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Abstract: Due to complex natural and anthropogenic interconnected forcings, the dynamics of
suspended sediments within the ocean water column remains difficult to understand and monitor.
Numerical models still lack capabilities to account for the variabilities depicted by in situ and satellite-
derived datasets. Besides, the irregular space-time sampling associated with satellite sensors make
crucial the development of efficient interpolation methods. Optimal Interpolation (OI) remains
the state-of-the-art approach for most operational products. Due to the large increase of both in
situ and satellite measurements more and more available information is coming from in situ and
satellite measurements, as well as from simulation models. The emergence of data-driven schemes
as possibly relevant alternatives with increased capabilities to recover finer-scale processes. In
this study, we investigate and benchmark three state-of-the-art data-driven schemes, namely an
EOF-based technique, an analog data assimilation scheme, and a neural network approach, with
an OI scheme. We rely on an Observing System Simulation Experiment based on high-resolution
numerical simulations and simulated satellite observations using real satellite sampling patterns.
The neural network approach, which relies on variational data assimilation formulation for the
interpolation problem, clearly outperforms both the OI and the other data-driven schemes, both in
terms of reconstruction performance and of a greater ability to recover high-frequency events. We
further discuss how these results could transfer to real data, as well as to other problems beyond
interpolation issues, especially short-term forecasting problems from partial satellite observations.

Keywords: interpolation; EOF; data-driven models; neural networks; variational data assimilation;
missing data; suspended surface sediment

1. Introduction

Marine Sediment fluxes result from a combination of natural and anthropogenic forc-
ing factors [1,2]. The main source of sediment load comes from land, and the resuspension
of sediments occurs under the effect of tidal currents and waves but also from fish trawling
and maritime development, such as harbor sediment dredging and dumping, aggregate ex-
traction, submarine cable installation, offshore wind farm exploitation, oil and gas activities,
etc. Due to to those complex natural and anthropogenic interconnected forcings, sediment
process characterization has to be improved [3–5]. In this context, numerical models lead
to high uncertainty levels in assessing sediment fluxes from their continental source to the
shelf edge [6–8]. These issues support the development of new methods to better resolve
the sediment dynamics in coastal areas. Today, new approaches tend to make systematic
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use of available observation datasets [9–12]. Observing systems and monitoring networks,
however, involve an irregular space-time and possibly scarce sampling of ocean parameter
fields, which make the reconstruction of sediment dynamics particularly challenging. This
study addresses such issues, with a focus on satellite-derived data for the reconstruction of
sea Surface Suspended Sediment Concentration (SSSC).

Operational ocean color products [13] mainly exploit optimal interpolation and objec-
tive analysis methods. These methods rely on the calibration of space-time covariance pri-
ors to represent the space-time variability of SSSC fields. Such covariance-based approaches
correctly retrieve large-scale processes but generally fail in recovering finer-scale patterns.
This typically results in a relatively poor reconstruction of SSSC gradients, in particular
those occurring offshore, parallel to the coastline [14]. Data-driven approaches, especially
EOF-based schemes [15], analog methods [16], and neural network frameworks [17–19],
have emerged as relevant alternatives to improve the space-time interpolation of satellite-
derived products as pointed out by recent studies on sea surface temperature [15,20–22]
and sea surface height [23].

This study aims to evaluate the relevance of state-of-the-art data-driven frameworks
for the space-time interpolation of SSSC from satellite-derived data. We design an observing
system simulation experiment (OSSE) to perform qualitative and quantitative evaluations.
As case-study region, we consider the Bay of Biscay, which involves a wide spectrum of
natural processes governing the sediment dynamics: winter storms, tides, river plumes,
wind-induced turbulence, internal waves, and wave-induced littoral drift [24,25], but also
anthropological ones mainly on fishing effort (trawling). We exploit numerical simulation
outputs from a MARS-MUSTANG [26] hydrosedimentary model configuration of the Bay
of Biscay been exploited to simulate a five-year MODIS-like observation series. For that
a realistic cloud cover mask has been applied to the MARS-MUSTANG outputs using
real MODIS image series of clouds. The proposed benchmarking experiments include an
optimal interpolation as the baseline and four types of data-driven interpolation schemes:
namely an EOF-based approach, the analog data assimilation, and two neural-network
interpolation schemes.

This article is organized as follows. Section 2 presents the data used and the pro-
posed benchmarking set up for the Observing System Simulation Experiments (OSSE).
Section 3 details the benchmarked interpolation methods. Section 4 reports the results of
the benchmarking experiments. We further discuss our main contributions and future
work in Section 5.

2. Case Study and Data
2.1. Data

The data used in this work are numerical simulations issued from a configuration of
the coupled MARS-MUSTANG model simulating oceanic sedimentary fluxes. It includes
realistic natural and anthropogenic forcings in the Bay of Biscay. These forcings comprise
wind, waves, river plumes, and the general current, including tides. Anthropogenic
forcings modeled are trawling from fishing vessels. In terms of particle size distribution,
the model takes into account 3 sediment classes according to their mean grain size, namely
mud (<63 µm), sand (from <63 µm to 2 mm), and gravel (>2 mm). The field of interest
retained in this study is the sea surface total suspended sediments concentration obtained
by adding the concentrations from the Sand and Mud classes (in kg·m−3). The gravel class
had been defined in the MARS-MUSTANG model to model the bedload transport [26]. As
this class does not contribute to the SSSC, it was not retained in this study.

Figure 1 illustrates the link between the bathymetry and the suspended sediment
dynamics. Figure 1a displays isobaths of the Bay of Biscay, while Figure 1b displays the
spatial distribution of the mean SSSC in the area of study. This shows that, as usual, higher
SSSC occurs preferably in the vicinity of the coastline. Above the abyssal plain suspend
sediment is nearly absent. In particular the threshold of 0.1 mg/L is well correlated with
the isobath of 180 m which well represents the shelf edge. Another level of concentration,
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the 10 mg/L threshold, typically depicts a muddy area of the Armorican shelf also known
as the “Grande Vasière”. Following, higher SSSC values at the ocean surface can be seen
near estuaries of the main rivers in the area (Gironde, Loire, Vilaine, France) [27].

Figure 1. (a) Bathymetry of the Bay of Biscay. Black lines represent isobaths 40, 70, 100, and 130 m. The thick white line
(corresponding to the 180 m isobath) approximately delimits the shelf edge. (b) Mean spatial distribution of the log10 SSSC
(g/L) from the MARS-MUSTANG hydrosedimentary model.

These MARS-MUSTANG model results have been validated with in situ and satel-
lite data:

• With in situ data (Reference [28], Section 4): In situ data were collected at one station
of latitude 47◦15.592′N and longitude 2◦32.972′W, located near the coast of southern
Brittany and close to the city of “Le Croisic”. There, in situ Suspended Sediment
Concentration (SSC) were measured from 25 November 2007 to 31 January 2008 with
an upward looking 1 MHz Acoustic Wave And Current (AWAC) Nortek profiler
put, with a turbidimeter, on a bottom mooring at a depth of 23 m. The SSC has
been measured in the whole water column of more than 20 m by the AWAC profiler,
calibrated with the turbidimeter, itself calibrated with SSC results obtained through
water samples (Reference [28], Section 2.2). Model results show good agreement with
in situ data. Quantitatively, an RMSE of 10.5 mg/L between model and in situ data
has been obtained for SSC (from the AWAC profiler) ranging between 10 and 80 mg/L
over the whole water column.

• With satellite data; see Figure 2: The satellite data are derived from the Non Algal
Particles (NAP) algorithm from [29] applied to the MERIS satellite sensor dataset avail-
able from 2007 to 2011 and daily sampled. Figure 2a,c show that MARS-MUSTANG
model fit barely well with the dynamics of the turbidity observed by the satellite, but
with a mean intensity in concentration that is half the mean of satellite concentrations
observed through its NAP algorithm.

In this study, the overall sea surface field dataset extracted from the MARS-MUSTANG
model is a time series of 1430 daily images spanning from 1 January 2007 to 8 December
2010, with a 2.5 km spatial resolution over a 64× 64 domain. The case study region was
selected to encompass proximal and distal dynamics, including fluvial sedimentary inputs.
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Figure 2. Comparison of daily satellite SSSC [29] (SSSCsat) with model results (SSSCmod). (a) SSSC time series in mg/L
(constrained by the daily frequency of satellite observations) along the 2007–2011 period, averaged over the 10–70 m
bathymetric range of the area of interest plotted in (b). Time series on (a) are masked when the cloud cover is higher than
90% over the area of interest. (c) Correlations between modeled and observed SSSC, where continuous and red line refer to
model underestimations (with respect to observations) by a factor of 2.

2.2. Osse and Benchmarking Framework

As illustrated in Figure 3a, ocean color satellite observations of the sea surface are
scarce because sensors operate in the near-visible range and cannot observe the sea surface
under cloudy conditions. This results in a high rate of missing data, having a typical mean
coverage below 20% in our area of study. This missing data rate makes the interpolation
task particularly challenging. It also makes complex the direct assessment of interpolation
methods from satellite data. While, for moderate missing data rates (typically below
50%), one may perform benchmarking experiments from real satellite-derived datasets
(e.g., Reference [21]), Observing System Simulation Experiments (OSSE) [30] provide a
well-posed framework to carry out such benchmarking experiments when dealing with
high missing data rates, typically above 80%. This explains why OSSE schemes are widely
exploited for benchmarking experiments for the reconstruction of sea surface fields [31,32]
from observation data. Especially, within an OSSE setting, the definition of the evaluation
metrics do not depend on the sampling patterns of the observation data, which result in
better characterization of space-time scales the interpolation methods can resolve.

The OSSE setting first relies on the availability of a reference gap-free dataset. The latter
provides ground-truth states for validation purposes. Here, we use MARS-MUSTANG
simulation data as the reference SSSC dataset. With a view to simulating realistic satellite-
derived observation data, we generate irregularly-sampled SSC fields by applying to the
reference SSSC dataset cloud masks taken from a time series of real MODIS images. We
also add a Gaussian noise to the remaining SSSC values in order to simulate a satellite
instrumental noise. As illustrated in Figure 3b dedicated to our case-study region, the
simulated ocean color images depict missing data rates comprised between 80% and 100%
of the total coverage.

As required by learning-based schemes, the OSSE dataset has been split into a training
dataset and a validation dataset. The latter dataset encompasses a 100-day period spanning
from 30 August 2010 to 8 December 2010. The former dataset is used for the training
period that encompasses 1336 days spanning from 1 January 2007 to 30 August 2010. Since
SSSC only positive values (given in mg/L) and show an asymmetric statistical distribution
(broadly lognormal), all SSSC values are transformed according to a logarithm function
in a preprocessing step. This can be regarded as a “pre-normalization” step prior to the
application of the usual data normalization step required by learning-based techniques.
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During this normalization step, all SSSC values below 0.1 mg/L are set to this limit of
0.1 mg/L with the assumption that ocean color satellite sensors are able to observe below
this sensitivity threshold [33].

Figure 3. Illustration of key features of the considered OSSE dataset: (a) Map of pixel-wise available data rates for the
simulated SSSC dataset, with, depicted in white, the location of the three reference stations named ‘SaO’, ‘Gas’, and ‘Con’.
(b) Time series of the missing data rate for the simulated SSSC dataset. (c) Time series of the reference SSSC dataset (in
green) for the three reference stations, and where black crosses are drawn when the pixel corresponding to each station is
observed by the satellite.

3. Methods

This section presents the different interpolation methods we benchmark in this study.
Besides Optimal Interpolation (OI), we investigate state-of-the-art data-driven techniques,
namely EOF-based interpolation (DinEOF), analog data assimilation (AnDA), and neural-
network interpolation schemes based on a variational formulation (4DVarNet).

3.1. Optimal Interpolation

The Optimal Interpolation (OI), also referred to as kriging [34], is a method widely
applied in geophysics. Numerous operational satellite-derived products in earth sci-
ence rely on OI [35]. We provide a brief description of OI and refer the reader to Refer-
ence [36] for a detailed review. OI is stated as a minimum variance estimator in linear
inverse problems [37]. Knowing a set of observations y, OI computes an interpolated state
x through a weighted linear mapping:

x = xb + K[y− Hxb], (1)

where xb is the background information, and H a transformation matrix from the state
space to the observation space. Matrix K, referred to as the Kalman gain, is given by

K = PbHT(HBHt + R)−1, (2)

with B the prior covariance matrix of x; and R the covariance matrix of the observation
noise. R is here assumed diagonal, which relates to an additive Gaussian noise. Besides the
interpolated field estimate x, one may also evaluate the estimation uncertainty through
posterior covariance P given by

P = Pb − KHPb, (3)
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with Pb as the background error covariance matrix estimated from the numerical model states.
In our experiments, we implement an OI with a Gaussian covariance model whose

scale parameter was tuned through cross-validation experiments.

3.2. DINEOF

DINEOF (Data Interpolating Empirical Orthogonal Functions) is an EOF-based tech-
nique for the reconstruction of gap-free fields from irregularly-sampled observations. It
exploits the spatial and/or spatio-temporal consistency of the data to deduce a solution
to the missing locations [38]. DINEOF iterates a projection-reconstruction step using the
EOF basis, while observed variables are kept unchanged after each iteration. We may
emphasize that DINEOF may be regarded as a specific parameterization of the consid-
ered neural network schemes using an EOF decomposition as prior in the underlying
variational formulation.

The implementation of DINEOF first requires selecting the number of EOF modes
used for the reconstruction [22]. In our experiments, we typically consider EOF modes
accounting for 99% of the total variance of the considered dataset.

3.3. AnDA

The Analog Data Assimilation (AnDA) combines an analog forecasting model to
an ensemble Kalman smoother to address the data-driven space-time interpolation of
spatio-temporal dynamics. A detailed description and evaluation of AnDA can be found
in Reference [39]. Formally, AnDA involves a linear state-space formulation

xt = Axt−1(xt−1) + µt, (4)

yt = H(xt) + εt, (5)

where the linear operator Axt−1 derives from the linear approximation of the one-step-
ahead mapping between analogs to state xt−1 and their successors for some referenced
dataset of pairs of two successive states, referred to as a catalog. Analogs typically refer to
nearest-neighbors according to some predefined similarity measure. Regarding the param-
eterization of the ensemble Kalman smoother, spherical covariance priors are considered
for noise process µ and ε, and the size of the ensembles is typically set to 1000.

3.4. 4DVarNet

Deep learning schemes have rapidly become the state-of-the-art approaches for
a wide range of pattern recognition and image processing applications, including in
geoscience [40]. This also includes neural network approaches dedicated to interpolation
issues. Recent studies [23,41] have stressed the relevance of end-to-end 4DVarNet architec-
tures to address space-time interpolation issues with large missing data rates. Especially,
these studies show that 4DVarNet architectures significantly outperform zero-filling strate-
gies which are classically implemented for interpolation problems [42]. Applied to different
case-studies, including ocean remote sensing data [23,41], they result in a significant im-
provement over OI, DinEOF and AnDA. To our knowledge, no prior work has investigated
their application to SSC interpolation. We provide below a short introduction to 4DVarNet
schemes. We refer the reader to References [42,43] for a detailed presentation.

These 4DVarNet architectures rely on the formulation of the interpolation problem as
the following minimization issue

x̂ = arg min
x
‖x−Φ(x)‖2 subject to y = H · x, (6)

where H maps gap-free state x to the observation y, and Φ can be regarded as a projection
operator. The latter states a prior on the interpolated states. For a given operator Φ, the
design of a neural network architecture, which implements this algorithm, leads to an
end-to-end architecture, which uses an irregularly-sampled observation as inputs, and
aims at retrieving a gap-free field as outputs. This end-to-end architecture embeds an
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iterative solver of the above minimization problem. For instance, one may consider a
fixed-point iterative algorithm similar to the one implemented by DINEOF procedure
(see Section 3.2). Interestingly, this fixed-point solver is parameter-free, which results in a
lighter learning-based architecture and motivates the choice considered here. Regarding
operator Φ, we follow References [23,41] and explore two configurations which result in
the two 4DVarNet architectures we consider in our experiments, namely:

• AE-4DVarNet: this architecture exploits a convolutional auto-encoder (AE) architec-
ture for operator Φ. The AE first encodes the input field x into a low-dimensional
feature vector and then applies a decoder to map this feature vector to a reconstructed
field Φ(x). The detailed specification of the AE architecture for operator Φ is provided
in Appendix A.1.

• GE-4DVarNet: this architecture exploits a two-scale U-net-like architecture for opera-
tor Φ according to Reference [41]. Contrary to the AE-based setting, it does not involve
a dimension reduction step. The resulting energy ‖x−Φ(x)‖2 may be interpreted in
terms of Markovian prior as detailed in Reference [41]. The detailed specification of
the considered U-Net-like architecture Φ is reported in Appendix A.2.

The considered 4DVarNet architectures are implemented using Keras framework
(Original code can be found on Github: Available online: https://github.com/CIA-
Oceanix/DINAE_keras, (accessed on 5 July 2021)). The SSSC implementation is avaible on
Github: Available online: https://github.com/Jvient/OSSE_BoB-4DVarNet, (accessed on
5 July 2021)). As training loss, we use a custom loss function which compute a weighted
sum of Mean Absolute Errors for the SSC images and their spatial gradients. The training
set-up involves Adam optimizer with a batch size of 16. We gradually increase the number
of fixed-point iterations of the 4DVarNet architectures from 1 to 40 every 14 epochs.

4. Results
4.1. Metrics and Evaluation

The different interpolation methods are evaluated according to two standard metrics:
the global root mean square error (RMSE) and a global reconstruction score (R-score), in
terms of rate of variance of the true data captured by the interpolation. The two metrics
give an general overview of the performance of a given interpolation method. Besides these
global metrics, we report an evaluation for the three reference stations depicted in Figure 3a.
The first location, referred to as ‘Con’, is in the northernmost zone of the case-study area
close to the coastal city of Concarneau. It presents fairly high concentrations over the entire
series superimposed with oscillations at a frequency of around 14–15 days, which likely
relate to M2-tide forcings. The second station is located near the coastal city of Les Sables
D’Olonnes (SaO) and has a steadily increasing concentration over the entire time series
with oscillation at a frequency lower than Con (28 days). The last station (Gas) has been
chosen near the estuary of the Gironde river. It shows a relatively flat time series, except
from 4th March to 12th March, where it presents an increase in SSC, followed by a new flat
series. The SSSC increase is due to a fluvial contribution from the continent observed at the
end of the winter.

4.2. Global Performance

In Table 1, we report the global evaluation metrics of the benchmarked methods. Mean
RMSE and R-score values are computed for the test dataset over the entire domain. OI
performs the worst of all tested methods. However, the improvement using DINEOF and
AnDA is relatively marginal, with an RMSE of 0.19 for OI versus 0.18 for DINEOF and
0.17 for AnDA over the missing data patterns. A greater improvement appears for the
two neural network schemes, with a relative gain of 20% and 40% for AE-4DVarNet and
GE-4DVarNet, respectively. GE-4DVarNet clearly outperforms all the other methods. Inter-
estingly, it results in similar reconstruction performance over the observed and unobserved
areas close to 96% of Explained Variance (EV), which supports a greater generalization
properties of the underlying representation of the SSSC dynamics through learnt GE oper-

https://github.com/CIA-Oceanix/DINAE_keras
https://github.com/CIA-Oceanix/DINAE_keras
https://github.com/Jvient/OSSE_BoB-4DVarNet
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ator Φ. This results in an interpolation performance which is less sensitive to the rate of
missing data, even for periods with high SSSC variations.

Table 1. RMSE and R-score computed for all methods over the SSSC validation period: these scores are computed globally
(All) and over the observed data (Observed) and the missing data (Unobserved) patterns.

Error Unit Data Domain OI DinEOF AnDA AE-4DVarNet GE-4DVarNet

RMSE log10[g/L] All 0.176 0.167 0.162 0.142 0.104
R-score % All 90.4 91.3 91.9 93.7 96.6
RMSE log10[g/L] Observed 0.056 0.038 0.049 0.095 0.094

R-score % Observed 98.5 99.4 99.3 92.8 96.4
RMSE log10[g/L] Unobserved 0.187 0.177 0.171 0.151 0.106

R-score % Unobserved 89.5 90.5 91.2 93.2 96.6

In Figure 4, interpolation scores are analyzed in function of high cloud cover periods.
The time series of the daily RMSE is depicted, along with time periods where less than 5%
of observations are available (red bands). The missing data rate is larger in the second part
of the reconstruction period due to the gradual transition to winter with a higher cloud
cover. In winter, turbidity increases with the impact of higher winds and waves, along
with the sedimentary input from the continent following rainfall. The connection between
the change of dynamical regime and a lack of data is a likely cause of the RMSE peaks
visible on mid-October. As mentioned before, the performance of the 4DVarNet methods,
and particularly GE-4DVarNet, is less affected by the cloud cover rate than other methods
are. GE-4DVarNet method is also the more stable regarding smaller time-scale variations
of the RMSE. The highest RMSE observed for OI and DinEOF is associated with a river
plume (“Le Moros and Saint Laurent river”) containing continental inputs located in the
“Baie de la Forêt” near Concarneau, that is not correctly retrieved. The underestimation of
SSSC by OI is also observed for DINEOF, which may be explained by the initialization of
DINEOF algorithm with the OI solution. We may point out that GE-4DVarNet also relies
on the same initialization but shows a much greater ability to recover the global space-time
features of the SSSC fields.

Figure 4. Daily reconstruction RMSE for OI, DinEOF, AndA, AE-4DVarNet, and GE-4DVarNet. Red
bars indicate time periods having a daily missing data rate above 95%.

In Figure 5, we further illustrate the reconstruction of the benchmarked schemes for
the norm of the gradient of the SSSC fields. This provides means to assess the ability of the
different methods to retrieve the frontal structures in SSSC fields. Figure 5a further stresses,
on the mean gradient field for the whole series, the better performance of GE-4DVarNet,
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which nicely recovers the main front structures of the true field compared with the other
approaches. This is confirmed quantitatively by the map of the time-averaged RMSE map
shown in Figure 5b, and global RMSE statistics are given in Table 2. More specifically,
these gradient norm fields depict a clearly visible contour between coastal and open seas.
This contour broadly follows the 100m isobath which borders a well-known large mud
field named the “Grande Vasière”. This mud field impacts the sediment dynamics in the
whole Bay of Biscay [27]. This further suggests the underlying GE representation learnt
by GE-4DVarNet model for SSSC dynamics to be much more relevant than a AE-based
representation in AE-4DVarNet to encode SSSC dynamics. We also interpret the lower
performance retrieved by DINEOF and AnDA to be caused by a spatial smoothing effect
associated with the EOF-based decomposition of the spatial variability. EOF decomposition
is by construction less adapted to the retrieval of fine-scale gradient patterns.

Figure 5. Reconstruction of SSSC gradient fields: (a) reconstruction obtained by OI, AnDA, DINEOF,
AE-4DVarNet, and GE-4DVarNet on average for the whole 100-day validation period. (b) map of the
mean reconstruction error for the 100-day validation period for OI, DinEOF, AnDA, AEP-4DVarNet,
and GE-4DVarNet.

Table 2. Mean RMSE and R-score for the norm of the SSSC gradients computed for all methods over
the 100-day validation period.

Global Unit OI DinEOF AnDA AE-4DVarNet GE-4DVarNet

RMSE log10[g/L]/m 0.110 0.093 0.079 0.084 0.073
R-score % 16.0 40.6 57.1 51.1 63.7

4.3. Reconstruction of Time Patterns

Besides the reconstruction of spatial patterns, we also investigate whether the inter-
polated fields provide a relevant characterization of the variations of SSSC with time. In
Figure 6, we compare the time series of the true SSSC to the interpolated time series for the
three selected stations, namely SaO, Gas, Con as defined in Figure 3. GE-4DVarNet reaches
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the greatest correlation with respect to the groundtruth. This is confirmed by the visual
inspection of the different series. For instance, the GE-4DVarNet reconstruction fits very
well the true series at ‘Con’ station for abrupt change occurring at day 20 November 2021.
By contrast, the other schemes seem to produce some fine-scale artifacts, which may relate
to some erroneous reconstruction of spatial gradients as discussed above. Interestingly,
GE-4DVarNet also recovers the 14-day oscillation related to the M2 tide process even
with a high missing data rate. This may relate to spectral features captured by the GE
representation of sediment dynamics learnt by GE-4dVarNet.

Figure 6. Time series of the SSSC reconstruction for OI, DinEOF, AnDA, AE-4DVarNet, and GE-4DVarNet. Green series
refer to true state, mark to the observational term inputs.

5. Discussion

The goal of this study has been to assess the performance of interpolation methods for
the retrieval of gap-free series of SSC fields from irrgegularly-sampled satellite-derived
measurements. Given the typical cloud cover for mid-latitude areas (about 80% of missing
data in our case-study), we implemented an OSSE framework to evaluate the potential of
data-driven approaches, which have recently emerged as relevant alternatives to model-
driven assimilation products [9,18,21] and operational OI schemes [44,45]. Interestingly, our
study stresses that the selection of the interpolation methods may strongly affect the ability
to retrieve some features of SSSC dynamics. For instance, the best scheme (GE-4DVarNet)
results in a relative gain with respect to OI in terms of RMSE greater than 40%. We
believe that this OSSE could provide a relevant benchmark for future development of SSSC
interpolation methods. We make available online our dataset and the associated evaluation
framework (Data and code available at: https://github.com/Jvient/OSSE_BoB-4DVarNet,
(accessed on 5 July 2021)).

Among the three classes of data-driven interpolation schemes, the neural network
approaches were the ones leading to a significant improvement with respect to the OI
baseline. Both DinEOF and AnDA rely on an EOF decomposition for the spatial variability
of SSS dynamics. Their interpolation results suffer from similar limitation with a relatively
poor ability to retrieve frontal structures. As the missing data rates are greater than 80%, the
EOF decomposition may not be appropriate to appropriately capture relevant space-time
scales of SSSC dynamics from the observed data. By contrast, neural network approaches
learn the representation of the gap-free fields through operator Φ so that the interpolation
performance is optimized. This is expected to result in a representation of SSSC dynamics
which is more adapted to the interpolation problem.

Overall, our study clearly advocates for the design and development of neural network
schemes for the interpolation of SSSC fields. For GE-4DvarNet scheme, we reported a

https://github.com/Jvient/OSSE_BoB-4DVarNet
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mean relative gain with respect to OI in terms of RMSE is of 41% for the log10(SSSC)
values and of 35% for their gradient norm. Besides, these global performance metrics,
we also showed that the resulting interpolations may capture relevant spatial patterns
(e.g., the impact of a well-known mud field zone in the case-study area) and time scales
(e.g., M2-tide forcings exhibited at station Con), which were not retrieved using the other
approaches. These results are in line with other studies dedicated to other sea surface
geophysical parameters, namely sea surface temperature (SST) [21,41] and sea surface
height (SSH) [41]. These studies also highlighted the greater ability of neural network
approaches based on a variational formulation to learn relevant interpolation algorithms
when dealing with large missing data rates: typically from 50% to 75% for SST and below
10% for SSH. Intesretingly, 4dVarNet schemes also relate to variational data assimilation
models. This may be of interest to exploit some model-driven priors onto the considered
geophysical dynamics when available [41].

These results show that NN-based methods outperform the interpolation rate of this
OSSE. The common main reasons for this is that these methods exploit much more past
observations for the present reconstruction. Indeed, when applying an OI in a multi-map
context with a total absence of data, it is necessary to extend the spatial influence of the
Gaussian kernel and obtain a covariance matrix that can provide results [46]. This extension
of the neighborhood search to observations implies a more important smoothing of the
map during the completed interpolation. Concerning the EOF-based methods (DinEOF
and AnDA) the main source of errors comes from the noise allocated to the simulated
observations. Indeed, the latter results from DinEOF and AnDA display high frequency
spatial patterns that can be caused by a bad decomposition of the signal. In addition, these
bad patterns are assimilated in the same way as real high frequency events. Thus, when
reconstructing the images, and, despite the fact that 95% of the explained variance has
been selected, the result leads to a worse reconstruction, especially in the higher dynamic
range [22].

All the considered data-driven approaches rely on the availability of a reference gap-
free dataset during the training phase. This is particularly important for neural network
approaches. The applicability of the trained models to real satellite-derived datasets
particularly depends on ability of numerical simulations to represent the targeted SSSC
dynamics. Numerical simulations cannot in general address all the processes in play in
real observation data. For instance, the MARS-MUSTANG model used here does not
simulate the fate of detritic particles that appear in real satellite observations of SSSC
fields. We may also point out that the additive Gaussian instrumental noise is likely not
an accurate representation of real satellite sensor errors. We then regard the reported
interpolation performance as a lower-bound of the performance that could be retrieved for
real observation datasets. Future work shall further explore the application and adaption
of the proposed schemes to real satellite datasets. Regarding 4DVarNet approaches, we can
envision different learning strategies. We may first explore a full training from scratch of
the proposed scheme. In our study, we used a 3-year gap-free datasets for training. For real
satellite data, we may exploit a 20-year time series. With a mean cloud coverage of 85%
over our area of study (cf. Figure 3), the number of data available for the learning process
is roughly equivalent to a 3-year gap-free dataset. This makes the training of 4DvarNet
models from real observation dataset a realistic option to be explored. Transfer learning
strategies [47,48], which would exploit pre-trained models using the proposed OSSE before
adapting them to real observation datasets, also appear as a promising direction. These
strategies shall require smaller real datasets compared with training models from scratch.

The application to real observation datasets could also benefit from several extensions
of the considered 4DVarNet schemes. First of all, such schemes could easily embed
covariates to further constrain the interpolation process, including among others the
bathymetry or metocean covariates. We believe that these schemes may also open new
avenues for short-term forecasting issues from gappy satellite observation data [43], as
forecasting issues may be regarded as an interpolation problem in which the future is
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masked. Future work shall also investigate the estimation of some uncertainty of the
interpolation. Different studies [49,50] provide methodological backgrounds to embed
such an uncertainty component in 4DVarNet schemes.

6. Conclusions

In this study, we have addressed the data-driven interpolation of satellite-derived
SSSC fields. An OSSE setting in Bay of Biscay has shown that data-driven schemes, es-
pecially neural-network architectures backed by a variational formulation for space-time
interpolation, can significantly improve the reconstruction of SSSC dynamics compared
with an OI, which is classically used in deriving operational products. Our experiments
support a greater performance of GE-4DVarNet scheme both to recover spatial and tem-
poral patterns with a relative gain up to 40% in terms of RMSE w.r.t. the groundtruth.
These results are in line with recent experiments using other satellite-derived sea surface
parameters, such as sea surface height [23] and sea surface temperature [20,21].

With possible applications not only to interpolation but also to forecasting or model
identification, the 4DVarNet methods may open new research avenues for the model-
ing, reconstruction, and forecasting of sediment dynamics from partial satellite-derived
observations with direct operational impacts on the short-term.
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Appendix A

Appendix A.1. Architecture of the Autoencoder Operator φ (AE-NN)

A convolutional AutoEncoder formulation based on encoding (E) and decoding (D)
operator. First, E reduces the dimension of the domain to a lower dimensional space. Its
architecture is based on 5 Conv2D layers. We first consider a convolutional auto-encoder
as proposed in References [20,21] as follows. The encoder, which maps the input data to a
low-dimensional space, involves the following five-layer CNN:

• Conv2D (Relu activation, 30 filters, 3 × 3 kernels, average pooling layer);
• Conv2D (Relu activation, 60 filters, 3 × 3 kernels, average pooling layer);
• Conv2D (Relu activation, 120 filters, 3 × 3 kernels, average pooling layer);
• Conv2D (Relu activation, 240 filters, 6 × 6 kernels, average pooling layer);
• Conv2D (Linear activation, 30 filters, 3 × 3 kernels).

D project the low dimensional encoding representation into the original space. Its
architecture is composed of Conv2Dtranspose layer and Conv2D layer. The resulting

https://github.com/Jvient/OSSE_BoB-4DVarNet
https://github.com/Jvient/OSSE_BoB-4DVarNet
https://github.com/Jvient/OSSE_BoB-4DVarNet
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encoding space if a 2 × 2 × 30 space. Regarding the decoder, we consider a classic
convolutional architecture using Conv2Dtranspose upsampling layers:

• Conv2DTranspose (Relu activation, 256 filters, 8 × 8 kernels);
• Conv2DTranspose (Relu activation, 128 filters, 3 × 3 kernels);
• Conv2DTranspose (Relu activation, 64 filters, 3 × 3 kernels);
• Conv2DTranspose (Relu activation, 20 filters, 3 × 3 kernels);
• Conv2D (Relu activation, 40 filters, 3 × 3 kernels, average pooling layer);
• Conv2D (Linear activation, 64 filters, 3 × 3 kernels).

Overall, this ConvAE model involves 500 k parameters.

Appendix A.2. Architecture of the Gibbs-Energy Operator φ (GE-NN)

The NN is based on two NN energy. A parameterization of operator Φ which relates
to Markov random fields [20,50] has also been explored. It does not rely on dimension
reduction hypothesis as the previous one. A good state-space reconstruction refers to a
low-energy state, where at any space position s and time step t, Φ(x)(s, t) only involves
state x in a space-time neighborhood of (s, t). The following architecture is used:

• AveragePolinglayer (4 × 4);
• Conv2D (Relu activation, 40 filters, 3 × 3 kernels) with a null-weight constraint for

the center of the convolution window;
• Conv2D (Relu activation, 40 filters, 1 × 1 kernels);
• a residual network [51] with the following residual block: Conv2D (Relu activation,

240 filters, 200 × 200 × (5 × 40) kernels, average pooling layer);
Conv2D ( Relu activation, 40 filters, 1 × 1 kernel);

• Upsampling to the original input shape is processed by a Conv2DTranspose (Linear
activation, 4 × 4 kernels).

This GE-4DVarNet model involves 80 k parameters, which is much more compact
than the AE-4DVarNet architecture.
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