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In vivo optical imaging in the shortwave infrared windows (1000-1700 nm) has

shown a growing interest with major improvement in terms of spatial and temporal

resolution in depth down to 4 mm compared to the NIR-I region (700-900 nm). This

method can be particularly useful for studies of the growth and development of blood

vessels in tumors, in vivo monitoring of pathologies and evaluation of effects of drugs.

SWIR signal obtained from vessels passes through tissues and skin and thus, subject

to noise and scattering. We demonstrate that the combination of SWIR imaging

in the NIR-IIb (1500-1700 nm) region with advanced deep learning image analysis

on small animals can provide a non-intrusive deep insight into the morphology of

the blood vessels. For demonstration we use neural network IterNet that exploits

structural redundancy of the blood vessels (L. Li, et.al., The IEEE WACV, 2020).

It can reconstruct the blood vessels structure in high details, thus providing a useful

analysis tool for raw SWIR images.
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I. INTRODUCTION

The field of in vivo optical imaging for biomedical applications is growing rapidly over

the last two decades leading to more precise diagnostic of early stage diseases and to ad-

vanced image-guided-surgery system already available in clinics (10.3389/fbioe.2019.00487).

One of these breakthroughs is related to the development of innovative imaging systems

in the shortwave infrared (SWIR) spectral window, called also NIR-II, between 900 and

1700 nm. SWIR has demonstrated a major improvement in terms of spatial and temporal

resolution, reaching deep in tissue up to 4 to 6 mm compared to the Visual light (400-700

nm) and NIR-I (700-900 nm) regions. The benefit moving forward from NIR-I to SWIR

has mainly been associated to the weak auto-fluorescence and reduced scattering from the

living tissues at longer wavelengths.1 For instance, it was shown recently the striking im-

provement of detection with higher signal-to-noise ratio selecting the SWIR sub-windows

NIR-IIb (1500-1700 nm) for in vivo imaging.2–4 The concomitant progress of the sensor de-

tection in the SWIR range and of the formulation of new bright and biocompatible SWIR

emitting organic and inorganic contrast agents5–8 has enabled to use these optical systems

for intra-operative surgery in small animals9,10 and recently in human.11 One of the most

appealing field of applications for SWIR imaging concerns the (micro)vascularization, where

SWIR imaging allowing to monitor in real time non-invasively different pathologies such as

vascular disorders, (neo)angegiogenosis in cancer, wound healing, implants.6,12–14

Despite these major steps, we are still far to reach the spatial resolution at high depth

achieved by X-ray imaging.15 Others recent optical imagings based on full field optical coher-

ence (10.1364/BOE.9.000557) and high-resolution optoacoustic imaging (10.1039/C6CS00765A)

can lead to spatial resolution down to 1.7um but with a quite short limit of view that re-

quires long time acquisition to image the whole animal. A promising strategy to overcome

this issue relies on the imaging treatment of SWIR images by iterative treatment. It will

enable to isolate the (micro)vessels, to reduce scattering light originated from the tissue, and

detect 3D blood vessels structures in order to provide a full structural analyses. We recently

demonstrated the significant improvement of contrast and spatial resolution in mice using

Monte Carlo Restoration which enabled to perform segmentation analysis of small animal

presenting vascular disorder.16 Herein, we propose to use deep learning based on IterNet

network on SWIR NIR-IIb imaging to demonstrate the high potential of this method to go
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one-step further to high-resolution optical imaging that could be easily transferred in clinics

and hospitals.

II. EXPLOITING STRUCTURAL REDUNDANCY IN SWIR IMAGES

Deep Neural Network IterNet17 is based on a popular neural network U-Net,18 a fully

connected convolutional neural network that uses strong data augmentation allowing to

reduce significantly the number of training images. IterNet goes further and uses structural

redundancy or self-similarity of blood vessels that allows the network to find obscured details

of the vessel from the segmented vessel image itself, rather than the raw input image. As

a result, IterNet can learn from 10–20 annotated images (ground truth) to provide a good

accuracy.

FIG. 1. a) Original SWIR image used for training; b) annotation of ground truth; c) Resulting

receiver operating characteristic (ROC) curve of the performance of the training on SWIR images.

Area under the curve: 0.90; Area under precision-recall curve: 0.57, Jaccard similarity score: 0.89

IterNet is proven to be number one in ratings for performance in segmentation of blood

vessels. The performance is tested on open databases of blood vessels in retina vessels on

three mainstream datasets, DRIVE, CHASE DB1, STARE, which are used as as a gold

standard for performance benchmarking and comparison for blood vessels segmentation

methods. It has a high accuracy measured in AUCs of 0.9816, 0.9851, and 0.9881 for

DRIVE, CHASE DB1, and STARE, respectively, which is the best result at the moment.

A specially trained neural network on manually annotated black and white images

Parameters used: batch size=32, repeat=10, minimum kernel=32, epochs=200, itera-
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tion=3, crop size=128, stride size=3

Original probability weights of IterNet neural network trained on images from open

databases DRIVE, CHASE-DB1, and STARE were used for comparison of performance.

III. SWIR IMAGES ACQUISITION

SWIR imaging was performed using a Princeton camera 640ST (900-1700 nm) coupled

with a laser excitation source at L = 808 nm (100 mW/cm2). We use short-pass excitation

filter at 1000 nm (Thorlabs) and long-pass filter on the SWIR camera from Thorlabs (LP1500

nm). 25 mm or 50 mm lenses with numerical aperture (n.a) = 1.4 (Navitar) were used to

focus on the mice. 25 mm and 50 mm lenses provide a theoretical spatial resolution of 400

microns and 150 microns respectively. NMRI nude mice (Janvier, France) were anesthetized

(air/isofluorane 4% for induction and 1.5% thereafter) and were injected intravenously via

the tail vein (200 µL of Indocyanine Green (ICG) at 500 µM in PBS). In vivo SWIR imaging

were performed using 25 mm or 50 mm lenses and LP1500 nm at different exposure times

(100 ms to 1 s). For the ex vivo images of the inner skin, the mice skin flap of 2 to 3 mm

thick were soaked in formaldehyde just after sacrificed. Images were taken on the inner side

of the flap with an Andor camera under white light illumination (zoom x0.8; 1 s exposure).

IV. BLOOD VESSELS MORPHOLOGY

A. Neural network prediction

(junctions, overlap, 3D shape)

B. Validation of the morphology

Fig. 2A is the image of the mouse made with the SWIR camera with the 25 mm lens

under the white light (from a neon which has a broad excitation) before injection of contrast

agent and long time exposure. The image on the left after injection of the contrast agent

(ICG) using a 808 nm excitation (100 mW/cm2) at 100 ms exposure. The SWIR detection

allows a very good transparency of the skin with weak auto-fluorescence and scattering on

the first few mm. Therefore we can see nicely the blood vessels
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FIG. 2. A) Original SWIR image with a detail in the inset; B) Segmented image with a detail in

the inset.

V. BLOOD VESSELS ANALYSIS

(artery and veins, marker propagation, skeletonization)
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FIG. 3. A) A fragment of the original SWIR image showing complex topology of the blood vessel

network. B) Predicted blood vessel structure showing junctions and cross-sections of the vessels.

VI. CONCLUSIONS

NN enable to :1) see vessels overlap and junction, 2) obtain kind of morphology with a

3D shape of blood vessels, 3) improve contrast enough to see clearly artery to vein in the

ear mice, 5) obtain more accurate kinetic of blood flow
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FIG. 4. A) Fragment of the original SWIR image; B) Overlay of predicted vessel structure and

original image. Arteries (red) and veins (blue) made by SeqNet network.; C) Prediction of arteries

(red) and veins (blue) made by SeqNet network.

SUPPLEMENTARY INFORMATION

Analysis of the SWIR video with deep learning and skeletonization algorithms.
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Biophotonics (2020), 10.1002/jbio.202000345.

5 C. Li, G. Chen, Y. Zhang, F. Wu, and Q. Wang, J. Am. Chem. Soc. 142, 14789 (2020).

6 S. Zhu, R. Tian, A. L. Antaris, X. Chen, and H. Dai, Adv. Mater. , 1900321 (2019).

7 B. Musnier, K. D. Wegner, C. Comby-Zerbino, V. Trouillet, M. Jourdan, I. Häusler, R. Antoine,
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8 S. Wang, B. Li, and F. Zhang, ACS Cent. Sci. 6, 1302 (2020).

9 S. Zhu, Z. Hu, R. Tian, B. C. Yung, Q. Yang, S. Zhao, D. O. Kiesewetter, G. Niu, H. Sun, A. L.

Antaris, and X. Chen, Adv. Mater. 30, 1802546 (2018).



9

FIG. 7. A) Fragment of the original SWIR image; B) Overlay of predicted vessel structure and

original image. Arteries (red) and veins (blue) made by SeqNet network; C) Prediction of arteries

(red) and veins (blue) made by SeqNet network.

FIG. 8. Skeletonization of the inferred image.

10 J. Du, S. Liu, P. Zhang, H. Liu, Y. Li, W. He, C. Li, J. H. C. Chau, R. T. K. Kwok, J. W. Y.

Lam, L. Cai, Y. Huang, W. Zhang, J. Hou, and B. Z. Tang, ACS Appl. Mater. Interfaces 12,

8040 (2020).

11 Z. Hu, C. Fang, B. Li, Z. Zhang, C. Cao, M. Cai, S. Su, X. Sun, X. Shi, C. Li, T. Zhou,

Y. Zhang, C. Chi, P. He, X. Xia, Y. Chen, S. S. Gambhir, Z. Cheng, and J. Tian, Nat Biomed

Eng 4, 259 (2020).

12 M. Saif, W. J. Kwanten, J. A. Carr, I. X. Chen, J. M. Posada, A. Srivastava, J. Zhang, Y. Zheng,

M. Pinter, S. Chatterjee, S. Softic, C. R. Kahn, K. van Leyen, O. T. Bruns, R. K. Jain, and

M. G. Bawendi, Nat Biomed Eng 4, 801 (2020).

13 F. Wang, H. Wan, Z. Ma, Y. Zhong, Q. Sun, Y. Tian, L. Qu, H. Du, M. Zhang, L. Li, H. Ma,

J. Luo, Y. Liang, W. J. Li, G. Hong, L. Liu, and H. Dai, Nat Methods 16, 545 (2019).



10

14 Z. Ma, M. Zhang, J. Yue, C. Alcazar, Y. Zhong, T. C. Doyle, H. Dai, and N. F. Huang, Adv.

Funct. Mater. 28, 1803417 (2018).

15 F. Wang, P. Zhou, K. Li, M. Mamtilahun, Y. Tang, G. Du, B. Deng, H. Xie, G. Yang, and

T. Xiao, IUCrJ 7, 793 (2020).

16 Z. Yu, B. Musnier, K. D. Wegner, M. Henry, B. Chovelon, A. Desroches-Castan, A. Fertin,

U. Resch-Genger, S. Bailly, J.-L. Coll, Y. Usson, V. Josserand, and X. Le Guével, ACS Nano
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