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Abstract 

The twenty-first century has seen an acceleration of anthropogenic climate change and biodiversity loss, 

with both stressors deemed to affect ecosystem functioning. However, we know little about the 

interactive effects of both stressors, and in particular about the interaction of increased climatic 

variability and biodiversity loss on ecosystem functioning. This should be remedied because larger 

climatic variability is one of the main features of climate change. Here we demonstrated that 

temperature fluctuations led to changes in the importance of biodiversity for ecosystem functioning. 

We used microcosm communities of different phytoplankton species richness and exposed them to a 

constant, mild and severe temperature fluctuating environment. Wider temperature fluctuations led to 

steeper biodiversity-ecosystem functioning slopes, meaning that species loss had a stronger negative 

effect on ecosystem functioning in more fluctuating environments. For severe temperature fluctuations, 

the slope increased through time due to a decrease of the productivity of species-poor communities over 

time. We developed a theoretical competition model to better understand our experimental results, and 

showed that larger differences in thermal tolerances across species led to steeper biodiversity-ecosystem 

functioning slopes. Species-rich communities maintained their ecosystem functioning with increased 

fluctuation as they contained species able to resist the thermally fluctuating environments, while this 

was on average not the case in species-poor communities. Our results highlight the importance of 

biodiversity for maintaining ecosystem functions and services in the context of increased climatic 

variability under climate change.  

Significance statement 

The combined acceleration of climate change and biodiversity loss necessitates understanding how 

ecosystem functions and services will be affected. Most studies focus on the effects of increasing mean 

temperatures, but climate change will increase temperature fluctuations too. We performed an 

experiment and developed a model to understand how increased temperature fluctuations affected the 

importance of biodiversity for ecosystem functioning in phytoplankton communities. Increased 

temperature fluctuations led to steeper biodiversity-ecosystem functioning slopes, which indicates that 

biodiversity loss has a stronger negative effect on ecosystem functioning than when conditions are more 

stable. Our model suggests that steeper slopes are associated with variation in thermal tolerances across 

species, as species-rich systems contained species able to resist the thermally fluctuating environments. 

Keywords: Climate change, climate variability, temperature fluctuations, biodiversity loss, marine 

phytoplankton, biodiversity-ecosystem functioning, thermal tolerance  
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Introduction 
Climate change and biodiversity loss are two of 

the most pressing ecological issues of the 

century (1, 2). Because biodiversity is 

positively related to ecosystem functioning (3–

8), the accelerating species loss is expected to 

lead to a decrease in ecosystem functioning and 

ecosystem services (9–13).  

Climate change increases both the mean and 

variance in temperature (1, 14), which can 

further hamper ecosystem functioning (15–17). 

Increased temperature variance in particular is 

expected to pose a greater risk to biodiversity 

than increased mean (18, 19).  However, much 

less is known about the potential interactive 

effects of biodiversity loss and climate change 

on ecosystem functioning (but see (20–23)), 

and particularly between the potential 

interactive effects of biodiversity loss and 

temperature fluctuations. To better understand 

the potential impacts of increased climatic 

variation and biodiversity loss on ecosystems, 

it is thus important to investigate the effect of 

temperature fluctuations on the biodiversity-

ecosystem functioning relationship.  

Climate change has complex effects on 

biodiversity and ecosystem functioning. 

Warmer climates can lead to both a loss (24–

29) and an increase in biodiversity (30, 31). At 

the local scale, the effect of increased 

temperature on species richness shows mixed 

trends, with studies finding declines (32–34), 

increases (30, 35) or no discernible trend (36, 

37). The effects of increased thermal variability 

also remain unclear, positive, negative or no 

effects on richness have been reported (16, 38–

42). Further, climate change can alter 

ecosystem functioning, either directly or 

indirectly through changes in biodiversity (16, 

43–47).  

In addition to affecting diversity and ecosystem 

functioning, increased temperature mean and 

variation can modify the relationship between 

biodiversity and ecosystem functioning. In 

bacteria and phytoplankton, warmer 

temperatures resulted in a steeper slope of the 

relationship between log ecosystem functioning 

and log species richness (21, 22, 48). Steeper 

slopes of the biodiversity-ecosystem 

functioning relationship indicate that the effect 

of biodiversity on ecosystem functioning is 

stronger in warmer environments, i.e., the loss 

of one species has a more detrimental effect on 

ecosystem functioning as temperatures 

increase. Interestingly, a recent study on 

picophytoplankton showed that the steepness of 

the biodiversity-ecosystem functioning slope 

relied on both short-term temperature and 

community evolutionary history (23). Less is 

known about the effect of temperature 

fluctuations on biodiversity-ecosystem 

functioning relationships. A study on a 

protozoan-bacteria consumer resource 

relationships showed that the slope between 

diversity and biomass became shallower with 

increased fluctuations (49); another study on 

fungal assemblages showed that polycultures 

decomposed leaves better than monocultures 

under fluctuating temperatures (50). 

Several mechanisms might lead to a change in 

the relationship between biodiversity and 

ecosystem functioning with temperature 

fluctuations. We focus on three mechanisms of 

potential relevance on fluctuating 

environments: tolerance differences, species 

interactions and temporal asynchrony. Firstly, 

different species within a community have 

different thermal tolerances, i.e., they handle 

thermal stress differently. When temperature 

mean or fluctuation increases, these underlying 

interspecific differences can manifest more 

strongly. This, in turn, can lead species-rich 

communities to perform better than species-

poor communities due to their containing of 

species able to resist the stressful conditions, 

leading to increased slopes of biodiversity-

ecosystem functioning with stress (51). This 

was the case in marine phytoplankton 

communities, where differences in species 

thermal tolerances led to a larger effect of 

biodiversity on ecosystem functioning in more 

physiologically stressful, warmer environments 

(22). Theory suggests that when the 

environment becomes too stressful and exceeds 

the thermal tolerances of all species, the slopes 

of biodiversity-ecosystem functioning (BEF) 

become shallower again (48, 51). In a context 

of increased temperature fluctuations, one can 

expect that differences in average tolerances to 

the varying environmental conditions among 

species would lead to variation in the 

relationship of ecosystem functioning with 

species richness. Thus, we expect that 

communities with a larger spread in thermal 

tolerances should have a steeper biodiversity-

ecosystem functioning relationship. 
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Secondly, species interactions can change in 

response to changes in the thermal 

environment. Strong competition among 

species can lead to shallower biodiversity-

ecosystem functioning slopes, where adding 

one species does not increase ecosystem 

functioning much when species compete for the 

same resources (i.e., small niche differences 

(52, 53)). On the contrary, large niche 

differences or facilitative interactions can lead 

to opposite relationships, where adding one 

species strongly increases overall ecosystem 

functioning. If increased temperature 

fluctuations cause a change in competitive 

interactions, this in turn can lead to a 

modification of the BEF slope. Models 

investigating the effect of temperature mean 

and variation on BEF relationships have 

suggested that temperature-driven changes in 

the intensity of competition could indeed play a 

role in driving the relationship (49).  

Thirdly, asynchrony in species temporal 

dynamics within a community, for instance due 

to temperature fluctuations, can lead to 

increased ecosystem productivity and temporal 

stability through an insurance effect (5, 54). 

This can lead to a community that is dominated 

by different species depending on their 

tolerance to the current environmental 

conditions (e.g. “warm-adapted” species 

increasing in abundance and dominating when 

temperature is hotter, and “cold-adapted” 

species dominating when temperature is 

cooler). Such mechanism would lead more 

diverse communities to perform better in 

thermally fluctuating environments than 

species-poor communities. These three 

mechanisms can co-occur and lead to changes 

in biodiversity-ecosystem functioning with 

temperature fluctuations.  

The effects of biodiversity on ecosystem 

functioning often increases through time (55, 

56). Thus, the impact of species loss on 

functioning is larger as ecosystems assemble. 

Such temporal effects can arise from a temporal 

increase in productivity of species-rich 

communities (e.g. through increases in 

complementarity through time, for instance 

when legumes increase nutrient availability for 

other plant species by fixing atmospheric 

nitrogen), a decrease in productivity of species-

poor communities (e.g. through increases in 

abundance of antagonistic soil microorganisms 

in plant communities), or a combination of both 

(55, 57, 58). Temporal fluctuations could, in 

turn, interfere with ecosystem temporal 

dynamics, and it is worth investigating whether 

this could lead to changes in the biodiversity-

ecosystem relationships over time.  

Here we used a proof-of-concept experiment 

and a theoretical model to understand how 

increasing temperature fluctuations affected 

biodiversity-ecosystem functioning 

relationships, and whether these relationships 

changed over time. We experimentally 

manipulated the species richness of 

phytoplankton communities at a control 

temperature of 25°C, a moderate temperature 

fluctuation treatment of between 22 and 28°C 

every other day, and a severe fluctuation 

treatment of between 19 and 31°C every other 

day using a random partitioning experimental 

design ((59), Fig. 1). We quantified the impact 

of temperature fluctuations and temporal scale 

(i.e., after 5 and 15 days) on the relationship 

between biodiversity and ecosystem 

production. This experimental design allowed 

quantifying the impacts of random species loss 

on ecosystem functioning as well as evaluating 

the relative contribution of each species to 

ecosystem production. We used three measures 

of ecosystem production, either total cell 

abundance, total biomass or total chlorophyll a 

content. Such measures have been used in 

similar experiments (22, 48, 49), and measures 

of biomass production have been widely used 

in plants (11). However, it is to note that 

ecosystem functioning can be also measured as 

a flux, such as C fixation, O2 production or 

nutrient recycling, that we were unfortunately 

unable to measure here. Including such fluxes 

could lead to different expectations of the BEF 

slope, and is beyond the scope of our study.  We 

further explored the relative importance of the 

three different mechanisms outlined above 

(tolerance differences, species interactions and 

temporal asynchrony) as drivers of our 

experimental results. We did so by means of our 

experimental data and a simple theoretical 

model of species competition. In particular, we 

tested whether potential changes in 

biodiversity-ecosystem function slope were 

linked to a change in species interactions or a 

greater spread in thermal tolerances, and 

explored the impact of temporal asynchrony in 

the model, using cell abundance as a measure 

for ecosystem function. 
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Results 

Biodiversity-ecosystem functioning 
relationships across time and 
temperature fluctuation regimes 

Ecosystem production measured as 

phytoplankton cell abundance increased 

linearly with species richness on a log-log 

scale, corresponding to a power-law 

dependence on linear scales. The slope of the 

relationship between biodiversity and 

ecosystem functioning (BEF), which quantifies 

the effect of the loss of one species on 

ecosystem functioning, varied with temperature 

fluctuation treatment and with time, with a 

triple interaction between richness, temperature 

fluctuations and time of sampling (Fig. 2, Table 

1). A contrast analysis showed no statistically 

significant differences in the slopes of BEF 

 

Fig. 1: Flow chart of the experimental design and its comparison with the 
theoretical model 
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relationships between temperature fluctuation 

treatments after 5 days (Fig. 2, Table S1). 

However, by the end of the experiment (after 15 

days), the slope increased for the moderate and 

extreme temperature fluctuation treatment, 

leading to steeper BEF slopes for larger 

temperature fluctuations (Fig. 2, Table S1). 

This meant that when thermal fluctuation was 

large, the loss of a species had a stronger 

negative effect on total community abundance 

than in environments that were less variable. At 

constant temperatures, the exponent of the 

relationship between cell abundance and 

species richness at day 15 on a log-log scale 

was 0.35 ± 0.09, while it was twice this value in 

the severe fluctuation treatment, at 0.67 ± 0.09 

(Fig. 2). 

The intercepts of the BEF relationships, which 

represent the mean ecosystem functioning 

when species richness was equal to one, also 

varied among treatments. We found a higher 

total community abundance in the constant 

relative to the two fluctuating treatments after 5 

days, and in the constant and mildly fluctuating 

relative to the severely fluctuating treatment 

after 15 days (Fig. 2-3, Table S2). Interestingly, 

the greater BEF slope compensated almost 

Fig. 2: The relationship between biodiversity and ecosystem functioning depends on 
the interaction between temperature fluctuation treatment and time. 
From left to right: constant 25°C temperature treatment (blue confidence interval), alternating 22 

and 28°C temperature every other day (yellow confidence interval), and alternating 19 and 31°C 

temperature every other day (red confidence interval). Top panel: 5 days, and bottom panel: 15 days 

of experiment. Grey points represent ecosystem functioning for each of the 1260 communities (420 

per temperature fluctuation treatment) measured as ln total cell abundance (ln cells.ml-1). Black 

points and error bars are the mean ± SD for each level of species richness. Lines and confidence 

intervals correspond to the fitted curves for the most parsimonious linear mixed model (Table 1). 

The slope of the relationship between biodiversity and ecosystem functioning depends on the 

interaction between temperature treatment and time (Table 1), with no differences in slopes between 

treatments after 5 days but an increase in the slope of the extreme fluctuation treatment over time 

leading to steeper BEF slopes at high levels of temperature fluctuations at the end of the experiment 

(Table S1).  

 



6 

 

completely for this negative effect of thermal 

fluctuations on total community abundance for 

the richest communities (i.e., those initiated 

with 12 species), with a slightly lower total 

community abundance in the severely 

fluctuating treatment compared to the constant 

environment after 5 days, and no differences 

after 15 days (Fig. 3, Table S2). Further, 

temporal effects at the severe fluctuation 

treatment were linked to a decrease in total 

community abundance over time for the low 

richness communities, with no change for the 

high richness communities (Fig. 3, Table S3).  

When using both total biomass and total 

chlorophyll a as measures of ecosystem 

production, we found similar results as for 

abundance, with a triple interaction between 

time, biodiversity and temperature fluctuation 

treatment on ecosystem function (Fig. S1-S2, 

Table S4-S7). A contrast analysis of the high- 

and low-richness communities showed that for 

low-richness communities, the severely 

fluctuating treatment had lower values of total 

chlorophyll a than the two other treatments at 

both temporal scales, and this negative effect 

was compensated for the most diverse 

communities, with no difference between 

temperature treatments (Fig. S3, Table S8). 

Finally, temporal increases in BEF slope for 

chlorophyll a were linked to a steeper increase 

in ecosystem functioning with time for the 

high-richness compared to the low-richness 

communities (Fig. S3, Table S9). When using 

biomass as a measure, we found similar results, 

with lower values of total biomass across time 

in the severely fluctuating treatment in the low 

richness communities, while this negative 

effect was compensated after 15 days for the 

high richness communities (Table S10-S11, Fig 

S4). 

Exploration of the mechanisms 

We investigated both theoretically and 

empirically the mechanisms related to the 

observed changes in biodiversity-ecosystem 

functioning slopes with ecosystem functioning 

 

Fig. 3: Comparing ecosystem functioning for the monocultures and 12-species 
communities across the different temperature fluctuation treatments.  
Values of ecosystem functioning (abundance in ln cells.ml-1) for the monocultures and 12-species 

communities in the three temperature fluctuation treatments and the two times. Values and 95% 

confidence intervals are derived from a contrast analysis of the model represented in Fig. 2 (Table 

S2). Increased temperature fluctuations lead to lower ecosystem functioning in the low richness 

communities, while this detrimental effect is compensated for the 12-species rich communities 

(Table S2). Further, increased temperature fluctuations lead to decreased ecosystem functioning 

over time in the low richness communities (Table S3), with no effect in the species rich communities. 
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measured as community abundance. We 

created a simple competition model 

parametrized with species thermal tolerances 

(Fig S5), in which the competition coefficient 

between species α could vary. We first showed 

that severely fluctuating temperature treatments 

led overall to steeper BEF slopes than constant 

or mild thermal fluctuation treatments (Fig. 4a). 

When we parametrized our model with both the 

species thermal tolerances and the competition 

coefficient derived from the experimental data 

(Fig. S6), the theoretical outcomes fell within 

the 95% confidence intervals of the 

experimental slopes (Fig. 4b, Fig. S7). Further, 

comparing the modelled ecosystem functioning 

values among treatments for the monocultures 

and the 12-species communities, we found 

similar patterns as for the experimental data: 

severe fluctuations leading to lower ecosystem 

functioning in low-richness communities, an 

effect nullified in the high-richness 

communities (Fig. S8). 

A first mechanism potentially driving the 

observed change in the BEF slope is a change 

in the spread in species thermal tolerances. In 

our experiment, species differed in their 

thermal tolerances, and showed a wider spread 

in the distribution of tolerance to thermal 

fluctuations in the severe fluctuation compared 

to mild fluctuation and constant temperature 

treatments (Fig. S5). A theoretical exploration 

of our model shows that a wider spread in 

thermal tolerances can lead to steeper BEF 

slopes (Appendix 1, Fig. S9). Indeed, when 

conditions are good, such as at 25°C, all species 

are able to perform relatively well, and adding 

new species will lead to a small increase in 

ecosystem functioning. However, when the 

conditions become more stressful, such as in 

the 19-31°C fluctuation treatment, only a 

handful of species are able to tolerate these new 

conditions. Thus increasing the biodiversity 

leads to a greater chance that the community 

will contain at least one species able to tolerate 

the conditions, with a strong increase of 

ecosystem functioning with biodiversity. We 

further explored the effect of this spread on the 

experimental data. If spread is important in 

driving changes in BEF relationships, we 

expect that there should be an interactive effect 

of species richness and spread in thermal 

 

Fig. 4: Comparison of the modelled and experimental results regarding the slope of 
the biodiversity-ecosystem functioning relationship.  
a) Modelled BEF slope depending on the temperature (blue: constant 25°C treatment, yellow: 

fluctuating 22-28°C treatment, and red: fluctuating 19-31°C treatment) and on the competition 

coefficient α (see Fig. S6). The dots correspond to the competition coefficient estimated in our 

experiment (see Fig. S7). b) Experimental BEF slopes at day 15 in the three temperature treatments 

compared to the modelled slopes. Boxplots correspond to effect sizes and 95% CI, and dots to the 

modelled BEF slopes for α equal to the observed 0.40 value (Fig. S6). 
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tolerances of the species pool on ecosystem 

functioning. In particular, BEF slopes should be 

steeper for wider spread of thermal tolerances 

in the species pool, and species with a greater 

thermal tolerance would contribute more to 

ecosystem functioning. Our experimental 

results agree with both expectations: we found 

that the relative spread in effective growth rate 

within the species pool interacted with species 

richness to drive ecosystem function measured 

as total abundance (value for the interaction: 

F1,1256 = 9.1, p = 0.003,  R² = 0.12). Alternative 

measures of spread, such as the coefficient of 

variation of thermal tolerances, gave the same 

significant interaction (F1,1256 = 9.4, p = 0.002,  

R² = 0.12). Further, the species that had the 

highest effective growth rate (i.e., average of 

growth rate at the two extreme temperatures of 

the treatment from a thermal tolerance curve 

((60), Fig. S5)) had the largest contribution to 

ecosystem functioning measured as total 

abundance, as shown by the positive 

relationship between species coefficient (a 

measure of contribution to ecosystem 

functioning (59), where positive and negative 

values indicate an above- and below-average 

contribution to ecosystem functioning 

respectively, Fig. S10) and thermal tolerance 

(Fig. 5a). Further, we found the same 

relationship between modelled species 

coefficient and thermal tolerance (Fig. 5b), and 

a correlation between experimental and 

theoretically derived species coefficients (Fig. 

5c). It is interesting to note that our results 

might be driven by the choice of species, as the 

larger spread of thermal tolerances in the 19-

31°C fluctuating treatment is largely due to the 

high tolerance of Ostreococcus tauri (Fig. S5). 

Redoing model simulations without this species 

yielded a strong decrease in the difference in B-

EF slope between treatments, although the 

slope was still steeper in the severely 

fluctuating treatment (Fig. S11). Part of the 

effect of biodiversity on ecosystem functioning 

is due to idiosyncratic effects of the species 

composition, as shown by the effect of species 

identity (Fig. 5). Results might vary 

quantitatively with different species pools, but 

the slope of the BEF relationship should be 

steeper in severely fluctuating treatments as the 

chance to find a species that is highly tolerant 

Fig. 5: Species contribution to ecosystem functioning depends on their thermal 
tolerance. 
a) Relationship between species contribution to ecosystem functioning (species coefficient, Fig. 

S10) measured in the experiment and thermal tolerance measured as the mean growth over the 

three temperature fluctuation treatments from thermal tolerance curves (effective growth rate, Fig. 

S5). b) Relationship between species contribution to ecosystem functioning derived from the 

theoretical data and thermal tolerance. c) Relationship between species contribution to ecosystem 

functioning in the experiment and contribution to ecosystem functioning derived from the model 

results. Blue: constant 25°C treatment, yellow: fluctuating 22-28°C treatment, red: fluctuating 19-

31°C treatment. N = 36 (12 species per temperature treatment). 

 



9 

 

to thermal stress should increase with species 

richness. 

A second mechanism that could drive the BEF 

slopes is a change in the strength of 

interspecific competition. Indeed, our 

theoretical model showed that the BEF slope 

can change with the strength of interspecific 

competition, with a gradual decrease of the 

slope with increasing competition coefficient α 

(Fig. 4a, Appendix 1).  We thus used the 

experimental data at day 15 to test whether 

potential changes in competitive interactions 

might have driven the observed results. If the 

change in BEF slope with temperature 

fluctuation treatment was linked to competitive 

interactions, we expected to observe a 

difference in interaction strength between 

species depending on the temperature 

fluctuation treatment, and we expected that the 

average interaction strength measured in each 

temperature treatment would interact with 

biodiversity to drive ecosystem function. This 

was not the case in our experiment, as 

interaction strength did not differ between 

treatments (Anova F1,159 = 2.22, p = 0.11, Fig. 

S6) and there was no interaction between 

richness and mean interaction strength on 

ecosystem functioning (value for the interaction 

F1,1256 = 0.82, p = 0.36). It is interesting to note 

that our model did not need a change in 

interaction strength to explain our experimental 

results, as using the average competition 

coefficient α estimated in the experiment (Fig. 

S6) was enough for the model predictions to fall 

within the 95% confidence intervals of the 

experimental slopes (Fig. 4b, Fig. S7).  

Finally, a third mechanism is the insurance 

effect, whereby species fluctuate 

asynchronously depending on the 

environmental conditions. Our experimental 

data did not allow to test this mechanism, as 

getting full time-series data on all communities 

was too challenging logistically, however our 

model allowed an exploration of this 

mechanism. Following this hypothesis, we 

should expect that species’ abundance should 

fluctuate asynchronously with temperature 

fluctuation depending on species’ thermal 

tolerance, and that such asynchronous 

fluctuations should lead to higher ecosystem 

functioning with higher diversity. However, 

our model did not show such effect, as the few 

most abundant species, driving ecosystem 

functioning, were all fluctuating in synchrony 

Table 1. Comparison of linear mixed models estimating the effect of temperature fluctuations, species 
richness and time on ecosystem production.  
The linear mixed models describe the effect of temperature fluctuations (T, as a factor), species richness (ln(R)), time (D, 

days since the start of the experiment, as a factor) and their interaction, plus a random effect of sample identity on 

ecosystem functioning. At each step, terms are added to the linear model and we compare the two models through a 

likelihood ratio test. Marginal and conditional R2 and AIC are calculated for each model, as well as ∆AIC from the model 

with lowest AIC and AIC weights. Lower AIC values indicate an improved model. Analyses revealed that the model with 

lowest AIC included the interaction between temperature fluctuations, time and species richness. See Table S1 for a post 

hoc, multiple comparisons analysis on the slope of the biodiversity-ecosystem functioning relationship by temperature 

fluctuation treatment and time. 

Step Model 
n 

par 
χ² df p-value R²m R²c AIC ∆AIC 

AIC 

weight 

0 Intercept+(1|id) 3    0.00 0.52 8,292 213 0.000 

1 T+(1|id) 5 77.7 2 1.3e-17 0.05 0.52 8,218 140 0.000 

2 T+D+(1|id) 6 6.8 1 9.1e-03 0.05 0.52 8,213 135 0.000 

3 T+D+ln(R)+(1|id) 7 88.3 1 5.5e-21 0.10 0.52 8,127 48 0.000 

4 T+D+T*ln(R)+(1|id) 9 2.1 2 3.4e-01 0.10 0.52 8,129 50 0.000 

5 T+D+T*ln(R)+D*ln(R)+(1|id) 10 0.5 1 4.7e-01 0.10 0.52 8,130 52 0.000 

6 T+D+T*ln(R)+D*ln(R)+D*T+(1|id) 12 42.8 2 5.2e-10 0.10 0.54 8,092 13 0.001 

7 T+D+T*ln(R)+D*ln(R)+D*T+D*T*ln(R)+(1|id) 14 17.0 2 2.0e-04 0.11 0.54 8,078 0 0.999 
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with temperature fluctuations, preventing the 

insurance effect from operating (Fig. S12).  

Discussion 

Temperature variability affected the 

relationship between biodiversity and 

ecosystem functioning. We demonstrated that 

larger temperature fluctuations led to a steeper 

relationship between phytoplankton 

biodiversity and production over time. We used 

a simple theoretical competition model to help 

understanding the mechanisms driving 

differences in the biodiversity-ecosystem 

functioning relationship across environments 

with distinct thermal fluctuations. It is to note 

that our theoretical model does not allow us to 

accept or reject a specific mechanism, but to 

explore the relative contribution of different 

mechanisms to the experimental results. We 

found that a likely mechanism might be the 

spread of species’ thermal tolerances (i.e., 

interspecific variation in thermal tolerances). 

The reason is twofold. First, the contribution of 

species to community functioning in our 

experiment was linked to their thermal traits. 

Second, biodiversity-ecosystem functioning 

relationships in both the experiment and the 

model were linked to the spread of species’ 

thermal tolerances. However, we did not find 

any indication of a change in competitive 

interactions with temperature fluctuation in our 

experiment, and no effect of experimentally 

measured competition strength on the BEF 

slope, suggesting that this mechanism was not 

at play here, although our study did not allow 

us to test this mechanism more rigourously. 

Similarly, we did not find support for 

asynchronous fluctuations among species as a 

mechanism explaining our results. 

Ecosystem functioning increased with species 

richness through a linear relationship on log-log 

scale. The intercept of this relationship 

indicates ecosystem production at low levels 

(one species) of richness. The steepness of the 

slope elucidates the importance of biodiversity 

for ecosystem functioning. We found that 

temperature fluctuations decreased ecosystem 

production in species-poor communities. This 

was due to non-linear averaging of thermal 

tolerances. Indeed, because phytoplankton 

species were in the concave part of their 

thermal tolerance curve, the time-averaged 

tolerance in fluctuating conditions was lower 

than the tolerance at a constant average 

temperature (61, 62). Further, the biodiversity-

ecosystem functioning slope was steeper over 

longer timescales in the moderate and severe 

thermal fluctuation treatment. This indicates 

that for the same decrease in species richness, 

ecosystem production decreased more in 

severely fluctuating environments. 

Interestingly, the magnitude of the change in 

slope was quite important, with a 91% increase 

in slope between the constant and severe 

fluctuations treatments, higher than the 53 % 

increase in slope with a 6°C temperature 

increase in (48), and the 44 % increase in slope 

with a 5°C temperature increase in (22). Future 

meta-analysis should aim at understanding 

which environmental drivers linked to climate 

change (e.g. changes in temperature mean, 

variance, or frequency of extreme climatic 

events) have the stronger impact on the BEF 

slope. In addition, ecosystem functioning for 

the communities of maximum diversity did not 

change across temperature treatments over 

time, suggesting that a greater diversity (12 

species relative to 1) was able to compensate 

for the negative impact of larger environmental 

fluctuations.  

We further found that the slope of the 

biodiversity-ecosystem function relationship 

changed through time. This agrees with studies 

on plant communities that found that the impact 

of biodiversity on ecosystem functioning 

increases through time (55, 56, 58, 63–67). This 

temporal increase of the BEF slope could arise 

from an increase in the productivity of the high 

richness communities over time (55), a 

decrease in the productivity of the low richness 

communities (57), or different rates of increase 

or decrease over time in the high and low 

richness communities (58). In our experiment, 

the temporal increase in slope depended on the 

temperature fluctuation treatment and on the 

measure for ecosystem production considered: 

while it was present for the moderate and severe 

fluctuating treatment when using abundance as 

a measure, it was present only for the severe 

fluctuation treatment when using biomass and 

for both constant and severe fluctuating 

treatments using chlorophyll a as a measure. 

Further, the reason for the increase in slope also 

depended on the metric used: for abundance, it 

was due to a decrease in the production of the 

one-species communities, with no temporal 

effect in the twelve-species communities. For 
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biomass, there was a decrease in the production 

in one-species communities in the stable and 

severely fluctuating treatment, but in twelve-

species communities, ecosystem function 

actually increased with time in the two 

fluctuating treatments. Finally, for chlorophyll 

a it was due to an increase in production over 

time for all treatments at both richness levels, 

but a steeper increase in the production of the 

twelve-species communities. The dependency 

of the temporal effect on the ecosystem metric 

considered is in line with other studies, showing 

that changes at either low or high richness 

communities can drive the slope depending on 

the ecosystem function considered  (58). Our 

study focused on abundance/biomass 

production as a measure of ecosystem 

functioning, however further studies should 

aim at understanding whether other ecosystem 

functions, such as such as C fixation, O2 

production, or nutrient recycling, would also 

lead to steeper BEF slopes with increased 

fluctuations. More interestingly, the effect of 

time varied with temperature fluctuation 

treatments, with a lower abundance over time 

in the low-richness communities in the severe 

fluctuating treatment but no effect in the 

constant temperature treatment. It is to note that 

our experiment was of short temporal duration 

(15 days). However given the fast reproductive 

rate of phytoplankton (around 0.9 generation 

per day on average), it encompassed a larger 

number of generations than most of the 

experiments on terrestrial plants reviewed in 

(55), where the median experiment length was 

730 days, or ~2 generations of perennial plant 

species. Overall, our results show that as in 

grassland communities (66), increases in slopes 

seem to be due to both increases in production 

at high richness and decreases in production at 

low richness, and further show that the reason 

behind the strengthening of the biodiversity-

ecosystem relationship over time might depend 

on the environmental context, and specifically 

on the temperature fluctuation level.  

We investigated theoretically the variation in 

the biodiversity-ecosystem functioning slope 

with temperature fluctuations. Using a simple 

Lotka-Volterra competition model at steady 

state, we found that the strength of the 

biodiversity-ecosystem functioning slope 

depended on two fundamental parameters: the 

spread of species’ thermal tolerances in the 

species pool, and competition strength. 

Parameterising the model with thermal 

tolerance curves for growth measured for these 

species by Barton and Yvon-Durocher (60), and 

with a competition coefficient directly 

estimated from the experiment, we obtained 

BEF slopes similar to those in our experiment. 

The steeper slopes characteristic of the severe 

fluctuation treatment were linked to the 

variability in the thermal tolerance of the 

species composing the communities. Indeed, 

species that had higher thermal tolerances in 

fluctuating conditions were also the ones that 

contributed the most to ecosystem functioning. 

Further, the spread in thermal tolerances in the 

species pool interacted with biodiversity to 

drive ecosystem functioning in our experiment. 

Thus, as suggested by our theoretical model, 

species pools with a larger spread of thermal 

traits were better able to cope with the 

increasing temperature fluctuations, leading to 

greater biodiversity-ecosystem functioning 

slopes.  

Although our model shows that competition 

strength can potentially be a major factor in 

determining the strength of the biodiversity-

ecosystem functioning relationship, with 

weaker competition leading to steeper BEF 

slopes, our experimental results suggest that 

this mechanism was not an important driver 

here. Indeed, we found no effect of temperature 

fluctuations on competition strength in the 

experiment, and no interaction between 

competition strength and biodiversity on 

ecosystem functioning. Further, using the 

average value of competition strength across 

treatments we accurately predicted the 

experimental BEF slope, suggesting that a 

change in competitive interactions was not 

needed to explain our results. Importantly, our 

model assumes that interaction structure 

between species is symmetric, while this might 

not be the case in the experiment. Indeed, some 

species might be better competitors regardless 

of their thermal tolerance, and thermal 

tolerance could further affect competitive 

abilities (68). Our experimental communities 

showed some variation in relative interaction 

intensity including some facilitative 

interactions (Fig. S6), which might contribute 

to some unexplained variation in the BEF slope. 

Thus we cannot fully reject the hypothesis that 

variation in species interaction strength might 

affect the BEF slope, although the spread in 
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thermal tolerances seems to be the strongest 

driver. 

Interestingly, while the temporal insurance 

hypothesis posits that the slope of the 

biodiversity-ecosystem functioning 

relationship should be steeper in temporally 

variable environments due to different species 

dominating the community dynamics through 

time (5), our theoretical model suggests that 

such a mechanism might not be an important 

driver here, although we did not have 

experimental results to support this hypothesis. 

Indeed, the most abundant species fluctuated in 

synchrony with each other in response to the 

environmental conditions, with no sign of 

asynchrony that could lead to greater ecosystem 

function overall. In our model, the species that 

had the larger average growth rate over the two 

temperature conditions dominated the 

community all the time, and such time-

averaged growth rate was linked to greater 

contribution to community functioning in the 

experimental results. 

The purpose of our model was to explore the 

mechanisms operating in the experiment. To do 

so, we made a number of simplifications. In 

particular, the model assumes equilibrium in 

which nutrient renewal is constant, while 

nutrients in our experiment are only added at 

the beginning. Relaxing this assumption, we 

found that the model results depend on the rate 

of nutrient depletion (Appendix 1, Fig. S13). 

We show that communities reach a quasi-

equilibrium that coincides with the Lotka-

Volterra equilibrium, and remain in this state 

for a time that depends on the rate of nutrient 

uptake, until a sharp decrease in abundances 

when nutrients are completely exhausted in the 

environment. In our experiment, it is likely that 

species were at stationary growth phase and 

thus carrying capacity by day 15 (Fig. S14), and 

thus the simple Lotka-Volterra equilibrium 

might be a good approximation of the reality.   

Our experimental results contrast with those of 

Parain et al. (49) on protozoan-bacteria 

consumer-resource communities. The authors 

found a decrease in the BEF slope value with 

increased mean and variation of temperature. 

Using a similar competition model to the one 

developed here, they found that the mechanism 

behind their results was a temperature-induced 

increase in consumer attack rates, which 

translated into higher effective competitive 

interactions among consumers. Baert et al. (51) 

showed theoretically and empirically that the 

slope of the biodiversity-ecosystem functioning 

had a hump-shaped relationship with 

environmental stress. In their study, the BEF 

slope increased from low to medium values of 

environmental stress due to the increased 

probability that more diverse communities 

contain a stress-tolerant species. However, 

when stress levels were high, the BEF 

relationship collapsed into a horizontal line as 

stress was sufficiently high to inhibit the growth 

of all species. This effect was comfounded by 

changes in species interactions that are more 

idiosyncratic and might depend on species 

identities, making predictions more difficult. In 

our system, thermal fluctuations can be 

considered an environmental stress, as 

evidenced by the strongly decreased effective 

growth rate in almost all species in the severe 

fluctuation treatment (Fig. S5). However, our 

extreme (i.e., 19-31°C) fluctuation treatment 

was not sufficiently high to inhibit the growth 

of all species, explaining the steeper slope with 

increasing temperature fluctuation. Overall, 

temperature fluctuations can lead to drastically 

different responses of the biodiversity-

ecosystem functioning relationship depending 

on whether it leads to a change in species 

interactions or is driven by differences in 

thermal tolerances. A better understanding of 

the conditions in which increased temperature 

variability leads to one, the other, or a mix of 

both is needed in order to predict ecosystem 

responses in the face of climate change and 

biodiversity loss. Simple competitive models 

such as ours, Parain et al. (49), or Baert et al. 

(51) can help understanding whether and when 

species traits affect biodiversity-ecosystem 

functioning relationships. 

Conclusion 

The combination of rapid climate change and 

human-driven biodiversity loss makes 

understanding how changing climatic 

conditions and biodiversity levels will affect 

ecosystem functioning an imperative. Our 

proof-of-concept study showed both 

experimentally and theoretically that due to 

variation in phytoplankton species thermal 

tolerances, thermal fluctuations affected the 

slope of the relationship between biodiversity 

and ecosystem functioning. When climatic 
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conditions fluctuate strongly, the slope of the 

relationship is steeper, suggesting that 

biodiversity loss has a stronger negative effect 

on ecosystem functioning than when the 

environment is more stable. This is particularly 

true over longer timescales, as the slope of the 

relationship becomes steeper over time in the 

severe fluctuation treatment. Changes in 

biodiversity-ecosystem functioning slope were 

primarily linked to differences and variability 

in thermal tolerances. Although, theoretically, 

modifications in competitive interactions can 

also play a role, we found no support for this 

mechanism and neither for the effect of 

asynchronous populations fluctuations. 

Because climate change entails both changes in 

the mean and variance in temperature and 

because increased temperatures have also been 

found to increase the slope of the biodiversity-

ecosystem functioning relationship, we should 

now understand the potential for interactive 

effects between mean and temperature 

fluctuations. Further studies should also aim at 

scaling-up our results to more complex 

communities and ecosystems (69), taking into 

account trophic diversity as well as more 

realistic mesocosm and natural settings 

increasing the spatial and temporal scale. 

Materials and Methods 

Species and culture conditions 
We used 12 species of marine phytoplankton 

for the experiment, Amphidinium carterae, 

Bigelowiella natans, Dunaliella tertiolecta, 

Emiliania huxleyi, Gymnochlora stellata, 

Ostreococcus tauri, Porphyridium aerugineum, 

Porphyridium purpureum, Phaeodactylum 

tricornutum, Rhodella maculata, Synechocystis 

sp and Thoracosphaera heimii. These species 

encompass most of the biogeochemically and 

ecologically important groups (Chlorophytes, 

Coccolithophores, Cyanobacteria, Diatoms, 

Dinoflagellates, Rhodophytes and 

Prasinophytes; Table S12). Strains of each 

species were sourced from an experiment run at 

Exeter University (United Kingdom) by Barton 

and Yvon-Durocher (60), in which the authors 

studied thermal tolerance curves for growth of 

culture collection strains of 18 marine 

phytoplankton species including these 12 

species. Stocks of each of the strains were 

transferred from Exeter University to the 

Station d’Ecologie Théorique et Expérimentale 

(Moulis, France).  Species were cultured on 

Keller’s K + Si medium in a Panasonic MLR-

352 incubator at 20°C on a 12:12 light-dark 

cycle with a light intensity of 50 µmol·m-2·s-1, 

and kept under nutrient replete, exponential 

growth conditions by transferring 1 ml of each 

culture into new medium every week for ~3 

months before the experiment.  

Biodiversity-Ecosystem 
functioning experiment 
We created artificial communities using the 

random partition design described by Bell et al. 

(59) to study how the relationship between 

biodiversity and ecosystem functioning varied 

with temperature fluctuations. We randomly 

combined species into communities with 

different species richness levels from 1, 2, 3, 4, 

6, and 12 species. At each species richness 

level, we constructed the community 

assemblages by sampling all of the 12 species 

without replacement (Fig. 1), allowing each 

species to be represented an equal number of 

times (22). We repeated the sampling 5 times to 

form 5 independent partitions of the species 

pool, so that the number of assemblages for 

each richness level (R) was 5 x 12/R. We then 

replicated each assemblage 3 times. We 

subjected all replicated communities to three 

temperature fluctuation treatments, constant 

25°C, fluctuating between 22 and 28°C and 

fluctuating between 19 and 31°C, which led us 

to get a total of 3 x 3 x 5 x (12 + 6 + 4 + 3+ 2 + 

1) = 1260 communities for the whole 

experiment. 

We used fifty-four 24 well plates (18 plates per 

temperature) filled with 2 mL of K+Si medium 

to create the experimental communities. We 

inoculated each well with 1200 cells.mL-1 of 

each community (i.e. 100 cells.mL-1 per species 

for twelve-species communities, 200 cells.mL-1 

per species for six-species communities, 300 

cells.mL-1 per species for four-species 

communities, 400 cells.mL-1 per species for 

three-species communities, 600 cells.mL-1 per 

species for two-species communities, and 1200 

cells.mL-1 per species for monocultures). We 

randomised the position of the communities 

within the plates. 

To minimise evaporation and contamination 

within the wells while allowing gas exchange, 

we covered plates with AeraSeal breathable 

membrane. We then grew the communities in 

three Panasonic incubators on a 12:12 
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light:dark cycle at either constant 25°C 

temperature, fluctuation every other day 

between 22 and 28°C, or fluctuation every other 

day between 19 and 31°C. To refill water loss 

due to evaporation, we added 0.4 ml of distilled 

water every 2-3 days to each well. After 5 and 

15 days of experiment, we sampled 100 µL 

from each community onto a 96 well plate. We 

chose these two time points based on the data 

collected by Barton and Yvon-Durocher (60), 

whose growth curves collected at temperatures 

close to our experimental temperatures showed 

that species were likely in their exponential 

phase of growth at day 5, while they should 

reach stationary phase of growth by day 15 (Fig 

S14). Samples were preserved with 10 µL of 

1% sorbitol solution as a cryoprotectant, 

incubated one hour in the dark, and then frozen 

at -80°C until further analysis. Plates were 

defrosted and we determined total cell density 

in each sample by flow cytometry (BD 

FACSCanto II HTS). Plates were run on the 

flow cytometer on 0.5 µL·sec-1 flow rate, with 

three times 50 µL mixing and a cleaning of 400 

µL between each sample to avoid 

contamination of measurements between 

samples. 

Data analyses 
We extracted flow cytometry standard (FSC) 

files from the flow cytometer into R v3.5.3  (70) 

using the Bioconductor package FlowCore to 

get cell counts and the associated cytometric 

properties (forward scatter (FSC, a proxy of 

size), side scatter (SSC), and far red 

fluorescence (PerCP.Cy5, a proxy of 

chlorophyll a content)). We first filtered the 

data to remove noise by removing every data 

point where log10(PerCP.Cy5)<1.5, 

log10(FSC)<3.3 and log10(SSC)<1.5, which 

were below minimum values observed for live 

cells of these species. We then used the 

calibration curves described in Appendix 2 to 

estimate cell chlorophyll a content in pg.cell-1 

from PerCP.Cy5 values and cell biomass in 

pgC.cell-1 from FSC values.  

We calculated community abundance as the 

total number of cells per mL and total biomass 

and chlorophyll a content as the sum of biomass 

or chlorophyll a across all cells scaled to 

numbers per mL. Because the theoretical model 

we present focuses on growth rate and 

abundance, we present the cell abundance data 

in the main text, and use this metric as a 

measure of ecosystem functioning. However, 

similar results are found with the total 

chlorophyll a content and total biomass, 

presented in supplementary materials. 

We used linear mixed models with lme4 

package to understand how the relationship 

between biodiversity and ecosystem 

functioning (BEF) varied with time and 

temperature fluctuation treatment. We first 

fitted a linear mixed model of log-abundance 

against the temperature fluctuation treatments 

as a factor as well as a random effect of sample 

identity to account for non-independence 

between time points, and we added sequentially 

day of sampling (as a factor, day 5 or day 15), 

log-transformed species richness, and the two-

way and three-way interactions between the 

three factors. We compared models of 

increasing complexity with AIC. The best 

model included the triple interaction between 

time, temperature fluctuation treatment and log 

species richness. We used post-hoc contrasts to 

assess whether the BEF slope differed between 

each pairwise combination of temperature 

fluctuation treatment levels for a given date 

with emtrends function from emmeans package 

adjusting p-values with Tukey method. We also 

tested whether the BEF slope differed between 

the two dates for each temperature fluctuation 

treatment level with the same methods.  

In a second step, we aimed to understand 

whether ecosystem function depended on 

species thermal tolerances, measured for 

growth by Barton and Yvon-Durocher (60)’s 

experiment. Tolerance was calculated as either 

the growth rate at 25°C for the constant 

treatment or the average of the growth rates at 

22 and 28°C (resp. 19 and 31°C, hereafter 

named effective growth rate) for the fluctuating 

treatments (Fig. S5). Using the average of the 

two temperatures is reasonable because the 

change in the temperature in the incubators is 

very fast (from 19°C to 31°C and conversely in 

<20 minutes). We first measured the spread in 

thermal tolerances in the species pool for each 

temperature fluctuation level as the difference 

between the maximum and the minimum 

effective growth rate scaled by maximum 

effective growth rate. We then assessed 

whether such spread affected BEF relationship 

by modelling ecosystem functioning at day 15 

as a function of the interaction between spread 

in thermal tolerance and log richness in a linear 
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model. To test whether results were congruent 

with different measures of spread, we redid the 

analysis using the coefficient of variation of 

species thermal tolerance. Second, we assessed 

whether each species’ contribution to 

ecosystem functioning was linked to their 

thermal tolerance. We used the residuals from 

the best supported model of the first step (Table 

1) to fit a linear mixed model of community 

composition, with 12 variables representing 

each species’ presence-absence status, and their 

interaction with temperature as a factor, as well 

as sample identity as a random effect. This 

method provides species coefficients that allow 

understanding the effect of each species on 

ecosystem functioning relative to an average 

species (59). Species with positive coefficient 

contribute to ecosystem functioning above the 

average species, while negative coefficients 

show a below-average contribution. We used a 

linear model to link these species coefficients to 

each species’ thermal tolerance.  

We also aimed at evaluating interspecific 

competition strength in the experiment. To do 

so, we used a random forest classification 

algorithm to discriminate cells from each 

species in each two-species community and 

calculate relative abundance at day 15 and thus 

to calculate abundance of each species within 

the two-species communities (Appendix 3). We 

then calculated pairwise species interactions by 

the relative interaction intensity index (RII, 

(71)) from the ratio of the difference and sum 

of abundance of the species in monoculture Bo 

and the abundance of the species in polyculture 

Bw, 𝑅𝐼𝐼 =
𝐵𝑤−𝐵𝑜

𝐵𝑤+𝐵𝑜
. Note that because total initial 

abundance was kept constant across diversity 

levels (as usual in biodiversity-ecosystem 

functioning experiments), we can only use RII 

at day 15. We first tested whether RII varied 

with temperature fluctuation treatment with an 

ANOVA. We then tested whether RII affected 

BEF relationship by modelling ecosystem 

functioning as a function of the interaction 

between log richness and average RII in each 

temperature fluctuation treatment. 

Theoretical model 

Model definition 

We constructed a model to generate predictions 

and test mechanisms for the biodiversity-

ecosystem functioning slope at different levels 

of thermal fluctuation. The model is based on 

the competitive Lotka-Volterra equations, 

which describe the dynamics of species 

abundance Ni, where species index i runs over 

S species 

𝑑𝑁𝑖

𝑑𝑡
= 𝑟𝑖𝑁𝑖 − ∑ 𝑎𝑖𝑗𝑁𝑖𝑁𝑗

𝑗

 

The model parameters are ri, the intrinsic 

growth rate of species i, and aij is the 

competition strength of species j on species i. 

To keep the model parameterisable, we 

assumed symmetric competition, i.e., all 

intraspecific competition strengths are equal, aii 

= a0 for all i, and all interspecific competition 

strengths are equal, aij = a1 for all i and j with i 

≠ j. Environmental conditions affects intrinsic 

growth rates ri, and potentially also interaction 

strengths a0 and a1. Despite its simplicity this 

model has been shown to provide insights in the 

effects of a changing environment on the BEF 

relationship (49, 51). 

Model analysis 

We investigated how the slope of the 

relationship between log species richness and 

log community abundance depends on the 

model parameters (see Appendix 1). Our model 

focuses on community abundance at steady 

state, which we considered to correspond to the 

day 15 conditions in the experiments, as single-

species growth curves show that species are at 

stationary growth phase and thus carrying 

capacity by day 15 (Fig. S14). Further, it is to 

note that although in principle steady state of 

communities and ecosystems can differ 

strongly from steady state of the one-species 

population dynamics, in our model these 

different steady states are reached at similar 

times.   We found that at steady state, the BEF 

slope is determined by only two model features: 

(i) the spread of intrinsic growth rates between 

species, and (ii) the ratio of inter- to 

intraspecific competition strength, α = a1 / a0. 

Moreover, this result remains approximately 

valid for the treatments with thermal 

fluctuations. It suffices to replace the model 

parameters ri, a0 and a1 by their average over 

the two temperatures of the fluctuation 

treatment. Note that we focus our theoretical 

analysis on production at steady state as it does 

not depend on initial biomass conditions 
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(Appendix 1) and is hence more easy to verify 

than the prediction for the transient regime, 

which is affected by both the model parameters 

and the initial conditions. 

The key parameters of our model are instances 

of the two broad categories of coexistence 

mechanisms (52, 53, 72).  In analogy with 

coexistence theory we denote the spread of 

intrinsic growth rates, either at a fixed 

temperature for the constant treatment or 

averaged over two temperatures for the 

fluctuation treatments, “tolerance differences". 

The ratio of inter- to intraspecific competition 

strength α, sometimes called the competition 

coefficient, determines “niche differences", 

which are small for α ≈ 1 and large for α ≈ 0.  

The model predicted the following 

dependencies of the BEF slope on the two key 

model parameters (see Fig. S9). If all species 

have approximately the same growth rate (weak 

tolerance differences), then the BEF slope 

decreases gradually from one at α = 0 (non-

overlapping niches, no interspecific 

competition) to zero at α = 1 (no niche 

differences, interspecific competition equal to 

intraspecific competition). In case of strong 

tolerance differences, the BEF slope decreases 

more slowly from one at α = 0 towards a lower 

value at α = 1. 

Model parameterisation 

To obtain a prediction for the BEF slope that 

can be compared to the experimental results, we 

estimated first the two key model parameters. 

We determined the intrinsic growth rates using 

the thermal tolerance curves measured by (60). 

For the constant treatment (25 °C) we set the 

intrinsic growth rates ri equal to the tolerance 

measured at this temperature. For the variable 

treatments (22-28 °C and 19-31 °C), we took 

the average of the tolerances measured at the 

two temperatures of the fluctuation regime (Fig. 

S5). Note that under the model assumptions 

only relative values of species tolerance matter 

for the BEF slope (see Appendix 1). 

We estimated the ratio of inter- to intra-specific 

competition using relative interaction 

intensities (RIIs, (71), Fig. S6). We computed 

the steady-state solution of the model for the 

same two-species communities that were used 

to determine the empirical distribution of RIIs. 

We repeated this computation for a range of 

values of the competition coefficient α. These 

results allowed us to establish a relationship 

between α and the average RII, dependent on 

the empirically estimated intrinsic growth rates. 

By evaluating this relationship at the average of 

the empirical RII distribution, we obtained our 

estimate of the competition coefficient α. We 

then plugged in the estimates for the intrinsic 

growth rates and the competition coefficient α 

in the theoretical model. We used the same 

random partitioning design as in the 

experiment, to obtain 88 community 

compositions separated into 6 richness levels 

(R = 1, 2, 3, 4, 6 and 12 species). By regressing 

steady-state community abundance against 

initial species richness on a log-log scale, we 

obtained our prediction for the BEF slope. 

Importantly, the data used to generate the 

theoretical prediction were largely independent 

from the data used to construct the empirical 

BEF relationship. The effective growth rates 

were from (60), and the competition coefficient 

was estimated from the individual species 

abundances in the two-species polycultures, 

while only the total community abundance 

matters for the BEF relationship. 
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Appendix 1: Model analysis 

Here we present a detailed analysis of the Lotka-Volterra model (1) presented in the main text. 

Assuming symmetric competition, the model reads 

𝑑𝑁𝑖

𝑑𝑡
=  𝑟𝑖𝑁𝑖 − 𝑎0𝑁𝑖

2 −  ∑ 𝑎1𝑁𝑖𝑁𝑗

𝑗≠𝑖

 

           =  𝑁𝑖( 𝑟𝑖 − 𝑎0𝑁𝑖 − 𝑎1 ∑ 𝑁𝑗)𝑗≠𝑖    (S1) 

The parameter ri can be interpreted as the species’ tolerance for the current environment. A highly 

tolerant species is assumed to have both a large intrinsic growth rate ri (i.e. its growth rate in the absence 

of con- and heterospecific competitors) and a large carrying capacity ri/a0 (i.e., its equilibrium 

abundance in the absence of heterospecific competitors). 

The model parameters ri, a0 and a1 depend on temperature. We take the same temperature dependencies 

for the constant and fluctuation treatments. That is, we assume that in case of fluctuating temperature, 

growth and competition take the same values as if the instantaneous temperature persisted since a long 

time. This assumption holds if the temperature fluctuations are relatively slow compared to the thermal 

response of the individual organisms (i.e., the organisms’ physiological response). 

We are interested in the steady-state dynamics, in which species abundance fluctuate periodically, with 

the same period as the temperature. In general, the steady state can be studied by numerically solving 

the dynamical equations (S1). However, one steady-state property can be studied directly: the time 

average of the species abundances. Indeed, denoting the time average by an overline, we have 

0 =  
𝑑 ln 𝑁𝑖
̅̅ ̅̅ ̅̅ ̅̅

𝑑𝑡
=  

1

𝑁𝑖
 
𝑑𝑁𝑖

𝑑𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

=  𝑟�̅� −  𝑎0𝑁𝑖
̅̅ ̅̅ ̅̅ − 𝑎1 ∑ 𝑁𝑗

𝑗≠𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

     =  𝑟�̅� − 𝑎0̅̅ ̅ 𝑁𝑖
̅̅̅ −  𝑐𝑜𝑣(𝑎0, 𝑁𝑖) −  𝑎1̅̅ ̅ ∑ 𝑁�̅�𝑗≠𝑖 − ∑ 𝑐𝑜𝑣(𝑎1, 𝑁𝑗)𝑗≠𝑖  

≈  𝑟�̅� −  𝑎0̅̅ ̅ 𝑁𝑖
̅̅̅ − 𝑎1̅̅ ̅ ∑ 𝑁�̅�𝑗≠𝑖        (S2) 

where in the last line we neglected the covariance terms cov(a0, Ni) and cov(a1, Nj). These covariance 

terms are small if the temperature fluctuations are relatively fast compared the thermal response of the 

species abundances, i.e., if there is not sufficient time between temperature changes to lead to large 

abundance variation (i.e., the populations’ ecological response). When this is the case, there is 

insufficient time between temperature changes to induce a large variation in abundance, and hence to 

create covariation between interaction strength and species abundance. If, on the contrary, the 

ecological response time is faster than the temperature fluctuation, approximation (S2) is less accurate. 

Both cases are illustrated in Fig. S15. Overall, ignoring these covariance terms introduces only a small 

error, especially when the time scale of the community dynamics is not much smaller than the 

fluctuation frequency, as is probably the case in our experiment.  

Thus, we see that the steady-state conditions (S2) for the time-averaged species abundances Ni are 

closely related to equilibrium conditions for the species abundances Ni of the dynamical system (S1) 

without temperature fluctuations, 

0 =  𝑟𝑖 − 𝑎0𝑁𝑖 − 𝑎1 ∑ 𝑁𝑗𝑗≠𝑖     (S3) 

These two sets of equations are equivalent if we replace the model parameters by their time-averaged 

values, i.e., ri by 𝑟�̅�, a0 by 𝑎0̅̅ ̅ and a1 by 𝑎1̅̅ ̅. Clearly, this equivalence is not strictly verified for our 
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experiment, given the numerous assumptions we made in its derivation. Still, it provides a useful 

approximation to study the effects of temperature fluctuations on the BEF relationship. 

Next, we study the slope of the steady-state relationship between species diversity and community 

abundance. For simplicity, we formulate our analysis for the constant treatment. But by using the 

equivalence derived above, we can directly extend the results to the fluctuation treatments, provided we 

replace the model parameters by their time averages, and interpret the equilibrium as the time-averaged 

steady state. 

We consider a species pool, where each species is characterized by an intrinsic growth rate ri. From this 

pool we repeatedly sample subsets of species, put them into competition with competition strengths a0 

and a1, and solve the steady-state species abundances Ni, see equation (S3). Regressing community 

abundance ∑ 𝑁𝑖𝑖  against initial species richness R on a log-log plot, we obtain the slope of the BEF 

relationship. 

The BEF slope predicted by the model satisfies some general properties. To derive them, we note that 

the predicted slope does not depend on the scale of species abundance used in the model. Indeed, if we 

multiply all species abundances by the same factor c, the BEF relationship of ln(total abundance) vs. 

ln(species richness) shifts vertically by the constant ln(c), but its slope remains unchanged. Introducing 

the factor c into equation (S3), we get 

0 =  𝑟𝑖 −  𝑐 𝑎0𝑁𝑖 −  𝑐 𝑎1 ∑ 𝑁𝑗

𝑗≠𝑖

 

We set  𝑐 =  𝑟𝑚𝑎𝑥 𝑎0⁄ , with rmax the largest species intrinsic growth rate. The equilibrium conditions 

can then be rewritten as  

0 =  
𝑟𝑖

𝑟𝑚𝑎𝑥
− 𝑁𝑖 −  

𝑎1

𝑎0
∑ 𝑁𝑗𝑗≠𝑖      (S4) 

Recalling that this rescaled equation predicts the same BEF slope as the original equation (S3), we see 

that (1) the predicted slope does not depend on the absolute species intrinsic growth rates, but on their 

relative spread, and (2) the predicted slope does not depend on the individual competition strengths a0 

and a1, but on their ratio α = a1 / a0.  

We conclude that the BEF slope prediction is determined by only two model features: (1) the spread of 

intrinsic growth rates between species, called tolerance differences in the main text, and (2) the ratio of 

inter- to intraspecific competition strength, sometimes called competition coefficient. As explained 

above, these results immediately generalize to the case with temperature fluctuations, by replacing the 

model parameters by their time-averaged equivalents. The two key dependencies of the BEF slope are 

illustrated in Fig. S9. 

Nutrient depletion and quasi-equilibrium 
Our analysis of the Lotka-Volterra model is based on a steady-state assumption. In particular, we 

assumed that the equilibrium of the time-averaged model is comparable to the experimental data. 

Clearly, this assumption must break down when the nutrients become depleted (recall that we did not 

add nutrients during the experiment). Here we use a model with explicit nutrient dynamics to illustrate 

how the equilibrium of the Lotka-Volterra model can yield useful predictions even in the case of nutrient 

depletion. 

We combine the Lotka-Volterra species interactions with simple nutrient dynamics. We assume that the 

decreasing pool of available nutrients can be described by a single nutrient density variable M. The 

coupled dynamics are 

𝑑𝑁𝑖

𝑑𝑡
= (𝑔𝑖(𝑀) −  𝑚𝑖)𝑁𝑖 − ∑ 𝑏𝑖𝑗𝑁𝑖𝑁𝑗

𝑗
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𝑑𝑀

𝑑𝑡
=  − ∑ 𝑓𝑖(𝑀)𝑁𝑖𝑖        (S5) 

Here 𝑓𝑖(𝑀) is the nutrient uptake rate (the functional response), 𝑔𝑖(𝑀)  is the species growth rate (the 

numerical response), 𝑚𝑖 is the species loss rate, and 𝑏𝑖𝑗 are competitive interaction strengths, excluding 

the part of competition mediated by nutrient M, because this part is modelled explicitly. 

The functions 𝑓𝑖(𝑀) and 𝑔𝑖(𝑀) are typically saturating functions of nutrient density M. Using the 

Monod equation, 

𝑔𝑖(𝑀) =  
𝑐𝑖𝑀

𝑘𝑖 + 𝑀
  𝑎𝑛𝑑 𝑓𝑖(𝑀) =  

𝑑𝑖𝑀

𝑘𝑖 + 𝑀
   

Let us assume that at the start of the experiment, the functions 𝑓𝑖 and 𝑔𝑖 are at saturation, 𝑔𝑖 ≈  𝑐𝑖 and 

𝑓𝑖 ≈  𝑑𝑖. Then the first part of the dynamics is described by  

𝑑𝑁𝑖

𝑑𝑡
= (𝑐𝑖 −  𝑚𝑖)𝑁𝑖 −  ∑ 𝑏𝑖𝑗𝑁𝑖𝑁𝑗𝑗    (S6) 

That is, during the initial phase the species abundances obey Lotka-Volterra dynamics (with 𝑟𝑖 =  𝑐𝑖 −
 𝑚𝑖 and 𝑎𝑖𝑗 = 𝑏𝑖𝑗). At a later time, different scenarios are possible (Fig. S13). The trajectories of the 

simple Lotka-Volterra dynamics and of the coupled model coincide until the nutrient density drops to 

a low level. If this drop occurs well after the Lotka-Volterra dynamics equilibrate, the species 

abundances in the coupled model reach a plateau, equal to the Lotka-Volterra equilibrium, and remain 

in this state for a relatively long time (Fig. S13a). This is a quasi-equilibrium, because the nutrient 

density continues to decrease, inducing eventually a decrease of the species abundances as well (Fig. 

S13b). If the nutrient drop occurs earlier, before the Lotka-Volterra equilibrate, the species abundances 

do not reach a quasi-equilibrium, but switch relatively quickly from an increasing to a decreasing slope 

(Fig. S13c). Growth curves from Barton and Yvon-Durocher (1) suggest that species are at stationary 

phase of growth by day 15, with no apparent decline in species abundances (Fig. S14). We conclude 

that the species abundances in a quasi-equilibrium can be approximated by a Lotka-Volterra 

equilibrium, justifying our modelling approach.  
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Appendix 2: Chlorophyll a and total biomass calibration 

We separately grew each species, and at carrying capacity we calculated cell density and mean FSC 

and PerCP.Cy5 values on the flow cytometer as described in the main text. We then sampled 50 mL 

from each species and centrifuged them at 4°C at 3500 rpm for 30 minutes. We re-suspended the 

resultant pellets in 3 mL of ethanol (100%), and kept samples refrigerated in the dark for 24 hours to 

extract chlorophyll a. After that, we took two 200 µL technical replicates from each sample onto a 96 

well plate to measure absorbance from 610 nm to 750 nm using a spectrophotometer (Tecan Spark 

10M). We measured blanks across the same wavelength range to correct for the ethanol absorbance. 

We then obtained estimates of chlorophyll a in pg.cell-1 for the cultures using well established 

absorbance coefficients (2, 3) and dividing by cell abundance measured by flow cytometry. We used a 

linear model on a log-log scale to model the chlorophyll a values in pictograms per cell against mean 

PerCP.Cy5 values from the flow cytometer (estimates (± SE): intercept = -9.31 ± 1.75, slope: 0.805 ± 

0.185, t = 4.35, p = 0.001, R2 = 0.65). We finally used this calibration curve to estimate chlorophyll a 

content of the communities in the biodiversity-ecosystem function experiment from PerCP.Cy5 values 

from the flow cytometer. For biomass, we regressed measured cell diameter (d, µm3) values from 

microscopy against FSC values from the flow cytometer using a linear model (estimates (± SE): 

intercept: -0.177 ± 0.487, slope = 2.2e-4 ± 2.1e-5, t = 10.3, p = 7e-10, R² = 0.83) and applied these 

calibration curves to the biodiversity-ecosystem function data. We then calculated the biovolume of 

each cell assuming that each particle was spherical ( 𝑏𝑖𝑜𝑣𝑜𝑙𝑢𝑚𝑒 =  
4

3
𝜋(

𝑑

2
)3) and converted into units 

of carbon (pg.cell-1) using a conversion factor of (𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 0.109 𝑏𝑖𝑜𝑣𝑜𝑙𝑢𝑚𝑒0.991) derived from the 

literature (4–6). We finally summed biomasses across cells. 
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Appendix 3: Discrimination of cell identity in the two-species 
communities through random forest classification algorithm 
 

We also aimed at evaluating interspecific competition strength in the experiment. To do so, we used a 

random forest classification algorithm to discriminate cells from each species in each two-species 

community and calculate relative abundance at 15 days. We used the values from the flow cytometry 

output to define species morphology and pigment composition and as inputs to the random forest 

analysis (7, 8). We used the monoculture dataset to create the random forest discrimination functions 

by separating it first into a training and a testing dataset. For each pre-existing two-species community 

composition in the polycultures (i.e. the 30 two-species pairs measured in the polycultures and not all 

of the 66 potential two-species pairs combinations possible with 12 species), we restricted the training 

and testing dataset to the two species present inside of the community. We used the variables returned 

by the flow cytometer (i.e. FSC, SSC, FITC, PE, PerCP.Cy5, PE.Cy7, APC, APC.H7, V450, V500) in 

the training dataset as input of the random forest algorithm to calculate discrimination functions 

between pairs of species. These discrimination functions were then used to predict species identity in 

the testing dataset. This allowed us to calculate for each simulated pair of species a percentage of 

accuracy in the prediction. Unfortunately, some species compositions led to very poor predictability 

(for instance, in the  Synechocystis sp - Thoracosphaera heimii community, the abundance of 

Thoracosphaera heimii was poorly detected, with only 24.4 % of the cells correctly attributed to it). We 

therefore used a cut-off of community predictability, where the worst predicted species in the 

community would be predicted with at least 60 % of accuracy (8). This cut-off led us to exclude 3 out 

of the 30 pairs of species. The average prediction power for each species inside of the remaining 27 

communities was 92 % ± 7 SD, which makes us confident in the assessed abundance of each species 

for these communities. We finally applied the discrimination algorithms to the two-species communities 

from the experiment (excluding the 3 communities for which the predictive power was below the 

threshold), and calculated each species abundance.  
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Appendix 5: Supplementary Figures and Tables 
 

 

Fig. S1: The relationship between biodiversity and ecosystem functioning measured as 
biomass depends on the interaction between temperature fluctuation treatment and 
time. 
 

From left to right: constant 25°C temperature treatment (blue confidence interval), alternating 22 and 

28°C temperature every other day (yellow confidence interval), and alternating 19 and 31°C 

temperature every other day (red confidence interval). Top panel: 5 days, and bottom panel: 15 days of 

experiment. Grey points represent ecosystem functioning for each of the 1260 communities (420 per 

temperature fluctuation treatment) measured as ln total cell biomass of Carbon(ln pgC.ml-1). Black 

points and error bars are the mean ± SD for each level of species richness. Lines and confidence intervals 

correspond to the fitted curves for the most parsimonious linear mixed model (Table S4). The slope of 

the relationship between biodiversity and ecosystem functioning depends on the interaction between 

temperature treatment and time (Table S4), with no differences in slopes between treatments after 5 

days but an increase in the slope of the extreme fluctuation treatment over time leading to steeper BEF 

slopes at high levels of temperature fluctuations at the end of the experiment (Table S5).  
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Fig. S2: The relationship between biodiversity and ecosystem functioning measured as 
chlorophyll a depends on the temperature fluctuation treatment and time. 
 

Link between biodiversity and ecosystem functioning measured as total chlorophyll a content (ln pg.ml-

1) depending temperature fluctuation treatment (from left to right: constant 25°C temperature treatment, 

alternating 22 and 28°C temperature every other day, and alternating 19 and 31°C temperature every 

other day) and time (top panel: 5 days and bottom panel: 15 days of experiment). Grey points represent 

ecosystem functioning for each of the 1260 communities (420 per temperature fluctuation treatment). 

Black points and error bars are the mean ± SD for each level of species richness. Lines and confidence 

intervals correspond to the fitted curves for the most parsimonious linear mixed model (Table S6).  The 

slope of the relationship between biodiversity and ecosystem functioning depends on the interaction 

between temperature treatment and time (Table S6-S7), with no differences in slopes between 

treatments after 5 days but an increase in the slope at the constant and extreme fluctuation treatment 

over time leading to steeper BEF slopes at high levels of temperature fluctuations at the end of the 

experiment (Table S7).  
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Fig. S3: Comparing ecosystem functioning (as chlorophyll a) for the monocultures and 
12-species communities in the different temperature fluctuation treatments.  
 

Values of ecosystem functioning (ln chlorophyll a pg.ml-1) for the monocultures and 12-species 

communities in the three temperature fluctuation treatments and the two times (day 5: empty circles, 

day 15: filled circles). Values and 95% confidence intervals are derived from a contrast analysis of the 

model represented in Fig. S2 (Table S8). Increased temperature fluctuations lead to lower ecosystem 

functioning in the low richness communities, while this detrimental effect is compensated for the 12-

species rich communities (Table S8). Further, ecosystem functioning increases over time for close to 

all temperature treatments, but the increase is stronger in 12-species communities than in monocultures 

(Table S9). 
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Fig. S4: Comparing ecosystem functioning (as biomass) for the monocultures and 12-
species communities in the different temperature fluctuation treatments.  

Values of ecosystem functioning (ln biomass of C pg.ml-1) for the monocultures and 12-species 

communities in the three temperature fluctuation treatments and the two times (day 5: empty circles, 

day 15: filled circles). Values and 95% confidence intervals are derived from a contrast analysis of the 

model represented in Fig. S1 (Table S10). Increased temperature fluctuations lead to lower ecosystem 

functioning  in the low richness communities, while this detrimental effect is compensated for the 12-

species rich communities at the end of the experiment (Table S10). Further, ecosystem functioning 

increases over time in the 12-species rich communities particularly in the two fluctuating treatments, 

while results vary from increases to decreases in the monocultures (Table S11).  
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Fig. S5: Extracting effective growth rates from thermal tolerance curves.  

a) Thermal tolerance curves are obtained from data from Barton and Yvon-Durocher (1) for all species 

b) Effective growth rate, representing the tolerance to the temperatures in the experiment, is derived 

from either the growth at 25°C for the stable treatment (blue dots), or the mean of the growth at 22 and 

28°C (yellow dots), or respectively 19 and 31°C (red dots), for the fluctuating treatments. There is a 

greater spread in effective growth rates (thermal tolerance) among species in the severe fluctuating 

treatment (relative spread in effective growth rates = 0.80, 0.81 and 0.88, coefficient of variation of 

effective growth rates = 0.47, 0.49, 0.67 respectively in the 25°C, 22-28°C and 19-31°C treatments). It 

is interesting to note that much of this increased variation is due to the high tolerance of Ostreococcus 

tauri. Removing this species leads to a relative spread of 0.72, 0.68 and 0.76 and a coefficient of 

variation of 0.38, 0.34 and 0.41, respectively in the 25°C, 22-28°C and 19-31°C treatments.  
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Fig. S6: Distribution of pairwise interaction index measured as relative interaction 
intensity (9) in the three temperature treatments and relationship between relative 
interaction intensity and competition coefficient α  
 

a) Relative interaction intensity measured at day 15 for the three temperature treatments (blue: 25°C 

constant, yellow: 22-28°C fluctuating, red: 19-31°C fluctuating temperature treatments). Frequency 

polygon with a bin width of 0.2. The points and error bars represent the mean and 95% CI (as 

1.96*SEM) of the relative interaction intensity by treatment (colours) and for all treatments pooled 

(black). Note that not all possible pairwise interactions were investigated, as (1) only the interactions 

between pairs of species sampled in the random partitioning design were measured and (2) not all pairs 

of species could be discriminated with the random partitioning design. There is no significant difference 

in RII between the three temperature treatments (Anova F1,159 = 2.22, p = 0.11) thus we use the mean 

relative interaction intensity across treatments (in black, RII = -0.29 ± 0.03 SEM, corresponding to the 

dotted line) to calculate the competition coefficient α. Most of the relative interaction intensities are 

negative, suggesting competitive interactions where both the effect of species i on species j and the 

effect of species j on species i are negative. But some interactions are positive, representing facilitative 

interactions. b) Relationship between the competition coefficient α and the relative interaction intensity. 

Using the theoretical model, we derived RII indices for the pairs of species investigated in the 

experiment for different α values, using the same thermal tolerances from (1). We then calculate the α 

value corresponding to the mean experimental RII value from the left panel (dotted vertical line in both 

panels). The corresponding α value of 0.40 is then used to compare experimental BEF slopes to 

modelled BEF slopes in Fig. 4.  
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Fig. S7: Modelled relationship between biodiversity and ecosystem functioning at the 
three temperature levels 
 

From left to right: constant 25°C temperature treatment, alternating 22 and 28°C temperature every 

other day, and alternating 19 and 31°C temperature every other day. Points represent ecosystem 

functioning for each of the modelled communities. The competition coefficient corresponds to the 

competition coefficient measured in the experiment. Abundances values derived from the model are 

calibrated to the geometric mean of the experimental cells.ml-1 values at day 15 in the monocultures at 

25°C. Lines correspond to the fitted curves for the most parsimonious linear model. The slope of the 

relationship between biodiversity and ecosystem functioning depends on the temperature treatment.  
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Fig. S8: Comparing theoretical ecosystem functioning at steady state for the 
monocultures and 12-species communities in the different temperature fluctuation 
treatments  
 

Values of ecosystem functioning at steady state for the monocultures and 12-species communities in 

the three temperature fluctuation treatments derived from the theoretical model. Abundances values 

derived from the model are calibrated to the geometric mean of the experimental cells.ml-1 values at 

day 15 in the monocultures at 25°C. Values and 95% confidence interval are derived from a contrast 

analysis of the model lm(ln(abundance)~temperature*ln(richness)). Increased temperature fluctuations 

lead to lower ecosystem functioning in the low richness communities, while this detrimental effect is 

compensated for the 12-species rich communities.   



37 

 

 

Fig. S9: Dependencies of the biodiversity-ecosystem functioning slopes to the 
tolerance differences and the competition coefficient  

a) Species pools arranged in order of increased tolerance differences. For the red species pool (index 

1), tolerance differences are small (i.e. all species have similar growth rate); for the pink species pool 

(index 7), tolerance differences are large (i.e. one species has a much higher growth rate than the other 

species). Thermal tolerances are spread equally among species, and all negative values (for higher 

spreads) are changed to null effective growth rates. Note that we have set the maximum species growth 

rate equal to one, because this maximum does not affect the BEF slope. b) The BEF slope for the species 

pools represented in panel a, as a function of the competition coefficient α, i.e. the ratio of interspecific 

to intraspecific competition 𝑎1 𝑎0⁄ . The BEF slope rapidly declines with increasing competition for a 

species pool with small tolerances differences (e.g., red species pool), while it is approximately 

independent of competition strength for a species pool with large tolerances differences (e.g., pink 

species pool).   
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Fig. S10: Species coefficients by temperature fluctuation treatment 
 

Impact of species identity on community functioning after taking into account the impact of species 

richness. To take into account the impact of species richness, the model uses the residuals of the model 

7 presented in Table 1 (lmer(ln(abundance)~ln(R)*T*D+(1|id)) as a dependent variable. The dependent 

variable is modelled against each of the 12 species modelled as a bivariate presence-absence variable 

as well as sample identity as a random effect. The model explains 13.6 % of the marginal and 13.7 % 

of the conditional variance. The figure shows the linear model coefficients for each species at each 

temperature. Different species have different relative contributions to ecosystem functioning, and these 

contributions vary with temperature.   
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Fig. S11: Modelled biodiversity-ecosystem function slopes either including or 
excluding Ostreococcus tauri from the pool of species 
 

Modelled results show that the spread of species thermal tolerances is important in driving the 

biodiversity-ecosystem function curve. The higher slope in the 19-31°C treatment is linked to the larger 

spread in this treatment, however this spread is largely due to the high thermal tolerance of Ostreococcus 

tauri (Fig. S5). We redid the model simulations without this species by sampling species randomly in 

the pool of 11 species and found a strong decrease in the differences between slopes among treatments, 

although the 19-31°C treatment still yielded the highest B-EF slope. 
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Fig. S12: Modelled fluctuation of species abundances at steady state in monocultures 
and polyculture in the 19-31°C fluctuation treatment 
 

Modelled species abundances at steady state in monoculture or in the 12-species polyculture. 

Abundances values derived from the model are calibrated to the geometric mean of the experimental 

cells.ml-1 values at day 15 in the monocultures at 25°C. Because of competitive exclusion, only 3 species 

persisted in the 12-species polyculture at steady state, they all fluctuate in synchrony. Greyed areas are 

days where temperature is high. Note that in the monoculture, the most abundant species fluctuate in 

synchrony, but some species with much lower abundance fluctuate asynchronously (please note that 

abundance is represented in log scale). However, because these species are competitively excluded in 

the polyculture, they cannot explain the increased ecosystem functioning in polyculture through 

temporal insurance effects.  
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Fig. S13: Effects of nutrient depletion on species abundance dynamics 

We compare the trajectories of the simple Lotka-Volterra dynamics and a model in which species 

abundances are coupled to a nutrient that is continually consumed. Dashed colored lines: species 

abundances in Lotka-Volterra model; full colored lines: species abundances in coupled model; full 

black line: nutrient density in coupled model. Model for the 6-species community composed of 

Synechocystis sp (pink lines), Dunaliella tertiolecta (yellow lines), Gymnochlora stellata (green lines), 

Porphyridium purpureum (blue lines), Amphidinium carterae (red lines) and Bigelowiella natans 

(orange lines). Parameter values for the Lotka-Volterra model: growth rates are derived from those 

measured by Barton and Yvon-Durocher (1) by computing the time-averaged gowth rates in the 19-

31°C treatment. Competition strengths 𝑎𝑖𝑖  = 1 and 𝑎𝑖𝑗  = 0.4 and initial conditions 𝑁𝑖(0)  = 0.01. 

Parameter values for the coupled model: denoting the growth rate of species i by 𝑟𝑖, we set 𝑐𝑖 = 1.06 ∗
𝑟𝑖, 𝑘𝑖 = 0.03, 𝑚𝑖 = 0.03, 𝑏𝑖𝑖 = 1.0, 𝑏𝑖𝑗 = 0.4, and  𝑑𝑖 = 0.01 ∗ 𝑟𝑖 (left panel) or 𝑑𝑖 = 0.03 ∗ 𝑟𝑖 (middle 

panel) or 𝑑𝑖 = 0.09 ∗ 𝑟𝑖  (right panel). Initial conditions  𝑁𝑖(0) = 0.01 and 𝑀𝑖(0) = 1. Thus species 

growth rates are the same across panels, but nutrient uptake rates ci increase from left to right (compared 

to left panel, three times faster in middle panel and nine times faster in right panel). From the growth 

curves measured by Barton and Yvon-Durocher (Fig. S14), it is possible that nutrient uptake is relatively 

slow in our experiment.  
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Fig. S14: Growth curves assessed by Barton and Yvon-Durocher (1) at three 
temperatures  

Growth curves are obtained from data from Barton and Yvon-Durocher (1) for all species at three 

temperatures close to our experimental temperatures, i.e. 20°C, 25°C and 30°C. Note that for 

Phaeodactylum tricurnutum, data was missing at 25°C and 30°C thus we plotted the growth curve at 

27°C instead of the curve at 25°C as an approximation. Dotted lines represent the two days of sampling 

chosen in our experiment, i.e. day 5 and 15. We see that at day 5, most species are still in their 

exponential phase of growth across all temperatures, but by day 15 most species are in stationary phase. 

Further, the species stay in stationary phase for up to day 30 with no sign of a drop in abundances, 

suggesting that nutrients are likely not depleted very fast in our experiment and that modelled steady-

state Lotka-Volterra dynamics are a likely good approximation of the true dynamics including nutrient 

depletion (Fig. S13). 
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Fig. S15: Time-averaging of the Lotka-Volterra model  

We illustrate how well the time-averaged species abundances in steady state can be approximated by 

the Lotka-Volterra model with time-averaged parameters. a) If the temperature fluctuation does not 

affect the interactions, the approximation is exact: the time average of the trajectory coincides with the 

solution of the time-averaged equations (dashed and dotted lines coincide). b) If the interactions 

fluctuate with temperature, the time-averaged solution (dotted line) and the solution of the time-

averaged model (dashed line) differ. If the fluctuations are fast compared to the internal system 

dynamics, this difference is small. c) If the fluctuations are slower, the difference becomes more 

important. Model for the 6-species community composed of Synechocystis sp (pink lines), Dunaliella 

tertiolecta (yellow lines), Gymnochlora stellata (green lines), Porphyridium purpureum (blue lines), 

Amphidinium carterae and Bigelowiella natans (steady state abundances = 0, hidden below the blue 

line). Parameter values: growth rates were taken from Barton and Yvon-Durocher (1) at temperatures 

19°C and 31°C, denoted by 𝑟𝑖
𝑙𝑜𝑤  and 𝑟𝑖

ℎ𝑖𝑔ℎ
   respectively. Competition strength were varied between 

panels: a) temperature-independent interactions 𝑎0
𝑙𝑜𝑤 = 𝑎0

ℎ𝑖𝑔ℎ
 = 1.0 and  𝑎1

𝑙𝑜𝑤 = 𝑎1
ℎ𝑖𝑔ℎ

 =  0.4, b) 𝑎0
𝑙𝑜𝑤 = 

0.5,  𝑎0
ℎ𝑖𝑔ℎ

 = 1.5, 𝑎1
𝑙𝑜𝑤  = 0.2, 𝑎1

ℎ𝑖𝑔ℎ
 = 0.6; c) same as panel b, but dynamics are 8-fold accelerated, i.e. 

growth rates and competition strengths were multiplied by a factor of 8. Trajectories are at steady state, 

and hence independent of initial conditions. Note that for easier representation, we increased abundance 

of the most abundant species by 0.1 to avoid overlap with the second most abundant species and better 

see the differences between dashed and dotted lines for each species. Greyed areas are days where 

temperature is high. 
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Table S1: Contrast analysis of the slopes of the biodiversity-ecosystem functioning 
relationship 
 

Contrast analysis of the slopes of the biodiversity-ecosystem functioning relationship from model 7 in 

Table 1 (lmer(ln(abundance)~temperature*time*ln(richness)+(1|id)) investigating the slope of the 

species richness-ecosystem functioning relationship by temperature and time.  

 

Contrast Subset Estimate SE df t-ratio p-value 

Between day 5 and day 15 

day 05 – day 15 25°C 0.00 0.09 1,254 0.01 0.989 

day 05 – day 15 22-28°C 0.20 0.09 1,254 2.24 0.025* 

day 05 – day 15 19-31°C -0.32 0.09 1,254 -3.54 <0.001*** 

Among the temperature fluctuation treatments 

25°C – 22-28°C day 05 -0.18 0.13 2,027 -1.38 0.351 

25°C – 19-31°C day 05 0.00 0.13 2,027 0.02 1.000 

22-28°C – 19-31°C day 05 0.18 0.13 2,027 1.40 0.342 

25°C – 22-28°C day 15 0.03 0.13 2,027 0.22 0.975 

25°C – 19-31°C day 15 -0.32 0.13 2,027 -2.53 0.031* 

22-28°C – 19-31°C day 15 -0.35 0.13 2,027 -2.75 0.017* 

 

  



45 

 

Table S2: Contrast analysis of the ecosystem functioning values among temperature 
fluctuation treatments for a level of species richness of one and twelve 
 

Contrast analysis of the ecosystem functioning at two levels of species richness, either one species or 

twelve species. The contrast analysis uses model 7 in Table 1, 

lmer(ln(abundance)~temperature*time*ln(richness)+(1|id)).  

Contrast Time Estimate SE df t-ratio p-value 

For richness = 1 

25°C – 22-28°C day 05 0.75 0.12 2,027 6.09 <0.001*** 

25°C – 19-31°C day 05 0.63 0.12 2,027 5.12 <0.001*** 

22-28°C – 19-31°C day 05 -0.12 0.12 2,027 -0.96 0.600 

25°C – 22-28°C day 15 0.18 0.12 2,027 1.49 0.295 

25°C – 19-31°C day 15 0.99 0.12 2,027 8.04 <0.001*** 

22-28°C – 19-31°C day 15 0.81 0.12 2,027 6.55 <0.001*** 

For richness = 12 

25°C – 22-28°C day 05 0.31 0.25 2,027 1.26 0.420 

25°C – 19-31°C day 05 0.64 0.25 2,027 2.57 0.028* 

22-28°C – 19-31°C day 05 0.32 0.25 2,027 1.31 0.390 

25°C – 22-28°C day 15 0.25 0.25 2,027 1.02 0.566 

25°C – 19-31°C day 15 0.19 0.25 2,027 0.76 0.730 

22-28°C – 19-31°C day 15 -0.06 0.25 2,027 -0.26 0.963 
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Table S3: Contrast analysis of the ecosystem functioning values between dates for a 
level of species richness of one and twelve 
 

Contrast analysis of the ecosystem functioning at two levels of species richness, either one species or 

twelve species. The contrast analysis uses model 7 in Table 1, 

lm(ln(abundance)~temperature*time*ln(richness)+(1|id)).  

Contrast Temperature Estimate SE df t-ratio p-value 

For richness = 1 

day 05 – day 15 25°C 0.19 0.09 1,254 2.19 0.029* 

day 05 – day 15 22-28°C -0.37 0.09 1,254 -4.23 <0.001*** 

day 05 – day 15 19-31°C 0.55 0.09 1,254 6.26 <0.001*** 

For richness = 12 

day 05 – day 15 25°C 0.20 0.18 1,254 1.11 0.269 

day 05 – day 15 22-28°C 0.14 0.18 1,254 0.77 0.442 

day 05 – day 15 19-31°C -0.25 0.18 1,254 -1.42 0.154 
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Table S4: Linear models estimating the effect of temperature fluctuations, species 
richness and time on ecosystem production measured as biomass.  
 

The linear mixed models describe the effect of temperature fluctuations (T, as a factor), species richness 

(ln(R)), time (D, days since the start of the experiment, as a factor) and their interaction, plus a random 

effect of sample identity on ecosystem functioning measured as biomass. At each step, terms are added 

to the linear model and we compare the two models through a likelihood ratio test. Marginal and 

conditional R2 and AIC are calculated for each model, as well as ∆AIC from the model with lowest AIC 

and AIC weights. Lower AIC values indicate an improved model. Analyses revealed that the model 

with lowest AIC included the interaction between temperature fluctuations, time and species richness. 

See Table S5 for a post hoc, multiple comparisons analysis on the slope of the biodiversity-ecosystem 

functioning relationship by temperature fluctuation treatment and time. 

Step Model 
n 

par 
χ² df p-value R²m R²c AIC ∆AIC 

AIC 

weight 

0 Intercept+(1|id) 3    0.00 0.50 10,052 306 0.000 

1 T+(1|id) 5 70.8 2 4.1e-16 0.04 0.50 9,986 240 0.000 

2 T+D+(1|id) 6 8.7 1 3.1e-03 0.04 0.50 9,979 233 0.000 

3 T+D+ln(R)+(1|id) 7 111.3 1 5.0e-26 0.10 0.50 9,869 124 0.000 

4 T+D+T*ln(R)+(1|id) 9 3.6 2 1.6e-01 0.10 0.50 9,870 124 0.000 

5 T+D+T*ln(R)+D*ln(R)+(1|id) 10 3.9 1 4.9e-02 0.11 0.50 9,868 122 0.000 

6 T+D+T*ln(R)+D*ln(R)+D*T+(1|id) 12 113.7 2 2.1e-25 0.13 0.55 9,758 12 0.002 

7 T+D+T*ln(R)+D*ln(R)+D*T+D*T*ln(R)+(1|id) 14 16.4 2 2.7e-04 0.13 0.55 9,746 0 0.998 
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Table S5: Contrast analysis of the slopes of the biodiversity-ecosystem functioning 
relationship for biomass 
 

Contrast analysis of the slopes of the biodiversity-ecosystem functioning relationship from model 7 in 

Table S4 (lmer(ln(biomass)~temperature*time*ln(richness)+(1|id)) investigating the slope of the 

species richness-ecosystem functioning relationship by temperature and time.  

Contrast Subset Estimate SE df t-ratio p-value 

Between day 5 and day 15 

day 05 – day 15 25°C -0.02 0.13 1,254 -0.14 0.885 

day 05 – day 15 22-28°C 0.13 0.13 1,254 1.00 0.317 

day 05 – day 15 19-31°C -0.56 0.13 1,254 -4.44 <0.001*** 

Among the temperature fluctuation treatments 

25°C – 22-28°C day 05 -0.20 0.18 2,029 -1.13 0.497 

25°C – 19-31°C day 05 -0.02 0.18 2,029 -0.09 0.995 

22-28°C – 19-31°C day 05 0.18 0.18 2,029 1.04 0.554 

25°C – 22-28°C day 15 -0.05 0.18 2,029 -0.31 0.949 

25°C – 19-31°C day 15 -0.56 0.18 2,029 -3.17 0.004** 

22-28°C – 19-31°C day 15 -0.51 0.18 2,029 -2.86 0.012* 
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Table S6: Linear models estimating the effect of temperature fluctuations, species 
richness and time on ecosystem production measured as chlorophyll a production 
 

The linear mixed models describe the effect of temperature fluctuations (T, as a factor), species richness 

(ln(R)), time (D, days since the start of the experiment, as a factor) and their interaction, plus a random 

effect of sample identity on ecosystem functioning measured as chlorophyll a. At each step, terms are 

added to the linear model and we compare the two models through a likelihood ratio test. Marginal and 

conditional R2 and AIC are calculated for each model, as well as ∆AIC from the model with lowest AIC 

and AIC weights. Lower AIC values indicate an improved model. Analyses revealed that the model 

with lowest AIC included the interaction between temperature fluctuations, time and species richness. 

See Table S7 for a post hoc, multiple comparisons analysis on the slope of the biodiversity-ecosystem 

functioning relationship by temperature fluctuation treatment and time. 

Step Model 
n 

par 
χ² df 

p-

value 
R²m R²c AIC ∆AIC 

AIC 

weight 

0 Intercept+(1|id) 3    0.00 0.61 10,852 385.5 0.000 

1 T+(1|id) 5 38.2 2 
5.2e-

09 
0.02 0.61 10,818 351.3 0.000 

2 T+D+(1|id) 6 165.2 1 
8.2e-

38 
0.05 0.66 10,655 188.1 0.000 

3 T+D+ln(R)+(1|id) 7 158.0 1 
3.2e-

36 
0.14 0.66 10,499 32.1 0.000 

4 T+D+T*ln(R)+(1|id) 9 9.0 2 
1.1e-

02 
0.14 0.66 10,494 27.2 0.000 

5 T+D+T*ln(R)+D*ln(R)+(1|id) 10 28.2 1 
1.1e-

07 
0.15 0.66 10,468 0.9 0.353 

6 T+D+T*ln(R)+D*ln(R)+D*T+(1|id) 12 1.2 2 
5.6e-

01 
0.15 0.66 10,470 3.7 0.086 

7 T+D+T*ln(R)+D*ln(R)+D*T+D*T*ln(R)+(1|id) 14 7.8 2 
2.1e-

02 
0.15 0.67 10,467 0.0 0.562 
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Table S7: Contrast analysis of the slopes of the biodiversity-ecosystem functioning 
relationship for chlorophyll a 
 

Contrast analysis of the slopes of the biodiversity-ecosystem functioning relationship from model 7 in 

Table S6 (lmer(ln(chlorophyll a)~temperature*time*ln(richness)+(1|id)) investigating the slope of the 

species richness-ecosystem functioning relationship by temperature and time.  

Contrast Subset Estimate SE df t-ratio p-value 

Between day 5 and day 15 

day 05 – day 15 25°C -0.32 0.13 1,254 -2.38 0.017* 

day 05 – day 15 22-28°C -0.21 0.13 1,254 -1.57 0.116 

day 05 – day 15 19-31°C -0.72 0.13 1,254 -5.31 <0.001*** 

Among the temperature fluctuation treatments 

25°C – 22-28°C day 05 -0.23 0.21 1,832 -1.07 0.530 

25°C – 19-31°C day 05 -0.37 0.21 1,832 -1.70 0.204 

22-28°C – 19-31°C day 05 -0.14 0.21 1,832 -0.63 0.804 

25°C – 22-28°C day 15 -0.12 0.21 1,832 -0.57 0.838 

25°C – 19-31°C day 15 -0.76 0.21 1,832 -3.54 0.001** 

22-28°C – 19-31°C day 15 -0.64 0.21 1,832 -2.97 0.008** 
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Table S8: Contrast analysis of the ecosystem functioning values measured as 
chlorophyll a among temperature fluctuation treatments for a level of species richness 
of one and twelve 
 

Contrast analysis of the ecosystem functioning measured as total chlorophyll a content at two levels of 

species richness, either one species or twelve species. The contrast analysis uses model 7 in Table S6, 

lmer(ln(chlorophyll a)~temperature*time*ln(richness)+(1|id)).  

Contrast Time Estimate SE df t-ratio p-value 

For richness = 1 

25°C – 22-28°C day 05 0.41 0.21 1,832 1.97 0.121 

25°C – 19-31°C day 05 1.07 0.21 1,832 5.15 <0.001*** 

22-28°C – 19-31°C day 05 0.66 0.21 1,832 3.18 0.004** 

25°C – 22-28°C day 15 0.25 0.21 1,832 1.20 0.451 

25°C – 19-31°C day 15 1.39 0.21 1,832 6.70 <0.001*** 

22-28°C – 19-31°C day 15 1.14 0.21 1,832 5.50 <0.001*** 

For richness = 12 

25°C – 22-28°C day 05 -0.17 0.42 1,832 -0.40 0.917 

25°C – 19-31°C day 05 0.16 0.42 1,832 0.38 0.923 

22-28°C – 19-31°C day 05 0.32 0.42 1,832 0.78 0.717 

25°C – 22-28°C day 15 -0.05 0.42 1,832 -0.13 0.991 

25°C – 19-31°C day 15 -0.50 0.42 1,832 -1.20 0.454 

22-28°C – 19-31°C day 15 -0.45 0.42 1,832 -1.07 0.531 
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Table S9: Contrast analysis of the ecosystem functioning values measured as 
chlorophyll a between dates for a level of species richness of one and twelve 
 

Contrast analysis of the ecosystem functioning measured as total chlorophyll a content at two levels of 

species richness, either one species or twelve species. The contrast analysis uses model 7 in Table S6, 

lmer(ln(chlorophyll a)~temperature*time*ln(richness)+(1|id)). 

Contrast Temperature Estimate SE df t-ratio p-value 

For richness = 1 

day 05 – day 15 25°C -0.50 0.13 1,254 -3.9 <0.001*** 

day 05 – day 15 22-28°C -0.66 0.13 1,254 -5.1 <0.001*** 

day 05 – day 15 19-31°C -0.18 0.13 1,254 -1.4 0.168 

For richness = 12 

day 05 – day 15 25°C -1.30 0.26 1,254 -5.0 <0.001*** 

day 05 – day 15 22-28°C -1.18 0.26 1,254 -4.5 <0.001*** 

day 05 – day 15 19-31°C -1.96 0.26 1,254 -7.5 <0.001*** 
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Table S10: Contrast analysis of the ecosystem functioning values among temperature 
fluctuation treatments for a level of species richness of one and twelve for biomass 
 

Contrast analysis of the ecosystem functioning at two levels of species richness, either one species or 

twelve species. The contrast analysis uses model 7 in Table S4, 

lmer(ln(biomass)~temperature*time*ln(richness)+(1|id)).  

Contrast Time Estimate SE df t-ratio p-value 

For richness = 1 

25°C – 22-28°C day 05 1.47 0.17 2,029 8.56 <0.001*** 

25°C – 19-31°C day 05 1.10 0.17 2,029 6.40 <0.001*** 

22-28°C – 19-31°C day 05 -0.37 0.17 2,029 -2.16 0.079. 

25°C – 22-28°C day 15 0.05 0.17 2,029 0.29 0.954 

25°C – 19-31°C day 15 1.12 0.17 2,029 6.51 <0.001*** 

22-28°C – 19-31°C day 15 1.07 0.17 2,029 6.22 <0.001*** 

For richness = 12 

25°C – 22-28°C day 05 0.97 0.34 2,029 2.81 0.014* 

25°C – 19-31°C day 05 1.06 0.34 2,029 3.06 0.006** 

22-28°C – 19-31°C day 05 0.09 0.34 2,029 0.25 0.965 

25°C – 22-28°C day 15 -0.09 0.34 2,029 -0.25 0.967 

25°C – 19-31°C day 15 -0.28 0.34 2,029 -0.82 0.692 

22-28°C – 19-31°C day 15 -0.20 0.34 2,029 -0.57 0.836 
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Table S11: Contrast analysis of the ecosystem functioning values between dates for a 
level of species richness of one and twelve for biomass 
 

Contrast analysis of the ecosystem functioning at two levels of species richness, either one species or 

twelve species. The contrast analysis uses model 7 in Table S4, 

lmer(ln(biomass)~temperature*time*ln(richness)+(1|id)).  

Contrast Temperature Estimate SE df t-ratio p-value 

For richness = 1 

day 05 – day 15 25°C 0.41 0.12 1,254 3.3 <0.001*** 

day 05 – day 15 22-28°C -1.01 0.12 1,254 -8.2 <0.001*** 

day 05 – day 15 19-31°C 0.43 0.12 1,254 3.5 <0.001*** 

For richness = 12 

day 05 – day 15 25°C 0.36 0.25 1,254 1.5 0.142 

day 05 – day 15 22-28°C -0.69 0.25 1,254 -2.8 0.005** 

day 05 – day 15 19-31°C -0.97 0.25 1,254 -3.9 <0.001*** 
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Table S12: Detailed information about the species 
 

 

Phyla Species/Strain Source location 

Chlorophyceae/ 

Prasinophyceae 
Dunaliella tertiolecta (CCAP 19/5) 

North Atlantic - English 

Channel   

Ostreococcus tauri (OTH95,  RCC 4221) Mediterranean - Gulf of Lion 

 

Chlorarachniophyce

ae 

Gymnochlora stellata (CCMP2057, RCC 626) West Pacific Ocean  

Bigelowiella natans (CCMP621, RCC 623) North Atlantic - Sargasso Sea 

Rhodophyceae 
Rhodella maculata (CCAP 1388/2, SAG 45.85) 

North Atlantic - English 

Channel   

Porphyridium purpureum (CCAP 1380/11) Japan 

Porphyridium aerugineum (RCC 652/ SAG 110.79) North Atlantic - North Sea 

Bacillariophyceae 
Phaeodactylum tricornutum (CCAP 1052/1B, CCMP 

2558) North Atlantic 

Prymnesiophyceae Emiliania huxleyi (CCMP 1516/ CCMP 2090) South Pacific Ocean  

Dinophyceae 
 Amphidinium carterae (CCMP 1314) 

North Atlantic - Nantucket 

Sound 

Thoracosphaera heimi (AC214/ Nap17 /RCC 1512) 

Mediterranean - Tyrrhenian 

Sea 

Cyanophycae Synechocystis sp (RCC 1773,  R56) 
North Atlantic - English 

Channel 


