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Abstract. Satellite-derived surface chlorophyll data are as-
similated daily into a three-dimensional 24-member ensem-
ble configuration of an online-coupled NEMO (Nucleus for
European Modeling of the Ocean)–PISCES (Pelagic Interac-
tion Scheme of Carbon and Ecosystem Studies) model for
the North Atlantic Ocean. A 1-year multivariate assimilation
experiment is performed to evaluate the impacts on analyses
and forecast ensembles. Our results demonstrate that the inte-
gration of data improves surface analysis and forecast chloro-
phyll representation in a major part of the model domain,
where the assimilated simulation outperforms the probabilis-
tic skills of a non-assimilated analogous simulation. How-
ever, improvements are dependent on the reliability of the
prior free ensemble. A regional diagnosis shows that sur-
face chlorophyll is overestimated in the northern limit of the
subtropical North Atlantic, where the prior ensemble spread
does not cover the observation’s variability. There, the sys-
tem cannot deal with corrections that alter the equilibrium
between the observed and unobserved state variables pro-
ducing instabilities that propagate into the forecast. To allevi-
ate these inconsistencies, a 1-month sensitivity experiment in
which the assimilation process is only applied to model fluc-
tuations is performed. Results suggest the use of this method-
ology may decrease the effect of corrections on the corre-
lations between state vectors. Overall, the experiments pre-
sented here evidence the need of refining the description of
model’s uncertainties according to the biogeochemical char-
acteristics of each oceanic region.

1 Introduction

Estimating the biogeochemical state of the ocean has become
fundamental under the current climate change context due to
its key role in mediating global carbon stocks (e.g., Houghton
et al., 2001). Currently, the optimal combination of observa-
tional data with the dynamical equations embedded in mod-
els through data assimilation (DA) is the most comprehensive
strategy to meet this goal. Therefore, there is a growing ef-
fort towards the development of effective DA techniques to
improve hindcasts, forecasts, nowcasts, and scenario simula-
tions of ocean biogeochemistry (e.g., Brasseur et al., 2009;
Yu et al., 2018; Fennel et al., 2019). At present, the Coperni-
cus Marine Environment Monitoring Service (CMEMS) de-
livers DA biogeochemical products only for selected regions
(von Schuckmann et al., 2019), though the operational pro-
duction of the data-assimilated biogeochemical state of the
ocean is one of its challenging core objectives.

In order to achieve model–data integration it is of utmost
importance to explicitly identify the structure of the uncer-
tainties that affect the model and the observations (Lahoz
et al., 2010). In this sense, ensemble methods (e.g., Bessières
et al., 2017) are designed to provide a statistical description
of the inaccuracies associated with a complex model system
by describing the evolution of the probability density func-
tion (PDF). An appropriate approach to perform ensemble
simulations is by introducing stochastic noise into the (deter-
ministic) model equations to simulate the effect of the uncer-
tainties. Stochastic parameterizations have been used in me-
teorological forecasting (e.g., Buizza et al., 1999; Leutbecher
et al., 2017) and are becoming the standard procedure for cli-
mate modeling (see Palmer, 2012; Berner et al., 2017). In
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oceanography, the implementation of this type of probabilis-
tic approach has increased in the last decade (e.g., Brankart
et al., 2015; Juricke et al., 2017), although its application in
physical–biogeochemical models is quite unusual.

In a precursory study, stochastic perturbations were ap-
plied to a deterministic solution of the Mercator Ocean
(http://www.mercator-ocean.fr., last access: December 2019)
North Atlantic 0.25◦ configuration of the NEMO (Nucleus
for European Modeling of the Ocean)–PISCES (Pelagic In-
teraction Scheme of Carbon and Ecosystem Studies) coupled
model to parameterize selected model uncertainties associ-
ated with some poorly resolved processes (see Garnier et al.,
2016, for more details). Ensemble simulations involving 60
members were performed using a probabilistic version of the
NEMO-PISCES simulation for the year 2005. An objective
diagnosis of this ensemble simulation showed its probability
distribution is quite consistent with ocean color observations
in the most productive regions of the North Atlantic, a pre-
requisite to undertake DA applications.

Ocean color data have been successfully used in DA proce-
dures for improving the simulation of nutrients and primary
production in ocean models (e.g., Gregg, 2008; Ciavatta
et al., 2011; Ford et al., 2012; Fontana et al., 2013; Teruzzi
et al., 2018). However, none of the latter studies explicitly in-
corporate the uncertainties in the ocean biogeochemistry in-
troduced by stochastic approaches on the model formulation.
In this context, the overarching aim of the present work is
to investigate to what extent the parameterizations developed
in Garnier et al. (2016) can be implemented to build a com-
plete 4D assimilation system using ocean color data that will
update the state-of-the-art of biogeochemical DA. Our strat-
egy will rely on the daily integration of surface chlorophyll
(Chl a hereafter) data within the latter probabilistic solution.
To that end, 24 trajectories of the original ensemble are daily
updated by a square root algorithm based on the SEEK (sin-
gular evolutive extended Kalman) filter (Pham et al., 1998;
Brasseur and Verron, 2006) using daily composites of ocean
color observations extracted from MERIS (MEdium Reso-
lution Imaging Spectrometer). Following this strategy, a 1-
year experiment is performed in order to investigate the ef-
fects of the assimilation in contrasted periods (e.g., bloom vs.
nutrient-depleted periods) throughout the annual cycle.

The paper is structured as follows. Sect. 2 presents the
coupled model, the assimilation scheme, and the validation
metrics. Section 3 presents the results of the experiment and
provides a probabilistic assessment as compared with a non-
assimilated ensemble simulation. A discussion of the most
relevant outputs is carried out in Sect. 4. In particular, we as-
sess how the DA system based on parameterized uncertain-
ties can reduce the model uncertainties, and we evaluate its
performance in selected regions. Lastly, a summary, conclu-
sions, and future perspectives are given in Sect. 5, in which
we suggest directions for the next possible developments.

Figure 1. Schematic map of the North Atlantic basin showing the
NATL-025/PISCES domain. Longhurst et al. (1995) biogeochem-
ical provinces are indicated. Provinces are indicated by abbrevia-
tions: NADR (North Atlantic Drift), NATR (North Atlantic tropical
gyre), NASTE (northeast Atlantic subtropical gyre), and NASTW
(northwest Atlantic subtropical gyre) are used throughout the text.
A 2018 yearly composite of sea surface Chl a is superimposed.

2 Material and methods

2.1 Hydrodynamical model

The assimilation system presented here is based on a realistic
three-dimensional physical–biogeochemical simulation. The
physical component is simulated using the primitive equation
free-surface ocean circulation model NEMO (version 3.4;
Barnier et al., 2006; Madec et al., 2015), whose prognostic
variables are temperature, salinity, and the three-dimensional
velocity fields.

The model configuration is a duplicate of the North At-
lantic configuration developed within the framework of the
project DRAKKAR (referred to here as NATL025; Barnier
et al., 2006, https://www.drakkar-ocean.eu, last access: Oc-
tober 2017), which covers the North Atlantic region from
20◦ S to 80◦ N and 98◦W to 23◦ E (Fig. 1). The numerical
grid has a horizontal resolution of 0.25◦ and 46 geopoten-
tial levels in the vertical from surface to 6000 m depth. Such
an eddy-permitting resolution enables a rough representation
of mesoscales features, which are key elements for primary
production (Oschlies and Garçon, 1998; Lévy et al., 2012).
The dynamical component is forced by ERA-INTERIM at-
mospheric fields (Simmons, 2006; Dee et al., 2011). This
configuration has already been coupled to biogeochemistry
modules and evaluated in recent numerical studies (e.g., Our-
mières et al., 2009; Doron et al., 2011, 2013; Fontana et al.,
2013; Garnier et al., 2016).

2.2 Biogeochemical model

The biogeochemical component coupled to hydrodynamics
is PISCES (version 2; Aumont et al., 2015). PISCES is
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a complex carbon-based model that simulates marine bi-
ological productivity and carbon biomass based upon five
main nutrients: nitrate, ammonium, phosphate, silicate, and
iron. Its architecture includes 24 biogeochemical variables
grouped into four main compartments: nutrients, phytoplank-
ton, zooplankton, and detritus. PISCES has been used in
global simulations (e.g., Bopp et al., 2015), environmental
studies (e.g., Brasseur et al., 2009), climate studies (Lefort
et al., 2015), basin-scale studies (e.g., Jose et al., 2014), and,
more recently, in regional-scale studies (e.g., Auger et al.,
2015). For more details, see Aumont et al. (2015) where a
complete description of PISCES equations along with a brief
validation are presented.

PISCES differentiates between two phytoplankton func-
tional types: diatoms and nanophytoplankton. The parame-
terization of diatoms differs from nanophytoplankton in their
requirements of silicate (Si), an increased consumption of
iron (Fe), and a higher level of nutrient saturation due to their
larger size. Both Chl a content on nanophytoplankton and di-
atoms is parameterized using the photo-adaptative model of
Geider et al. (1997). Here we ascribe Chl a as the direct sum
of these two compartments, and it will be used as a proxy
for primary production. Besides biomass of Chl a, carbon
ratios with Fe and Si (only for diatoms) are explicit prognos-
tic variables of the model. Furthermore, PISCES discretizes
two sizes of zooplankton (micro- and mesozooplankton) and
three classes of nonliving compartments: the semi-labile dis-
solved organic carbon pool and two sizes of particulate or-
ganic carbon that differ by their sinking velocities (3 m d−1

for small particles and 50 to 200 m d−1 for large particles).
PISCES is coupled online to NEMO with a coupling fre-

quency equal to the circulation model time step (i.e., 40 min).
Note that online coupling is a one-way forcing of the ecosys-
tem model by the circulation model, since no feedback of
the ecosystem model is taken into account. This strategy of
online coupling with a maximum frequency is thought to be
useful for simulating the ecosystem evolution, while avoid-
ing possible problems brought by the use of averaged physi-
cal fields, as in off-line coupling.

A realistic dynamical adjustment of the modeled ocean
state is obtained after a 13 years of spin-up (1989–2002)
starting from the Levitus climatology for temperature and
salinity (Levitus et al., 1998). After physical spin-up, the bio-
geochemical component is initialized in January 2002 from
outputs of a global 0.25◦ PISCES operational simulation per-
formed by MERCATOR Ocean (Elmoussaoui et al., 2011).
Between January 2002 and December 2004, a 3-year spin-up
is performed to ensure a consistent biological initial state. Af-
ter this period, a deterministic simulation of the coupled sys-
tem, i.e., NATL025-PISCES, is performed for a period of 6
years, extending from January 2005 to December 2010. This
simulation is used to build a probabilistic configuration upon
which a data assimilation system is performed.

2.3 Probabilistic version of the coupled system

Any realistic description of the state of a system involves
uncertainties. In the case of coupled ocean models, uncer-
tainties may originate from external forcings (e.g., the at-
mospheric data), parameterizations of physical and biologi-
cal processes that are not explicitly resolved by the model,
omission of unresolved scales, and reduced complexity to
limit computational costs. In a previous study (Garnier et al.,
2016), two classes of these uncertainties were parameterized
to explicitly simulate the errors associated with the deter-
ministic model formulation: (1) the limitations of the spa-
tial scales resolved by the model and (2) the simplification
of the description of the biogeochemical system to a limited
number of state variables and parameters. The first were de-
scribed by following the approach proposed in Brankart et al.
(2015), and the second was simulated by introducing log-
normal stochastic perturbations on seven key biogeochem-
ical parameters whose uncertainties may have a direct im-
pact on the estimation of primary production. Specifically,
the parameters perturbed are the phytoplankton growth rate
at 0 ◦C, the initial P -I slope for both nanophytoplankton and
diatoms, the phytoplankton temperature sensitive to growth,
the zooplankton temperature sensitive to grazing, and the
growth dependency on the length of day for both nanophy-
toplankton and diatoms. For the perturbations, the starting
point is a first-order autoregressive process setting up with a
standard deviation of 0.3 and a decorrelation timescale of 1
month, at which a random noise is drawn at each grid point
and at each time step. After spatial filtering, Gaussian noises
are transformed in lognormal noises to guarantee positivity.
Stochastic perturbations are then introduced by multiplying
by these lognormal noises. To preserve vertical consistency,
all perturbations are set as identical for the whole water col-
umn. In addition, as the effects of unresolved scales will have
an impact on the large-scale biogeochemical representation,
we create a perturbation that simulates the unresolved fluc-
tuation of the concentration of each parameter within every
model grid box.

The stochastic formulation was introduced to produce an
ensemble spread that is large enough for building a DA sys-
tem while keeping the coupled model stable. A 60-member
ensemble simulation for the year 2005 was performed by
Garnier et al. (2016), who show that the resulting probabil-
ity distribution (of the annual ensemble simulation) is quite
consistent with SeaWiFS (Sea-viewing Wide Field-of-View
Sensor) ocean color observations. Specifically, they assessed
the reliability or statistical consistency of the ensemble sim-
ulation by comparing it with satellite Chl a data assuming
30 % of observation error.

The present study is based on these previous develop-
ments, with some additional adjustments to prepare for DA.
In particular, we carried out sensitivity experiments to select
an ensemble size that is more cost-efficient but with the same
level of agreement to observations as in Garnier et al. (2016).
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More explicitly, 1-month assimilation experiments were per-
formed by reducing the ensemble size from the original 60
members to 12 and 24 members. We first compared each
of them with the original experiment, and observed surface
Chl a differences below 0.5 mg Chl m−3 for most regions be-
tween the 24 and the 60-member ensembles. A comparison
with the observations used for the assimilation process was
also assessed. Both reduced ensemble simulations were able
to reproduce the main patterns of surface Chl a displayed by
satellite observations. However, global probabilistic metrics
showed that only the 24-member ensemble experiment con-
serves the same level of statistical consistency as the original
ensemble, while reducing computational costs of the forecast
step by up to 60 %. The probability distribution of the 12-
member ensemble showed an under-dispersed distribution,
while the 24-member ensemble showed the ensemble spread
covers a major part of the observations. Therefore, a total of
24 trajectories of the inherited stochastic simulation devel-
oped by Garnier et al. (2016) are used here as the prior PDF
for the assimilation problem.

2.4 Assimilation scheme

The assimilation system integrates daily composites of
MERIS Chl a observations to daily update the ensemble
forecast. The methodology behind this process is based on a
SEEK filter (Pham et al., 1998; Brasseur and Verron, 2006),
implemented in the ensemble system using the System of Se-
quential Assimilation Modules (SESAM) assimilation plat-
form (Brankart et al., 2012) that deals with all matrix op-
erations required by the assimilation scheme. Though using
a probabilistic approach is more resource-intensive, it pro-
duces a probability distribution that allows for an objective
validation with observations using probabilistic scores, un-
like a deterministic assimilation system that provides only
one estimated trajectory. As another advantage, the explicit
simulation of model uncertainties in the ensemble approach
is necessary to produce a description of uncertainties that is
consistent with observations.

The assimilation scheme proceeds in two steps. (1) An en-
semble forecast in which each ensemble member, i.e., state
vector, is propagated forward in time using the full model
equations. (2) When a set of observations, i.e., daily swaths
of ocean color retrieved from MERIS, is available, the sta-
tistical information contained in the ensemble is combined
with observations to update the forecasted ensemble. The
most relevant aspects of this second step, referred to as anal-
ysis, will be commented on below. To propagate the system,
the initial condition of the subsequent daily forecast is the
updated analysis ensemble obtained by the assimilation of
Chl a observations.

The state vector entering the analysis step is composed of
all prognostic biogeochemical state variables of the three-
dimensional grid following a multivariate approach. To keep
the analysis computationally affordable, a prior diagnosis of

the multivariate correlations between the observed (Chl a in
this case) and non-observed biogeochemical variables has
been carried out. Following the results obtained from this
test, 12 out of the 24 biogeochemical state variables are in-
cluded into the updated state vector. These state variables
correspond to nutrients, oxygen, zooplankton, phytoplank-
ton, and Chl a.

The probability distribution of the observed variable, i.e.,
Chl a, is usually regarded as lognormal (Campbell, 1995). A
well-known strategy to accommodate the characteristic non-
Gaussian distributions of biogeochemical parameters is ap-
plying a lognormal transformation (e.g., Ciavatta et al., 2011;
Mattern et al., 2017). However, this transformation assumes
that the shape of the probability distribution does not change.
As this is not often verified, we adopted here another nonlin-
ear strategy dependent on the shape of the probability distri-
bution. Anamorphosis transformations (Bertino et al., 2003;
Béal et al., 2010) are applied to each variable of the state vec-
tor prior to the ensemble analysis step to ensure that marginal
PDFs are close to Gaussian. The strategy of these transfor-
mations relies on remapping the quantiles of each marginal
distribution such that the probability distribution is as close
as possible to a Gaussian. These transformations ensure that
no value of the variables becomes negative after the anal-
ysis update, improve the description of the correlations be-
tween Chl a and non-observed variables, and exclude possi-
ble causes of the breakdown of the simulation. To be compli-
ant with the new variables, observations are also transformed
into the anamorphic space defined by the ensemble simula-
tion. After analysis, the corresponding inverse transforma-
tions are performed to come back into the original model
space and initialize the subsequent daily ensemble forecast.

Relatively small ensembles like the one used here can lead
to spurious correlations between distant model grid points.
In order to avoid the potential negative effects of these cor-
relations, we employ a domain localization methodology in
which a separate analysis for each local domain is applied.
In practice, this means that an analysis update is performed
for each horizontal grid point but including all vertical levels
and state variables. To ensure continuity between analyses,
each analysis uses the observations within a certain localiza-
tion radius (of 1◦ in the present case), with an observation
error that increases with distance.

2.5 Assimilated and independent observations

The observational data set assimilated by our system cor-
responds to daily swaths of ocean color retrieved from
MERIS. Specifically, we use Level-3 binned data acces-
sible at http://earth.esa.int/level3/meris-level3/, last access:
October 2017, which consist of daily accumulated Level-
2 products with a standard bin size of 4.6 km. Among
other properties, this product provides Chl a estimations
(in mg Chl m−3) used here to update the ensemble sim-
ulation. Additionally, the system performance will be as-
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sessed by comparison with ocean color SeaWiFS data acces-
sible through https://oceancolor.gsfc.nasa.gov/data/seawifs/,
last access: December 2019 and with daily surface Chl a

fields obtained from the Global Ocean Satellite Observa-
tions provided by Copernicus-GlobColour service and ac-
cessible through http://marine.copernicus.eu, last access: De-
cember 2019. This latter product is based on the merging
of several sensors (data from SeaWiFS, MODIS-Aqua, and
MERIS sensors are used for the year 2005) delivered at 4 km
of spatial resolution.

The limited accuracy of ocean color products is taken into
account in the assimilation process. Imperfections in the re-
trieval process of the Chl a concentrations may be due to
the presence of chromophoric dissolved organic matter, at-
mospheric aerosols, or errors in the algorithms at some spe-
cific regions, among others (e.g., Gregg and Casey, 2004;
Le Fouest et al., 2006). Therefore, 30 % of observational
error is considered in agreement with global average stan-
dard deviation estimates (e.g., Gregg and Casey, 2004; Mélin
et al., 2016).

While intercomparisons between the data-assimilated sim-
ulation and the assimilated observations are necessary to
assess the experiment efficiency, the validation strategy is
not totally conclusive since they are not independent (Gregg
et al., 2009). We thus use an additional independent data
set for an objective validation of the assimilation process.
Specifically, we use biogeochemical fields extracted from the
World Ocean Atlas 2018 (WOA2018; Garcia et al., 2019).
The historical in situ nutrient measurements available in this
data set were produced by the NOAA’s (National Oceanic
and Atmospheric Administration) National Oceanographic
Data Center – Ocean Climate Laboratory as part of the World
Ocean Database project (WOD; Boyer et al., 2013). They
will be used to assess the simulation performance on match-
ing the non-observed variables patterns.

2.6 Probabilistic validation

Unlike for deterministic simulations, the validation of our
DA experiment requires many realizations (members) to be
properly evaluated given its probabilistic nature. For that pur-
pose, reliability and resolution scores (see Toth et al., 2003;
Candille et al., 2015, for more information) will be com-
puted from the ensemble. Reliability evaluates the capacity
of a model to produce an ensemble probability distribution
in agreement with the statistical distribution of a given ob-
servation data set. Resolution measures the ability of a model
to discriminate distinct observed situations. In other words,
the reliability provides information on the system’s ability
to produce PDFs that agree with a given observation’s PDF,
while resolution provides information on the spread of the
system’s PDFs. These metrics will allow us to measure the
skills of our ensemble simulation for predicting the true state
of the ocean biogeochemistry.

To evaluate reliability and resolution, several probabilis-
tic metrics will be employed. We first check the reliability
of the DA system by introducing the rank histogram (An-
derson, 1996). Rank histograms are computed by sorting all
24 members in ascending order (in the present case accord-
ing to their Chl a concentration) for each grid point and at a
given date. Each observation is then ranked relatively to its
location within this sorted ensemble. Observations smaller
than the minimum of the ensemble will take rank “0”, while
those observations higher than the maximum of the ensem-
ble will take rank “n”. The statistical consistency of the en-
semble can then be evaluated by studying its shape (Can-
dille et al., 2015; Germineaud et al., 2019). Rank histograms
may be (1) flat, which indicates the distribution of the model
accords accurately with the observations, i.e., perfect re-
liability; (2) under-dispersed or U-shaped, which indicates
the spread of the ensemble is too small (too many observa-
tions lie outside the extremes of the ensemble); or (3) over-
dispersed or dome-shaped, which indicates the spread of the
ensemble is too large (too many observations lie near the cen-
ter of the ensemble).

To measure the resolution of the system and obtain a full
probabilistic validation of the ensemble, we use the continu-
ous rank probability score (CRPS). Let x to be a parameter of
interest (Chl a in our case) to which a real observation corre-
sponds. Then CRPS corresponds to the distance between the
simulation and the observation, as defined in

CRPS= E

[∫
R

(Fp(x)−Fo(x))2dx

]
,

where E is the mean over all observations at a given date, and
Fp(x) and Fo(x), the cumulative distributions of the model
and the observations.

CRPS can be decomposed as the sum of the ensemble re-
liability (Reli) and the ensemble potential resolution (Resol),
i.e., the resolution in the case of perfect reliability (see Hers-
bach, 2000, for more details).

CRPS= Reli+Resol

According to CRPS, a skillful probabilistic system must sat-
isfy two criteria: Reli should be null, and Resol must tend to
zero and, in any case, be much inferior to the reference value
of the CRPS when it is only based on the reference data set
(without data assimilation).

3 Results

It is instructive to evaluate how the assimilation process af-
fects the original ensemble simulation. In this section, the
impacts of the assimilation on the variability in space and
time of key biogeochemical parameters are assessed by com-
paring the assimilated experiment with an analogous 24-
member ensemble of model simulations in which no obser-
vational data have been assimilated. This ensemble run is
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performed over the same period, and referred to as the “free
run”.

3.1 Skill in reproducing surface Chl a

Both the assimilated and the free-run simulations are com-
pared to daily surface Chl a fields obtained from the Global
Ocean Satellite Observations (see Sect. 2.5). Merged satel-
lite products are selected here to minimize missing data due
to cloud cover and still resolve mesoscale spatiotemporal
variability. For the assimilated simulation, the analysis step,
which corresponds to the ensemble computed after the up-
date, is shown. Surface Chl a daily composites are presented
for three different dates: 19 April, 15 May, and 5 Octo-
ber 2005 (Fig. 2). These dates are selected for representing
contrasting periods. The first two dates coincide roughly with
the well-documented spring bloom period of the North At-
lantic. The availability of light and nutrients during this pe-
riod drives phytoplankton growth, which leads to relatively
high values of Chl a at surface. The last date represents a
period after summer when conditions change due to the re-
duction in sunlight over the surface.

The large-scale spatial distribution of surface Chl a is cap-
tured by the DA simulation. High Chl a values in regions
such as the Gulf Stream, the North Sea, the Amazonian delta,
and the western coast of Africa are successfully reproduced
during the first days of the experiment (Fig. 2a–c). However,
there is too strong a gradient between the oligotrophic con-
ditions of the North Atlantic subtropical gyre and temper-
ate waters to the north. The ensemble median of the free-run
experiment displays a stronger gradient, indicating that the
assimilation of surface Chl a data slightly improves this sit-
uation.

About a month later (Fig. 2d–f), the inferred large-scale
picture of surface Chl a distribution remains close to that
displayed by satellite observations. The bloom of Chl a in
temperate waters is well reproduced by the DA simulation
both attending to magnitude and geographical location. Up-
welling areas along with other zones with high Chl a concen-
trations are also well depicted showing a good performance
to match highly productive regions. By contrast, the gradient
northwards of the oligotrophic open ocean is too pronounced,
showing no transition between both regimes as evidenced in
the satellite map. Moreover, corrections made by daily satel-
lite swaths leave imprints of their trajectory in the analysis
map. These imprints are caused by using a small localiza-
tion radius. This radius needs to be small due to the small
correlation length scale of forecast uncertainties in the Chl a

field. Thus, the impact of a given observation on the update
remains local. They should disappear over time as the mag-
nitude of the innovation decreases. In this experiment, how-
ever, the time lag between observations is quite large with
respect (5 to 7 d) to the typical timescale of the system. For
its part, the free run overestimates Chl a in high-latitude re-

gions, while it underestimates it within the North Atlantic
subtropical gyre.

After the summer period, at the beginning of October 2005
(Fig. 2g–i), the Chl a distribution changes; regions with the
highest concentrations relaxed their values, while concentra-
tions in the open ocean slightly increased. The representa-
tion of surface Chl a degrades during this period. Concen-
trations within the subtropical gyre agree with observations,
but gradients both at its northern and southern boundaries are
too strong. In this transition zone, inferred values double the
concentrations displayed by observations. In the rest of the
domain, the Chl a pattern improves that shown by the non-
assimilated simulation. The free-run experiment exhibits a
strong overestimation in the Gulf Stream region as already
observed by Garnier et al. (2016) with a 60-member non-
assimilated version of the coupled model. Moreover, olig-
otrophic conditions at the subtropical gyre are too low, which
may indicate the spread of the ensemble is unable to capture
the whole observation’s variability.

3.2 Probabilistic regional assessment

An ensemble system should be statistically consistent with
observations in order to be objectively regarded as realistic.
To evaluate the reliability metric, we present rank histograms
(Fig. 3) computed for each grid point by accumulation over
all 24 members of the ensemble at four different Longhurst
provinces (Longhurst et al., 1995; Fig. 1 provides the loca-
tion of the provinces). The provinces used are NADR (North
Atlantic Drift), NATR (North Atlantic tropical gyre), NASTE
(northeast Atlantic subtropical gyre), and NASTW (north-
west Atlantic subtropical gyre). Both the assimilation anal-
ysis and free-run ensembles are displayed. Ranks are com-
puted against SeaWiFS ocean color data extracted for the
same day with a specified 30 % of observation error. In prac-
tice, the latter error means that for each realization a Gaus-
sian white noise with a standard deviation of 30 % of the
satellite Chl a concentration is added to each ensemble mem-
ber.

Histograms are good indicators of how the assimilation of
surface Chl a affects the probability distribution of the en-
semble. The histogram for province NADR (Fig. 3 first row),
which corresponds to a major part of the eastern North At-
lantic temperate waters (∼ 40–60◦ N,∼ 10–45◦W), displays
the good performance of the non-assimilated simulation re-
producing the given observations. The histogram is flat ex-
cept for a slightly tall rank “1” that indicates the highest
observations are not included in the spread of the ensem-
ble. When observations are assimilated, the distribution of
ranks flattens with respect to the shape of the histogram of
the non-assimilated experiment. The shape of the histogram
illustrates the ensemble is now able to include the highest
values of Chl a, though few ranks accumulate on the left side
of the histogram.
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Figure 2. Surface maps of Chl a (mg Chl m−3) for 19 April 2005 (a, b, c), 15 May 2005 (d, e, f), and 5 October 2005 (g, h, i). The ensemble
median of the non-assimilated free-run experiment (a, d, g), the analysis ensemble median of the assimilation experiment (b, e, h), and
merging daily surface Chl a fields obtained from the Global Ocean Satellite Observations (c, f, i) are represented.

An accumulation of ranks forms a dome in the middle of
the histogram for province NATR (Fig. 3 second row), which
corresponds to the southern boundary of the North Atlantic
subtropical gyre (∼ 13–26◦ N, ∼ 16–75◦W). The free-run
surface map (see Fig. 2d–f) showed values that are too low
in the northern part of the province and values that are too
high in the southern part, which differ from the smooth gra-
dient shown by the observations. When ocean color data are
assimilated, the ranks’ distribution becomes more homoge-
neous. A moderate dome of ranks on the right side of the his-
togram still appears, yet the envelope of the ensemble agrees
well with the given observations.

The histogram of the free run shows an accumulation of
ranks on the left side, i.e., too many ranks “0”, for province
NASTE (Fig. 3 third row). This is the eastern branch of the

subtropical gyre of the North Atlantic that goes roughly from
the center of the Atlantic to the east European and African
coasts (from 30 to ∼ 44◦ N). The surface map (Fig. 2d–f)
showed an overestimation of Chl a for most of the region, ex-
cept for the oligotrophic center of the subtropical gyre where
values were almost negligible. When observations are assim-
ilated, the values of the oligotrophic area increased while val-
ues closer to the coasts tended to decrease. These corrections
are also reflected into the histograms by a redistribution of
the lowest ranks to the right. Nonetheless, improvements are
limited, and there is an overpopulated left side of the his-
togram.

Lastly, the right branch of the North Atlantic subtropical
gyre is included within the province NASTW (∼ 30–40◦ N,
∼ 30–75◦W; Fig. 3 last row). In this area, the free-run his-
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Figure 3. Surface Chl a rank histograms of the 24-member free-run experiment (magenta; left panels) and the 24-member analysis ensemble
assimilation experiment (light green: right panels) in comparison with SeaWiFS data for 15 May 2005. A 30 % SeaWiFS observation error
is taken into account. Longhurst provinces NADR, NATR, NASTE, and NASTW are represented.

togram shows a strong accumulation of ranks at the left ex-
treme; i.e, the ensemble systematically overestimates obser-
vations (positive bias). This under-dispersed shape indicates
that the ensemble is unable to cover the lowest observations.
In this case, the assimilation of satellite data is unable to im-
prove the reliability of the system. Moreover, the accumula-
tion of lower values not included within the probability dis-
tribution of the ensemble increases after assimilation.

To see the time evolution of the reliability of the ensemble
in the province NADR, Fig. 4 shows rank histograms com-
puted in three different periods. A week after the initializa-
tion of the experiments, i.e., 19 April 2005, there is an accu-
mulation of ranks on the right side of the free-run histogram
(negative bias). The assimilation of satellite information re-
distributes ranks to the left. Yet there is still an underestima-
tion; the probability distribution of the analysis ensemble fits
better with observations, thus decreasing the bias. A month
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Figure 4. Surface Chl a rank histograms of the 24-member free-run experiment (magenta; a, c, e) and the 24-member analysis ensemble
assimilation experiment (light green: b, d, f) in comparison with SeaWiFS data for province NADR. Ranks are computed for 19 April, 15
May, and 5 October 2005. A 30 % SeaWiFS observation error is taken into account.

after, as we observed in Fig. 3, both the free-run and DA
simulations display flat histograms indicating a good perfor-
mance of the system. In particular, the system reproduces the
increasing Chl a that occurs during the spring bloom period,
which takes place around this date in the province (e.g., Fol-
lows and Dutkiewicz, 2001). In October, the free run tends
to accumulate ranks on the right side, while an accumulation
on the left side of the histogram is depicted for DA analysis.
Notwithstanding, the distribution of ranks is more homoge-
neous after the assimilation process.

To complement reliability measurements, we present an
analysis of the CRPS metrics for an in-depth evaluation of
the assimilation effects. Using all daily satellite observations
available during the simulation period, we calculated the Reli
and Resol terms of the CRPS decomposition for provinces
NADR and NASTW, two provinces with contrasting behav-
iors. Rank histograms (Fig. 3) showed the ensemble is con-
sistent with observations in NADR, while it underestimates

them in NASTW. Similarly, the reliability term of the CRPS
metric (Fig. 5a) shows the improvements (closer to zero)
made by the assimilation process on province NADR, in
which the prior probability distribution was already coher-
ent with observations. This pattern, however, reverses around
August when the integration of data deteriorates the metric.
This situation lasts until mid-December, when reliability for
both simulations begins to coincide until the end of the exper-
iment. By contrast, the reliability of the free-run simulation
is generally closer to zero for province NASTW during the
whole experiment.

Time series of the resolution part of CRPS (Fig. 5b) show
the metric is close to zero for both systems, indicating a good
global performance. As expected after precedent metric di-
agnostics, the analysis update generally improves the resolu-
tion for province NADR. A marked seasonality is observed
in the CRPS time series. During summer, the resolution of
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Figure 5. Time series (6 April 2005 to 5 April 2006) of reliability (a) and resolution (b) computed from CRPS decomposition for the 24-
member free run (in magenta) and the 24-member forecast ensemble assimilation (in light green) experiments. Longhurst provinces NADR
and NASTW are represented.

both simulations increases until the end of the season when
it returns back to lower values.

3.3 Assessment of the multivariate scheme

The multivariate scheme employed here allows corrections
on surface Chl a to extend to other variables. Considering
a complex model such as PISCES, these changes may pro-
voke several variables to no longer satisfy model equations,
and thus results produced by these adjustments should be as-
sessed. Moreover, surface corrections both in the observed
and non-observed quantities are projected vertically onto the
water column, thus altering the vertical structure of the water
column. In order to evaluate the balances between Chl a and
those variables that have important relations with it, such as
nutrients, monthly means of nitrate and phosphate extracted
from the WOA2018 data set are compared with data depicted
by our simulations. Specifically, vertical profiles of Chl a

and nutrient concentrations at two points placed in regions
NADR and NASTW are presented (Fig. 6).

Vertical profiles show that both ensembles are capable of
displaying a wide range of Chl a values within the first me-
ters of the water column. As expected, the spread of the anal-
ysis reduces, while the subsequent forecast (not shown) will
restore it accordingly to match the satellite’s uncertainty for
the next update. The envelopes of both simulations decrease
towards the bottom of the mixed layer. From there, concen-
trations displayed by both simulations coincide. This indi-
cates the extent to which surface corrections are projected

into the vertical. The spread of the ensemble reduces when
nutrients are represented. In general, the assimilation process
increases their concentrations within the mixed layer.

In the province NADR (left panels in Fig. 6), the concen-
trations of nutrients in the mixed-layer decrease over time.
In October, mixing is close to its lowest values (Zhang et al.,
2018) and so are nutrient concentrations. Inferred nutrients
follow the seasonal pattern of decreasing towards October.
However, their values are relatively high in comparison with
climatological data. The assimilation process tends to further
increase nutrient availability within the mixed layer while be-
ing capable of correctly simulating surface Chl a.

The water column is poor in nutrients in the province
NASTW (right panels in Fig. 6). However, both simulations
show their concentrations to be up to 7 times higher than
WOA data. Weaknesses in the physical model to appropri-
ately represent the mixed-layer dynamics in the region im-
pair the representation of biogeochemistry as shown in Our-
mières et al. (2009). As observed for province NADR, nutri-
ent concentrations decrease towards the end of the summer.
The free run simulates this decrease, especially during Octo-
ber when concentrations are close to observations. By con-
trast, the analysis moves the distribution of nutrients away
from climatology. Corrections made by surface information
are unable here to include the given Chl a observations. Sur-
face data are overestimated by both ensembles. The assimi-
lation process moves the ensemble closer to observations in
the first cycles of assimilation, but it strongly overestimates
them in October. The free run shows too wide a spread that
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Figure 6. Vertical profiles (0–200 m) of Chl a (mg Chl m−3), nitrate (mmol N m−3), and phosphate (mmol P m−3) for provinces NADR
(left panels; at 50◦ N, 15◦W) and NASTW (right panels; at 35◦ N, 60◦W) for 19 April, 15 May, and 5 October 2005. The 24-member
free run (in magenta) and analysis (in green) ensembles are represented. Black dots correspond to monthly mean nitrate and phosphate
concentrations extracted from the WOA2018 database. Blue dots correspond to daily mean surface Chl a obtained from the Global Ocean
Satellite Observations.

reproduces Chl a concentrations up to an order of magnitude
higher than satellite data.

3.4 Impact on the subtropical region

Figures presented in precedent sections indicate an erratic
behavior of the system representing the transition zone be-
tween the oligotrophic subtropical area and temperate wa-
ters northwards. In order to illustrate the vertical distribu-
tion of biogeochemical properties before and after assimi-
lation in this area, we consider meridional vertical sections
of Chl a crossing the subtropical gyre and temperate waters
at 45◦W with nutrient (nitrate+ammonium) isolines super-
imposed (Fig. 7). The same three dates used before are rep-
resented.

During April (Fig. 7a, b), high values of Chl a deepen up to
∼ 50 m depth in both experiments. However, the oligotrophic
region reaches further north after the assimilation due to a
deeper nutrient-depleted subsurface layer south of ∼ 30◦ N.
The deep Chl a maximum (DCM) of the subtropical region
is placed below 100 m depth in both simulations in agree-
ment with observational studies (Pérez et al., 2006). After
assimilation, the DCM is disconnected from the subsurface
maximum of temperate waters by the vertical slumping of
nutrient isolines.

A horizontal strong gradient of nutrient isolines is ob-
served in the DA analysis section of May (Fig. 7d). Several
patches of high Chl a values are evident south of ∼ 35◦ N,
from where the water column setting becomes similar to that
displayed by the free-run simulation. These patches may be
caused by the vertical propagation of surface corrections. By
contrast, the free-run simulation shows a more logical distri-
bution of parameters in which high Chl a waters are related
to nutrient availability.

During October (Fig. 7e, f), differences after assimila-
tion are more noticeable. In this period, the vertical distri-
bution of nutrients has a key role in controlling phytoplank-
ton growth in the region (e.g., Dutkiewicz et al., 2001), and
concentrations of Chl a are relatively low as the nutricline
is deep enough to limit production. Since the free run over-
estimates Chl a during this period in the region, the assimi-
lation process reduces its concentrations. As a consequence,
nutrients accumulate in the first 100 m of the water column
north of ∼ 30◦ N after the update and destabilize the equi-
librium between the biomass of producers (which decreases)
and the availability of nutrients (which increases). Since bio-
geochemical dynamics are highly dependent on this equilib-
rium, subsequent forecasts lead to a rapid increase in Chl a

and to a severe overestimation over time that reduces the ex-
tension of the oligotrophic region to the north.
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Figure 7. Meridional vertical sections (0–300 m) of Chl a (mg Chl m−3) at 25 to 50◦ N, 45◦W for 19 April, 15 May, and 5 October 2005.
The ensemble median of the free run (a, c, e) and the assimilated (DA analysis; b, d, f) simulations are represented. Nitrate+ammonium
isolines (mmol N m−3) are included as solid gray lines.

4 Discussion

4.1 Impact of the assimilation on the observed variable

The North Atlantic Ocean is a complex basin that includes
a large number of biogeochemical regimes (see Fig. 1) that
make it difficult to simulate using a holistic modeling sys-
tem (DeYoung et al., 2004). By employing DA, we aim
to reduce the impacts of model errors on the representa-
tion of ocean biogeochemistry by combining model infor-
mation with available observations (Gregg et al., 2009; Cia-
vatta et al., 2011; Ford and Barciela, 2017). Accordingly,
surface maps presented in Fig. 2 show that the assimilation
process reduces the discrepancies between satellite observa-
tions and the non-assimilated free-run experiment over a ma-
jor part of the domain. In particular, the DA simulation better
represents values and geographical location of some struc-
tures and events such as the spring bloom period, the Gulf
Stream, or phytoplankton fronts. By contrast, the assimila-
tion scheme appears to be unable to deal with an unrealistic
too abrupt front that separates the oligotrophic and temperate
waters conditions (from about 25 to 35◦ N).

By using rank histograms, we evaluate the capability of
the assimilated and the free-run ensembles to agree with ob-
servations on selected Longhurst provinces (see Fig. 3). His-
tograms illustrate that the response of the system to the as-
similation of satellite data depends upon the reliability of the

prior ensemble. The assimilation process improves the statis-
tical consistency of the system where the free-run probability
distribution is homogeneous, as in the province NADR. The
DA process also enhances reliability in those regions where
the shape of the free-run histogram is over-dispersed, as in
the province NATR. In these regions, the stochastic parame-
terization is enough to describe the variability of the system
properly, and only a relatively small percentage of the obser-
vations lies outside of the limits of the ensemble (∼ 10 %).
Then the assimilation process makes use of this information
to increase the model skills both by reducing the dispersion
and by redistributing ranks to a more homogeneous shape.
The redistribution of the ensemble also increases its resolu-
tion, showing that the posterior ensemble better describes a
wide variety of biogeochemical situations (see Fig. 5b).

By contrast, in regions where the prior probability distribu-
tion is strongly under-dispersed, as in the provinces NASTW
and NASTE, the assimilation of satellite information is un-
able to raise the reliability. Since corrections are computed
in the range explored by the prior ensemble, the assimila-
tion scheme cannot correct prior distributions that exclude
the full variability of the observations. In these provinces,
the spread of the prior ensemble is insufficient to represent
the range displayed by the observations; the ensemble con-
sistently overestimates them during the annual cycle, and so
ranks accumulate at the left extreme of the histograms (posi-
tive bias). These two provinces occupy a major part of the
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oligotrophic subtropical gyre of the North Atlantic where
Chl a is generally low during the whole year. Since Chl a

values can never become negative, the random perturbations
introduced into the model formulation to create a probabilis-
tic simulation (Garnier et al., 2016) preferentially induce an
increase in Chl a concentrations.

The inability of the assimilation process to improve the
skills of the simulation in these latter regions points out the
necessity of appropriately defining the stochastic parameter-
izations of the prior PDF as a prerequisite to use DA. Par-
ticularly, uncertainties should be described accordingly with
the biogeochemical characteristics of each region in order to
include a major part of the observation variability.

4.2 Non-observed variables

The effects of the assimilation process to unobserved vari-
ables is a major issue in biogeochemical DA (e.g., Rousseaux
and Gregg, 2012; Ciavatta et al., 2018). Several studies (e.g.,
Ciavatta et al., 2011) have found that the integration of sur-
face ocean color may cause problems in the nutrient vertical
distribution when a model’s equation is not “plastic”, in the
sense of constraining the ability of the assimilation process
to correct the inferred variables. In this regard, it is impor-
tant to note that our multivariate analysis scheme allows cor-
rections of five nutrients, the Chl a content of each phyto-
plankton group, phytoplankton and zooplankton biomasses,
and oxygen, while it only uses Chl a satellite data to con-
strain the ocean biogeochemistry. It is plausible that modifi-
cations on biogeochemical variables would mean that some
of them would not comply with the governing model equa-
tions anymore, particularly in those regions where the model
is not plastic enough to absorb modifications on the tight cor-
relations between observed and unobserved state vectors. In
some cases, these modifications may develop into simulation
instabilities that can lead subsequent forecasts to deteriorate
both the observed and unobserved variables (Ciavatta et al.,
2011, 2018; Gregg et al., 2009). For instance, large discrep-
ancies between observations (high concentrations of Chl a)
and the model (lower concentrations) in Gregg (2008) caused
their model to become unstable due to nutrient depletion. In
the present case, the assimilation process has two effects on
the vertical distribution of nutrients (see Figs. 6 and Fig. 7):
(1) it significantly reduces the spread of the ensemble, and
(2) it tends to increase their concentrations within the first
∼ 100 m depth.

Nutrients were not perturbed by the stochastic parameteri-
zations (see Garnier et al., 2016), and so increases during the
analysis update can only be attributed to the assimilation pro-
cess. In the northern region of the North Atlantic subtropical
gyre, Chl a is overestimated by the prior ensemble and so sur-
face corrections preferentially reduce their concentrations.
Since nutrients are negatively correlated with the observed
variable, the corrections made by the assimilation process
would increase nutrient availability. Ourmières et al. (2009)

observed that the distribution of nitrate controls the biogeo-
chemical dynamics of the subtropical region. As a conse-
quence, the amount of nutrient available in the water column
after the analysis would alter the correlations with the ob-
served variable during the subsequent forecast in this area. If
the ensemble spread were correctly established in the region,
PISCES equations would be capable of absorbing these cor-
rections. However, the ensemble has insufficient spread in the
provinces NASTW and NASTE, and the increase in nutrients
leads to a consistent overestimation of Chl a. By contrast, in
the rest of the domain, the parameterizations of the uncertain-
ties are consistent with observations, and the extrapolation of
the assimilated information to non-observed variables works
correctly. The assimilation process increases the reliability
of the ensemble, and the information spreads appropriately
to the rest of the variables. As a result, the subsequent daily
forecast is based on an ensemble that has more appropriate
spread, thus improving its general performance.

4.3 Assimilation on fluctuations

The previous section has shown that, despite the stochas-
tic parameterization, PISCES equations are still not plastic
enough in the region north of the subtropical gyre to produce
an ensemble spread that is compatible with the observations
and thus to absorb the corrections made by data assimilation.
A possible way to alleviate these inconsistencies without en-
hancing the stochastic model would be to reduce the ambi-
tion of the data assimilation system and only apply correc-
tions to components of the observation misfit that are com-
patible with the ensemble spread. This approach requires a
procedure to separate all model fields into two components:
one component that displays uncertainties that are not cor-
rectly represented by the stochastic model, which will be kept
untouched by the assimilation scheme, and another compo-
nent for which the ensemble simulations can be assumed to
be reliable enough to apply ensemble corrections.

In our system, in the region covered by province NASTW,
the main reason for which the ensemble spread is not able to
include ocean color observations is a bias in the model clima-
tology, which is left mostly unexplained by the two sources
of uncertainties that have been simulated in the stochastic
model. A possible approach to reduce the ambition of data
assimilation is thus to separate the model field into a clima-
tological component and a fluctuating component and apply
the assimilation process to the fluctuating component only.
The main problem is then to define an operator to separate
these two components.

The model climatology, on the one hand, and the observa-
tion climatology, on the other hand, can both be defined as
the distribution of all values that a given variable can take
over time at a given location and can be constructed by com-
piling all values given by the model or by the observations
at that specific location. In practice, these two distributions
can be described by computing a series of quantiles (for in-
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Figure 8. Schematics of the assimilation process including time-independent transformations. Both daily ensemble forecast (Xf) and daily
satellite observations (yo) are transformed by their own climatologies. Then they are projected into the anamorphic space prior to entering
the analysis step. After the update, the ensemble analysis (Xa) is converted back to initialize the subsequent daily forecast.

stance deciles), which can be saved as 2D or 3D fields for
all model variables, on the one hand, and for all observed
variables, on the other hand. The idea is then to keep the
model climatology unchanged and only correct the rank of
the model solution within its own climatology by assimilat-
ing the rank of the observation within the observed climatol-
ogy. This means, for instance, that if an observation of Chl a

falls on the first quartile of the observed climatology, then the
model would be corrected to move towards the first quartile
of its own climatology. In this way, the fluctuations but not
the bias between the climatologies should be improved with
the expected advantage of not bringing unobserved variables
to unrealistic situations.

In practice, a direct solution to extract the fluctuating com-
ponent is to apply the anamorphic operator transforming the
climatological distribution into a normalized Gaussian distri-
bution (with zero mean and unit variance). This can be done
using the same technique used in the assimilation scheme to
transform the prior ensemble into Gaussian marginal distri-
butions. As explained in Brankart et al. (2012), the transfor-
mation operator is described by the quantiles of the prob-
ability distribution to be transformed (here the climatolog-
ical distributions). Thus, as explained by the schematics in
Fig. 8, observations are transformed using the quantiles of
the observed climatology, and the prior ensemble is trans-
formed using the quantiles of the model climatology. These
two quantities represent the fluctuating component of the sys-
tem, and the same data assimilation system (described in
Sect. 2) can then be applied to this fluctuating component
instead of the full field.

A 1-month assimilation experiment (TrDA) using this
methodology is performed. In order to illustrate the effect of
transformations on the ensemble simulation, vertical profiles

of Chl a, nitrate, and phosphate are presented for 5 May 2005
(Fig. 9), the last day of the experiment. Profiles are placed in
the province NASTW since the methodology aims to reduce
the inconsistencies between observed and non-observed vari-
ables found in this region. Profiles illustrate that the trans-
formed ensemble keeps the Chl a values displayed by the
non-transformed simulation, while it increases the envelope
of the ensemble by reproducing lower values. On the other
hand, when climatologies are taken into account, the increase
in the concentrations of both nitrate and phosphate after cor-
rections is reduced. However, despite these improvements,
we see that, even with the modified observational update, it
is still difficult to maintain the corrections of the nutrients
within reasonable bounds. Climatological variations can in-
deed be too wide to avoid unrealistic values occurring at a
given time. Looking for a reliable synoptic ensemble with a
sufficient dynamical spread to explain the full misfit to the
observations of the day should thus certainly remain an im-
portant step to improve the assimilation system.

5 Summary and conclusions

Satellite-derived surface Chl a data are assimilated daily into
a three-dimensional 24-member ensemble configuration of a
coupled NEMO-PISCES model for the North Atlantic. As
shown, the assimilated system has provided promising re-
sults. A regional diagnosis of a 1-year assimilation exper-
iment has revealed that the integration of surface informa-
tion increases the skills of the ensemble system in a major
part of the model grid when compared to an analogous non-
assimilated free-run simulation. Particularly, the assimilation
of satellite data improves the representation of the surface
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Figure 9. Vertical profiles (0–200 m) of Chl a (mg Chl m−3), nitrate (mmol N m−3) and phosphate (mmol P m−3) in the province NASTW
(35◦ N, 60◦W) for 5 May 2005. The 24-member analysis (in green) and the 24-member transformed analysis (in red) ensembles are rep-
resented. Black dots correspond to monthly mean nitrate and phosphate concentrations extracted from WOA2018 database. The blue dot
corresponds to daily mean surface Chl a obtained from the Global Ocean Satellite Observations.

Chl a variability both in location (upwelling areas, subtrop-
ical gyre, Gulf Stream, etc.) and seasonality (spring bloom,
winter mixing, etc.). Therefore, the stochastic parameteriza-
tions introduced into the system by Garnier et al. (2016) have
been shown to be adequate for undertaking DA in most of the
considered domain. Where the prior ensemble includes the
variability shown by the observations and their uncertainties,
the assimilation process improves its probability distribution,
increasing the agreement with observations (reliability) and
its capability to display different community behaviors (res-
olution). Moreover, corrections are appropriately transferred
to unobserved state vectors by the multivariate scheme.

In the northern region of the North Atlantic subtropical
gyre, however, the multivariate corrections produce values
that are often inconsistent with model dynamics, which can
affect the correlations between the biogeochemical variables.
In this region, the simulation cannot adequately absorb the
corrections brought by the observations; i.e., the simulation
is not plastic, and the system’s performance deteriorates af-
ter the assimilation process. In particular, the analysis update
increases the concentrations of nutrients, producing instabili-
ties that lead the subsequent forecast to degrade biogeochem-
ical fields. These results suggest that the description of uncer-
tainties needs to be refined according to the biogeochemical
characteristics of each Longhurst province.

One possible approach to reduce these instabilities would
be to relax the assimilation effects on those areas. Therefore,
we carried out an experiment in which corrections are only
applied to the fluctuation part of the model. For that end, we
apply transformations both to observations and the forecast
ensemble before entering the analysis update using their cli-
matologies. Results from a 1-month experiment show that
these transformations reduce the strong effects of the assim-
ilation, increasing nutrient concentrations in the region that
lead to inconsistencies.

In addition, an improved simulation of the dynamics is
needed. Ourmières et al. (2009) carried out a detailed anal-
ysis of the mixed-layer dynamics at midlatitudes. They
observed that the distribution of nitrate controls the bio-
geochemical dynamics of the subtropical region by em-
ploying physical-only , biogeochemical-only (nitrate data),
and physical–biogeochemical assimilation techniques over a
coupled system. Their results showed too deep a mixed layer
during March, which extended over an abnormally large area
in the Gulf Stream region and its northeastern extension, and
an overestimation of the stratification in the northeast At-
lantic. This biased representation of the dynamics has a sig-
nificant impact on the present model and should be addressed
in future realizations.

Including information on biogeochemical fields in the wa-
ter column in the assimilation scheme would also improve
the representation of the biogeochemical state of the ocean.
In situ information would be thus explicitly included by the
system at depth. Nowadays, the only sources of such mea-
surements are limited to the prospects of BGC-Argo floats
(Claustre, 2009; Xing et al., 2012). Terzić et al. (2019) assim-
ilated BGC-Argo information into a one-dimensional model
and improved the DCM spatial and seasonal representation.
Cossarini et al. (2019) succeed in improving the Chl a de-
piction over the Mediterranean Sea by assimilating verti-
cal Chl a information supplied by BGC-Argo floats. These
recent works open a horizon to constrain biogeochemical
model simulations from vertical information. However, at
basin scales, the current state of the network allows it to be
used for validation purposes, but its limited spatial coverage
makes it insufficient for assimilation procedures. In the other
hand, a possibility to include nutrient information is to intro-
duce synthetic information (e.g., Xiao and Friedrichs, 2014;
Yu et al., 2018) from a non-perturbed analogue simulation.
To this end, synthetic observations would be important in fu-
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ture efforts heading the improvement of biogeochemical data
assimilation systems.
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line: NEMO (https://www.nemo-ocean.eu/, NEMO Consortium,
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