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ABSTRACT

Objective: Neddylation is a druggable and reversible ubiquitin-like post-translational modification upregulated in many diseases, including liver
fibrosis, hepatocellular carcinoma, and more recently, non-alcoholic fatty liver disease (NAFLD). Herein, we propose to address the effects of
neddylation inhibition and the underlying mechanisms in pre-clinical models of NAFLD.

Methods: Hepatic neddylation measured by immunohistochemical analysis and NEDD8 serum levels measured by ELISA assay were evaluated
in NAFLD clinical and pre-clinical samples. The effects of neddylation inhibition by using a pharmacological small inhibitor, MLN4924, or mo-
lecular approaches were assessed in isolated mouse hepatocytes and pre-clinical mouse models of diet-induced NAFLD, male adult C57BL/6
mice, and the AlfpCre transgenic mice infected with AAV-DIO-shNedd8.

Results: Neddylation inhibition reduced lipid accumulation in oleic acid-stimulated mouse primary hepatocytes and ameliorated liver steatosis,
preventing lipid peroxidation and inflammation in the mouse models of diet-induced NAFLD. Under these conditions, increased Deptor levels and
the concomitant repression of mTOR signaling were associated with augmented fatty acid oxidation and reduced lipid content. Moreover, Deptor
silencing in isolated mouse hepatocytes abolished the anti-steatotic effects mediated by neddylation inhibition. Finally, serum NEDD8 levels
correlated with hepatic neddylation during the disease progression in the clinical and pre-clinical models
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Conclusions: Overall, the upregulation of Deptor, driven by neddylation inhibition, is proposed as a novel effective target and therapeutic

approach to tackle NAFLD.

© 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (hitp://creativecommons.org/licenses/by-nc-nd/4.0/).
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FAO fatty acid oxidation
DNL de novo lipogenesis

Abbreviations

NAFLD non-alcoholic fatty liver

MAFLD metabolic dysfunction associated fatty liver disease

NASH non-alcoholic steatohepatitis

PTMs Post-translational modifications

NEDD8 neural precursor cell-expressed, developmentally down-regulated
protein8

HCC Hepatocellular carcinoma

mTOR mammalian target of rapamycin

DEPTOR  DEP-domain containing mTOR-interacting protein

NRF2 nuclear factor erythroid 2—related factor 2

CRLs Cullin-RING ubiquitin ligase

VLDL very-low-density lipoprotein
OXPHOS  oxidative phosphorylation

ETC electron transport chain

ROS reactive oxygen species

MCDD methionine choline-deficient diet
CDHFD choline-deficient high-fat diet
FA fatty acid

0A oleic acid

OCR oxygen consumption rate

Tnf tumor necrosis factor

Ccl-2 chemokine (C—C motif) ligand 2
II-6 interleukin-6

II-18 interleukin-1 beta

Timp-2  tissue inhibitor of metalloproteinases 2

1. INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD), or (as recently redefined)
metabolic dysfunction associated fatty liver disease (MAFLD) [1],
comprises a group of conditions that all share the excessive accu-
mulation of fat in the liver as a common feature. NAFLD ranges from
simple steatosis and non-alcoholic steatohepatitis (NASH) to advanced
fibrosis, eventually leading to cirrhosis and Hepatocellular Carcinoma
(HCC). Patients with NAFLD have a higher risk of liver-related morbidity
and mortality, along with metabolic comorbidities [2—5]. Today,
NAFLD is the most common liver disorder in the Western world, as its
global prevalence is estimated to be 24% [6]. Despite the alarming
numbers associated with the pathology of NAFLD worldwide and the
large number of emerging therapies currently undergoing clinical trials,
there remains no approved pharmacotherapy for the clinical man-
agement of NAFLD. To date, ongoing studies on NAFLD therapies have
been primarily designed to target four main pathways: 1) hepatic fat
accumulation; 2) oxidative stress, inflammation, and apoptosis; 3)
intestinal microbiomes and metabolic endotoxemia; and 4) hepatic
fibrosis. Though most clinical trials have focused on monotherapies,
the use of a single drug acting on multiple pathways may offer an
attractive therapeutic strategy in combatting NAFLD. Post-translational
modifications (PTMs) affect many biological processes. Therefore, a
single pharmacological inhibitor can alter the activity, localization, or
function of several proteins and simultaneously target multiple
deregulated pathways.

Post-translational modifications refer to the covalent and commonly
enzymatic modification of proteins after biosynthesis. PTMs are an
essential mechanism needed to diversify protein functions and
dynamically coordinate their signaling networks. On this basis, the
study of protein expression and PTMs, along with their role in NAFLD
development and progression, has attracted attention in the post-
genomic era. For example, the high-throughput profiling of PTMs
has the potential to provide a molecular classification of fatty liver;
changes to liver protein acetylation, phosphorylation, and 0—N-ace-
tylglucosamine glycosylation were found to be altered in NAFLD states

[7]. More recently, the focus has been geared toward the mediation of
PTMs by ubiquitin and ubiquitin-like proteins in NAFLD. Furthermore,
several authors have shown how ubiquitin-specific peptidases and
some ubiquitin ligases (E3) can regulate the development of NAFLD
[8—12]. NEDD8 (neural precursor cell-expressed, developmentally
down-regulated protein8) is an evolutionarily conserved 8-kD protein
closely related to ubiquitin, and like ubiquitin, it can be conjugated to
the specific lysine residues of target proteins in eukaryotes — a pro-
cess called neddylation. Though the conjugation of NEDDS to its tar-
gets is usually associated with the stabilization of the protein, it has
also been implicated in the activity of its target proteins. Despite the
conjugation of NEDD8 onto the cullin subunit of CRLs (Cullin-RING
ubiquitin ligase) promoting its assembly and activating its ubiquitin
ligase activity being the best-characterized NEDD8 target [13], the
number of newly identified neddylated targets has been increasing in
the last several years with the development of novel techniques
[14,15]. Therefore, the impact of neddylation on diseases can be much
more extensive. It has been recently determined that neddylation is
increased in advanced liver fibrosis and HCC [16,17]. Other authors
have shown that the degradation of the splicing factor SRSF3 (serine
rich splicing factor 3) in a neddylation-dependent mechanism is dis-
rupted in early metabolic liver disease and may contribute to NASH
progression, cirrhosis, and ultimately HCC [18]. Finally, after treatment
with a pharmacological inhibitor of neddylation, obese mice present
decreased weight gain and, consequently, an improved liver phenotype
[19].

Herein, we have further addressed the relevance of hepatic neddylation
in NAFLD and the therapeutic efficacy of neddylation inhibition in cell
models in vitro and mouse models of diet-induced NAFLD. We provide
evidence that hepatic neddylation inhibition decreases liver steatosis
by boosting fatty acid oxidation in a process partly mediated by the
impaired mammalian target of rapamycin (mTOR) signaling, as regu-
lated by DEPTOR (DEP-domain containing mTOR-interacting protein).
Moreover, we have identified that the levels of NEDD8 in serum appear
to correlate with NAFLD disease progression and reversal upon dietary
interventions or neddylation inhibition. Overall, treating NAFLD by
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targeting neddylation may be a fast and effective strategy to regulate
altered signaling pathways and metabolic reactions.

2. METHODS

2.1. Human samples

The human samples used in this work were obtained after the
informed consent of the patients and in accordance with the Ethical
Code of the World Medical Association and Helsinki Declaration and
upon approval of the Hospital Marques de Valdecilla ethics Committee.
Four well-characterized cohorts of NAFLD patients, obtained from the
University-Hospital Marques de Valdecilla (Santander, Spain), were
used. Liver biopsies were assessed and classified by an expert
pathologist. In order to study global neddylation levels in liver tissue by
immunohistochemistry, two cohorts of NAFLD patients, including lean
(n = 4) and obese patients (n = 15), were used. Conversely, another
two cohorts of patients were analyzed to evaluate NEDD8 levels in
serum (n = 19-lean and n = 24-obese; Suppl. Table 1). The inclusion
criteria established to develop the current project were as follows: age
between 18 and 75 years old, no other acute or chronic disease except
for type 2 diabetes and obesity (metabolic syndrome) in accordance
with the physical and biochemical analysis, and alcohol consumption
should be less than 30 g/day for men and 20 g/day for women. The
exclusion criteria established were viral infection or liver disease
caused by drugs (drug-induced liver injury). All recruited patients were
of Caucasian origin. The control groups consisted of healthy human
liver and serum samples (n = 7 liver samples for histological study,
and n = 8 serum samples from women and men between 40 and 70
years old). Additional protocols used are provided in the supplemental
material.

The mRNA levels of all genes involved in the neddylation pathway were
analyzed from liver biopsies obtained during bariatric surgery from a
cohort of 125 NAFLD patients, described earlier [20]. Individuals with
increased alcohol intake (>30/20 g/day in M/F), viral and autoimmune
hepatitis, or other causes of liver disease were excluded. Informed
consent was obtained from each patient, and the study protocol was
approved by the Ethical Committee of the Fondazione IRCCS Ca’
Granda and conformed to the ethical guidelines. Briefly, RNA was
isolated from liver biopsies (miRNeasy mini-kit, Qiagen) and
sequenced using a HiSeq 4000 (lllumina). Reads were aligned and
counted (GRCh37, ENSEMBL v75 reference), employing STAR and
RSEM packages. Count normalization was performed using DESeq2.
The differential expression of the genes of interest was assessed by a
two-tailed Wilcoxon Rank Sum test. Statistical analyses were con-
ducted using R 3.5.3 software, and p < 0.05 was considered statis-
tically significant.

2.2. Animal maintenance, diets, and treatment

The animal procedures were performed in accordance with the Eu-
ropean Research Council for animal care and use and the National
Institute of Health guide for care and use of Laboratory animals. The
maximal authority of the Country Council of Bizkaia and the Institutional
Animal Care and Use Committee of CIC bioGUNE approved the animal
procedures. Adult (three-month-old) male C57BL/6J mice were ac-
quired from Charles River Laboratories and accommodated into the
AALAC-accredited CIC bioGUNE animal facilities and maintained at
2141 °C, 45 + 10% humidity, and a 12/12 h light/dark cycle. Animal
maintenance was based on ad libitum access to water and the
respective diet. The control group was fed a standard chow diet with
0.3% methionine and 1.030 mg/kg of choline (Teklad Global 14%
Protein Rodent Maintenance diet; Envigo 2014C). Dietary-mouse
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models of NAFLD included: a high-fat diet (HFD; D12492, Research
Diets), choline-deficient, high-fat diet (CDHFD; D05010402, Research
Diets), and 0.1% methionine and choline-deficient diet (0.1% MCDD;
A02082006i, Research Diets). A group of 5 animals, randomly divided,
was treated with MLN4924 (MeDChemExpress, MCE) dissolved in a
vehicle solution of 2-hydroxypropyl-B-cyclodextrin (Sigma—Aldrich) by
oral gavage or subcutaneous injection at a dose of 60 mg/kg during the
last two weeks of treatment in case of the animals fed 0.1% MCDD and
during the last three weeks in the CDHFD model. A control group of 5
animals was treated with a vehicle solution. After 4 weeks of 0.1%
MCDD and 6 weeks of CDHFD, animals were sacrificed.

In addition, a group of 10 Alfp-Cre mice was used to silence Nedd8
specifically in the liver and were randomly divided into control or
silenced groups. These animals expressed Cre-recombinase open
reading (ORF) under the control of albumin and o-fetoprotein, abun-
dant in the hepatocytes [21]. They were infected with adenovirus in the
tail vein, which contains a short hairpin Nedd8 RNA sequence and
double floxed sequence that allows for the recombination with Cre and,
therefore, the insertion of the sequence (AVV-DIO-shNedd8). The
infection was performed 3 weeks before the start of the 6 weeks of
CDHFD. Additional protocols used are provided in the supplemental
material.

Finally, adult (three-month-old) male C57BL/6J mice were maintained
during 3 weeks on a 0.1% methionine, choline-deficient, high-fat diet
(CDAAHFD; A06071302, Research Diets) and after this period,
switched back to a standard chow diet for one additional week.

For all experiments, the liver and blood were extracted and maintained
at —80 °C or formalin-fixed solution until further analysis.

2.3. Primary mouse hepatocytes and treatments

Male adult mice (C57BL/6J) were acquired from Charles River Labo-
ratories and accommodated into the CIC bioGUNE animal facility. After
liver perfusion and 3 h attachment, primary mouse hepatocyte media
were changed to 0% FBS MEM (Gibco) + PSG (Gibco) overnight. The
following morning, hepatocytes were incubated for 6 h with either
400 uM oleic acid (Sigma—Aldrich) conjugated with BSA-fatty acid-
free or BSA-fatty acid-free diluted in 0% MEM. Neddylation inhibition
was achieved using 3 uM of MLN4924 in DMSO, an inhibitor of the
Nedd8 Activating Enzyme E1 Subunit 1 (MeDChemExpress). In some
experiments, 20 M of Etomoxir (Sigma—Aldrich) was used during the
6 h period to inhibit fatty acid oxidation. Primary mouse hepatocytes
were transfected by 12 h incubation with 100 nM Deptor siRNA
(Thermo Fisher, Silencer Select siRNA DEPTOR, sequence Sense: 5'-
AGACGGCGAUAAAACUCAUTT- 3’ and Anti-sense: 5'- AUGA-
GUUUUAUCGCCGUCUCT — 3) to evaluate the role of DEPTOR in fatty
acid oxidation. Finally, Nedd8 was silenced using siNEDDS to evaluate
the physiological role of neddylation inhibition (Sigma siNEDD8
Sequence sense: 5’- CAUCUACAGUGGCAAGCAA [dT][dT] -3’ and 5'-
UUGCUUGCCACUGUAGAUGAG [dT][dT]- 3). The reagent used to
silence DEPTOR and Nedd8 in hepatocytes was Lipofectamine 2000
(Invitrogen, Ref: 1168—019), according to the user's manual.
Silencer™ Negative Control No. 1 siRNA (Thermo Fisher) was used as
a negative siRNA transfection control. Additional protocols used are
provided in supplemental material.

2.4. Statistical analysis

Prism 8 (GraphPad Software, version 8.4.0) was used to perform
statistical analyses. A one-way analysis of variance (ANOVA) followed
by Tukey (comparing all pairs of columns) was used for three or more
groups, while Student’s t-test was used for 2 groups. Grubbs’ test was
performed to determine the significant outliers. A p < 0.05 was
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considered statistically significant. Statistical parameters are reported
in the figure legends.

3. RESULTS

3.1. Hepatic neddylation is augmented in clinical and pre-clinical
NAFLD

Previous evidence from our laboratory has shown that NEDD8-
mediated modifications are increased in patients with advanced liver
fibrosis and cirrhosis and mouse models of liver fibrosis [16]. Herein,
we aimed to extend our studies to assess the role of neddylation in the
early stages of NAFLD. On this basis, hepatic global neddylation levels,
evaluated by immunohistochemistry (IHC), were increased in liver bi-
opsies from a cohort of well-characterized NAFLD patients, lean and
obese, in comparison to age-matched healthy controls (Figure 1A,
Suppl. Table 1). In-depth analyses revealed that hepatic global ned-
dylation levels positively correlate with the NAS score (Figure 1B).
Then, we evaluated the levels of hepatic neddylation in mouse models
of diet-induced NAFLD, reflecting different stages of the pathology: /)
animals on a high-fat diet (HFD) for 20 weeks, characterized by
steatosis and ballooning; /i) animals on a choline-deficient, high-fat
diet (CDHFD) for 6 weeks and characterized by mild steatosis and
inflammation; and i) animals on a 0.1% methionine and choline-
deficient diet (0.1% MCDD) for 4 weeks and characterized by
enhanced macro-steatosis and overt inflammation. Hepatic global
neddylation was induced in all animal models of NAFLD (Figure 1C—E),
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with higher increases corresponding to more aggressive dietary in-
terventions. Further longitudinal hepatic characterization of steatosis,
ballooning, inflammation, and fibrosis levels in the dietary mouse
models of NAFLD is shown in Suppl. Fig. 1Ta—c. The deregulation of the
neddylation pathway does not occur at the transcriptional level in the
clinical setting or our animal models of diet-induced NAFLD, as no
significant changes in the mRNA levels for E1, E2, and E3 or the
deconjugating enzymes for the NEDD8 pathway were observed
(Suppl. Fig. 2a—c).

In summary and concurrent with early evidence [19], hepatic neddy-
lation was augmented in patients suffering from NAFLD and mouse
models of diet-induced NAFLD.

3.2. Neddylation inhibition reduces lipid accumulation in NAFLD
pre-clinical models

The effects of the specific small pharmacological inhibitor of ned-
dylation targeting the NEDD8 activating enzyme (NAE1), MLN4924,
([(1S,2sS, 4R)-4-[4-[[(1S)-2,3-dihydro-1H-inden-1-ylJamino]pyrrolo
[2,3-d]pyrimidin-7-yI]-2 hydroxycyclopentyl]methyl sulfamate)
(commercialized as Pevonedistat) [22], were evaluated in hepatocyte
cell models of steatosis. Treatment with MLN4924 and reduced
neddylation, assessed as decreased neddylated cullins in isolated
mouse hepatocytes stimulated with oleic acid (OA), significantly
reduced lipid content, as determined by bodipy staining
(Suppl. Fig. 3a, Figure 2A). Though MLN4924 has been previously
shown to induce tumor cell death, in primary mouse hepatocytes,
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Figure 1: Neddylation is augmented in clinical and pre-clinical mouse models of non-alcoholic fatty liver disease (NAFLD). A. Hepatic neddylation levels assessed by
immunohistochemistry and B. Pearson correlation and coefficient between hepatic neddylation and NAS score in NAFLD patients (n = 19) in comparison with a group of healthy
controls (n = 7). Hepatic neddylation levels assessed by immunohistochemistry in healthy animals (n = 5) and C. animals maintained during 20 weeks on a high-fat diet (HFD)
(n = 11), D. animals maintained during 6 weeks on a choline-deficient high-fat diet (CDHFD) (n = 8) and E. animals maintained during 4 weeks on a 0.1% methionine- and
choline-deficient diet (0.1% MCDD) (n = 6). Scale bar corresponds to 100 pum. Data are shown as average + SEM and Student’s t-test was used to compare groups. *p < 0.05

and ***p < 0.001 are shown.
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Figure 2: Neddylation inhibition reduces lipid accumulation in non-alcoholic fatty liver disease (NAFLD) pre-clinical models. A. and B. Bodipy staining in primary mouse
hepatocytes isolated from wild-type mice and treated with MLN4924 3 uM (n = 4) or siRNA against Nedd8 (n = 3) in the presence of oleic acid (OA) during 6h. Sudan Red staining
and quantification of total hepatic triglycerides in C. animals maintained during 6 weeks on choline-deficient and high-fat diet (CDHFD) (n = 5) and animals on CDHFD and treated
with MLN4824 (CDHFD + MLN4924) (n = 5), in D. animals maintained during 4 weeks on 0.1% methionine- and choline-deficient diet (0.1% MCDD) (n = 4) and treated with
MLN4924 (0.1%MCDD + MLN4924) (n = 4) and finally, in E. Alfp-Cre/AAV-DIO-shNEDD8 mice were maintained for 6 weeks on CDHFD (n = 5). Transaminase serum levels of ALT
(alanine transaminase) and AST (aspartate transaminase) in healthy animals and F. animals maintained during 6 weeks on CDHFD and CDHFD + MLN4924, G. animals maintained
during 4 weeks on 0.1% MCDD and 0.1% MCDD + MLN4924, and in H. the hepatic silenced NEDD8 mice model (Alfp-Cre/AAV-DIO-shNEDD8) maintained during 6 weeks on
CDHFD. Scale bar corresponds to 100 um. Data are shown as average + SEM and One-way ANOVA test was used to compare groups. *p < 0.05, **p < 0.01 and ***p < 0.001

are shown.
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MLN4924 does not induce significant caspase-3 activity, an
apoptosis marker (Suppl. Fig. 3b), suggesting that the observed ef-
fects in decreased lipid content do not reflect cell death. The lack of
MLN4924 associated death-induced effects in steatotic hepatocytes
also indicates reduced adverse effects related to MLN4924 treat-
ment. Similar findings were obtained after Nedd8 silencing in isolated
mouse hepatocytes using molecular approaches, such as siRNA
(Figure 2B; Suppl., Fig. 3c,d), suggesting that the anti-steatotic ef-
fects ascribed to MLN4924 are related to neddylation inhibition and
not unspecific off-target effects.

Moreover, the effect of neddylation inhibition was evaluated in 2 mouse
models of NAFLD, shown earlier to have high Nedd8 levels
(Figure 1D,E). In the CDHFD-fed mouse, animals were fed ad libitum
for 3 weeks to induce mild steatosis, and afterward, MLN4924
treatment was given (60 mg/kg), once a week for other 3 weeks,
totaling in 6 weeks of dietary intervention. In the 0.1% MCDD model,
MLN4924 treatment (60 mg/kg) was given every 4 days, beginning
after the second week of the diet, a time point characterized by
steatosis and inflammation, and the experiment finished at 4 weeks of
diet (Suppl. Fig. 4a). MLN4924 treatment and associated hepatic
neddylation inhibition after CDHFD and 0.1% MCDD significantly
decreased hepatic steatosis, quantified by Sudan red staining and
biochemically measuring hepatic triglycerides (Figure 2C and D, and
Suppl. Fig. 4b,c). We silenced Nedd8, specifically in the hepatocytes of
CDHFD animals, by using Alfp-Cre/AAV-DIO-shNedd8 to confirm
further that there are no off-target effects associated with MLN4924
treatment (Suppl. Fig. 4a). Under these conditions, Nedd8 silencing,
specifically in the hepatocytes in vivo, is associated with reduced
hepatic neddylation levels and liver steatosis (Figure 2E,
Suppl. Fig. 4d). Supporting these data, serum alanine aminotrans-
ferase (ALT) and aspartate aminotransferase (AST) were significantly
reduced after neddylation inhibition, indicating diminished liver injury
in the 0.1% MCDD model. In contrast, no changes were found in ALT or
AST in the CDHFD model compared with control animals (Figure 2FH).
Of note, the final body weight in MLN4924-treated mice was not
altered, relative to the vehicle-treated animals on NAFLD diets (CDHFD:
32.5 4+ 0.9 g and CDHFD + MLN4924: 31.2 4 1.2 g, p-value = 0.57;
0.1% MCDD: 23.7 + 0.7 g and 0.1% MCDD + MLN4924:
243 4+ 1.1 g, p-value = 0.63; CDHFD: 33.1 4+ 0.6 g and
CDHFD + shNedd8 32.1 + 1.3g, p-value = 0.45), suggesting that the
anti-steatotic effects of neddylation inhibition are not related to
decreased adiposity.

In summary, neddylation-specific inhibition shows anti-steatotic ef-
fects in isolated mouse hepatocytes and pre-clinical mouse models of
NAFLD.

3.3. mTOR inhibition via DEPTOR accumulation plays a role in
neddylation inhibition mediated anti-steatotic effects in NAFLD pre-
clinical models

Recent reports have highlighted that the ATF/CREB family is involved in
regulating many aspects of lipid metabolism processes, including
regulating critical enzymes and regulators involved in lipogenesis, fatty
acid oxidation, and lipoprotein metabolism [23]. mRNA levels of
members of the ATF/CREB family, such as Aff4 and 6 (Activating
Transcription Factor 4 and 6) and Crebh (CAMP Responsive Element
Binding Protein), show no significant regulation as a result of the
MLN4924 treatment in the CD-HFD and 0.1% MCDD NAFLD mouse
models (Suppl. Fig. 5a,b). Thus, we performed high-throughput pro-
teomics Liquid Chromatography-Mass Spectrometry (LC-MS)-based
analyses in animals fed CDHFD for 6 weeks and 0.1% MCDD for 4
weeks to better understand NAFLD at the proteome level. Heat map

representation shows the top 50 altered proteins after CDHFD and
0.1% MCDD (Figure 3A; Supplemental File 1). A file containing all
identified proteins is provided in Supplemental File 1. Ingenuity
pathway analysis (IPA) was used to identify the major canonical
pathways involved in NAFLD, suggesting that eukaryotic initiation
factor 2 (EiF2) signaling, which integrates a diverse array of stress-
related signals to regulate both global and specific mRNA trans-
lation, and lipid metabolism, are profoundly altered. Moreover, the
mTOR pathway, which plays an essential role in regulating lipid
metabolism [15,24,25] is also highly altered in NAFLD (Figure 3B). In
addition, proteomics LC-MS-based analysis was also performed to
assess the effect of MLN4924 treatment in the dietary mouse models
of NAFLD (Figure 3C; Supplemental File 1). IPA analysis aimed at
identifying potential upstream regulators that explain the changes
observed in the proteomics panel as a result of MLN4924 treatment
was performed. The common upstream regulators identified in the two
dietary models studied include MYC, HNF4A, TP53, and POR
(Figure 3D). Further studies are necessary to understand the upstream
regulators involved in neddylation triggering inhibition.

mTOR signaling plays a vital role in regulating lipid metabolism, such
as lipogenesis and oxidative fluxes in the liver [26]. In addition, other
studies have shown that in tumor cells, DEPTOR is degraded by the
SCFPTCP (Skp1-Cullin-F box proteins) E3 ubiquitin ligase, the founding
member of CRLs, resulting in mTOR activation and cell proliferation
[27]. Importantly, SCFP™" E3 ubiquitin ligase is activated through
NEDD8 conjugation of the conserved lysines of cullins.

Herein, we show that the neddylation inhibition in vivo in CDHFD and
0.1% MCDD induced protein DEPTOR, and as a consequence of the
concomitant mTOR inhibition, the phosphorylation of S6 protein (pS6),
a downstream target of mTOR, was reduced without changes in Deptor
gene expression (Figure 4A and B). Likewise, neddylation inhibition
using MLN4924 pharmacological treatment in OA-stimulated hepato-
cytes increased DEPTOR content (Figure 4C). Under these conditions,
when silencing Deptor by using siRNA-based molecular approaches in
primary mouse hepatocytes, MLN4924 treatment did not significantly
reduce the cellular lipid content (Figure 4C—E).

Thus, mTOR inhibition via DEPTOR accumulation plays a role in the
neddylation inhibition-mediated anti-steatotic effects.

3.4. Neddylation inhibition boosts fatty acid oxidation coupled with
oxidative phosphorylation in NAFLD pre-clinical models

The regulation of fat homeostasis in the liver results from a balance
between uptake, anabolism, catabolism, and export from the liver.
Indeed, a tight regulation between fat uptake, de novo lipogenesis
(DNL), fatty acid degradation/oxidation (FAQ), and triglyceride-
containing very-low density lipoproteins (VLDL) export occurs in the
liver. Both unaltered changes in weight gain and serum triglycerides
and cholesterol after MLN4924 treatment or Nedd8 silencing in vivo in
CDHFD- and 0.1% MCDD-fed animals (Suppl. Fig. 6a—c) strongly
suggest that neither fat uptake nor VLDL export, respectively, are
altered after neddylation inhibition. Furthermore, we know from pre-
vious evidence that DNL is reduced due to consuming methionine- and
choline-deprived diets and is, therefore, not a central player in the
mouse models of dietary-induced NAFLD [28,29]. mTOR signaling
plays an essential role in regulating lipid metabolism, such as lipo-
genesis and oxidative fluxes in the liver. Indeed, pharmacologic
intervention via mTORC1 inhibition increases the oxidation of endog-
enous fatty acids in the primary cultures of rat hepatocytes [30] and
ameliorates hepatic steatosis in chronic-binge ethanol-fed mice [31].
MLN4924 treatment to isolated mouse hepatocytes stimulated by OA
induces FAO activity (Figure 5A). Increased FAO under these

6 MOLECULAR METABOLISM 53 (2021) 101275 © 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

www.molecularmetabolism.com


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com

Control

Control

I

MOLECULAR
METABOLISM

0.1% MCDD B Canonical pathways

Production of Nitric Oxide
Phospholipase C Signaling
RhoGDI Signaling
Nicotine Degradation Il
Nicotine Degradation Il
FXR/RXR Activation
Phagosome Formation
LXR/RXR Activation
PXR/RXR Activation
mTOR Signaling
EIF2 Signaling

N v ™ ©

-Log(p-value)
=== CDHFD

Canonical pathways

Pregnenolone Biosynthesis

Bile Acid Biosynthesis

Glycine Betaine Degradation
LPS/IL-1 Mediated Inhibition o
Arginine Biosynthesis IV
NRF2-mediated Oxidative Stress
Granzyme A Signaling

Glutathione-mediated Detoxific
mTOR Signaling
Regulation of elF4 and p70S6K
EIF2 Signaling %
QWNG%,@@{)@”"J@
-Log(p-value)
== 0.1% MCDD

2 0 2 -6 -4 -2 0 2
C 0.1% MCDD D
COHFD yu'Naors 0% meoD
Upstream Regulators
GSTM3 Haree
RM47 - . ST
CP4AA - . DHB11 UBE2W!
HS71L STA2 cespB ]
TSP1  |mm - LEG1
K1C10 | RS15 NFE2L1 -JIIIRRRRg
TOM22 - CP2A5
MAP2 ] VATB2 Myc JITNRNNRNRRRNANNE]
MYO1F [ LYPL1 FGF10
NXA3 = GCST
5'1’},’53 ---- - 233'1‘3 msHz T
EROIB |on  mEE ] ] POR-JINNNNRNNNRNNRRNNRRNRANE|
NAGAB - _— i
e | i e I —
~JIENRR AR AR RANRRNANaR]
CHCH2 TMED5 GNPTAR
uch! APOB P53~ NNTNNNNRRRRRNNNNNNRRRRARN
CEPED - PBUANS3I N B N R —
GSH1 LN . T )
PARK?
HYEP -Log(p-value)
HMGCL
SPRE == CDHFD+MLN4924
H15 | ———
PIGS T
J;é% Upstream Regulators
A58 i ——
ACOX2 HNFaAT ]
me RORCH ]
Heeas RORAT ]
FKBP3 [G3TPE I—
CP2A4 ]
PSMD6 LT —
BHMT1 NFE2L24 ]
GNM
SYPL1 POR{T ]
HXK
TH‘:?ZSP e .. Acox1 - ITTITTTNRNINNNNNN
——— TN AAR AR
3BHS5 I i — PPARA
RGAP1 — T —
YTHD2 | -E I R )

Intensity (Log2 protein abund ratio) ity (Log2 protein abundance ratio) -Log(p-value)
| —— | == 0% MCDDMLN4924
-2 0 2 -5 0 5

Figure 3: Liver proteomics characterization by Liquid Chromatography-Mass Spectrometry (LC-MS) in mouse models of non-alcoholic fatty liver disease (NAFLD) and
treated with MLN4924. A. Heatmaps showing the top 50 significantly different most differentially expressed proteins and B. Ingenuity Pathway Analysis (IPA) of top canonical
pathways in animals maintained during 6 weeks on choline-deficient and high-fat diet (CDHFD) as well as in animals maintained during 4 weeks on 0.1% methionine- and choline-
deficient diet (0.1% MCDD). C. Heatmaps showing the top 50 significantly different most differentially expressed proteins; D. Ingenuity Pathway Analysis (IPA) of Upstream
Regulators in animals maintained during 6 weeks on choline-deficient and high-fat diet (CDHFD) and animals on CDHFD and treated with MLN4824 (CDHFD + MLN4924), as well
as in animals maintained during 4 weeks on 0.1% methionine- and choline-deficient diet (0.1% MCDD) and animals on 0.1% MCDD and treated with MLN4824 (0.1%

MCDD + MLN4924).

circumstances most likely accounts for the augmented fueling of the
TCA cycle by acetyl-CoA facilitating the transference of reducing
equivalents from various intermediates to coenzymes and the pro-
duction of NADH and FADH. These two reduced coenzymes fuel the
respiratory chain. In agreement, neddylation inhibition by MLN4924
significantly induced oxidative phosphorylation (OXPHOS), an electron
transport-linked phosphorylation, and ATP-linked respiration in mouse

hepatocytes, measured by Seahorse-based analysis (Figure 5B).
Furthermore, in the presence of etomoxir, a well-described inhibitor of
FAO, MLN4924 was unable to decrease the hepatic lipid content of
mouse hepatocytes stimulated by OA (Figure 5C), further confirming
that the pharmacological inhibition of neddylation, through MLN4924,
may be exerting its lipid-lowering effect by increasing FAO. Likewise,
FAO activity was shown to be induced in MLN4924-treated CDHFD and

MOLECULAR METABOLISM 53 (2021) 101275 © 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 7

www.molecularmetabolism.com


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com

Original Article

A CDHFD+ B 0.1% MCDD
CDHED MLN4924 0.1%MCDD 1) N4924
Cullins-NEDDylated _ Cullins-NEDDylated |[§

Deptor

o e P

oover R <
prssro-sse [ <«

432KD

3

£ [ £
£ g ¥ i g o
) 5= ® ST g
ay 85" ¢ a2 £ 1s ®
o ® ] o ® o
> Qg > < dsg
o9 2.5 10 29 @ £ 10
E2 1 23 c3 %9 Dy
K] é o 8 s ® g 85 05
3 2= 3 $=
[N 0 ﬁE! 0.0 o E 0.0
Cullins- Deptor pS6/S6 S & Cullins-  Deptor pS6/S6 L L
NEDDylated S NEDDylated *" i
Sl v
@ CDHFD & CDHFD+MLN4924 & @ 01%MCDD @ 0.1% MCDD+MLN4924 SR
C Si Control Si Deptor c £ Si Control  Si Deptor
'§ 15 Si Cammli Si Deptor 3 12 ,m,L‘
x x - a H
13 | — & -~ *
N G W 3%
Q B
o W W 2eg 510
c S £ oS
) Cl
233 05 55 09
ins-| 90 KD o3 25
= X T K
pocte N - 3 :
o
o
D E siControl
< OA + MLN4924
.g 25 Si Control | Si Deptor Si Control | Si Deptor
& ;| : 5
- 2 -
o9 £ 3
32 o 8
o (7] o
Qc 52
w9 O =
] m £
) siDeptor g
; OA + MLN4924
o
£

Figure 4: DEPTOR accumulation by neddylation inhibition mediates the anti-steatotic effects in pre-clinical models of non-alcoholic fatty liver disease (NAFLD).
Western blot analysis of neddylated cullins, DEPTOR, phosphorylated S6 (pS6) and total S6 and beta-actin both in A. animals maintained during 6 weeks on choline-deficient and
high-fat diet (CDHFD) (n = 5), and animals on CDHFD and treated with MLN4824 (CDHFD + MLN4924) (n = 5) as well as in B. animals maintained during 4 weeks on 0.1%
methionine- and choline-deficient diet (0.1% MCDD) (n = 5) and animals on 0.1%MCDD and treated with MLN4824 (0.1% MCDD + MLN4924) (n = 5). C. Western blot of
neddylated cullins, and DEPTOR (n = 3), D. mRNA analysis of DEPTOR levels (n = 3) and E. Bodipy staining of lipids in hepatocytes stimulated with OA and MLN4924 when
silencing DEPTOR (n = 3). Data are shown as average + SEM. One-way ANOVA test and Student’s t-test were used to compare groups. *p < 0.05, **p < 0.01 and

***p < 0.001 are shown.

0.1% MCDD-fed rodents (Figure 5D and E), whereas OXPHOS,
measured with a Seahorse extracellular analyzer in isolated fresh liver
mitochondria, was increased after MLN4924 treatment in CDHFD-fed
rodents (Figure 5F).

Overall, neddylation inhibition boosted fatty acid oxidation, coupled
with oxidative phosphorylation and decreasing liver fat content.

3.5. Neddylation inhibition reduces oxidative stress, lipid
peroxidation, and inflammation in NAFLD pre-clinical models

Fat accumulation in hepatocytes during NAFLD provides a potential
substrate for lipid peroxidation, a process in which oxidants (e.g., free

radicals) attack lipids containing carbon—carbon double bond(s),
especially polyunsaturated fatty acids (PUFAs). Malondialdehyde and,
in particular, 4-hydroxy-2-nonenal (4-HNE) are the primary omega-6
fatty acid lipid peroxidation products. Herein, mouse models of diet-
induced steatosis, CDHFD, and 0.1% MCDD, show an increased
accumulation of dihydroethidium (DHE), a fluorescent marker of
reactive oxygen species (ROS), and 4-HNE. Importantly, both DHE and
4-HNE were significantly decreased after MLN4924 treatment in vivo in
the CDHFD and 0.1% MCDD-fed rodents (Figure 6A,B). Moreover, in
the CDHFD and 0.1% MCDD-fed rodents, MLN4924 treatment was
associated with an induced expression of NRF2 (nuclear factor
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Figure 5: Neddylation inhibition boosts fatty acid oxidation coupled with oxidative phosphorylation in non-alcoholic fatty liver disease (NAFLD) pre-clinical models. A.
Fatty acid oxidation (FAO) fluxes (n = 3); and B. Oxygen consumption rate (OCR) as analyzed using a Seahorse analyzer in primary mouse hepatocytes stimulated with oleic acid
(OA) during 6 h in the presence and absence of MLN4924. C. Immunofluorescence staining of Bodipy with or without stimulation with etomoxir, an inhibitor of FAO in primary
mouse hepatocytes isolated from wild type mice and treated with MLN4924 in the presence of OA during 6h (n = 3—4). D. and E. Fatty acid oxidation fluxes in animal models
maintained during 6 weeks on choline-deficient and high-fat diet (CDHFD), and animals on CDHFD and treated with MLN4824 (CDHFD + MLN4924) as well as in animals
maintained during 4 weeks on 0.1% methionine- and choline-deficient diet (0.1% MCDD) and animals on 0.1%MCDD and treated with MLN4824 (0.1% MCDD + MLN4924) (n =5
per group). F. OCR as analyzed using a Seahorse analyzer in isolated liver mitochondria from mice maintained during 6 weeks on CDHFD or CDHFD + MLN4924. Scale bar
corresponds to 100 pm. One-way ANOVA test and Student’s t-test, respectively, were used to compare groups. # p = 0.09, *p < 0.05, **p < 0.01 and ***p < 0.001 are

shown.

erythroid 2—related factor 2; Suppl. Fig. 7a). NRF2 is a master
regulator of antioxidative responses known to drive the expression of
numerous cytoprotective genes involved in xenobiotic metabolism,
antioxidant responses, and anti-inflammatory responses [32]. Thus,
the expression of genes involved in the glutathione (GSH) metabolism
was further assessed. In the CD-HFD and 0.1% MCDD MLN4924-
treated groups, a tendential overexpression at the transcriptional
level was observed for the subunits Gc/C and GelM of Gel (glutamate
cysteine ligase), an enzyme that catalyzes the rate-limiting step in GSH
synthesis. Moreover, Gsr (glutathione reductase), involved in GSH
reduction, and GstA (glutathione S-transferase), which catalyzes the
conjugation of reduced GSH to a vast number of exogenous and

endogenous hydrophobic electrophiles, was augmented after
MLN4924 treatment (Suppl. Fig. 7b,c).

The oxidative stress response induced by lipid accumulation in he-
patocytes may further trigger the inflammatory cytokine responses.
Indeed, though the hepatic mRNA levels of proinflammatory cytokines,
such as Tnf (tumor necrosis factor), Ccl-2 (chemokine (C—C motif)
ligand 2, and /-6 (interleukin-6), were increased after CDHFD, treat-
ment with MLN4924 reduced their levels (Figure 6C). Likewise, Tnf-a,
Ccl-2, and II-10 (interleukin-1 beta) were increased after 0.1% MCDD
for 4 weeks and decreased after neddylation inhibition in vivo with
MLN4924. Moreover, Timp-2 (tissue inhibitor of metalloproteinases 2),
an early pro-fibrogenic gene, is increased with 0.1% MCDD and
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Figure 6: Neddylation inhibition reduces lipid peroxidation and inflammation in non-alcoholic fatty liver disease (NAFLD) pre-clinical mouse models. A. and B.
dihydroethidium (DHE), a fluorescent marker of reactive oxygen species (ROS), 4-hydroxynonenal (4-HNE) and F4/80 immunostaining and respective quantification (n = 4—5); C.
and D. mRNA levels of genes involved in the inflammatory and fibrotic process (Tnf-tumor necrosis factor, Ccl2- C—C motif chemokine ligand 2, II-6- Interleukin-6, II-1f3-
Interleukin-1 {3, Timp2, tissue inhibitor of metalloproteinases 2) both in animals maintained during 6 weeks on choline-deficient and high-fat diet (CDHFD), and animals on CDHFD
and treated with MLN4824 (CDHFD + MLN4924), and compared to controls on standard chow diet, as well as in animals maintained during 4 weeks on 0.1% methionine- and
choline-deficient diet (0.1% MCDD) and animals on 0.1%MCDD and treated with MLN4824 (0.1% MCDD + MLN4924), and compared to controls on standard chow diet (n = 3—5
per group). Scale bar corresponds to 100 um. Data are shown as average = SEM and One-way ANOVA tests were used to compare groups. *p < 0.05, **p < 0.01 and

***p < 0.001 are shown.

reduced after MLN4924 treatment (Figure 6D). In agreement, the
recruitment of the liver resident macrophages, assessed by immu-
nostaining F4/80, a macrophage marker, is significantly reduced after
neddylation inhibition in CDHFD and 0.1% MCDD-fed rodents
(Figure 6A,B).

In summary, neddylation inhibition accounted for decreased oxidative
stress, lipid peroxidation, and inflammation in mouse models of
NAFLD.

3.6. Serum NEDDS levels correlate with NAFLD severity and
response to treatments in pre-clinical mouse models

Once hepatic neddylation was highly induced in NAFLD, we decided to
evaluate NEDD8 serum levels in patients with NAFLD. Interestingly,
serum NEDDS8 levels, assessed by an ELISA assay, were elevated in
these patients relative to healthy controls, positively correlating with the
NAS score (Figure 7A and B). Similar to our findings in the clinical
setting, serum levels of Nedd8 were increased in animals with a more
advanced stage of NAFLD. Moreover, serum Nedd8 levels in MLN4924-

10

treated NAFLD rodents were reduced due to neddylation inhibition and a
readout of improved liver phenotype (Figure 7C). We evaluated the
Nedd8 serum levels in another diet model of NAFLD (i.e., the high-fat
diet with 0.1% methionine and no added choline [CDAAHFD]) to
further confirm our findings in other therapeutic approaches that do not
directly target neddylation. After 3 weeks of CDAAHFD, the diet was
replaced with a standard chow diet for 1 additional week. As a result of
the diet reversal, the liver phenotype improved, together with lower
serum transaminases and serum Nedd8 levels (Figure 7D—F).

In summary, NEDD8 serum levels correlate with disease progression,
highlighting that the power of serum NEDD8 as a potential non-
invasive biomarker for NAFLD should be further investigated.

4. DISCUSSION
Neddylation is a druggable and reversible PTM that has been previ-

ously shown to play an essential role in the late stages of chronic liver
disease, such as advanced liver fibrosis and HCC. Under these
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Figure 7: Serum NEDD8 levels correlate with NAFLD severity and response to treatment. A. Serum NEDD8 levels in NAFLD patients (n = 46) in comparison with a group of
healthy controls (n = 8). B. Pearson correlation and coefficient between serum NEDDS levels and NAS score. G. Comparison of serum Nedd8 levels between high-fat diet for 20
weeks (HFD), choline-deficient high-fat diet for 6 weeks (CDHFD), and 0.1% methionine- and choline-deficient diet for 4 weeks (0.1% MCDD) and healthy animals on a standard
chow diet (control), as well as animals on CDHFD and treated with MLN4824 (CDHFD + MLN4924), and 0.1%MCDD and treated with MLN4824 (0.1% MCDD + MLN4924)
(n = 4-—5 per group). D. Hematoxylin and Eosin (H&E) staining; E. Serum transaminases (alanine aminotransferase- ALT, and aspartate aminotransferase- AST); and F. Serum
Nedd8 levels in healthy animals (control), in a group of animals maintained during 3 weeks on a 0.1% methionine, choline-deficient, high-fat diet (3 wk CDAAHFD) and in another
group where this 3-week diet period was followed by one week of standard chow diet (SCD) (3 wk CDAAHFD + 1wk SCD). Data are shown as average + SEM. One-way ANOVA
test and Student’s t-test, respectively, were used to compare groups. **p < 0.01 and ***p < 0.001 are shown.

conditions, neddylation inhibition has been demonstrated to be an
effective and safe therapeutic target in pre-clinical-based studies
[16,17,33]. Herein, we provide strong evidence that the total levels of
hepatic neddylated proteins are increased in the liver tissue of patients
with NAFLD mouse models of diet-induced NAFLD. These results
concur with early findings showing increased levels of NEDD8 protein
in patients with hepatic steatosis relative to healthy controls [19]. Other
studies are necessary to unravel whether this regulation is dependent
on other variables and associated NAFLD complications. Moreover, the
triggering mechanisms of overactive neddylation pathways in NAFLD
and other chronic liver diseases are not fully understood. Previous
studies have shown that stress conditions, such as heat shock and

oxidative stress, may lead to an increase of the neddylation pathway
in vitro [34]. Oxidative stress is a hallmark of more advanced stages of
NAFLD and may be potentially involved in the neddylation upregulation
in this pathology. Further studies are necessary to unravel the potential
upstream regulators controlling neddylation in NAFLD.

In 2009, Soucy and colleagues described a small pharmacological
compound that specifically inhibits neddylation (i.e., MLN4924/Pevo-
nedistat) for the first time [22]. Herein, we moved beyond and used
MLN4924 to treat steatosis in isolated mouse hepatocytes stimulated
by OA and mouse models of diet-induced NAFLD. Neddylation inhibi-
tion with MLN4924 in CDHFD- and 0.1% MCDD-fed mice resulted in
decreased hepatic lipid content without associated hepatic-related
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adverse effects. In addition, we have confirmed that Nedd8 silencing
and treatment with MLN4924 display similar effects in isolated mouse
hepatocytes and in vivo, indicating that the anti-steatotic properties are
related to neddylation modulation.

The regulation of fat homeostasis in the liver results from a balance
between uptake, catabolism, and export from the liver. Here, we have
found that neddylation inhibition improves liver steatosis by stimulating
mitochondrial function and FAQ. These results concur with recent
findings from other authors reporting that neddylation is very active in
mitochondria [35]. Augmenting FAO has been recently suggested as a
useful therapeutic approach to reduce hepatic lipid content in NAFLD
[36,37]. Others have shown that neddylation inhibition alters mito-
chondrial morphology in tumor proliferating cells, increasing mito-
chondrial fusion and inducing oxidative phosphorylation [38],
concurring with our results.

Conversely, a previous report has shown that hepatic neddylation
promotes FAO by maintaining electron transfer flavoproteins (ETF) in
neonatal and (o a lesser extent) adult mice, preventing fasting-induced
steatosis in the latter [35]. Though these results do not concur with our
present evidence, the differences are most likely due to the lessened
prevalence of the neddylation/ETF axis in adulthood and fasting-
induced steatosis model differing from our models of diet-induced
NAFLD. In addition, lipid homeostasis is regulated by many tran-
scription factors in the liver that are altered in NAFLD [39]. For
example, members of the ATF/CRBEH family have been shown to in-
crease fatty acid oxidation [23]. Though we have not observed changes
at the transcription level in the intermediates of this family, it should be
considered that when we treated with MLN4924, we modify proteins
post-translationally, and other regulatory mechanisms, such as cell
localization and protein stability, might play a role.

Herein, we have also shown that augmented FAO is coupled with
increased ETC fluxes, and therefore, ROS is not likely to be abundantly
produced under these circumstances. In addition, we show that NRF2,
a master regulator of cellular oxidant stress, is induced after MLN2924
treatment [40]. The MLN4924-induced expression of NRF2 corrobo-
rates early evidence showing that NRF2 is negatively regulated by
KEAP1 (Kelch-like ECH-associated protein 1), a substrate adaptor
protein for the Cullin3 (Cul3)-containing E3-ligase complex, which
targets NRF2 for ubiquitination and degradation by the ubiquitin pro-
teasome system (UPS) [41]. Under neddylation inhibition conditions,
NRF2 can evade KEAP1-mediated degradation, translocate to the
nucleus, and activate the ARE-dependent gene. In fact, Keap1/Nrf2/
ARE regulates GSH levels by upregulating GSH synthetic and regen-
erative enzymes, including GCL, as previously observed [42]. More-
over, NRF2 also supports antioxidant and detoxification pathways by
increasing the synthesis and regeneration of NADPH, a niacin-derived
reducing agent. NADPH is a direct antioxidant and is used as an
enzyme cofactor in many redox reactions, such as GSH reduction by
glutathione reductase (an enzyme with an expression augmented after
neddylation inhibition and NRF2 upregulation) [43]. Finally, glutathione
S-transferases, known to have an antioxidant role, and a major
determinant of the intracellular concentration of 4-HNE, is also regu-
lated by NRF2 [44,45] and is increased after neddylation inhibition.
Importantly, OXPHOS has been described to be more efficient when
Nrf2 is activated [46]. Thus, reduced ROS production and the induction
of an antioxidant response after neddylation inhibition in mouse models
of diet-induced NAFLD may contribute to the low ROS in the presence
of increased FAO fluxes.

Though the isolated accumulation of fat in the liver is considered a
relatively benign hallmark of NAFLD, it is well known that steatosis may
progress to NASH and, later, liver fibrosis. Indeed, prospective and

genetic data are consistent with hepatic fat driving NAFLD progression
[47]. Conversely, the ‘multiple hit’ theory was postulated over a decade
ago by Tilg and Moschen to explain the mechanisms underlying the
progression of NAFLD [48]. These authors proposed that hepatic lip-
otoxicity and multiple events beyond the liver (e.g., adipose tissue
inflammation) and gastrointestinal hits (e.g., dysbiosis) fuel the evo-
lution of NAFLD. Over the last decade, a plethora of studies has evolved
this hypothesis into an established concept [49,50]. On this basis, we
have shown that neddylation inhibition in vivo not only ameliorates
hepatic steatosis but also accounts for decreased lipid peroxidation.
The induced oxidative stress response in NAFLD was highly associated
with overwhelming inflammation. We have shown that neddylation
inhibition in CDHFD- and 0.1% MCDD-fed rodents decreased inflam-
mation markers, such as the accumulation of liver macrophages.
Previously, researchers (including the present authors) have shown
that neddylation inhibition can directly inhibit Kupffer cell activation
[16,38]. Therefore, further studies are necessary to determine if
decreased lipid inflammation induced by neddylation inhibition is a
direct effect specifically targeting immune cells, an indirect conse-
quence of decreased lipid content in hepatocytes and the concomitant
non-recruitment of the liver macrophages, or a combined effect of
both.

In addition, the mechanisms underlying the MLN4924-induction of FAO
in NAFLD were further explored. Indeed, we provide evidence that
DEPTOR and mTOR signaling are relevant in mediating MLN4924-
induced FAO and decreased hepatic steatosis. DEPTOR is a naturally
occurring inhibitor of mTOR that has been previously shown to be
degraded by SCF E3 ubiquitin ligase, resulting in mTOR activation and
cell proliferation [27]. Consistent with DEPTOR’s ability to ameliorate
hepatic steatosis [31], we observed that MLN4924 treatment increases
the protein levels of DEPTOR by decreasing the levels of neddylated
cullins and, therefore, the activity of the SCF E3 ubiquitin ligase that
will otherwise promote DEPTOR ubiquitination and proteasomal
degradation. Importantly, silencing DEPTOR halts MLN4924-induced
lipid lowering in isolated mouse hepatocytes. Though our results
indicate that intact DEPTOR signaling is essential for the MLN4924
anti-steatotic effects, additional potential targets and mechanisms
should be explored and considered when assessing the MLN4924
effect in other experimental models of NAFLD.

Finally, we observed that in NAFLD, the total levels of NEDD8 in serum
are proportional to hepatic neddylation levels, as hepatic and circu-
lating NEDD8 is more elevated with disease progression, particularly in
stages in which hepatic inflammation is aberrant. Furthermore, we
have shown that well-established therapies for NAFLD, such as dietary
interventions, decrease serum NEDD8 levels in pre-clinical mouse
models. These results suggest that serum NEDD8 levels may poten-
tially be used as a non-invasive biomarker of NAFLD progression and to
precisely identify patients who could potentially benefit from a NEDD8-
targeted therapy. Further studies in a larger cohort of patients are
necessary to validate the usefulness of serum NEDDS8 as a biomarker
able to discriminate between simple steatosis and NASH.

In summary, we show that hepatic neddylation is augmented in the
clinical setting and pre-clinical models of NAFLD. Importantly, ned-
dylation inhibition decreases lipid content by increasing FAO and
reduces oxidative stress, lipid peroxidation, and inflammation in
mouse models of dietary NAFLD. Targeting the neddylation pathway
using MLN4924 is an attractive therapeutic approach, considering
that in a healthy adult liver, neddylation is almost negligible [51], and
it is only upon a stress trigger, as occurs in NAFLD, liver fibrosis, and
HCC, that neddylation is induced [16,17]. Therefore, it is predicted
that neddylation inhibition-based therapies in NAFLD are not
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associated with major adverse effects, though this prediction should
be confirmed in chronic mouse models of NAFLD. Moreover, potential
future clinical trials addressing the role of MLN4924 (Pevonedistat)
efficacy in NAFLD can be relatively rapid, as phase | trials carried out
in healthy people have already been performed for MLN4924 (a drug
that is already included in phase 3 clinical trials for the treatment of
acute myeloid leukemia). Importantly, serum NEDDS8 levels reflect
hepatic neddylation and can potentially be used as a non-invasive
marker in NAFLD. Overall, we provide a novel mechanism involved
in NAFLD development and open a novel therapeutic avenue to tackle
NAFLD.
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