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The quantum harmonic oscillator is the fundamental building block to compute thermal properties of virtually any di-
electric crystal at low temperatures in terms of phonons, extended further to cases with anharmonic couplings, or even
disordered solids. In general, Path Integral Monte Carlo (PIMC) or Molecular Dynamics (PIMD) methods are pow-
erful tools to determine stochastically thermodynamic quantities without systematic bias, not relying on perturbative
schemes. Addressing transport properties, for instance calculating thermal conductivity from PIMC, however, is sub-
stantially more difficult. Although correlation functions of current operators can be determined by PIMC from analytic
continuation on the imaginary-time axis, Bayesian methods are usually employed for the numerical inversion back to
real-time response functions. This task not only strongly relies on the accuracy of the PIMC data, but also introduces
noticeable dependence on the model used for the inversion. Here, we address both difficulties with care. In particu-
lar, we first devise improved estimators for current correlations which substantially reduce the variance of the PIMC
data. Next, we provide a neat statistical approach to the inversion problem, blending into a fresh workflow the classical
stochastic maximum entropy method together with recent notions borrowed from statistical learning theory. We test
our ideas on a single harmonic oscillator and a collection of oscillators with a continuous distribution of frequencies,
and provide indications of the performance of our method in the case of a particle in a double well potential. This work
establishes solid grounds for an unbiased, fully quantum mechanical calculation of transport properties in solids.

Atomic nuclei in condensed phases behave, in many cases,
as quantum objects. For instance, Nuclear Quantum Effects
are responsible for the heat capacity problem, i.e., the de-
viation from the classical Dulong and Petit law for the heat
capacity of solids at low temperatures. The solution of this
issue eventually led to the development of the harmonic the-
ory of solids, an accurate quantum theory that lets us to com-
pute their thermal properties at temperatures lower than the
Debye temperature, and can be corrected to account for an-
harmonic effects'*~. By reducing the description of an insu-
lating solid to a set of independent harmonic oscillators, the
phonons, weakly interacting through anharmonic couplings,
this theory also provides a framework for the computation of
transport properties, in particular of heat conductivity. In con-
trast to the very high accuracy that can be achieved for thermal
properties, however, the computation of transport features is
sensibly more delicate and often requires ad hoc approxima-
tions for the lifetime of phonons, which is limited by phonon-
phonon scattering processes and the presence of defects. The
general framework of the harmonic theory of solids, originally
developed for crystals, can be adapted to disordered solids.
This is at the expenses of employing a numerical approach to
characterize the harmonic eigenmodes, that replace phonons
and are no longer determined by symmetries. Again, this pro-
cedure can be efficiently employed to determine thermal prop-
erties, while its application to transport is much more limited.
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Very often these properties are indeed calculated via classical
statistical mechanics approaches (based on classical Molec-
ular Dynamics simulations), whose results are next empiri-
cally corrected to account for quantum effects (see, among
others, ). We also note that, in systems (ordered or disor-
dered) involving light nuclei (e.g., hydrogen in solid ice), the
large wavelength associated with light atoms makes the har-
monic approximation itself inappropriate. Therefore, an exact
calculation should in general be considered even for thermal
properties, or for the determination of phase boundaries™.

The harmonic theory of crystalline solids undoubtedly con-
stitutes a remarkable achievement, as many results can be ob-
tained based on an almost fully analytical approach. However,
the above limitations in computing transport properties or in
applying the theory to disordered structures, point to the ne-
cessity of numerical approaches. It would therefore be highly
desirable to develop a numerical methodology that could fully
take into account the quantum nature of atomic nuclei, allow-
ing us to determine without approximations both thermal and
transport properties of any insulating solid.

When interested in thermal properties, an exact numerical
method that encompasses all quantum aspects and is valid
at any temperature, independently of the strength of anhar-
monic effects, involves the path integral representation of the
partition function’™. In the absence of exchange effects (a
reasonable hypothesis in most common solids), the determi-
nation of thermodynamic properties at the inverse tempera-
ture B = (kgT)~! involves the sampling of an equivalent sys-
tem where each quantum particle is replaced by a discretized
"path" consisting of M "imaginary time slices". The method
becomes exact in the limit of large M, and the sampling of
N quantum degrees of freedom at temperature 7' turns out to
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be equivalent to that of N x M classical degrees of freedom at
temperature M x T. This sampling can be achieved efficiently
using Monte Carlo or Molecular Dynamics methods, leading
to the PIMC and PIMD methods, respectively .

Computation of transport properties is more problematic.
The standard Green and Kubo statistical mechanics approach
to transport coefficients' '~ -, obtains the heat conductivity
tensor X in a system of volume V at temperature 7 from a
time correlation function of the energy current operator J as,

1 oo
Kap = W/o dt(Jo(t)J(0)). (D

Unfortunately, the path integral method provides directly
static (time-independent) quantities only. A possible solution
to this problem has been identified long ago'~, by noting that
the PIMC approach can rather supply the analytical continu-
ation of the correlation functions on the imaginary time axis,
simply by computing the correlation between two imaginary
time slices along the path. The power spectrum, Syp(®), of a
real time correlator, C4p, between two operators A and B can
then be obtained in an apparently straightforward manner by
using the identity,

Cup(it) = /Omda) [SAB(w)eihwr—l—SBA((!))eihw(ﬁfr)} . (2

While Eq. (2) in principle allows one to obtain S based on
the data for C(it), with 7 in [0, B], it is well known that the
inversion problem is ill-posed, in the sense that determining S
with high precision is an extremely difficult task, even if C is
known with excellent accuracy. For this reason, the approach
pioneered by a few groups in the eighties within the frame-
work of path integral calculations did not spread widely. As an
alternative, real-time correlation functions of the centroid, or
ring-polymer dynamics computed within PIMD, often provide
accurate spectra . They lack, nonetheless, a rigorous justifi-
cation of the underlying semi-classical approximation for ob-
taining low temperature transport properties, and we will not
go this route in what follows.

Many recent studies obtained in various fields' ', how-
ever, indicate that the present computing capabilities should
by now allow us to carry out the original program of analytical
continuation from imaginary to real time spectrasatisfactorily,
by addressing the two major (and related) difficulties: i) to ob-
tain with high accuracy the imaginary time correlation, in par-
ticular for current operators which suffer from the well known
issue of diverging variance’ in the limit of large M; and ii) to
solve the ill-posed problem of extracting the frequency spec-
trum from the imaginary time correlation functions.

Here we address these two issues based on numerical and
analytical calculations of very simple examples, namely a sin-
gle harmonic oscillator or an ensemble of oscillators with a
continuum distribution of frequencies. The interest of this
choice is twofold. First, due to its simplicity, we can obtain
exact analytical expressions for most quantities of interest, in-
cluding all time dependent correlations and exact expressions
for the discretized path integrals. The availability of these ex-
pressions enables a precise control of the different sources of
error, which can be both of statistical origin or associated with

the discretization itself. Second, the harmonic oscillator is at
the heart of the harmonic theory of solids, the natural start-
ing point for any calculation of transport in insulating solids.
Completely controlling this case is, therefore, crucial for any
serious step forward in this direction. We conclude the study
by providing promising indications of the performance of our
method when applied to the strongly anharmonic case of a
particle evolving in a double well potential.

The manuscript is organized as follows: in Sect. II we intro-
duce the general formalism of the path integral and imaginary
time correlations, while in Sect. III we present the procedure
that we have developed to cope with the inversion problem.
In Sect. IV we next describe a new approach that circumvents
the issue of the diverging variance for current-current correla-
tors. Finally, in Sects V and VI we illustrate the application
of these methods to a single harmonic oscillator, followed by
the case of a collection of oscillators with a continuum dis-
tribution of frequencies, mimicking the density of states of a
crystalline solid. In Sect. VII we draw our conclusions.

Il. THE PATH INTEGRAL FORMALISM FOR TIME
CORRELATIONS

The path integral Monte Carlo method provides a numeri-
cally exact route to the evaluation of thermodynamic proper-
ties of quantum systems at finite temperature, 7. If we con-
sider, for simplicity, a system described by a single degree of
freedom X of mass m, with Hamiltonian & = P?/2m+ U (X),
the average value of an observable A is

A~

(4) =

1 N ~
Tr[Ae PH), 3)
Z(B)
where Z(f) = Tr[e*lm ]. In the PIMC approach, the trace
is evaluated by expressing the density operator as e B# =
(e BH/M)M Tn the position representation |X), and using the
notation p(X,Y,7) = (X|e *|Y), we can write

(A) :%/dxo...dx,w
(XolA|IX,)p (X1, X2, B/M)...p(Xp1, X0, B/M). (4)

If an expression for p(X,Y,f/M) is known, the ob-
servable can be evaluated by sampling the '"path"
{Xo...Xm} with a statistical weight proportional to
p(X1,X2,B/M)...p(Xp,X0,B/M).  As the matrix ele-
ment (X|A|X;) of a local operator A involves in general a
term 6(Xp — X;), the sampling is actually performed over
a closed path of M points. In the following we will repeat-
edly consider the "primitive" approximation, based on the
factorization of the kinetic and potential parts of the density
operator and valid in the limit of small 7°,

p 2
pp(X,Y,T):MWCexp{—m(thz?—;[U(X)—i—U(Y)]}.

S



This simplified expression can be replaced by a more accurate
one if needed, and if the exact value of p is known, as it is
the case for the harmonic oscillator, the latter can be used to
sample the path more efficiently

Here, we are interested in equilibrium time correlation
functions that determine the linear response properties of the
system. A time correlation involving the observables A at time
t and B at time ¢t = 0 is the equilibrium average of the product
of the operators A(t) = /" Ae="/% and B(0) = B, which
we can write as,

A(1)B(0)) = %Tr[ A()B(0)e PH). (6)

Obviously, the splitting method could be applied to the oper-
ators exp(itH /). Unfortunately, the statistical weight asso-
ciated with the resulting path is imaginary, and therefore it is
not suitable for usual sampling methods. If, however, the real
time ¢ is replaced by an imaginary time ¢ = iTh, we can write,

Cap(t/h) =

1 R A A ~
CAB(iT) = mTr[Ae_THBe_(B_T)H}

1
= —— [ dxdx'dyady’
Z(ﬁ)/
(XIAX)p (X", Y, ) (Y|BY)p(Y',X,B—1), (T)

which is defined for 0 < 7 < 3, and verifies Cap(it) =
Cpa(i(B — 7).

Partitioning again the interval [0, B] into M slices of width
At = B/M, the correlation function can be sampled for dis-
crete values of 7 of the form 7, = kAT, withk=0...M — 1, at
a computational cost that is similar to that needed to calculate
the thermodynamic observables of Eq. (4), obtaining

1 N
Cani%) = 7755 / AXdYdX, ...dXy (X|A|X))p (X1, X2, AT)...

P (Xk_1, X6, AT)(Xi|B|Y)p (Y, Xp 1 1,AT)...0(Xar, X, AT).  (8)

As in Eq. (4), here the sampling must be performed over the
{Xi...Xu} coordinates of the path, the X and ¥ variables be-
ing eliminated by the §-functions contained in the matrix ele-
ments of A and B.

I1l. A STATISTICAL APPROACH TO THE INVERSION
PROBLEM

Once the imaginary time correlations, denoted by C(7)
from now on, have been obtained for a set of M discrete val-
ues {7p...Ty—1 } in the interval [0, ], the real time correlation
functions relevant to describe the system physical response
can, in principle, be obtained by inverting Eq. (2). This is
common to many studies of quantum systems, and generally
described as the "analytical continuation" procedure. It is,
however, ill-posed, in the sense that if the spectrum S(®)
is described by a set of parameters (such as the values of S on
a discrete w-grid, or the coefficients of an expansion in terms

of some basis set), and the C(7;) are affected by statistical er-
rors, a very large number of solutions for S compatible with
the original data will be found.

This topic is the subject of a vast literature, and it is fair to
conclude that no single method emerges as a preferred solu-
tion. Generally speaking, most current solutions employ some
particular version of a "maximum entropy" approach ~~". In
the context of PIMC and to obtain real time data in combina-
tion with real time approximate methods, this procedure was
used for instance in Refs.”"~". The spectral function, Syg,
is therefore obtained as an average over the possible S(®)’s
(defined by some finite set of parameters), weighted by the
proba;)ility that they are the exact model given the data set
(C,0%),

S(©)ur = / 95 p(S|C,6%)S(w). )

Here 2S5 indicates the phase space element associated with the
parametrization of S(), C = (C(11),C(1),...,C(ty))" =
(C1,C,...Cy)T" is a line vector that contains the data points,
and o2 describes the statistical uncertainty of these data in the
form of a covariance matrix. By using the Bayes formula, one
has,

p(C,02|S)

p(S|C,C72)= p(C.02)

p(S), (10)

where p(S) encompasses any prior information on the spec-
trum.Making the assumption of Gaussian statistics for the
likelihood we can write,

p(C|S, o) o o~ 2(C=CIs))(c?) " (C—Cls]) _ e—%lz[s]’ (an
which we can interpret as the definition of y2[S]. Here C[S] is
the expression of the vector C, obtained by inserting a known
spectrum S into the r.h.s. of Eq. (2) and computing the result-
ing M correlation values. In the case of a spectrum defined by
the amplitudes A(w,) for a set of Ny, discrete frequencies on
a regular grid, using Eq. (2) we obtain,

CIS](va) = Y. A(w,) (e %o MB-mlor) - (12
L

In traditional maximum entropy methods, Eq. (9) is solved
at the saddle point level, by minimizing the functional .% =
$22[S] — H[S]. Here, H|[S] is an entropic functional, which
assigns a penalty to irregular solutions that would lead to an
overfitting of the statistical errors contained in the data. For
a positive spectrum, H|[S] is usually chosen as the associated
Shannon entropy, with a coefficient controlling the strength
of the regularisation. In this work we employ the so-called
"stochastic analytical inference" or "stochastic maximum en-
tropy"~’ method, where Eq. (9) is sampled by Monte-Carlo
methods over S, which can be constrained to positive values
of S through the prior probability p(S). (In the case studies de-
scribed below we have employed a flat prior.)The term % 2%[9]
can hence be considered as an effective energy functional, and



the method can be refined by introducing an additional param-
eter in the form of an effective inverse temperature O as,

S(0,0)ur =2(0) ! /@S S(w)e 291 (13)

Here the normalization Z(®) = 1/exp{®F(®)} is an ef-
fective partition function. Note that the traditional maxi-
mum entropy approach corresponds to a mean field version
of Eq. (13), where one uses as an estimate of the spectrum the
minimum of the mean field free energy Fyr(0) = $x2[S] —
©~'H|[S]. In view of the following analysis, we make the sim-
plifying assumption of uncorrelated data points, so that the
covariance matrix is diagonal. As a result, we can write the
energy functional x2[S] in the form,

(14)

with 62(1,) the statistical uncertainty on the data point «.
Several arguments~’ have been evoked for fixing @ = 1. In
contrast, in~’ it has been proposed to pick for ® the value ®*
that maximizes Z(®), which is argued to also maximize the
posterior probability P(6|C). This possibility, which corre-
sponds to a balance between energy and entropy dominated
solutions, requires however a full free energy calculation. We
further note that increasing the value of ® is effectively equiv-
alent to rescaling the uncertainties on the data points, a proce-
dure that may lead to overfitting. The corresponding effect on
our validation procedure is discussed in Sect. V B.

At variance with these proposals, we optimize the value
of ® employing the following strategy. An initial data set,
C(7y), is generated with known statistical uncertainty 62(ty)
by using, for instance, a path integral simulation of the con-
sidered model. In cases were C(7) is known analytically, syn-
thetic data could also be generated from the exact solution,
and introducing a controlled uncertainty. Starting from these
data, the spectrum Syg(®), described by P degrees of free-
dom A(w,), is obtained through a Monte-Carlo sampling of
Eq. (13) for a given value of ®. Note that a well converged
Monte-Carlo average will lead to a spectrum Syz(®) with an
associated Y% ~ € (Meg), where € is a residual error, while the
average (x2) ~ O(Me+ P/®). We denote Cg(Ty) the corre-
lation function associated with this average spectrum.

In order to determine the optimal choice of ®, therefore
discriminating among different models for S(®) (e.g., differ-
ent finite discretizations on an @-grid), we combine the maxi-
mum entropy approach with a validation procedure borrowed
from the statistical learning theory~°. We, therefore, generate
P’ new sets of validation data, Cya (7o) (i = 1,...,P’), by us-
ing the same technique (even not necessarily with the same
accuracy) that we use to produce the original data set, and de-
termine the associated,

| PMol
Kot = I Z Y [Co(ta) — Cyal,i(Ta)) (15)

i=1 a=0

Interestingly, this can be interpreted as a measure of the dif-
ference between the estimate Cg (T, ) and the exact correlation

function, denoted by Cexact(7¢ ). Indeed, by writing

1 P M—1 B
x\%al = ﬁ Z{ ZO [C®(Toc) _Cexact(fa) +Cexact(fa) _Cval,i(fa)]zv
i=1 a=
(16)
in the limit of large P’ and assuming that the average over

the validation data returns the exact correlation function, we
obtain

M—1 M—1
Ko = Z [Co(Ta) — Cexact(Ta))* + Z Oo(Ta)-  (17)
a=0 o=0

Here, the first term is the distance of the estimate to the exact
data, while the second is the variance of the validation data
leading to a background value xg independent of ® (or any
other parameter entering the model description).The choice
of ® will therefore be eventually dictated by the behavior of
the first term.

IV. IMPROVED ESTIMATORS FOR CURRENT
CORRELATIONS

The computation of transport coefficients typically implies
correlation functions involving the momentum operator, a pro-
totypical one being C,,,(7) = (p(7)p(0)). In the path integral
approach and within the primitive approximation of Eq. (5),
the momentum operator is expressed as a difference of coordi-
nates, so that the correlation function for 7 # 0 takes the form

2
Cop(T) = — 753 (K1 — xi) (x1 — X0)), where x; = x(1),

and 7, = kAT = k% is proportional to the discretized imag-
inary time. The MC evaluation of C,,(7) is hampered by
the fact that, when A7 gets small, relative fluctuations in
(xi+1 — x;) become large and the variance of the measured ob-
servable grows rapidly (in fact it diverges for AT — 0). As the
uncertainty ;¢ of the MC estimate of an observable A is re-
lated to its variance Gj by Spc o< Ga/+/Tsim, One is therefore
forced to increase the simulation time, T;,, in order to achieve
a given precision.

This problem was identified early in the development of
PIMC, when trying to estimate the atoms kinetic energy,
which is o< C,,(7 = 0). A solution was proposed in’: in-
stead of directly using the above expression for C,,(7x), the
integrals entering the correlation function can be rearranged
obtaining a new estimator for C,,,(7¢), with identical average
but smaller variance. The new expression, known in the case
of the kinetic energy as the "virial estimator"”, does not de-
pend explicitly on A7, and therefore does not suffer from the
diverging variance associated with the "naive" estimator.

We now show that the strategy used to obtain the virial
estimator can be generalized to any correlation function in-
volving the momentum operator Specifically, we con-
sider correlation functions of the general form involved
in calculation of transport coefficients, e. g., Cpr(7) =
((p(7)F(1))s(p(0)F(0))y). Here F(7) is a shorthand notation
for a generic local function F (X (7)), which in the case of heat
transport would be related to the potential energy. The sub-
script s indicates that the operator product, which represents



an observable quantity, is by convention made Hermitian by
symmetrizing the operator, as (pF), = %( pE+Ep).

Within the primitive approximation and following this def-
inition one obtains,

m2
Cpr(T) = _m«xk—&-l —x)F (xg ) (x1 —x0)F (x0))
+ (et =X F () F (x0)) -
(= 30)F(x0)F () = 3 (F/ () F (). (19

This expression is valid for k > 1, while the case kK = 0 must
be treated separately, along similar lines.

The MC calculation of Eq. (18) suffers from the same nu-
merical problem as the momentum correlations, the variance
of the leading term in 1/A7 diverging as AT approaches zero.
In order to improve the estimator, we have generalized the
procedure originally used for the kinetic energy calculations
(Cpp(0)), and obtain a new estimator with reduced variance
for general correlation functions. We start from the first term
in Eq. (18), which has the strongest dependence on At, and
can be expressed as,

m2

m(F(xk)(XkH —xx)F (x0) (x1 —x0)) =

e
:m/dxo/dxl'"/dxMF(xk)(ka—Xk)F(xo)(xl—xo)

)

M
V(x;)
=0

po(x1 —xo;Ar) .. .po(xM —xM_l;AT) exp [—AT

19)

. 2
where po(x —y;AT) = (x|e 2™K|y) ~ exp{—m (;h;yA)T }.We now

transform the set of coordinates {xg,x;} to {xo,y;}, such that
¥i = Xi+1 —X;. The constraint x3; = x¢ is accounted for by

introducing a term & (X' y;), leading to

2
m
m(F(xk)(ka —x;)F (x0)(x1 — x0)) =
m2 . M—1 k—1
:7d/d -~-/d 16 | F +
h2m2z/ xo [ dyo-- [ dym-1 i;o)’z i;yl X0
YiF (x0)yopo(y0; AT) ... po(ym—1;AT) exp[-ATW], (20)
with
M-1 J
W=Y V|Yyi+x]. 1)
=0 \i=0
By using the identity:
m
——ykPo(Vk: AT) = =0y, po(yk, AT), (22)

hAT

we can integrate by parts for the integration over y;. Our next
step is based on the observation that the derivative of the &
function w. 1. t. to yo can be distributed over all coordinates,

ie., 0,8 (Lyj) = 2 Lidy8(Ly;). A second integration by
parts over each of the y; variables eventually leads to

2
W<F(xk)(xk+1 —xx)F (x0)(x1 —x0)) =
m 1M—1./.7M—1 e B
<hF(Xk)(X1 —x0)F (x0) i ,=Z1 iV'(xj) j:kZHV (x}) >
B (hZfM) <F/(xk)(x1 _xO)F(xO)> - ﬁ(F(xk)F(xo))

(23)

For the special case F(x) = 1, we can show that Eq. (23) re-
duces to a virial-like formula for the momenta correlations
Cop(T) = (xxV'(x0)) (see App. A). Repeating the procedure
for the terms linear in ﬁ, such as the second term in Eq. (23),
we can write the correlation in a form that apparently does
not depend on ATt (recall that MAT = 3 is a constant). The
calculations, together with the expressions appropriate for the
special case k = 0, are sketched in App. A.

In contrast with the initial expression Eq. (18), all terms are
now well-defined as AT — 0. We note, however, that the num-
ber of terms involved in the first part of Eq. (23) increases lin-
early with M = /A7, so that the gain following our manipu-
lation is not immediately obvious. The argument that Eq. (23)
indeed leads to a variance reduction is the following: If all the
M contributions to the first term were independent, its vari-
ance would scale as AT x M, where AT comes from the term
(]x1 = x0l), and the factor M accounts for the M contributions
in the sum. As the segments in the path are correlated, even
if this estimate is only approximate it still indicates that the
variance remains finite even for AT — 0. We explicitly verify
the variance reduction numerically for the harmonic oscillator
in the following section.

We conclude this Section by emphasizing that the above
derivation to improve generic estimators that involve momen-
tum operators is by no means limited to the harmonic oscilla-
tor, but remains valid in general, in particular for the case of
interacting particles. Also, note that the derivation of the im-
proved estimator can be adapted beyond the use of the prim-
itive approximation’’. Similar refinements can be expected
to work when employing improved actions, as well as within
improved sampling schemes, e.g., PIMD methods based on
staging or normal modes”’, as the variance of the estimator is
entirely determined by the analytical form of the kinetic en-
ergy part of the action.

V. CASE STUDY I: THE SINGLE HARMONIC
OSCILLATOR

A. Computing correlation functions

We now apply the methods described above to our test
cases. We start by considering the canonical example
of a single quantum harmonic oscillator of frequency @y
in one dimension, with potential energy V = %ma)ng,
and focus on the time correlation function of an operator



with the structure of an energy current, e. g., Cpy(T) =
{((p(7)V(1))s(p(0)V(0))s). Note that, while the case of the
harmonic oscillator could be considered as oversimplified,
this choice of observables already leads to a non trivial struc-
ture of the correlation functions. Additional examples involv-
ing a continuous distribution of frequencies and a strongly an-
harmonic system are treated in Sect. VI and App. D, respec-
tively.

The PIMC approach within the primitive approximation al-
lows us to extract the values of the imaginary time correlation
function Cpy (7¢), at M discrete time values, 7, = (k— 1) /M.
Two main sources of inaccuracy are associated to this proce-
dure: a systematic error, associated with the use of the prim-
itive approximation for the density matrix, and the statistical
uncertainty due to finite sampling. In the following we show
how to control these issues.

For an harmonic oscillator, the systematic deviation due to
the discretization of the imaginary time AT = /M can be
assessed directly, by comparing the result expected from the
PIMC approach (which in this case can be obtained exactly)
with the analytical expression for the correlation function
Cpv(7), which corresponds to the continuous limit M — oo,
By applying the canonical formalism for the harmonic oscil-
lator, we indeed obtain,

mh o 1
Cexact ) = 0 %
(T ( 256 >sinh3(hﬁw0/2)
{IZCosh (3;&[;(90 _ 3ha)or>

h
+2 (4e_hﬁ“’° +e By 1) "B cogh <ﬁ2600 — ha)()‘L')] )
(24)

In order to calculate the exact expression of the correlation
function within the primitive approximation of the discretized
path integral, we first note that all the integrals involved in the
calculation are Gaussian. By using the discretized representa-
tion for the momentum operator, one writes C,y (7) as a ther-
modynamic average of products of the variables x. Wick’s the-
orem allows to recast such correlations (xj ...xs,) into prod-
ucts of pair correlation functions (x;x;) which are easily ac-

cessible as (x;x;) = Al-;l. A is a symmetric M x M matrix,

and we can write, (xx;) = [dXxixje X A%, We can there-
fore use numerical methods to calculate the matrix elements,
as discussed in App. B. The relative difference between the
two calculations is illustrated in Fig. 1. We observe that, for a
sufficiently small value of /M, the deviation is virtually not
affected by a change of 3.

In addition to this quantitative estimate, it is important to
note that, for this system, the discretization preserves the qual-
itative shape of the correlation functions. One can show (see
App. C) that the calculation using a finite but large M cor-
responds to the exact result (M — oo) for slightly shifted os-
cillator strength and inverse temperature. The Trotter error
therefore only introduces small quantitative deviations in the
spectral density, but does not give rise to spurious qualitative
features such as a broadening of the spectral lines.
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FIG. 1. Relative discretization error, 1 —CE‘I/(T) C;"‘,ac‘(r), between
the path integral, CE{,(T), and the exact results, C;’{,"‘C‘(r), for the
energy current correlation function, as a function of i3 /M. We
show the data corresponding to the imaginary times 7 =0 and 7 =
B/2, and indicate with symbols and solid lines the results for 7§ =3
and 10, respectively.

Also, our case studies below are performed by employ-
ing an imaginary time discretization T = /M = 0.01w, ', a
choice primarily dictated by the need to control the error asso-
ciated to the primitive approximation. It also limits, however,
the resolution of the imaginary time correlation function and,
consequently, that of the reconstructed spectral function, espe-
cially at high frequencies. We will comment below how this
potential bias can be addressed within the verification process.
In general, since the high frequency asymptotics is governed
by sum rules, it is often most conveniently dealt with by com-
puting leading terms of the short time Taylor expansion.

We next focus on the second source of error affecting the
PIMC calculation: limited sampling. Indeed, error bars cor-

—— naive estimator

—— improved estimator
0.2

i ch) A;\, DL oy M\HM |
£ ST

FIG. 2. Difference between the exact correlation function C;’{,"‘C‘(T)
and the values obtained by Monte Carlo sampling, CE/{,C (1), of a path
with M = 100 time slices, for liwyB = 1, illustrating the variance
reduction obtained by the improved estimator discussed in Sect. IV.
We show with line-points the primitive estimator and with the contin-
uous line the improved estimator, both using the same Monte Carlo
data.
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FIG. 3. Reconstruction of the spectral function associated to Cpy ()
at 3 = 10 corresponding to the indicated values for the number of
delta functions in the model, Ny, and effective temperature ® = 1.
The area of the filled rectangles indicate the weight of the two delta-
functions of the exact spectrum centered at w; = 1 and w, = 3, cor-
responding to the A@w = 1 discretization. As indicated in the text, we
set wg = 1.

responding to average values are obtained by estimating the
variance of the observable, which decreases as -1/ 2, with

Tsim the simulation time. For a given Tg,, the qu;iri?y of the
result therefore crucially depends on the variance of the es-
timator. We illustrate this point in Fig.2, by comparing cal-
culations for the energy current correlation function, Cpy, us-
ing the naive estimator, Eq. (18), and the improved version of
Eq. (23). The data of Fig. 2 clearly show that the virial es-
timator leads to a spectacular improvement compared to the
naive one, with a statistical error that is now comparable to
the systematic one resulting from the discretization.
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FIG. 4. Reconstructed spectra for the energy current correlation

function Cpy (7) at B = 10, with Ny = 25 and at the indicated values
of ®. The filled rectangles are centered at the positions of the two
delta-functions of the exact spectrum, with an area corresponding to
their respective weights.
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FIG. 5. Ng-dependence of Ax&a] = xvzal — xg extracted from the

validation step of the reconstructed spectral functions for Cpy (7), at
B =10 and with ® = 1. Squares and triangles correspond to shifted
grids, at the indicated values of Ny and d®. The value of xg cor-
responds to x\iﬂ for Ny =5 and ® = 50 (see Fig. 6, for a better
comparison all values were shifted by 10~).

B. The inversion problem

We now use the reconstruction procedure outlined in
Sect. III to extract the frequency spectrum for the correlation
functions obtained in Sect. V A. In order to perform a recon-
struction one needs both to define the set of parameters that
expresses the spectral density in Eq. (12) and in the integration
measure of Eq. (13), and to chose the effective inverse temper-
ature ®. (To simplify the notation in the considered examples,
we set Wy = m = i = 1.)In the following, we use a discretized
model of the spectral density, which is described as a sum of
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FIG. 6. Main panel: Comparison of the x&a] obtained from our val-
idation of the reconstructed spectral function for various values of
® and N, for C,y () at B = 10. The area of the circles is propor-
tional to the corresponding value of x&al. Inset: Axvzal = x&al — x&
as a function of the effective temperature @, at the indicated values
of Ng. The value of %(% corresponds to szal for Ny = 5 and © = 50.

For the purpose of a better representation, all values were shifted by
107>,
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FIG. 7.  Spectral reconstruction for Cpy(7) at B = 3, obtained at

the indicated values of the discretization, Ny, for a fixed ® = 1.
The filled rectangles are centered at the positions of the two delta-
functions of the exact spectrum for Aw = 1, with an area correspond-
ing to their respective weights.

Ny, delta-functions in the w-space, see Eq. (9). Specifically,
we consider a regular grid of @-values defined on the interval
[0,5], with a fixed spacing between points, A® = 5/Ny. In
addition, we will consider the possibility of a global shift of
the grid by d® < Aw. Unless specified otherwise, o = 0,
and we fix the origin of the grid in @ = 0.

The exact expression for the time correlation function,
Eq. (24), implies that Cpy () decays exponentially with T in
the interval [0, 8/2], with a decay rate &/(1). Larger values
of B therefore lead to a larger amplitude in the decay, with
the consequence that the contribution of different frequencies
can be more easily resolved for larger f8’s. In short, a correla-
tion function of the form [exp(—7) + exp(—37)] will be hard
to distinguish from 2exp(—27) if data are only available in
the interval [0, 1]. Resolving the two frequencies ®; = 1 and
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FIG. 8. Spectral reconstructions from Cpy (7) at B =3 for Ny =5
using different values of ®@. The filled rectangles are centered at the
positions of the two delta-functions of the exact spectrum, with an
area corresponding to their respective weights.
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FIG. 9. Main panel: x&al from the validation procedure of the re-
constructed spectral function at the corresponding values ® and Ny
for C,y () at B = 3. The area of the circles is proportional to the
value of xgal. Inset: Axfal = xvzal — %(% as a function of the effective
temperature ®, at the indicated values of Ny. The value of xg cor-
responds to szal for Ny =5 and ® = 40. For the purpose of a better
representation all values were shifted by 1072,

o, = 3 is therefore essentially impossible if /2 < 1.

In order to illustrate this point, we calculate and analyze the
spectral function for the energy current correlation functions
at the two inverse temperatures 3 = 3 and 10, with an imagi-
nary time discretization AT = 0.1. With this value of Az, the
systematic discretization error is smaller than the statistical er-
ror for our simulation time, so it can be safely neglected. The
main constraint for the reconstruction comes from the imag-
inary time interval [0,1]. The relative error of the MC data
corresponding to these values of 7 is of ¢/(10~2). For larger
7 the relative error becomes comparable with the data due to
the fact that C,y (7) approaches 0 with 7 — f3/2.

We start by considering the case § = 10. First, we evalu-
ate the effect of the grid size, Ny, on the reconstruction. In
Fig. 3 we show the spectra obtained for various values of Ny,
keeping a fixed ® = 1. As mentioned above, there is no a-
priori argument guiding the most appropriate parametrization
of the spectrum. In the following we analyze the accuracy
of the spectral reconstruction by comparing the values of szal
defined in Eq. (15), using an independent test data set. This
is obtained within an additional MC simulation of the corre-
lation function, with the same parameters as the original one.
We also consider a data set of the same size, P’, as the one that
was used to produce Cpy (k).

In Fig. 5 we show xfal as a function of the number of grid
points. Clearly, increasing the number of coefficients A(@;)
of Eq. (9) does not lead to a better spectral reconstruction.
In contrast, by introducing more degrees of freedom, one in-
creases the entropy, and the spectral weight is smeared out
excessively. In Fig. 5 we also show the effect on 2, of a shift
dw. As expected, shifting the nodes away from ®; = 1 and
a» = 3, which are the only frequencies present in the exact
spectrum determined by Eq. (24), deteriorates the accuracy of
the spectrum obtained through the validation step.
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FIG. 10.  Spectral reconstruction of C;‘\’,m(r) for the continuous

distribution of oscillator frequencies, at the indicated values of the
discretization Ny, at fixed ® = 1. The shaded area indicates the exact
spectral function.

The second parameter determining the quality of the sta-
tistical maximum entropy reconstruction is the effective tem-
perature, ®. In Fig. 4 we show the behaviour of the spectral
function for a chosen w-grid at the indicated values of ®. As
expected from Eq. (9), by increasing ® the result approaches
the most probable configuration that describes the correla-
tion function Cpy(7), reducing entropic effects. In Fig. 6
we combine the above results for different pairs of parame-
ters (O, Ny), and plot the corresponding szal- Our valida-
tion procedure therefore strongly points to using models with
a smaller number of delta functions combined with large val-
ues of ® > 1 for the spectral reconstruction. Based on the
comparison with the exact spectrum, this choice is also clearly
the one that leads to the description of the spectrum in closest
agreement with the exact prediction. We conclude that the use
of szal indeed seems to provide an unbiased estimate of the
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FIG. 11.  Spectral reconstruction of Cc“)/m( 2) for the continuous

distribution of oscillators, for N,y = 10 and ® = 1 and 10, respec-
tively. Here we compare the results pertaining to a grid shifted by
6w = 0.25 to those with 6w = 0, the usual (not shifted) case. The
shaded area indicates the exact spectral function.
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FIG. 12. Main panel: X3a1 from the validation procedure of spectral
function at the corresponding values ® and Ny, for Cf,“’,m(r). The
area of the circles is proportional to the value of x&al. Purple circles
correspond to the results for an @-grid shifted by d @ = Aw/2. Inset:
Ax&al = x&al — x& as a function of the effective temperature ®, at the
indicated values of Ng. The value of X(% corresponds to x&al for a
shifted grid with Ny = 10 and ® = 6. For the purpose of a better
representation all values were shifted by 1074,

quality of the reconstruction.

We now consider the spectral reconstruction for Cpy (7) at
B = 3, again clarifying the influence of ® and of the lattice
discretization Ng. In Figs. 7 and 8 we show selected exam-
ples of the resulting spectra. In contrast to the case 8 = 10,
we now observe in general a much stronger broadening of the
peaks, which prevents us from resolving the two peak struc-
ture for ® = 1, even for sparse w-grids. However, when com-
bining sparse grids with sufficiently large ® in the inversion,
one improves towards the correct two peaks structure, as can
be seen in Fig. 8. The data shown in Fig. 9 also indicate that
this choice indeed corresponds to the lowest values of 2,
confirming the validity of this indicator. We also note that, for
large ®, the values of %3;11 tend to exhibit a minimum or weak
oscillations, that are probably indicative of overfitting. As a
consequence, considering larger values of ® does not further
improve the result.

We conclude the above discussion by observing that in this
Section the spectral reconstruction has been based on dis-
cretized imaginary time correlation functions. For conve-
nience, the discretization usually coincides with the imaginary
time step controlling the Trotter error of the path integral. In
order to estimate the influence and potential bias of the dis-
cretization on the spectral reconstruction, one can perform the
verification step involving subsets of C’(17;) at no additional
cost. For the test case of the double well potential discussed
in App. D, we have investigated this point explicitly. In partic-
ular, we have observed that the verification is not qualitatively
affected by the change of data discretization for a reasonable
range of A7, apart from a shift of the minimum in @.



VI. CASE STUDY II: CONTINUUM DISTRIBUTION OF
OSCILLATORS

We now move to our second test model, and study the po-
tential energy current correlation function of a system contain-
ing a large number of independent, non interacting harmonic
oscillators. Considering the Cp,y of Eq. (24) as a function of
@y, the correlation function for an ensemble of oscillators with
a continuum of frequencies can be written as,

Ocut .
G = [ do G (mans(@). @9

The form of the density of states, g(ay), and the value of the
frequency cutoff, @, are arbitrary. In the following we con-
sider a Debye-like g(@y) o< a)g, with @, = 1, and fix § = 10.
With this choice, the exact spectrum for the energy current
correlation is a superposition of two functions with a com-
pact support, assuming non zero values in the range [0, /]
and [0,3m,,], respectively. As a result, it will display two
sharp discontinuities, at ®.,; and 3@, respectively. Con-
trary to the single oscillator case, here we do not generate the
data by Monte Carlo simulation, but we rather employ the
exact analytical expression, subsequently adding a Gaussian
random noise with a variance proportional to the data them-
selves, o, = 1072 x Cov' (7). This variance is also used as

the uncertainty to compute the y> of Eq. (14).

By following the same workflow discussed above for the
single oscillator, we reconstruct the spectral densities for dif-
ferent values of ® and number of delta functions in the model,
Ng. In Fig. 10, we show the influence of the discretization
Ny by fixing the canonical value ® = 1. Following the same
procedure as above, we calculate again x2, for the valida-
tion set by generating test correlation function from the ex-
act result of Eq. (25), with the same variance o;. The values
of x2,. shown in Fig. 12, indicate again a more statistically
sound reconstruction corresponding to sparse grids. Unfortu-
nately, none of the curves of Fig. 10, convincingly captures the
sharp edges of the exact spectral density, which rather resem-
ble two symmetrically broadened peaks. Considering shifted
grids (Fig. 11), however, as also quantitatively supported by
the validation procedure, results in contrast in more asym-
metric features, clearly improving the reconstruction towards
the exact spectrum. Note, however, that employing sparse ®-
grids considerably limits frequency resolution, so that the re-
construction in the case of the continuous spectrum with its
sharp discontinuities remains quite difficult.

VII. DISCUSSION AND CONCLUSIONS

Here, we have examined the reconstruction of spectral
functions for transport coefficients, starting from imaginary
time correlation functions obtained by path integral Monte
Carlo simulations. In particular, we have described a general
strategy for wisely expressing improved estimators with re-
duced statistical variance for imaginary time correlation func-
tions involving current or momentum operators. We have next
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introduced an inversion procedure based on a stochastic max-
imum entropy method, a Bayesian approach commonly used
for such problems. The outcome of these procedures is, in
general, strongly dependent on the involved parameters, as we
have illustrated in the case of the harmonic oscillator spectra
employing different values for the effective inverse tempera-
ture, ®, as well as different choices for the grid discretization,
Ny, or offset, @. Despite their apparent simplicity, the oscil-
lator models studied here provide challenging benchmarks for
the spectral reconstruction due to the sharp undamped delta-
functions they contain.

Pure Bayesian approaches suggest to eliminate the param-
eters dependence by using a flat prior with the most general
and flexible model for the spectral density, e. g., a large value
for Ny, together with ® = 1 to encompass all possible solu-
tions consistent with the data. In contrast, in our case studies
we have shown that the spectra corresponding to these stan-
dard choices exceedingly suffer from the usual problems of
all maximum entropy reconstructions: broadening or merging
of peaks, smoothing out any sharp features in the underlying
exact spectrum.

Indeed, in practice, path integral Monte Carlo data are
strongly correlated in imaginary time, undermining a true
justification of the Bayesian choice ® = 1. Different val-
ues of ® may therefore be considered to efficiently approx-
imate the true, unknown likelihood function. On the other
hand, the use of flexible models for the spectral function, con-
taining a large number of parameters, possibly introduces a
large amount of entropy into the Bayesian inversion, such that
different parametrizations (linear or logarithmic grids in re-
gions where spectral densities are flat, for instance) in general
strongly modify the results. The representation of a model
must therefore be considered itself as a "parameter”, making
illusory in our view a "parameter-free" Bayesian inversion.

In this paper we have addressed exactly the above difficul-
ties, and developed a validation procedure to quantitatively
control any parameter dependence of the Bayesian inversion.
Our proposal is based on the quantity xiﬂ constructed from
independent data not involved in the maximum entropy in-
version, which provides an efficient and readily applicable
method to select the optimal choice of parameters, corre-
sponding to the lowest value of xfal.

We have shown explicitly that the new validation step
clearly identifies a discrete set of two delta functions in the
case study of the single harmonic oscillator, and provides un-
ambiguous indications towards the correct asymmetric sharp
edges in the case of an underlying continuous frequency spec-
trum. In the case of the double well potential discussed in
App. D, we demonstrate the utility of sparse frequency grids
for describing discrete spectral functions. Furthermore, this
example provides a possible recipe for reliable calculation of a
general discrete spectrum - using sufficiently sparse grids and
varying (non uniformly) the spacing between nodes to achieve
an optimal reconstruction validated by the x2,. In all cases,
our validation procedure eventually selects models containing
just a limited number of parameters, which intrinsically limits
the resolution of the reconstruction.

Overall, combining in a consistent workflow Bayesian in-



version together with an efficient validation procedure able
to select model parameters and effective temperature depen-
dence, indeed seems to offer promising perspectives for cap-
turing qualitative and quantitative features in spectral recon-
struction. We also stress that it is straightforward to integrate
the proposed validation step in any existing flavor of max-
imum entropy reconstruction, possibly including additional
prior information in the model~~. In addition, the validation
also provides an objective comparison of the reconstructed
spectra with approximated ones, e.g., those obtained from the
real-time centroid dynamics

We conclude by noting that the Green-Kubo method, com-
bined with the harmonic theory of solids and a numerical per-
turbative treatment of anharmonic effects, has recently proven
to be remarkably effective for the determination of heat con-
ductivity at low temperature in systems such as amorphous
silicon”"~’~. Our hope is to extend those works to arbitrary
temperatures and stronger anharmonic effects, on one hand
employing path integrals to relax the assumptions underlying
the perturbative treatment of anharmonicity, and on the other
hand using the strategies for the spectral reconstruction devel-
oped in the present paper.
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Appendix A: Complete expression for virial-like estimators

As we mention in Sect. IV, when calculating current-
current correlations one needs to compute products of p and
F. As these quantities involve terms proportional to 1/At?
and 1/At, their variance is quite large. In the same Section,
we have demonstrated how to re-express the first one in order
to obtain a more accurate MC estimator. Quantities that are
linear in 1 /A7 in Eq. (18) for C,r () can be re-written as,

%<F(xk)(xk+l —xi)F' (x0)) =
M—1 , , k , ,
=at| = ¥ (Fe)V/()F (o)) = g (F wOF (o)) +
1 M—1
o7 FO)F (x0) Yo V/(a)) |, (AD)
=1

=
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and,

e F

1 // K=
AL —(F"(x)F Z

—x0)F (x0)) =

1

=AT )F (x0))—

k 1 M—1
—m<FN(xk)F( )>+M<F’(xk)F(xo) l; V' (x)) |-

(A2)

When computing with Eq. (23), we need to keep in mind that
the expression is valid only for 7; # 0. For the case k = 0, we
can apply a similar trick finding the "virial" form,

m2

K AT?

M—1
m / 2
S . / dyo- - / dyyr 18 yi)F (x0)%y050
AT2Z l;) '

Po(y—1:AT) exp(~ATW),  (A3)

((x1 —x0)F (x0)* (x1 — x0)) =

Po(yo;AT)..

where,

M=1
W=Y V(Y yitx). (Ad)
=0 =
By using the relation
2 y0p (i AT) = 3y, (0, A7) (AS)

hAT

we can re-write (A3) as,

mz
R AT2

m M—1
= *m/dxo/d)’O"'/d)’Mfla( Z yi)

i=0

((x1 —x0)F (x0)(x1 — x0)) =

Po(yp—1;AT)exp(—ATW) =

F(x0)*y00y,P0(y0;AT) ..
mel
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By substituting,
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S(Y yi)=—
(E(,)y) M;



we finally obtain,

Fﬂnfrz«xl —x0)F (x0)*(x1 —x0)) =
" " M=
=Gar ~ aaap) (F (0)F (x0)) = - k;) (F (x0)* (x1 —x0)V' ()
" M1
+ m<F(xo)(x1 —x0)F (x0) <j1 V' (x)) +MV/(XO)> )-

(A8)

This expression (a similar argument applies to Eq. (23)) re-
duces to the usual virial formula for the kinetic energy when
F = 1. Indeed, using cyclic invariance along the path, one
obtains (setting for simplicity / and m to unity):

ﬁ«xl —x0)(x1 —x0)) =
1 1 1 1Mol Ml /
:A‘E_A”L'Z\4+M<(M ;)xf)(j;)‘/ (xj))>—<XOV (x0)),

(A9)

By employing the classical virial theorem for the center of
mass of the path, the second and third terms cancel mutually,
and we are left with the usual result for the kinetic energy
estimator.

Appendix B: Exact computation of correlation for the
harmonic oscillator with a discretized path integral

Path integral calculations are usually excessively involved
to evaluate them analytically, even if the naive discretized ver-
sion of the density matrix is used. For the case of a single har-
monic oscillator, however, one can find the result explicitly.
Within this approximation, the partition function, Z;, of the
harmonic oscillator is written as a Gaussian integral,

Zio = [dxe XX, (B1)
where X7 is a short-hand form for the vector
{x0,%1,...,Xp—1}, and we have introduced the matrix,

ab 0 ... b
ba b ...0
A=[0b a ...0 (B2)
with a = ;2—’”1 + mwgr, and b = —%. For a Gaussian weight,

the correlation function (x(#)x(0)) = (x;xo) can obtained as

(xixo) = (A Do,

where A~! is the inverse matrix of A. The formal expression
for the partition function is therefore,

(B3)

M
2

Z = (27)7 [detA] /2.
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In general, the inversion of A is handled by numerical meth-
ods. The diagonal terms, however, can be obtained analyti-
cally in a straightforward manner. Indeed, we can first calcu-
lates the eigenvalues {4} of the matrix A by posing,

Axj=axj+bxj_1+bxjy.
By looking for solutions of the form,
xﬁ.k) _ ezm%

with k € [0,...M — 1], the corresponding eigenvalues are,

2
A% = a4 2bcos (ﬂ:k) ,
M

and the determinant is detA = [[,A(Y). The terms (x7) are
next obtained directly from

1 10
() = M@‘,x?) = Malog(detA) =
e
— — —
=0 mwgﬁ +4m2§—ﬁ sin® (”Mk)
M)2 .

= . (B4

2 .
k=172 M} B +4m£g—ﬁ sin’ (”ﬁk)

Appendix C: Influence of the primitive approximation for the
density matrix on time correlations for the harmonic oscillator

In the case of thehharmonic oscillator, the density matrix,
p(X,Y,7) = (X|e"™|Y) can be computed exactly, obtaining

ma@ ma@

XY=, /—"% _ne
PXYT) =\ | sinh (w7 exp | 4

FEN)}, €
with

f(X,Y) = (X +Y)?tanh <M;T> + (X —Y)?coth <hzm> .

(C2)
Comparing this expression with Eq. (5) specialized to the har-
monic oscillator, we realize that the functional dependence on
X andY is identical for both the exact and the approximate ex-
pressions. As a consequence, a path integral simulation of an
oscillator of frequency @ using the primitive approximation
with an imaginary time step 7, will sample the same configu-
rations as an exact calculation with a frequency @’ and a step
7/, provided that we meet the conditions,

ho' ho't 1 W w212
th =—(1
5 ¢o ( 3 ) ‘L'( + 2 ), (C3)
and,
A ! ! fi 2
ha)/tanh( “;T ) _ “;) L (C4)



o 0.72478
I 1.25495
w3 1.46154
1 1.65143
s 1.80533

TABLE I. Lowest excited states frequency values, @, = E,, — E,_1,
of the spectrum of Cfx(f) for the double well potential.

For a given value of 7@t and h®, these equations have a
unique solution for @" and 7®'7’. As a consequence, a calcu-
lation only involving the configurations sampled by the path
(and not the normalisation of the density matrix) will corre-
spond to the exact result for the shifted frequency @', and in-
verse temperature 8 = Mt’, with a relative shift of &(ho)>.

Appendix D: Spectral function calculation for a double well
potential

In order to illustrate that our discussion is not intrinsically
limited to harmonic oscillators, we examine an additional
classical benchmark example * with strongly anharmonic fea-
tures. Let us consider the Hamiltonian describing a particle
trapped in a double well potential,

. 1
H=" — o+ -y (D1)
m

and we choose o = 1 and Y = 1. We can obtain the energy
spectrum and the correlation functions of interest by numer-
ical diagonalisation of H. In the following we consider the
position correlation function, Cfx(’r) = (£(1)£(0)). The corre-
sponding spectral function can be expressed analytically as,

S(w) = %Ze_ﬁE" [(n|£|m)|*8 (@ — Ep+ E). (D2)

Starting from the exact correlation function, we generate
an extended data set C(7;) with an artificial Gaussian noise of

variance o; = 1073 x Cg(rk). We next employ the calcula-
tion scheme detailed in Sect. 111, and apply the 2, validation
criteria in order to determine the optimal reconstruction. As
discussed in the main text, we are interested in the effect of
the modification of the simulation hyper-parameters on the the
quality of the spectral reconstruction.

As above, we focus in particular on the effective inverse
temperature, ®, the number, Ny, of §-functions considered
in the @-interval [0,5], and the uniform shift, §®. Note that,
contrary to the case of the harmonic oscillator, the spectral
function is now expressed in terms of a set of non-equally-
spaced 8-peaks (see Table I). As a consequence, none of the
nodes of the uniform @-grid we consider in our calculations
coincides with the ;. This is an intentionally non-optimal
choice which, however, allows us to further illustrate impor-
tant features of the reconstruction and associated validation,
and provides hints towards possible improvements.
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We first consider the inverse temperature 3 = 8, and choose
AT = 0.1. At this low temperature, all coefficients at frequen-
cies larger than w; = E| — Ey in Eq.(D2) are suppressed ex-
ponentially, and the spectrum practically consists of a single
O-peak. As for any discrete spectrum, the reconstruction be-
comes quite sensitive to the positions of the frequencies @; if
the grid is sparse. One can therefore study in detail the accu-
racy of the reconstruction when modifying the shift, § @, and
the distance between the grid points. Here, however, we do
not perform such a detailed analysis, and for the sake of illus-
tration we consider only a few different models with a regular
grid shifted by a constant amount.

In Fig. 13 we show the resulting spectral functions at the
indicated values of Ny, and @, while Fig. 14 displays the
corresponding 2. The data for N, = 10 and §® = 0 cor-
respond to values of x&al approximately ten times larger than
those associated with the shifted lattice case, §@® = 0.25, and
have been thus been omitted. If we consider the inaccuracy
in the alignment of the w-grid with the exact peak positions,
it comes as no surprise that the model with N, = 10 and
6 = 0.25 provides a worse reconstruction than what we have
obtained with the non-shifted Ny, = 25 grid, despite visually
resembling more closely the exact spectrum. Reconstruction
of a single peak spectrum is performed essentially with only a
few coefficients A(@;) that are closest to @, and because with
denser grids we have more fitting parameters at our disposal,
it is natural that one obtains a better validation with Ny = 25.

We now consider the more challenging case of the corre-

lation function Cfle at B =1 (calculated with At = 0.02),
whose spectrum displays several peaks (Fig. 15). We per-
form the reconstruction with the same parameters as in the
case above.The use of sparse grids (even inaccurately placed)
proves advantageous in this case. Both models with Ngp=10
perform considerably better than in the previous case, whilst
the shifted lattice shows the best fit among considered models
at ® = 10 (Fig.16). This figure also clearly demonstrates the
effect of the overfitting, which manifests itself in the plot as
the increase of the validation xfal after some value of ® for
each configuration of parameters.

Another practical issue that is interesting to address is the
influence of the imaginary time discretization of the test set
of correlation function. Using sparser data set for calculation
of xfal we do not observe any qualitative effect on the result.
Value of ®, at which the best fit (minimum of X\%al) is achieved,
however, becomes smaller with less test data.
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