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ANALYSIS AND BOUNDARY VALUE PROBLEMS ON
SINGULAR DOMAINS: AN APPROACH VIA BOUNDED

GEOMETRY

BERND AMMANN, NADINE GROßE, AND VICTOR NISTOR

Abstract. We prove well-posedness and regularity results for elliptic boundary
value problems on certain singular domains that are conformally equivalent to
manifolds with boundary and bounded geometry. Our assumptions are satisfied
by the domains with a smooth set of singular cuspidal points, and hence our
results apply to the class of domains with isolated oscillating conical singularities.
In particular, our results generalize the classical L2-well-posedness result of
Kondratiev for the Laplacian on domains with conical points. However, our
domains and coefficients are too general to allow for singular function expansions
of the solutions similar to the ones in Kondratiev’s theory. The proofs are based
on conformal changes of metric, on the differential geometry of manifolds with
boundary and bounded geometry, and on our earlier geometric and analytic
results on such manifolds.

Version française abrégée. Nous prouvons des résultats de solvabilité et régu-
larité pour des systèmes satisfaisants la condition de Legendre forte avec conditions
au bord mixtes de type Dirichlet-Neumann sur certains domaines singuliers. Notre
classe de domaines singuliers contient la classe des domaines avec des singularités
coniques isolées. Nos résultats généralisent ainsi le théorème d’isomorphisme de
Kondratiev [17]. Dans la suite, M sera une variété riemannienne lisse à bord de
dimension m et E →M sera un fibré vectoriel hermitien équipé d’une connexion.
Pour nos résultats, nous allons aussi supposer que M ait une géométrie bornée.
Soit a une forme sesquilinéaire lisse sur T ∗M ⊗ E et Pa : H1(M ;E)→ H1(M ;E)∗
défini par la formule 〈Pau, v〉 :=

∫
M
a(∇u,∇v)d volg, pour u, v ∈ H1(M ;E). Nos

espaces de fonctions seront les espaces de Sobolev pondérés de type Kondratiev,
voir Équation (1). Nous supposons donée une partition ∂M = ∂0M t ∂1M du bord
en deux sous-ensembles disjoints et ouverts, ainsi que des conditions au bord Bj
d’ordre j, Bj sur ∂jM . Nos résultats sont alors:
(i) P satisfait la régularité dans les espaces pondérés fK`,2(ρ) de l’équation (1) si,

et seulement si les conditions au bord B = (B0, B1) satisfont la condition
de régularité de Shapiro-Lopatinski uniforme. Ces conditions sont satisfaites
pour les opérateurs satisfaisant les conditions de Legendre fortes avec des
conditions au bord mixtes (Dirichlet/Neumann). On obtient en particulier des
résultats de régularité pour l’opérateur de Laplace avec conditions au bord
mixtes, Théorème 6.
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the DFG. B.A. has also been partially supported by the DFG SFB 1085 (Higher Invariants). V.N.
has been partially supported by ANR-14-CE25-0012-01 (SINGSTAR).
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(ii) Si, en plus des conditions de (i), P satisfait une inégalité de Hardy-Poincaré,
alors le problème au bord associé à P est également bien posé.

En principe, la classe des domaines à laquelle nos résultats s’appliquent est assez large,
mais pour des raisons d’espace et afin de réduire au minimum les détails techniques,
nous considérons dans cette note principalement les exemples de domaines cuspidaux
et wedge. L’ensemble des points singuliers de ces domaines est une sous-variété lisse
compacte.

Introduction. We prove well-posedness and regularity results for systems of partial
differential equations satisfying the strong Legendre condition with mixed Dirichlet-
Neumann boundary conditions on certain singular domains. Our class of singular
domains includes the class of domains with isolated conical singularities and thus they
generalize the classical well-posedness result of Kondratiev [17]. Unlike Kondratiev’s
theory, singular functions expansions are not possible in our setting.

Let us briefly state our main result. Here are first our assumptions. Throughout
this paper, (M, g) will be a smooth, m-dimensional Riemannian manifold with
boundary and E →M will be a hermitian vector bundle with connection ∇ such
that its curvature RE and all its covariant derivatives ∇jRE , j ≥ 1, are bounded.
For our results, we shall also assume that M has bounded geometry (a concept
recalled below, see, however [4, 5, 7, 14] for the concepts not recalled in this paper).
Let a be a smooth, sesquilinear form on T ∗M⊗E and Pa : H1(M ;E)→ H1(M ;E)∗
be defined by the formula 〈Pau, v〉 :=

∫
M
a(∇u,∇v)d volg, for u, v ∈ H1(M ;E).

Recall that if a is uniformly positive definite, then a is said to satisfy the strong
Legendre condition. If P = Pa +Q, where Q is of order ≤ 1, we shall say that P
satisfies the strong Legendre condition if, and only if, a does. This implies that P
is strongly elliptic. For scalar operators, the condition that P satisfies the strong
Legendre condition is actually equivalent to P being uniformly strongly elliptic. A
smooth function f : M → (0,∞) will be called an admissible weight if f−1df has
bounded covariant derivatives of all orders. Let f and ρ be admissible weights on M .
If g0 := ρ2g and ∇0 is the Levi-Civita connection associated to g0, then we can
describe our function spaces as the following Kondratiev-type weighted Sobolev
spaces

fK`,p(ρ)(M, g0;E) :=
{
ψ | ρj∇j0(f−1ψ) ∈ Lp(M, g0;T ∗M⊗j ⊗ E), (∀) j ≤ `

}
. (1)

In our applications and in some of our results, the weight ρ is bounded. For simplicity,
we will assume this throughout the paper. We will also assume that we have a
partition ∂M = ∂0M t ∂1M of the boundary in two disjoint, open subsets and
that we are given boundary conditions Bj of order j, Bj on ∂jM , satisfying the
boundedness and smoothness conditions stated before Theorem 6. Our results are
then as follows (for (M, g) with bounded geometry):

(i) P satisfies regularity in the weighted spaces fK`,2(ρ) of Equation (1) if, and only
if B = (B0, B1) satisfies the uniform Shapiro-Lopatinski regularity conditions.
These conditions are satisfied for operators satisfying the strong Legendre
conditions with mixed (Dirichlet/Neumann) boundary conditions. In particu-
lar, the Laplace operator satisfies regularity for mixed boundary conditions
(Theorem 6).
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(ii) If, in addition to the conditions of (i), P satisfies a Hardy-Poincaré inequality,
then P also satisfies a well-posedness result. We provide several examples of
how to obtain the Hardy-Poincaré inequality.

In principle, the class of domains to which our results apply is pretty large, but
for reasons of space and in order to keep the technicalities to a minimum, we mostly
consider the examples of canonical cuspidal and wedge domains introduced by H.
Amann [1], whose definition is recalled below. The set of singular points of such
domains is smooth and compact (without corners). It is even a finite set for cuspidal
domains. Some very general and nice results were obtained in [12, 18] for certain
domains with isolated point cusp singularities. Our methods are quite different,
relying more on differential geometry, and thus allowing us to treat a large class of
domains. Moreover, our coefficients are less regular than the ones in the references,
but we lose the Fredholm properties and the singular function expansions obtained
in [12, 18] and in other papers. Algebras of pseudodifferential operators on manifolds
with cuspidal points were considered in [25]. The index problem on such manifolds
was considered in [19]. We thank Herbert Amann for useful comments.

Manifolds with boundary and bounded geometry. In this paper, (M, g) will
always be a smooth, m-dimensional Riemannian manifold with boundary and
E →M will be an vector bundle with metric and metric preserving connection. A
smooth function f : M → (0,∞) will be called a g-admissible weight if f−1df has
bounded covariant derivatives of all orders. We shall say that E has totally bounded
curvature if its curvature and all of its covariant derivatives are bounded. We endow
TM with the Levi-Civita connection ∇ associated to g. Recall that M is said to
have bounded geometry if its injectivity radius rinj(M) > 0 is positive and if TM
has totally bounded curvature. We assume from now on that E is complex and it
has totally bounded curvature.

Let us consider a codimension one submanifold H ⊂ M (i.e. hypersurface).
Assume that H carries a globally defined unit normal vector field ν and let
exp⊥(x, t) := expMx (tνx) be the exponential in the direction of the chosen unit
normal vector. By IIH we denote the second fundamental form of H. The following
two definitions are from [5].

Definition 1. Let (M̂, ĝ) be a Riemannian manifold with bounded geometry.
We say that H ⊂ M̂ is a bounded geometry hypersurface in M if it is a closed
subset of M , if ‖∇kIIH‖L∞ < ∞ for all k ≥ 0, and if here is r∂ > 0 such that
exp⊥ : H × (−r∂ , r∂)→ M̂ is a diffeomorphism onto its image.

Definition 2. A Riemannian manifold (M, g) with boundary is said to have bounded
geometry if there is a Riemannian manifold M̂ with bounded geometry containingM
as an open subset such that ∂M is a bounded geometry hypersurface in M̂ .

Remark 3. In [1], Amann has introduced the class of “singular manifolds.” A singular
manifold (M, g0, ρ) is a Riemannian manifold with boundary (M, g0) together with
a singularity function ρ satisfying suitable properties. In particular, (M,ρ−2g0) is
assumed to be a manifold with boundary and bounded geometry. Conversely, if
(M, g) has bounded geometry and ρ is a g-admissible weight, then (M, g0 := ρ2g)
is a singular manifold with singularity function ρ. In the boundaryless case, this
was first noticed in [13] (see also [2].) The singularity function ρ is seen to be a
g-admissible weight. For manifolds with boundary, this result follows from [5] or
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[15]. The results of [1] apply therefore to the setting of manifolds with boundary and
bounded geometry endowed with an admissible weight. A triple (M, g, ρ) consisting
of a manifold with boundary and bounded geometry and a bounded g-admissible
weight ρ will be called an Amann triple.

Conformal changes of metric. If h1, h2 : X → (0,∞), we shall write h1 ∼ h2 if
h1/h2 and h2/h1 are both bounded. Let g0 be a second Riemannian metric on M ,
whose Levi-Civita connection is denoted ∇0. Let ρ, f : M → (0,∞) be measurable
functions and p ∈ [1,∞]. Recall then from Equation (1) the definition of the spaces
fK`,p(ρ)(M, g0;E), which reduce to the usual Sobolev spaces if ρ, f ∼ 1. More precisely,
if g := ρ−2g0 and if ρ is a g-admissible weight and f is continuous, then the weighted
and classical spaces are related by

fK`,p(ρ)(M, g0;E) = fρ−m/pW `,p(M, g;E), 1 ≤ p ≤ ∞. (2)

(see [1, 3, 6] and Remark 3). We drop the superscript p for p = 2: K`(ρ)(M, g0;E) :=
K`,2(ρ)(M, g0;E) and so on. We assume from now on that g = ρ−2g0.

Example 4. A typical example is when M ⊂ Rm is the closed unit ball, g0 is
the euclidean metric, and ρ = rλ, where r is the distance to the origin. Then
(M, g := ρ−2g0) has bounded geometry if, and only if, λ ≥ 1. Moreover,

f :=
{
e−( rε )−ε , if λ = 1 + ε > 1,
r = ρ, if λ = 1.

is a g-admissible weight. This example is adapted to a domain with conical points
(for instance, a polygonal domain) with set of vertices V by taking f(x) = ρ(x) :=∏

P∈V |x− P | and λ = 1. The extra weight f becomes then unnecessary (for λ = 1)
and the weighted Sobolev spaces K`(ρ)(M) := {u | ρ|α|∂αu ∈ L2(M), (∀) |α| ≤ ` }
are the spaces introduced by Kondratiev [17].

We shall assume from now that (M, g, ρ) is an Amann triple (see Remark 3)
and that f : M → (0,∞) be a second g-admissible weight. In particular, ρ is a
bounded g-admissible weight. We have seen in Equation (2) how the Sobolev
spaces change with respect to conformal changes of metric. Recall that g0 = ρ2g.
For differential operators, a simple calculation based on L∞(M ;E ⊗ TM⊗p ⊗
TM∗⊗q, g) = ρp−qL∞(M ;E ⊗ TM⊗p ⊗ TM∗⊗q, g0) and the fact that ρ is bounded
gives:

Lemma 5. Let P be an order k differential operator on M and P1 := ρkP . We
have that P satisfies the strong Legendre condition with respect to the metric g0 if,
and only if, P1 satisfies the strong Legendre condition with respect to the metric
g = ρ−2g0. If P has coefficients in W∞,∞(g0), then P1 has coefficients in W∞,∞(g).

A similar result is valid for the boundary differential operators appearing as
boundary conditions.

Regularity and well-posedness. Let P be a second order differential operator.
We assume from now on that we are given a partition of the boundary ∂M =
∂0M t ∂1M into two disjoint, open subsets, as in [5], and order i differential
boundary conditions Bi on ∂iM . See, for example, [7, 20] for general results
on boundary value problems on smooth domains, [11, 18, 23, 22] for the case of
non-smooth domains, and [4, 14] for more general boundary conditions involving
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projections. We assume that ρ2P , ρB1, and B0 have coefficients in W∞,∞(g). The
typical assumption is that P , B1, and B0 have coefficients in W∞,∞(g0), which
means that they “stabilize” towards the singular points, as in [18], and this is a
necessary condition for the existence of singular function expansions. In view of
Lemma 5, our assumptions are thus weaker, but singular functions expansions are
no longer available in general in our setting. Our more general setting may be
needed in applications to non-linear PDEs and uncertainty quantification. Also,
recall from [14] the uniform Shapiro-Lopatinski regularity conditions and that they
are invariant with respect to conformal changes of metric. Combining this property
with Equation (2) and with Lemma 5, we get:

Theorem 6. Let P be a g0-uniformly elliptic second order differential operator act-
ing on sections of E →M and B = (B0, B1) be a boundary differential operator. We
assume that P and B satisfy the g0-uniform Shapiro-Lopatinski regularity conditions.
Then, for any ` ∈ N, there exists C > 0 such that, for all u ∈ fK1

(ρ)(M, g0;E)

‖u‖fK`+1
(ρ) (M,g0;E) ≤ C

(
‖Pu‖fρ−2K`−1

(ρ) (M,g0;E) + ‖u‖fK1
(ρ)(M,g0;E)

+ ‖B0u‖
fρ−

1
2K

`+ 1
2

(ρ) (∂0M,g0;E)
+ ‖B1u‖

fρ−
3
2K

`− 1
2

(ρ) (∂1M,g0;E)

)
.

In particular, we can take P to be a uniformly strongly elliptic scalar operator (such
as the Laplacian P = ∆g0), B0u = u|∂DM (the restriction) and B1u = ∂aνu.

Let (M, g0) be a Riemannian manifold with boundary. We now turn to the well-
posedness on (M, g0). Let h : M → (0,∞), and A ⊂ ∂M be a measurable subset.
We shall say that (M,A,E, g0, h) satisfies the Hardy-Poincaré inequality if there
exists a constant C > 0 such that, for any u ∈ H1

loc(M, g0;E), u = 0 in L2(A), we
have

∫
M
|du|2g0

dvolg0 ≥ C
∫
M
h−2u2 dvolg0 . The Hardy-Poincaré inequality implies

coercive estimates, and hence well-posedness also for the associated parabolic and
hyperbolic equations, as in [20]. The Hardy-Poincaré inequality is related to the
Poincaré inequality, and hence to the concept of “finite width.” If A ⊂ ∂M , recall
that (M,A) is said to have finite width if dist(x,A) is uniformly bounded on M [5]
(the distance between two disjoint connected components of M is +∞). Typically
in our results, the set A will be an open and closed subset of ∂M .

Example 7. Again, a typical application is when g0 is the euclidean metric on Rm,
r is the distance to the origin, and λ > 0, as in Example 4. However, in this case,
we let ρ = rλ only for r < 1/2, but set ρ = r for r > 1 and M ⊂ Rm is a closed,
infinite cone with base a smooth domain of the unit sphere and with vertex at
the origin. Then again, (M, g) has bounded geometry if, and only if, λ ≥ 1. Also,
(M,∂M, g) has finite width if, and only if λ = 1. Finally, (M,∂M, g0, ρ) satisfies
the Hardy-Poincaré inequality (for ρ) if, and only if, λ ≤ 1.

Recall that we have assumed (M, g) to be a Riemannian manifold with boundary
and bounded geometry, ρ, f : M → (0,∞) to be g-admissible weights, and g0 := ρ2g.
We define Pa by (Pau, v)g0 :=

∫
M
a(∇u,∇v)d volg0 , with a sesquilinear form a

satisfying the strong Legendre condition with respect to g0. Let ∂aν be the conormal
derivative associated to P , see [14]. Combining Theorem 6 with the Lax-Milgram
Lemma and with the fact that the Dirichlet and Neumann boundary conditions
satify the uniform Shapiro-Lopatinski regularity conditions [5, 14], we obtain:
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Theorem 8. We assume that (M,∂0M,E, g0, ρ) satisfies the Hardy-Poincaré in-
equality. Let P = Pa satisfy the strong Legendre condition with all ∇ja bounded.
Then there exists ηa,f > 0 such that, for |s| < ηa,f and ` ≥ 1, we have an isomor-
phism
Pa : ρfsK`+1

(ρ) (M, g0;E) ∩ {u|∂0M = 0, ∂aνu|∂1M = 0} → ρ−1fsK`−1
(ρ) (M, g0;E).

In particular, we can take P = ∆g0 , the Laplacian associated to g0. For ` = 0 the
result remains true, once one reformulates it in a variational (i.e. weak) sense.

Examples. We include some basic examples.

Two dimensional domains. We consider a (disjoint) partition of the boundary
∂M = ∂0M t ∂1M as above (so ∂0M and ∂1M are open and closed). Recall that
Pa is a second order differential operators on E →M with coefficients in W∞,∞(g)
and satisfying the strong Legendre condition with respect to g0. For dimension
two domains M , the Poincaré inequality for (M,A, g) is equivalent to the Poincaré
inequality for (M,A, g0) (same proof as the conformal invariance of the Laplacian
in two dimensions). The Poincaré inequality of [5] then gives:

Theorem 9. Assume that (M,∂0M, g) has finite width and m := dim(M) = 2. Let
P = Pa satisfy the strong Legendre condition with all ∇ja bounded. Then there
exists ηa,f > 0 such that, for |s| < ηa,f and ` ∈ Z+, we have an isomorphism

Pa : ρfsK`+1
(ρ) (M, g0;E) ∩ {u|∂0M = 0, ∂aνu|∂1M = 0} → ρ−1fsK`−1

(ρ) (M, g0;E).

In particular, we can take Pa = ∆g0 .

Canonical cuspidal and wedge domains. We continue with some concrete examples.
The simplest examples in higher dimensions are those of “model cuspidal and wedge
domains.” We follow the presentation in [1]. Let 1 < α < ∞ and B ⊂ Rm−1 a
compact submanifold, possibly with boundary, and

Km
α (B) := {(r, rαy) ∈ Rm | 0 < r < 1, y ∈ B}, (3)

which will be called a model canonical cusp of order α. For α = 1, we take B
a subset of the unit sphere. A domain with canonical cuspidal singularities is a
bounded domain Ω ⊂ M̂ in a Riemannian manifold (M̂, g0) such that, around each
singular point P of the boundary, it is locally diffeomorphic to Km

αP (BP ) via a
diffeomorphism defined in a neighborhood of the ambient manifold. Let V be the set
of singular points of the boundary, then V is finite and we let M := ΩrV . If αP = 1
for all P ∈ V, we obtain a domain with conical points. If we replace Km

α (B) with
Km−k
α (B)× [0, 1]k, k ≥ 0, we obtain domains with canonical wedge singularities, in

which case, of course, the set V of singular points of ∂Ω will no longer be finite.
Let us fix λP ≥ 1 for each singular point P ∈ V. The weight functions ρ

and f are then chosen, around each P ∈ V as in Example 4 for λ = λP . Let
g := ρ−2g0, as before. If λP ≥ αP for all P , then (M, g) has bounded geometry
(proved in [2] if λP = αP for all P ∈ V) and consequently, we have regularity
in the weighted spaces for the mixed Dirichlet-Neumann problem for operators
satisfying the strong Legendre condition. If λP ≤ αP and ∂0M intersects each VP ,
then (M,∂0M, g) satisfies the Hardy-Poincaré inequality. This follows from the
usual Poincaré inequality on each {r} × rαB by also rescaling in r. We work in
generalized spherical coordinates (r, y) ∈ (0,∞)× Sm−1, so dx = rm−1drdy. This
gives r−2α ∫

rαB
|u(r, y)|2dy ≤ C

∫
rαB
|∇yu(r, y)|2dy the Hardy-Poincaré inequality
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Km
α (B) r

−2α|u(r, y)|2dx ≤ C
∫
Km
α (B) |∇u(r, y)|2dx for u = 0 on ∂1B. Let us fix

λP = αP . By considering the Amann triple (M, g := ρ−2g, ρ), we obtain that our
domain with canonical wedge singularities satisfies the conclusion (isomorphism) of
Theorem 9. For canonical cuspidal domains and constant coefficient operators, this
theorem was first proved in [18]. See also [9, 10, 12, 16, 21].

Other examples. Certain simple examples are not “canonical.”

Example 10. Let Ω = {(x, y) ∈ R2 | x, y > 0, (y− 1)2 + x2 > 1}∩ [−2, 2]× [0, 2] (see
the picture). The corners {Ai}4

i=1 of Ω are conical points and are treated as above.
Close to O we have two cuspidal open sets (U and
its mirror image), similar to the ones treated in the
previous subsection, but not canonical. We have λ =
2 for these open sets. (We double O, in a certain
sense.) Let r be the distance to O. Close to O, we
then choose ρ ∼ r2, and f ∼ e−r

−1 . More precisely,
ρ(x) = r2∏4

i=1 |x − Ai| and f = e−r
−1 ∏4

i=1 |x − Ai|.
Note that we could have also chosen ρ ∼ x2 near O.

Ω

O U
x

y

Let g := ρ−2gE , where gE is the standard (flat) Euclidean metric. We then have
that (M, g), M := Ω r {O,Ai, i = 1, 4}, is a manifold with boundary and bounded
geometry. Assume that ∂0M touches each singular point (where O is considered
as a double point as above). We can then prove that (M,∂0M, gE) satisfies the
Hardy-Poincaré inequality as in the previous example, and hence Theorem 9 applies.
See also [16, 21].

Example 11. Let f0, f1 : R→ (0, 2π) satisfy ‖f (k)
i ‖∞ <∞, k ≥ 0, and f1−f0 ≥ ε > 0.

Let Ωf0,f1 := {(r cos θ, r sin θ) | f0(log r) < θ < f1(log r)} and Ω be a bounded
domain, smooth away from a finite number of points, at which it coincides, up to
a diffeomorphism, with a neighborhood of 0 in a set of the form Ωf0,f1 . Then Ω
is a domain with oscillating conical singularities, similar to the ones studied by
[24]. Theorem 9 holds for this domain with ρ = f = r = (x2 + y2)1/2. In general, a
domain with oscillating conical points is not a domain with conical points.

Finally, in [8], it was proved that the assumptions and the conclusions of Theorem 8
are fulfilled by any polyhedral domain Ω ⊂ Rm (defined as a suitable stratified
space) with the Euclidean metric g0 for a suitable g-admissible weight ρ ∼ the
distance to the singular points of the boundary (g = ρ−2g0).

References
[1] Amann, H. Function spaces on singular manifolds. Math. Nachr. 286, 5-6 (2013), 436–475.
[2] Amann, H. Uniformly regular and singular Riemannian manifolds. In Elliptic and parabolic

equations, vol. 119 of Springer Proc. Math. Stat. Springer, Cham, 2015, pp. 1–43.
[3] Amar, E. Sobolev embeddings with weights in complete riemannian manifolds. Preprint

(arxiv:1803.07811.
[4] Ammann, B., Große, N., and Nistor, V. The strong Legendre condition and the well-

posedness of mixed Robin problems on manifolds with bounded geometry. Accepted in: Revue
Roumaine de Mathématiques Pures et Appliquées (2018). Special issue “Spectral theory and
applications to mathematical physics.” arXiv:1810.06926.

[5] Ammann, B., Große, N., and Nistor, V. Well-posedness of the Laplacian on manifolds
with boundary and bounded geometry. Math. Nachr. (2019) https://doi.org/10.1002/mana.
201700408 (Online first).

https://arxiv.org/abs/1803.07811
https://arxiv.org/abs/1810.06926
https://doi.org/10.1002/mana.201700408
https://doi.org/10.1002/mana.201700408


8 B. AMMANN, N. GROßE, AND V. NISTOR

[6] Ammann, B., Ionescu, A. D., and Nistor, V. Sobolev spaces on Lie manifolds and regularity
for polyhedral domains. Doc. Math. 11 (2006), 161–206 (electronic).

[7] Brezis, H. Functional analysis, Sobolev spaces and partial differential equations. Universitext.
Springer, New York, 2011.

[8] Băcuţă, C., Mazzucato, A., Nistor, V., and Zikatanov, L. Interface and mixed boundary
value problems on n-dimensional polyhedral domains. Doc. Math. 15 (2010), 687–745.

[9] Cardone, G., Nazarov, S. A., and Sokolowski, J. Asymptotics of solutions of the Neumann
problem in a domain with closely posed components of the boundary. Asymptot. Anal. 62, 1-2
(2009), 41–88.

[10] Costabel, M., Dauge, M., and Nicaise, S. Analytic regularity for linear elliptic systems in
polygons and polyhedra. Math. Models Methods Appl. Sci. 22, 8 (2012), 1250015, 63.

[11] Dauge, M. Elliptic boundary value problems on corner domains, vol. 1341 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions.

[12] Dauge, M. Strongly elliptic problems near cuspidal points and edges. In Partial differential
equations and functional analysis, vol. 22 of Progr. Nonlinear Differential Equations Appl.
Birkhäuser Boston, Boston, MA, 1996, pp. 93–110.

[13] Disconzi, M., Shao, Y., and Simonett, G. Some remarks on uniformly regular Riemannian
manifolds. Math. Nachr. 289, 2-3 (2016), 232–242.

[14] Große, N., and Nistor, V. Uniform Shapiro-Lopatinski conditions and boundary value
problems on manifolds with bounded geometry. Potential Analysis (2019). https://doi.org/
10.1007/s11118-019-09774-y (Online First).

[15] Große, N., and Schneider, C. Sobolev spaces on Riemannian manifolds with bounded
geometry: general coordinates and traces. Math. Nachr. 286, 16 (2013), 1586–1613.

[16] Kamotski, I. V., and Maz’ya, V. G. On the third boundary value problem in domains in
cusps. J. Math. Sci. (N.Y.) 173, 5 (2011), 609–631. Problems in mathematical analysis. No.
54.

[17] Kondrat′ev, V. A. Boundary value problems for elliptic equations in domains with conical
or angular points. Transl. Moscow Math. Soc. 16 (1967), 227–313.

[18] Kozlov, V. A., Maz′ ya, V. G., and Rossmann, J. Elliptic boundary value problems in
domains with point singularities, vol. 52 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 1997.

[19] Lesch, M., and Peyerimhoff, N. On index formulas for manifolds with metric horns. Comm.
Partial Differential Equations 23, 3-4 (1998), 649–684.

[20] Lions, J.-L., and Magenes, E. Non-homogeneous boundary value problems and applications.
Vol. I. Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth,
Die Grundlehren der mathematischen Wissenschaften, Band 181.

[21] Munnier, A., and Ramdani, K. Asymptotic analysis of a Neumann problem in a domain
with cusp. Application to the collision problem of rigid bodies in a perfect fluid. SIAM J.
Math. Anal. 47, 6 (2015), 4360–4403.

[22] Nazarov, S., and Popoff, N. Self-adjoint and skew-symmetric extensions of the Laplacian
with singular Robin boundary condition. C. R. Math. Acad. Sci. Paris 356, 9 (2018), 927–932.

[23] Nazarov, S. A., and Plamenevsky, B. A. Elliptic problems in domains with piecewise
smooth boundaries, vol. 13 of de Gruyter Expositions in Mathematics. Walter de Gruyter &
Co., Berlin, 1994.

[24] Rabinovich, V., Schulze, B.-W., and Tarkhanov, N. C∗-algebras of singular integral
operators in domains with oscillating conical singularities. Manuscripta Math. 108, 1 (2002),
69–90.

[25] Schulze, B.-W., Sternin, B., and Shatalov, V. An operator algebra on manifolds with
cusp-type singularities. Ann. Global Anal. Geom. 16, 2 (1998), 101–140.

https://doi.org/10.1007/s11118-019-09774-y
https://doi.org/10.1007/s11118-019-09774-y


ANALYSIS ON SINGULAR DOMAINS 9

B. Ammann, Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg,
Germany

Email address: bernd.ammann@mathematik.uni-regensburg.de

N. Große, Mathematisches Institut, Universität Freiburg, 79104 Freiburg, Germany
Email address: nadine.grosse@math.uni-freiburg.de

V. Nistor, Université de Lorraine, CNRS, IECL, F-57000 Metz, France and Inst. Math.
Romanian Acad. PO BOX 1-764, 014700 Bucharest Romania

Email address: victor.nistor@univ-lorraine.fr


	Version française abrégée
	Introduction
	Manifolds with boundary and bounded geometry
	Conformal changes of metric
	Regularity and well-posedness
	Examples
	References

