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Abstract: Phospholipids (PLs) are amphiphilic molecules that were essential for life to become cellular.
PLs have not only a key role in compartmentation as they are the main components of membrane, but
they are also involved in cell signaling, cell metabolism, and even cell pathophysiology. Considered
for a long time to simply be structural elements of membranes, phospholipids are increasingly being
viewed as sensors of their environment and regulators of many metabolic processes. After presenting
their main characteristics, we expose the increasing methods of PL detection and identification that
help to understand their key role in life processes. Interest and importance of PL homeostasis is
growing as pathogenic variants in genes involved in PL biosynthesis and/or remodeling are linked
to human diseases. We here review diseases that involve deregulation of PL homeostasis and present
a predominantly muscular phenotype.

Keywords: phospholipids; mass spectrometry; muscle; disease; membrane; endoplasmic reticu-
lum; mitochondria

1. Introduction

Life is amazing. The organization of ‘only’ four major types of biological macro-
molecules constitutes the majority of the dry weight of the human body. Specifically,
carbohydrates, proteins, nucleic acids, and lipids perform an incredible variety of func-
tions in the organism. Lipids, also previously known as ‘lipin’ and ‘lipoid’, are a huge
family without a real consensual definition from a chemical or biological point of view.
In 1920, Bloor from the department of Biochemistry and Pharmacology of The University
of California, proposed a classification of lipids in three groups, simple lipids with fats,
oils and waxes; compound lipids including phospholipids (PLs) and glycolipids; and a
last group including derived lipids (fatty acids (FA), steroids, etc.) [1]. Of all the different
lipids, PLs were indispensable to the appearance of life since they can delimit cellular
compartments [2,3]. After presentation of the basic concepts on PLs, we present how
to isolate, separate, and identify these molecules. The importance of PLs in numerous
biological functions is highlighted by rare genetic diseases that involved deregulation of
PLs homeostasis. We will center this review on diseases with a predominantly muscular
phenotype.
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2. Basic Concepts on PLs

Phospholipids include phosphatidic acid (PA), phosphatidylglycerol (PG), phos-
phatiylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phos-
phatidylserine (PS), cardiolipin (CL), and sphingomyelin (SM). Among the PLs, the most
abundant are glycerophospholipids (or phosphoglycerides), whose common structure
comprises a polar head containing a glycerol to which is attached a phosphate group
carrying an additional molecule (which gives its identity to the lipid) and two fatty acids
(hydrophobic hydrocarbon chains, sn1 and sn2) [4] (cf. Figure 1). The polar head group
can be simply a hydrogene in the case of phosphatidic acid; be an ethanolamine, choline,
serine, inositol, or glycerol group; and even a phosphatidylglycerol for cardiolipin. Another
abundant type of PL is represented by sphingomyelins, which are phosphosphingolipids
(a sub-class of sphingolipids). SM contains a sphingosine (a fatty alcohol containing 18
carbons) bound to phosphocholine and a fatty acid. PLs are specialized lipids, which have
multiple names depending on biologist or chemist point of view despite a well-defined
but diverse and complex structure. Several classifications of lipids exist according to,
for example, their chemical structure or biological origin, but without any real consen-
sus [4]. For example, the fatty acid names depend on the carbon length and the presence
of double bonds, but the numbering can be different from the biological or the chemical
point of view (cf. Figure 2 and Table 1). Nevertheless, the International Union of Pure
and Applied Chemistry (IUPAC) has brought about progress into establishing a chemical
nomenclature and terminology for specific scientific fields (https://iupac.org/, accessed
on 3 May 2021). Moreover, the database LIPID MAPS (Metabolites and Pathways Strategy—
https://www.lipidsmaps.org/, accessed on 3 May 2021) constitutes an important tool
for lipidomic analysis, with structures and annotations of bulk lipids [5–7]. Importantly,
most organic molecules are largely mobile depending on their physical and chemical
environment (cf. Figure 2).

Figure 1. The great diversity of phospholipids.

https://iupac.org/
https://www.lipidsmaps.org/
https://www.lipidsmaps.org/
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Table 1. The importance of the double bond position.

Fatty Acid 18:1 18:2 18:3

Mass and
Formula 282.26 and C18H34O2 280.24 and C18H32O2 278.22 and C18H30O2

Systemic Name Octadecenoic acid Octadecadienoic acid Octadecatrienoic acid
Number of

Lipid Records 43 101 63

Common Name Double Bond
Position

Number of
PubMed

References
Common Name Double Bond

Position

Number of
PubMed

References
Common Name Double Bond

Position

Number of
PubMed

References

Example

Oleic acid 9Z 23,694 Linoleic acid 9Z, 12Z 24,310 α-Linolenic acid 9Z, 12Z, 15Z 7036
Trans-

vaccenic acid 11E 325 Rumenic acid 9Z, 11E 316 γ-Linolenic acid 6Z, 9Z, 12Z 3145

Cis-vaccenic acid 11Z 202 Linoelaidic acid 9E, 12E 25 Punicic acid 9Z, 11E, 13Z 111
Petroselinic acid 6Z 67 Sebaleic acid 5Z, 8Z 9 Pinolenic acid 5Z, 9Z, 12Z 56

Petroselaidic acid 6E 4 Vaccelenic acid 11E, 15Z 2 Jacaric acid 8Z, 10E, 12Z 13

Formula of the fatty acid can be deduced from its systematic name. Records lipid from https://lipidmaps.org/data/chemdb_lm_text_ontology.php?ABBREV=FA%2018:3 (accessed on 3 May 2021) and records
from PubMed https://pubmed.ncbi.nlm.nih.gov/ (accessed on 3 May 2021). (E: trans double bond, Z: cis double bond).

https://lipidmaps.org/data/chemdb_lm_text_ontology.php?ABBREV=FA%2018:3
https://pubmed.ncbi.nlm.nih.gov/
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The molecular diversity of phospholipids is very large and depends not only on
the polar head, the carbon length (short/medium/long/very long), and the number of
carbon chains (from one in lyso-PL to four in cardiolipin), but also on the degree of double
bonds (responsible for molecular rigidity) and their position (cf. Figure 2). There are also
plasmalogens, PL analogs containing an ether or vinyl ether group instead of the usual
ester function [8]. The position of a fatty acyl chain in sn1 or sn2 increases the diversity
further. Thus, the beautiful and large family of phospholipids already contains more than
40,000 natural molecules [2,9]. Precise and structural identification of lipids in a biological
medium has been underway for more than 30 years and is becoming possible thanks to
the development of mass spectrometry [10]. Of note, the use of common name of fatty
acid should be carefully used unless the position of the double bond and the cis and trans
isomeres are fully identified. We advise using the systematic name if no information on
double bond position is provided (cf. Table 1).

Figure 2. FA nomenclature. The chemical structure of FA showing the physiological numbering
(black), the first double bond being at the third or sixth carbon from the omega start, and the chemical
numbering (red) with conventions for the double bond location (E in cis, Z in trans). One of numerous
possibilities of 3D representation was obtained thanks to Molview [11]. 3D structure is influenced by
local environments such as pH.
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In order to present the different PLs in more detail, we chose to follow the order of
lipid retention following liquid chromatography using a polar stationary phase (polyvinyl
alcohol grafted silica column). This allows phospholipids to be separated by polarity,
followed by a charged aerosol detector Corona CAD and a high-resolution mass spectrom-
eter [12] (cf. Figure 3 and Table 2). Phosphatidic acid is the simplest PL, one of the least
abundant PL present in the plasma membrane, but is central in PL biosynthesis [13]. PA
has been involved mainly in membrane biophysical properties and in various signaling
pathways such as adipogenesis or autophagy [14]. Three major pathways can generate PA:
(i) From the acylation of lyso-PA (LPA) by lysophosphatidic acid acyltransferases (LPAAT)
(cf. Figure 4). LPA can be obtained from glycerol-3-phosphate (G3P) thanks to the enzy-
matic action of glycerol-3-phosphate acyltransferase (GPAT). (ii) From the hydrolysis of
phosphatidylcholine by the phospholipase D. (iii) From the phosphorylation of diacylglyc-
erol (DAG) by a diacylglycerol kinase (DGK 10 isoforms in human) [13,15]. Importantly,
PA is a major precursor of PL biosynthesis. DAG and CDP-DAG (cytidine diphosphate-
DAG) are key intermediates that can be obtained from PA thanks to phosphatidic acid
phosphatases (PAP or diacylglycerol-3-phosphate phosphohydrolase as systematic name)
and CDP-DAG synthetase (CDS or CTP:phosphatidate cytidylyltransferase as systematic
name), respectively [14]. They are two types of PAP, type I encoded by lipin genes and type
II mainly found in the plasma membrane known as lipid phosphate phosphatases.
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Figure 4. Diacylglycerol (DAG) and CDP-DAG are two key elements in PL biosynthesis. GPAT: glycerol-3-phosphate
acyltransferase, LPAAT: lysophosphatidic acid acyltransferases, PAP: phosphatidic acid phosphatases, DGK: diacylglycerol
kinase, CDS: CDP-DAG synthetase, DAGAT: diacylglycerol acyl transferase, ALCAT1: AcylCoA:lysoCL acyltransferase 1,
MLCAT1: monolysoCL acyltransferase 1, TAZ: tafazzin, EK: ethanolamine kinase, ET: CTP:phosphoethanolamine PE cytidy-
lyltransferase, EPT: ethanolaminephosphotransferase, PSD: phosphatidylserine decarboxylase, PSS2: phosphatidylserine
synthase 2, CK: choline kinase, CT: CTP: phosphocholine cytidylyltransferase, CPT: cholinephosphotransferase, PSS1:
phosphatidylserine synthase 1, SMS: sphingomyelin synthase.

From the liponucleotide CDP-DAG, phosphatidylglycerol and 1,3-bis(sn-3′-phosphatidyl)-
sn-glycerol known as cardiolipin and phosphatidylinositol can be synthetized [16]. PG has low
abundance, less than 1% of total PLs in mammal cells, and is relatively saturated compared to
other PLs [17]. Cardiolipins are unique among the PL family as they are specifically present
in mitochondria membranes, especially in inner membrane, and composed of a dimeric phos-
phatidic acid containing two phosphates and four acyl chains [18] with molecular structure
similarity with PG [16,19]. This distinctive four acyl chain composition induces a cone-shaped
PL that has specific properties such negative membrane curvature and proton buffering [20].
Moreover, this specific structure leads to an important variety of CL species due to a huge
diversity of acyl composition. From the biosynthesized ‘nascent’ CL, there is further remodeling
leading to hetero-acylated or homo-acylated CL [16]. Three different enzymes are involved in
acyl synthetic transformation: tafazzin (a trans-acylase) and two acyl-transferases MLCAT1
(monolysoCL acyltransferase 1) and ALCAT1 (acylCoA:lysoCL acyltransferase 1) [16]. This
lipid dimer with four acyl chains was initially isolated from heart beef as cardiomyocytes are
the richest cells in terms of mitochondria [21]. In heart and skeletal muscle, the main cardiolipin
specie is composed of four C18:2 acyl chains. The last PL synthesized from CDP-DAG is PI, and
the biosynthesis takes place in the ER thanks to PIS (phosphatidylinositol synthase), whereas PG
and CL biosynthesis are orchestrated in mitochondria [18]. Despite a relatively minor represen-
tation in membrane composition (around 10%), PI is an important PL due to the generation of
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several phosphorylated derivatives at the inositol ring, which are involved in a plethora of cell
signalizations such as membrane trafficking and regulation of protein function [18]. Strikingly,
the fatty acyl composition of PI is mainly C18:0/C20:4 in numerous rodent tissues, and the
consequences of this specific fatty acyl composition are not well understood [22].

PC and PE, the two most abundant phospholipids, are generated by the Kennedy pathway
by which DAG is transferred to CDP-choline and CDP-ethanolamine, respectively (cf. Figure 4).
These intermediates are obtained from phospho-choline and phospho-ethanolamine thanks to
CTP:phosphocholine cytidylyltransferase (CT) and CTP:phosphoethanolamine PE cytidylyl-
transferase (ET) [23]. PE can generate PC by methylation reactions by phosphatidylethanolamine
N-methyltransferase (PEMT). PE can also be produced specifically in the mitochondria by a
phosphatidylserine decarboxylase (PSD) from PS. Two enzyme phosphatidylserine synthase 1
and 2 responsible for base-exchange reactions synthesize PS from PC and PE, respectively [24].
PC are also involved in sphingomyelins (which do not have glycerol in their structure) synthesis
in the Golgi from ceramides (produced in the ER) by sphingomyelin synthase (SMS), which
transfers phosphocholine from a PC [25].

Details in PL biosynthesis pathways are reviewed in [19,26,27]. Multiple pathways
can lead to PL synthesis, re-synthesis, or remodeling using various intermediates, and these
pathways could happen in different membranes such as plasma membrane, ER membrane,
lysosome/peroxisome membrane, or mitochondria membranes. De-acylation and re-
acylation reactions due to a large number of phospholipase enzymes add further difficulties
in pinpoint the precise PL composition [28]. Each cell has a unique PL fingerprint, making
it difficult to unravel the physiological and pathophysiological significance [18]. The
development of methods that track PL movement from their place of synthesis to their
final organelle destination will help to decipher their role in cells.

Table 2. Main characteristics of phospholipids.

Phospholipid Group % of Total Lipids in
Eukaryotic Cells [27]

Main
Biosynthesis

Site
Main Characteristics

Phosphatidic acid
PA 1–2 ER

The simplest PL
Main precursor for PL synthesis

Inverse cone

Phosphatidylglycerol
PG <1 Mitochondria Precursor of cardiolipin

Cardiolipin
CL 2–5 Mitochondria

Present only in mitochondrial
membranes

Contains four fatty acyl chains
Inverse cone

Phosphatidylinositol
PI 10–15 ER Source of inositol 1,4,5 triphosphate (IP3)

Cylinder shape

Phosphatidylethanolamine
PE 15–25 ER and also

mitochondria from PS
Second most abundant PL

Inverse cone

Phosphatidylserine
PS 5–10 ER

Mostly present in the inner leaflet of the
cell membrane, when externalized they
became a signal of recognition for cell

phagocytosis by macrophages
(characteristic of apoptosis)

Cylinder shape

Lysophosphatidylethanolamine
LPE ND Obtained from

phospholipase action

Contains one fatty acyl chain
Hydrolysis of one fatty acid of a PE by a

phospholipase

Phosphatidylcholine
PC 45–55 ER

The most abundant (outer leaflet of cell
membrane)

Constitutes a reserve of choline and
methyl groups

Formerly called lecithin
Cylinder shape
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Table 2. Cont.

Phospholipid Group % of Total Lipids in
Eukaryotic Cells [27]

Main
Biosynthesis

Site
Main Characteristics

Sphingomyelin
SM 5–10 Golgi

Phosphocholine bound to ceramide
Abundant on the outer leaflet of the

membrane
Cylinder shape

Lysophosphatidylcholine
LPC ND Obtained from

phospholipase action

Contains one fatty acyl chain
Hydrolysis of one fatty acid of a PC by a

phospholipase

3. Main Methods for PL Analysis

In 2021, more than 200,000 results were obtained through a PubMed search using
the keyword “phospholipids”. Evolution of the number of publications is closely linked
to technological progress in the lipid research field, particularly with chromatography
techniques (first thin layer, then gas and liquid phase) associated with ever more efficient
detectors. Since the early 2000s, metabolomic screening approaches using coupled mass
spectrometry have been flourishing.

Liquid–liquid extraction (LLE) is the most widely used method for extracting lipids
from a biological medium. The first LLE method was developed by Folch in 1957 using a
mixture of chloroform, methanol, and water (8:4:3 v/v/v) [29]. Most of the lipids (from a
wide range of polarity) are recovered from the sample [30]. However, PL extraction yield
can vary from 50 to 90%, some of them remaining in the aqueous phase [31]. The Folch
method was subsequently modified by Bligh and Dyer to increase the proportion of polar
lipids extracted by using a 1:2:0.8 v/v/v mixture of chloroform, methanol, and water [32].
Since then, many protocols have been developed to optimize extraction efficiency according
to the lipids of interest or the nature of biological samples studied and to limit the use of
toxic solvents such as chloroform [33].

The characterization of PL molecular species is mainly performed with mass spectrom-
etry (MS) tools generally coupled with chromatographic techniques. Various separation
methods have been developed, depending on the lipid mixture and the questions to an-
swer [34,35]. Gas chromatography (GC), often used for fatty acid analysis, is not suitable
for whole PL analysis as PLs are too polar and not very volatile. The overall FA composition
can be obtained by GC/MS after hydrolysis of PLs, but this method does not allow for
identification of plasmalogens ether or vinyl ether acyl chain. Liquid chromatography
(LC) is much more suitable for PL analysis including plasmalogens. Normal phase HPLC
(high-performance LC) has the advantage of separating PLs according to the polar head
nature (allowing quantification of PL classes on a reduced retention time). This facilitates
the structural identification of molecular species; however, it requires the use of hazardous
solvents [36]. Reverse phase HPLC separates PL molecular species on the basis of hydropho-
bicity of FA chains, depending on carbon length and number of unsaturations; this induces
mixing of lipid classes and difficulties for the structural characterization of species [37]. A
more environmentally friendly approach is the super critical fluid chromatography (SFC),
which has the advantages of normal phase HPLC while using eco-compatible (CO2 in
super critical phase, H2O) and less toxic solvents (acetonitrile) [38].

Once they are separated by chromatography, mass spectrometry is the most efficient
tool for characterizing PLs, which ionize very well in electrospray. The analysis can be
done in a non-targeted (profiling) or targeted (semi-quantitative) way [39]. In lipidomic
profiling, high-resolution mass spectrometry allows to obtain the atomic composition
of the whole molecule (generally in adduct form). If chromatography does not provide
information on PL classes, fragmentation spectra are essential to identify the molecular
structure precisely. Positive mode fragmentation confirms the nature of the polar head,
while negative mode fragmentation gives access to FA composition [40]. Although MS is a
powerful tool for structural characterization, it provides limited information on positioning
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of unsaturation on FA chains [38]. Specific methods have been developed with this aim,
using alkaline adducts or ozone as reactant gas combined with targeted fragmentation.
However, implementation of theses analyses and spectra interpretation are still highly
challenging [35]. In the same way, assignment of sn-positions of PL acyl chains is only
possible through validated assays based on monitoring the ratio between fragment ions of
positional isomers.

Mass spectrometry coupled with chromatographic techniques are lengthy forms
of analysis (several dozen minutes) and consume important volumes of solvents. MS
can also be used alone, without prior separation, in shotgun MS analysis [41]. This
technique is fast and simple to implement, giving access to a global phospholipidomic
profile. Very high spectral resolution is required to identify molecular species with similar
masses, and separation of isomers is not possible with shotgun analysis. Simultaneous
ionization of hundreds of molecules, with different concentrations and polarities leads to
ionization suppression, limiting the visibility of low-concentration and/or poorly ionizable
species [42].

Quantification of lipid species remains challenging as molecular standards of each
species are not available [38]. FA composition will strongly influence ionization, making
analogy with different molecular species not possible [43]. In general, the quantification of
PLs by species is semi-quantitative.

Phospholipidomics provides large amount of valuable information that implies sta-
tistical analysis like other ‘omics’ approaches. Large-scale profiling gives access to the
phospholipidome of cells, tissues, or various samples at a specific time. This PL fingerprint
is an important step towards understanding PL metabolism and disturbances.

4. Phospholipids in Biological Membranes

The fluid-mosaic membrane model was proposed from the 1970s by Singer and Nicol-
son and revisited in 2014 by Nicolson [44,45]. Membranes, interacting with the cytoskeletal
network and extracellular matrix, are dynamic structures composed not only of lipids, but
also of membrane proteins. Dynamic and reversible micro and even nano-size structures,
such as lipid rafts, can be present in the biological membranes [45–47]. Membranes are
integrated elements within cells, tissues, and organisms; they are sensitive and can react
to variation of their environment [45]. We will focus on PLs, the main lipid present in
the asymmetrical cell membranes [46]. Their inner leaflet is composed of PS, PA, and
PI, which induce a strong negative charge compared to the relatively uncharged outer
membrane with a majority of PC and SM [48]. As mentioned previously, the main site
of phospholipid biosynthesis is the endoplasmic reticulum membrane, followed by mito-
chondrial membranes; these are two key organelles for cellular homeostasis, controlling
among other things calcium content and ATP production [27]. Vance’s research has shown
in the beginning of the 1990s that ‘membrane bridges’ between the ER and mitochondria
were able to synthesize a large variety of phospholipids [49,50]. These two organelles
are in some places very close (around 10 nm apart), and these connecting zones have
been named mitochondria-associated membranes (MAM) or mitochondria–ER connect
(MERC) [51–54]. The MAMs allow for the existence of calcium microdomains [55] and
energy microdomains [56], which require proximity between mitochondria and ER, but
also exchange of PL, although the transporters associated with certain PL have not been
clearly identified [52,54]. The distribution of PL species varies among the different or-
ganelles [27,57] and can evolve with changes in the cellular environment and with events
such as aging, diet, or the circadian clock [58–60].

Membranes are dynamic structures. This is especially well known for mitochondria
as they can form a filamentous or a fragmented network [59,61,62]. The inner leaflet of
mitochondria is very peculiar since it includes only three major PLs: nearly 40% PC, 40%
PE, and more than 15% cardiolipin. This composition, rich in PE of conical shape and CL
(four fatty acid chains), allows for the formation of numerous invaginations of the inner
membrane, the mitochondrial cristae. Regarding the ER, more than half of its PLs are PCs.
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The ER is composed of domains that perform multiple functions, leading to a heterogeneous
protein distribution. A distinction is made between the smooth ribosome-free ER and the
rough ribosome-containing ER, which is involved in protein biosynthesis. Muscle cells
possess not only the classic ER but also a vast network of specialized membranes associated
with myofibrils called the sarcoplasmic reticulum (SR) [51]. The SR allows the intake,
storage, and flow of calcium required for muscle contraction. Avoiding calcium leakage
from the ER/SR and uncoupling of mitochondria is essential for optimal cellular function.
The integrity of the membranes of these organelles is crucial for this, and phospholipids
should play an important role [63].

Another important parameter in membrane composition is cholesterol, particularly for
plasma membranes [46]. As the molecular ratio is roughly 0.8 cholesterol per phospholipid
in plasma membranes [48], their interaction is surely a key parameter for cell homeostasis,
cell signaling, and pathophysiology. Two of the key partners for cholesterol are PC and
sphingomyelins [45], which are mainly present in the plasma membrane and lysosomes.

The PL composition of the membranes of the numerous organelles and the plasma
membrane is adapted to each cell type to meet different physiological needs [64,65]. De-
pending on the type of carbon chains of each PL, the membranes will be more or less fluid,
flexible, compact, and thick, giving them particular properties [64]. The PLs with saturated
fatty acids make the membranes rigid, whereas the membranes that contain fatty acids with
several unsaturations will be more fluid [66]. The state (fluid vs. rigid) of the membrane
can modify cellular processes such as membrane traffic, vesicle fusion, or formation of
lipo-protein complexes at the membrane [64].

5. Importance of PLs in Striated Muscle Functions

The local coupling of the sarco-endoplasmic reticulum and mitochondria, which
controls muscle contraction and energy production, appears central to skeletal and cardiac
muscle function and dysfunction. Integrity of the membrane organelles is crucial to limit
calcium leak from the ER/SR and mitochondrial proton and electron escape. Furthermore,
skeletal muscles are subjected to an aperiodic and highly variable mechanical force that is
transmitted to membranes [67]. Thus, it is important to study more in detail the membrane
composition, particularly the amphiphilic molecules that participate in optimal muscle
function. Many questions remain partially unresolved; for example, how are they essential
to the dialogue between ER and mitochondria? What links exist between phospholipids
and skeletal or cardiac muscle diseases? Is PLs dyshomeostasis a cause or a consequence of
muscle dysfunction?

Indeed, PL imbalances can disrupt cell and organelle homeostasis and participate in
various pathologies [68]. The indisputable evidence of these points comes from rare genetic
diseases. In the Orphanet classification, a group of disorders of PLs, sphingolipids, and
fatty acids biosynthesis (ORPHA:352301) was created in 2013 [69,70] and is divided in three
sub-groups depending on the predominant phenotypical involvement, namely, (i) central
nervous system (ORPHA:352306), (ii) peripheral nerves (ORPHA:352309), and (iii) skeletal
muscle (ORPHA:352312). The latter highlights a key role of PLs in muscle physiology with
five genetic diseases in which the primary defect directly targets PL: Barth syndrome (OR-
PHA:111, associated with defects of the TAZ gene encoding tafazzin), congenital cataract-
hypertrophic cardiomyopathy-mitochondrial myopathy syndrome also known as Sengers
syndrome (ORPHA:1369, due to defects of AGK acylglycerol kinase, SLC25A4 solute carrier
family 25 member 4), genetic recurrent myoglobinuria (ORPHA:99845, associated with
the Lipin1 gene LPIN1, MTCO1, or MTCO2 mitochondria DNA-encoded cytochrome C
oxidase), megaconial congenital muscular dystrophy (ORPHA:280671—CHKB, choline
kinase beta), and neutral lipid storage disease (ORPHA:165—ABHD5, abhydrolase domain
containing 5, PNPLA2/ATGL patatin-like phospholipase domain-containing 2) (cf. Table 3).
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Table 3. PL alterations involved in muscular diseases.

Gene
Mutated Protein and Function Disease Muscular

Symptoms Lipid Disorders Animal Experimental Models Ref.

TAZ
chromosome X

Tafazzin
Phospholipid-

lysophospholipid
transacylase

Catalyzes remodeling
of immature CL to its
mature composition

Barth syndrome Dilated cardiomyopathy
Skeletal muscle weakness

Reduced level of CL
Increased level of

mono-lysocardiolipin

• Taz−/− (knock-out) mice: most die before
birth due to skeletal muscle weakness,
survivors develop progressive
cardiomyopathy

• Taz inducible knock-down mice
(doxycycline-inducible short hairpin RNA):
impact on cognitive abilities, brain
mitochondrial respiration and the function
of hippocampal neurons and glia

• Tafazzin mutant Drosophila melanogaster:
motor weakness (reduced flying and
climbing abilities)

[71–73]

AGK
chromosome 7

AGK
Acylglycerol kinase

Phosphorylates MAG
and DAG to form LPA

and PA

Sengers syndrome

Hypertrophic
cardiomyopathy

Skeletal myopathy
Congenital cataract

Defects in mitochondria
and storage of lipids in

muscle (skeletal and heart)

• Agk−/− mice: phenotype similar to Sengers
syndrome, develop thrombocytopenia and
splenomegaly

[74–77]

LPIN 1
chromosome 2

Lipin-1
Phosphatidate
phosphatase
Catalyzes the

conversion of PA to
DAG

Myoglobinuria Rhabdomyolysis
Muscle fiber loss

Hyper-triglyceridemia
Accumulation of PL

intermediates

• Spontaneous mutant mice ‘fld’ (fatty liver
dystrophy): neonatal mice:
hypertriglyceridemia andenlarged,
triglyceride-rich fatty liver after 2 weeks:
neuropathy with abnormal myelin
formation and hind limb weakness

• Transgenic mice models with
overexpression of Lpin1: muscle specific
overexpression causes increased body
weight

• Lpin1 floxed/floxed: when deleted in muscle:
myopathy

[78–81]
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PNPLA2
chromosome 11

ATGL
Adipose triglyceride

lipase
Catalyses the

hydrolysis of TAG
into DAG

Slowly progressive
myopathy: neutral lipid

storage disease with
myopathy (NLSDM)

Arrhythmogenic
cardiomyopathy

Distal muscle weakness
Cardiomyopathy

Accumulation of lipid
droplets(TAG) in multiple

tissues
Altered energy metabolism

Lipidosis of internal
organs

• Atgl−/− mice: premature mortality from
lipid cardiomyopathy by 16 weeks
homozygous knockin mouse model:
arrhythmias and significant cardiac
dysfunction at 12 weeks, sudden death
and/or heart failure by 14 weeks

[82–85]

CHKB
chromosome 22

CHKB
Choline kinase β

Catalyzes the first step
in PE biosynthesis

Megaconial congenital
muscular dystrophy

Mitochondrial structural
(enlargement) and

functional abnormalities
Decreased level of PC

• Rostrocaudal muscular dystrophy mice
(rmd): spontaneous autosomal recessive trait
that causes rapidly progressive muscular
dystrophy and neonatal forelimb bone
deformity

[86–89]
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Table 3. Cont.

Gene
Mutated

Protein and
Function Disease Muscular

Symptoms Lipid Disorders Animal Experimental Models Ref.

HACD1
chromosome 10

HACD1
3-Hydroxyacyl-

CoA dehydratase 1
Catalyzes the third
of the four reactions
of the long-chain FA

elongation cycle

Congenital fiber-type
disproportion, rare
internalized nuclei

Congenital myopathy
with proximal ± distal

muscle weakness,
progressively

improving over time

Increased
concentrations of ≥ C18
and mono-unsaturated

FA

• Spontaneous Hacd1 pathogenic variant
Labrador retriever dogs: congenital
centronuclear myopathy with fiber size
disproportion associated with
generalized and progressive muscle
weakness

• Hacd1−/− mice: postural and locomotor
weakness and reduced weight gain

[90–92]

ACADVL
chromosome 17

VLCAD
Very long chain

Acyl-coA
dehydrogenase
Involved in the
β-oxidation

pathway (FA longer
than C16)

VLCADD (VLCAD
deficiency)

Cardiomyopathy
Myopathy with

intermittent myalgia
and rhabdomyolysis,
progressive muscle

weakness, often
dropped head

Defective long-chain FA
oxidation

• Vlcad−/− mice: Cardiac and metabolic
dysfunction Different phenotypes
between male and female: only KO
female mice develop a severe clinical
phenotype upon medium chain
triglycerides supplementation

[93–97]

ACADM
chromosome 1

MCAD
Medium-chain

acyl-coenzyme A
dehydrogenase
Involved in the
β-oxidation

pathway (C4 to C12
acyl chain)

Medium-chain
acyl-CoA

dehydrogenase
deficiency (MCADD)

Myopathy exertion
induced myalgia,

progressive proximal
limb weakness

Secondary carnitine
deficiency

Accumulation of FA
intermediates

• Mcad−/− mice: organic aciduria and
fatty liver, sporadic cardiac lesions,
neonatal mortality

[98–100]

HADHA
chromosome 2

MTP
Mitochondrial

trifunctional protein
Catalyzes three out
of the four steps in

beta oxidation

Mitochondrial
trifunctional protein

deficiency (MTP
deficiency or MTPD)

Skeletal myopathy,
episodic

rhabdomyolysis,
peripheral neuropathy,

cardiomyopathy in
severe cases

Decreased long-chain
FA oxidation

• Mtpa−/− mice: severe phenotype (fetal
growth retardation, neonatal
hypoglycemia) and early sudden death
(necrosis and acute degeneration of
cardiac and diaphragmatic myocytes)

[101–103]
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CGI-58
chromosome 3

ABHD5
Alpha/beta

hydrolase domain
containing 5

Lipid
droplet-associated

protein that
activates ATGL

Chanarin–Dorfman
syndrome

(neutral lipid storage
disease)

Moderate myopathy
Possible

cardiomyopathy

Accumulation of TAG
droplets

• Cgi-58 −/− mice: various phenotypes
including cardiomyopathy, severe
hepatic steatosis, skin defects

[104–108]
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Table 3. Cont.

Gene
Mutated

Protein and
Function Disease Muscular

Symptoms Lipid Disorders Animal Experimental Models Ref.

CPT2
chromosome 1

CPT2
Carnitine palmitoyl-

transferase 2
Catalyzes the

transfer of FA from
cytoplasm to
mitochondria

Carnitine
palmitoyl-transferase II

deficiency

Episodic myalgia,
muscle weakness, and
rhabdomyolysis with

myoglobinuria

Reduced the rates of
long-chain FA oxidation

into carbon dioxide

• Cpt2floxed/floxed mice: cardiac and
muscle CPT2 deficiency leads to severe
cardiac hypertrophy and ultimately
heart failure, with no overt
macroscopic muscle phenotype

[109–112]

DYSF
chromosome 2

Dysferlin
Involved in the

sarcolemma repair
mechanism,

interacts with
caveolin 3

Dysferlinopathy,
including:

limb girdle muscular
dystrophy type 2B

(LGMD2B)
Miyoshi myopathy

Proximal, distal, or
proximo-distal

myopathy,
predominantly

involving lower limbs
Rhabdomyolysis

Early intra-myocellular
lipid accumulation
(sphingolipids, PLs,

cholesterol)

• various spontaneous murine dysferlin
mutants (SJL/J, A/J, BLAJ) with
progressive muscular dystrophy

[113–116]

DMD
chromosome X

Dystrophin
Involved in the

connection of the
cytoskeleton of a

muscle fiber to the
extracellular matrix

through the cell
membrane

Duchenne muscular
dystrophy

Becker muscular
dystrophy

Cardiomyopathy with
myocardial fibrosis,

muscle weakness and
muscle fiber necrosis,

respiratory failure

PL dyshomeostasis
Increased PC and SM

• Spontaneous pathogenic variant in
mice: mdx model

• Spontaneous pathogenic variant in dog:
golden retriever muscular dystrophy

• Spontaneous pathogenic variant in cat:
hypertrophic feline muscular
dystrophy

• Zebrafish model
• Drosophila model
• Caenorhabditis model
• Newly developed rat and pig DMD

models

[117–123]
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CAV3
chromosome 3

Caveolin3
Component of

caveolae plasma
membrane (possible
scaffolding role for

caveolin-
interacting
molecules)

Rippling muscle disease
LGMD

Isolated familial
hypertrophic

cardiomyopathy
HyperCKemia and

myalgia

Skeletal muscle
weakness

Muscle hyperirritability
triggered by stretch

Decreased CL

• Cav3−/− mice: muscular dystrophy
phenotype and alteration of the
phenotypic behavior of cardiac
myocytes Altered glucose metabolism
and increased myoblast proliferation in
muscle cells

[124–127]



Int. J. Mol. Sci. 2021, 22, 8176 14 of 21

Pathogenic variants in the TAZ gene, encoding a transacylase necessary for cardiolipin
remodeling, are responsible for Barth’s syndrome (BTHS), a devastating disease affecting
the neuromuscular and metabolic systems, characterized by dilated cardiomyopathy and
skeletal myopathy in infants [128]. Despite normal content of PE and PC, decreased levels
of long polyunsaturated chains (20:4 and 22:6) and increased of 18:2 (probably linoleic
acid) has been described in children with this syndrome [129]. Mitochondria in BTHS
have important alterations of the cristae ultrastructure (fold and invagination of the inner
mitochondrial membrane) leading to defective ATP production [130,131]. Studies involving
patients with Barth syndrome are extremely valuable to highlight the key roles played
by CLs in mitochondrial respiratory function. Thus, the alteration of CL maturation in
these patients has been shown to lead to an instability of respiratory chain supercomplexes
that affects complex I activity, thereby demonstrating the importance of CLs for complex
I-containing supercomplex formation and function [132].

Sengers syndrome, due to pathogenic variants in the AGK gene, shares strong simi-
larities with Barth syndrome, including skeletal myopathy and cardiomyopathy (hyper-
trophic), being lethal within the first year of life in around half of the patients [133]. The
AGK kinase is involved in phosphorylation of MAG (monoacylglycerol) to LPA and DAG
to PA, which are largely involved in PL biosynthesis. The depletion by siRNA of AGK in
PC-3 prostate cancer cells induce a reduction of LPA and PA in mitochondria [134], whereas
in HEK293 (human embryonic kidney), no changes were observed [135]. To the best of our
knowledge, no phospholipidomic data are available in muscle cells. Moreover, the protein
belongs to the translocase of the inner mitochondrial membrane TIM22 complex [136]. This
multi-protein complex is involved in the import and assembly of mitochondrial carrier
proteins such as ANT (adenine nucleotide translocator) [136].

Pathogenic variants in the CHKB gene, encoding choline kinase beta, an enzyme
involved in the synthesis of phosphatidylcholine, cause megaconial congenital muscular
dystrophy in humans (associated with developmental delay and autistic behavior) and
to rostrocaudal muscular dystrophy in mouse [86–88]. Decreased content of this most
abundant phospholipid in the eukaryotic membrane leads to giant mitochondria localized
in the periphery of muscle fibers [137]. Mitochondrial membrane potential is decreased in
patient-derived cells, and a reduction of mitochondrial respiratory complex I activity is
observed in their skeletal muscles [138].

Patients with a genetic defect causing loss of function of LPIN1 (gene coding for
LIPIN 1) develop myopathy, affecting both skeletal muscle and the heart [81]. Investiga-
tions into the links between lipid balance, more specifically phospholipid balance, and
skeletal muscle function have confirmed that modification of certain proteins involved
in the biosynthesis of PLs influences PLs levels. Loss of Lpin1 in mice alters PL levels in
gastrocnemius muscle, with significant increase in PC, PE, PI, PS, and PG levels, as well as
in PA levels. LIPIN 1, a Mg2+-dependent phosphatidate phosphatase, thus appears to be
an important enzyme in the homeostasis of phospholipids in muscle [81].

Other genes involved in PL, sphingolipid, and fatty acid biosynthesis leading to
a predominantly muscular phenotype when mutated in humans could extend the OR-
PHA:352312 group (cf. Table 3). For example, pathogenic variants of HACD1 (3-hydroxyacyl-
CoA dehydratase 1), an ER resident enzyme involved in the synthesis of very long-
chain fatty acids, have been associated with congenital myopathies in humans and in
dogs [90,91,139]. In Hacd1-deficient mice, skeletal muscle mitochondria exhibit a signifi-
cant decrease in CL content in the mitochondrial inner membrane [91]. This is associated
with important cristae remodeling and strong alterations of mitochondrial coupling, leading
to a higher energy dissipation. An in vitro assay showed that enrichment of mitochondrial
membranes with CLs rescued the coupling efficiency of ATP synthase and therefore the
mitochondrial electron transfer chain function, highlighting the key role of CLs in the
respiratory chain [117,121–123].

Alteration of PLs is also present in inherited form of myopathies due to pathogenic
variant in genes without a direct link to PL biosynthesis (cf. Table 3). In muscle from DMD
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(Duchenne muscular dystrophy) patients, increased PC and SM have been reported [119].
In EDL muscle from the mdx mice (the murine model of DMD, devoid of dystrophin),
an increase PC containing saturated acyl chain (16:0 and 18:0) and a decrease PE and PC
containing long and polyunsaturated acyl chain (22:6) and (20:4) were found. Genetic
rescue in mdx mice leading to truncated dystrophin expression was able to restore the
PL profiles [121]. Additionally, the increased PC/PE ratio in mdx mice is corrected by
the transgenic expression of FAS (fatty acid synthase), stearoyl-CoA desaturase-1 (SCD1),
and Lipin1 [140]. In dysferlinopathies, muscle diseases due to pathogenic variants in the
gene encoding dysferlin, a transmembrane protein implicated in protein trafficking, lipid
droplets accumulate in myofibers [141]. Molecular remodeling of the lipidome has been
observed in skeletal muscle of BLAJ mouse (a dysferlinopathy model), with increased
content of species of sphingomyelin, PC, LPC, PE, and LPE in quadriceps from BLAJ
compared to WT [142].

In skeletal muscle, ER stress and the stress response provided by the UPR (unfolding
protein response) system can be activated under different conditions, including inherited
myopathies. The UPR system may be triggered by the accumulation of misfolded proteins,
altered calcium balance, or the presence of reactive oxygen species (ROS) [143,144]. Since
PLs are synthesized in the ER and constitute its membranes, a link can exist between
alteration of the phospholipid balance and reticulum damage. Indeed, loss of Lpin1 gene
function in mice induced, in addition to altered PL composition, a significant increase of
different ER stress markers (Bip, Fgf21, Gdf15, HSP90b1, and Edem1) [81]. This study
also showed morphological alteration of the mitochondria associated with ER stress [81],
consistent with the fact that the maintenance of the phospholipid balance is also ensured by
the exchange of PLs between ER and mitochondria via the MAMs, and that mitochondria
are a site for the synthesis of certain PLs such as PG or CL.

Thus, PL alterations in mouse muscles can be associated with changes in other path-
ways, such as ER stress, mitochondrial dysfunction, and disturbed cell homeostasis. Taken
together, these changes are associated with different inherited myopathies. Although all
the roles of PLs at the muscle level are not yet clearly defined, these molecules seem to be
important to maintain cell homeostasis and organelle integrity, ensuring normal muscle
function. Therefore, a so-called ‘normal’ composition of PLs or PL homeostasis, particularly
in the ER/RS membranes and mitochondria, key structures in muscle, is important for
maintain motor function, contraction, muscle development and regeneration.

6. Conclusions

Phospholipids are a large family of diverse lipids with a wide variety of structures
and physico-chemical properties. The role of PLs in the physiology and pathophysiol-
ogy of skeletal muscles has been underanalyzed, although muscle is one of the largest
metabolic organs. More efforts should be made to fully understand the mechanisms of PL
dyshomeostasis and their pathophysiological relevance, which may further improve our
understanding of muscular diseases. In particular, characterizing the mechanisms by which
PLs modulate the endoplasmic reticulum and mitochondria functions could contribute
to a better understanding of the pathophysiology of inherited or acquired myopathies.
Thanks to the development of new generation of advanced lipid analysis technologies,
phospholipidomics can now help elucidate the importance of PLs in muscle function. Com-
prehensive PL profiling is necessary for the discovery of diagnostic biomarkers and new
therapeutic targets, as well as for the development of personalized therapeutic approaches
to treat or slow the progression of muscle pathologies.
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