

p(zi|ui,θ)p(ui)dui (8)

∝ 1

(σ2)
nd
2

exp

(
−
∑n
i=1

[
‖zi − c‖22 + r2

]
2σ2

)
n∏
i=1

Id/2−1(κi)

κ
d/2−1
i

,

where Iν(.) denotes the modified Bessel function of first
kind of parameter ν [17, Chap. 10.25]. The ML estimator
of the unknown parameter vector θ maximizing (8) cannot be
expressed in closed-form and cannot be computed easily using
a numerical optimization method. This letter derives a new EM
algorithm to solve more efficiently this estimation problem,
which instead relies on the so-called complete likelihood
defined as

Lc (θ;Z,U) =

n∏
i=1

p(zi,ui|θ), with U = {u1, ...,un}. (9)

C. Proposed EM Algorithm

The EM algorithm alternates between two steps referred to
as expectation (E) and maximization (M) steps that are recalled
below for iteration (t+ 1) [18]
1- The E-step consists of computing Q(θ|θ(t)), the expected

value of the complete data log-likelihood given the observed
data and the current parameter estimate θ(t), defined as

Q(θ|θ(t)) = EU |Z,θ(t) [logLc (θ;Z,U)] . (10)

2- The M-step consists of estimating θ(t+1) by solving

θ(t+1) = argmax
θ

Q(θ|θ(t)). (11)

The complete data likelihood can be computed using (9) and
(6). Straightforward computations lead to

logLc (θ;Z,U) = K − nd

2
log(σ2)

− 1

2σ2

n∑
i=1

[
‖zi − c‖22 + r2 − 2δTi ui

]
, (12)

where K is a constant (independent of θ and U ). Using (12)
leads to

Q(θ|θ(t)) = K − nd

2
log(σ2)

− 1

2σ2

n∑
i=1

{
‖zi − c‖22 + r2 − 2δTi EU |Z,θ(t) [ui]

}
. (13)

The distribution of U |Z,θ(t) can then be determined using

p(U |Z,θ(t)) ∝
n∏
i=1

p(zi|ui,θ(t))p(ui). (14)

The marginal distribution of ui|Z,θ(t) is the von Mises-Fisher
distribution vMFd(ui;µi, κi), whose expectation is given by
[19, Chap. 9.3.2]

EU |Z,θ(t) (ui) =
Id/2

[
κ
(t)
i

]
Id/2−1

[
κ
(t)
i

]µ(t)
i , (15)

where µ(t)
i and κ(t)i are computed from (7) using the current

values of r, c and σ2. After substituting this expectation into
(13), the maximization of the function Q(θ|θ(t)) with respect
to θ leads to the following updates for r, c and σ[

r(t+1)

c(t+1)

]
= (H(t))−1f (t), σ(t+1) =

√
M (t+1)

nd
, (16)

where

α
(t)
i =

Id/2

[
κ
(t)
i

]
Id/2−1

[
κ
(t)
i

]µ(t)
i ,f (t) =

[∑n
i=1(α

(t)
i )Tzi∑n

i=1 zi

]
,

(17)

H(t) =

[
n

∑n
i=1(α

(t)
i )T∑n

i=1α
(t)
i nId

]
, (18)

M (t+1) =

n∑
i=1

‖zi‖22 − (f (t))T
[
r(t+1)

c(t+1)

]
. (19)

Note that the matrix H(t) is invertible. Introducing α(t) =∑n
i=1α

(t)
i , its inverse can be computed as follows [20]

(H(t))−1 =
1

n2 −αTα

[
n −αT

−α n2−αTα
n Id +

1
nαα

T

]
.

(20)

III. EXPERIMENTS

This section evaluates the performance of the proposed
EM algorithm for circle and sphere fitting, which allows a
comparison with the state-of-the-art. The different approaches
are applied on a simulated point cloud of n = 100 latent
vectors uniformly distributed on the circle or the sphere
(i.e., with a von-Mises Fisher distribution with concentration
parameter κ = 0). These latent vectors are then corrupted
by a zero-mean Gaussian noise with covariance matrix σ2Id.
For each run, the coordinates of the true center and the
radius are chosen uniformly in the intervals [5, 10] and [1, 10].
The EM algorithm is iterative and requires to be initialized
properly. In all the experiments, the center has been initialized
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