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We develop a formalism to accurately account for the renormalization of electronic structure due to quantum
and thermal nuclear motions within the Born-Oppenheimer approximation. We focus on the fundamental
energy gap obtained from electronic addition and removal energies from Quantum Monte Carlo calculations in
either the canonical or grand canonical ensembles. The formalism applies as well to effective single electron
theories such as those based on Density Functional Theory. We show that electronic (Bloch) crystal momentum
can be restored by marginalizing the total electron-ion wave function with respect to the nuclear equilibrium
distribution, and we describe an explicit procedure to establish the band structure of electronic excitations for
quantum crystals within the Born-Oppenheimer approximation. Based on the Kubo-Greenwood equation, we
discuss the effects of nuclear motion on optical conductivity. Our methodology applies to the low temperature
regime where nuclear motion is quantized and in general differs from the semi-classical approximation. We
apply our method to study the electronic structure of C2/c-24 crystalline hydrogen at 200K and 250 GPa and
discuss the optical absorption profile of hydrogen crystal at 200K and carbon diamond at 297K.

I. INTRODUCTION

With increasing computational power, precise Quantum
Monte Carlo (QMC) calculations of electronic properties
in real materials have become affordable1–9. Quantum
Monte Carlo methods naturally extend to solve the full
Schrödinger equation of the coupled electron-ion system at
zero temperature10–12 or at finite temperature within the
Path Integral formalism13–15. For typical temperatures in
condensed matter, the Born-Oppenheimer approximation
can be further used to sample the nuclear distribution ei-
ther within coupled electron ion Monte Carlo (CEIMC)16
or molecular dynamics simulations17,18.
Recently, we studied the effect of nuclear quantum

and thermal motion on the closure of the fundamental
electronic gap in high-pressure solid and liquid hydrogen
within CEIMC19,20. Here, we discuss how the funda-
mental gap and the band structure can be obtained for
quantum and thermal crystals in a fully non-perturbative
approach using QMC based methods. We further propose
a new scheme to effectively include nuclear quantum and
thermal effects on optical properties at low temperature
where the usual semiclassical approximation breaks down.

Standard electronic structure methods based on effec-
tive single electron theories like Density Functional The-
ory (DFT), or many-body perturbation theory (GW),
often assume a weak electron-phonon coupling and
phonons within the harmonic approximation so that
their effects on the electronic structure can be treated
perturbatively21–33, based on the seminal work of Allen,
Heine, and Cordona34–36. Both assumptions37 limit the
predictive power of these methods, especially for systems

of light nuclei, like solid hydrogen38,39 and other molec-
ular crystals40. To go beyond the harmonic limit, one
can employ the self-consistent harmonic approximation
(SCHA), an effective mean field theory based on mini-
mizing a free energy bound with respect to the effective
equilibrium nuclear positions and effective frequencies
within an harmonic ansatz for the nuclear motion. One
characteristic of SCHA is to allow for structural predic-
tions induced by nuclear quantum and thermal effects41,42,
but is intrinsically difficult to improve on further.

Non-perturbative treatment of phonons can be achieved
by path-integral calculations of the nuclear motion within
the Born-Oppenheimer approximation. Path integral
molecular dynamics (PIMD) and Monte Carlo (PIMC)
has been used to study the renormalization of electronic
structure of different materials due to nuclear motion
mainly based on a semiclassical interpretation of the in-
stantaneous Born-Oppenheimer electronic energies of the
nuclear trajectory43–50. In this scheme, nuclear coordi-
nates have been implicitly assumed to be good quantum
numbers for the nuclear motion. However, this is question-
able at low temperatures where quantization of phonons
is important. Here, we will show how to take properly
into account the renormalization of electronic structure
at low temperatures within PIMD and PIMC extending
the discussion anticipated in Ref.19.

Concerning optical properties, ab–initio calculations
based on the Born-Oppenheimer approximation typi-
cally employ the semi-classical William-Lax approach51,52,
where the optical spectra computed at fixed nuclear con-
figuration are averaged over the equilibrium nuclear dis-
tribution. Successfully applied to study optical properties
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of heavier elements53,54, its accuracy for light elements
like hydrogen remains questionable and we will discuss
the minimal changes needed at low temperatures when
nuclear motion is quantized.
The paper is organized as follows. In section II we

discuss the energy gaps and band structure of quantum
crystals in a many-body framework. We first define the
fundamental gap based on electron addition and removal
energies within the BO approximation in the canonical
and grand canonical ensemble. We then show how the
concept of crystal momentum of electronic excitations can
be meaningfully extended to the case of quantum crystals
in a fully non-perturbative way, and finally present some
illustrative results for solid hydrogen at 200 K and 250
GPa. In section III we then study the effects of finite
temperature and zero point nuclear motion on the opti-
cal properties for semiclassical and quantum nuclei and
compute optical absorption of solid hydrogen and carbon
diamond at finite temperature. In section IV we summa-
rize our results. Explicit steps involved in the calculations
of the density of states (DOS) in the grand canonical
ensemble are detailed in the Appendix.

II. ENERGY GAP AND BAND STRUCTURE

In the following we define and discuss single particle
electronic excitation energies focusing on the fundamental
electronic energy gap and the band structure in a quantum
crystal at zero and finite temperatures. We will assume
the validity of the Born-Oppenheimer approximation, a
simplification usually well justified in the description of
condensed-matter. We stress that the formalism equally
applies to many-body and effective single-electron theo-
ries.

A. Canonical ensemble

Let us consider a system with Np protons and Ne
electrons, mutually interacting via the bare Coulomb
interaction. To assure global charge neutrality, a uniform
charge background is added whenever Np 6= Ne. The
canonical partition function at nuclear temperature T =
1/kBβ and volume V can be written as a path-integral

Z(Ne) = e−βF (Ne) =

∫
DR(τ)e−S[R(τ)] (1)

where the action is

S[R(τ)] =

∫ β

0

dτ

[
~2

2M

(
dR(τ)

dτ

)2

+ E0(R(τ), Ne)

]
.

(2)

HereM is the nuclear mass, R the vector of theNp nuclear
coordinates, and E0(R, Ne) denotes the electronic Born-
Oppenheimer potential energy surface (PES) calculated
with Ne electrons. As we will concentrate on situations
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FIG. 1: Histogram of the distribution of energy needed to
add two electrons to C2/c-24 solid hydrogen at 200 K and

248 GPa compared with a normal distribution.

where we only vary the number of electrons Ne keeping
V , T , and NP constant, we do not explicitly write out
the dependence on these latter variables.
Within CEIMC calculations the imaginary time dis-

cretized path-integral is typically calculated for the un-
doped situation, Ne = Np, and the free energy difference
can be obtained from

Z(Ne)

Z(Np)
= e−β[F (Ne)−F (Np)] =

〈
e−

∫ β
0
dτδE0(R(τ),Ne)

〉
(3)

where δE0(R, Ne) = E0(R, Ne) − E0(R, Np) and 〈· · · 〉
denotes the averaging over the undoped sample, Ne = Np.

For small doping, |Ne−Np| � Np, the potential energy
surface should only be slightly perturbed, |δE0(R, Ne)| �
|E0(R, Np)|, and we may use the cumulant expansion (see
Fig. 1), which gives

F (Ne)− F (Np) = 〈δE0(R(0), Ne)〉 −
σ2(Ne)

2
(4)

σ2(Ne) =

∫ β

0

dτ〈δE0(R(τ), Ne)δE0(R(0), Ne)〉c (5)

where 〈. . . 〉c indicates the centered cumulant. Having the
form of a static response function, σ2(Ne) describes the
leading order changes of the adding/removal energies due
to the electronically doped potential energy surface.
Adding (or removing) a single electron, we obtain the

chemical potential from the free energy differences

µ± = F (Np ± 1)− F (Np). (6)

A gap with respect to electronic doping, ∆ = µ+ − µ−,
can be determined from thermodynamics.

Time-correlations of electron addition/removal energies
described by σ2(Np ± 1) contribute with opposite sign to
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the gap and are expected to largely cancel each other,

∆ ' 〈δE0(Np + 1)〉 − 〈δE0(Np − 1)〉 (7)

so that the gap is entirely determined by the electronic
addition and removal energies, as intuitively expected.

B. Grand canonical ensemble

In the grand canonical ensemble, instead of the elec-
tronic density, the (electronic) chemical potential µ is
the independent variable. Since the integrated density
of states is given by the density as a function µ, a non-
vanishing gap implies a vanishing of the density of states
in the region µ− < µ < µ+.

The use of twist averaged boundary conditions provides
an efficient strategy to reduce the finite size effects that
result from the discrete nature of filling single particle
orbitals55–59. In the following we describe its use in the
grand canonical approach of calculating the fundamental
gap7,19.

Expressed in terms of the canonical partition function
Z(Ne, θ), the grand canonical partition function is

Zgc(µ, θ) =
∑
Ne

eβµNeZ(Ne, θ)

=
∑
Ne

e−β(F (Ne,θ)−µNe) (8)

where we have explicitly added the dependence on the
twist angle θ imposed on the boundary conditions of the
electronic wave functions.
Consistent with the BO approximation, we address

situations where the temperature is much less than the
electronic excitation energy, so that in equilibrium one
maximises the exponent in Eq. (8)

−T logZgc(µ, θ) = minNe [F (Ne, θ)− µNe] (9)

≡ F (Nθ
e , θ)− µNθ

e (10)

where Nθ
e denotes the number of electrons which mini-

mizes the r.h.s. of Eq. (9). Although not explicitly indi-
cated, let us stress that the finite temperature effects of
the nuclear motion are still contained in the temperature
dependence of F (Nθ

e , θ).
Neglecting modifications of the potential energy surface

due to doping, e.g. σ2 in the free energy differences
Eq. (4) as discussed previously, Nθ

e can be determined
by replacing the free energy F (Ne, θ) with the electronic
energy E(Ne, θ) in the minimization Eq. (9).

To reduce finite size effects, different independent calcu-
lations are performed over a dense grid of M twist angles

and the results are then averaged,

f(µ) =
1

MV

∑
θ

F (Nθ
e , θ) (11)

ne(µ) =
1

MV

∑
θ

Nθ
e (12)

e(µ) =
1

MV

∑
θ

E0(Nθ
e , θ) (13)

In the independent particle approximation, the free energy,
the internal energy and electronic densities, f , e, and
ne respectively, exactly agree with those obtained in a
supercell of volumeMV . In a many body theory, however,
size effects due to correlations of two or more electrons
must be addressed differently7,56,58.
A gap in the many-particle density of states for µ− <

µ < µ+ then implies a vanishing slope in fundamental
thermodynamic properties (f(µ), ne(µ), e(µ)) as a func-
tion of µ in this region. The value of the gap

∆ = µ+ − µ− (14)

can be directly read off from the flat region in the plot of
these functions.
We stress that the calculation of the thermodynamic

potentials involves the average over nuclear configurations.
This average should always be done before determining
the fundamental gap. Hence the correct value of the fun-
damental gap is, in general, different (larger) than the
result obtained by determining the gap from the minimum
value of electronic excitation energies with respect to all
nuclear configurations in a simulation run. The result
of the latter procedure, which we call the “semiclassical
approximation”, may be justified when analysing spectro-
scopic quantities but does not necessarily represent the
thermodynamic gap.

C. Electronic band structure in quantum crystals

Within effective single particle theories, the electronic
structure of perfect crystals is conveniently described by
discussing the resulting band structure of the electronic
excitation energies as a function of their Bloch wave vector.
Since the Bloch wave vector characterizes the symmetry
properties of the underlying nuclear crystal, electronic
addition and removal energies of a perfect crystal can
still be labelled by its quasi-momentum also within a
many-electron description60,61.

In the following we discuss the extension of the concept
of quasi-momentum to the case of quantum crystals, where
the nuclear positions fluctuate around their perfect crystal
lattice sites, R0, with zero point quantum and/or thermal
nuclear motion.
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1. Harmonic approximation

Let us first consider the case of small nuclear fluctu-
ations around the lattice sites, such that the harmonic
approximation can be used. Treating the electron-ion in-
teraction as a weak perturbation, the αth electronic wave
function Φα(r|R) for a given (fixed) nuclear configuration
R is given in first order in perturbation theory as

Φa(r|R) ' ΦR0

k0 (r) +
∑
qm

′ (R−R0) ·Aqm
k0

ER0

k0 − E
R0
qm

ΦR0
qm(r).(15)

Here, ΦR0

kn (r) ≡ 〈r|ΦR0

kn 〉 denotes the electronic (ground
state) wave function the perfect crystal, characterized by
a (total) quasi-momentum k and a band index n = 0. r
represents all electronic coordinates. With nuclear dis-
placements, Φ(r|R) will have contributions from electronic
excited states (qm) 6= (k0) of the periodic Hamiltonian,
and Aqm

k0 = ∇R〈ΦR0
qm|H|Φ

R0

k0 〉 denotes the matrix ele-
ments evaluated at R = R0. Only the electron-nuclear
interaction in the HamiltonianH contribute to this matrix
elements.
Integrating Eq (15) over the distribution nuclear fluc-

tuations with 〈R − R0〉 = 0, e.g. zero-point or thermal
fluctuations, the contribution of electronic excited states
drops out:

〈Φα(r|R)〉 = φR0

k0 (r). (16)

The symmetry of the perfect crystal is thus restored, and,
at least in the harmonic approximation, we can character-
ize the αth electronic wave function of the quantum crystal
by the quasi-momentum of the adiabatically connected
state k,

〈Φα(r + a|R)〉 = eik · a〈Φα(r|R)〉 (17)

where a denotes any of the crystal lattice vectors.
In general, the electronic ground state of the system

will have a vanishing quasi-momentum in a large enough
supercell, but adding and removal energies are still char-
acterized by a quasi-momentum within the first Brillouin
zone (BZ) even for a quantum crystal. It remains a useful
concept for analysing transition matrix elements of purely
electronic operators: as long as the nuclear distribution
remains unchanged in the transition matrix, the quasi-
momentum must be conserved, and the usual selection
rules for perfect crystals apply. In particular, one may dis-
tinguish between direct and indirect transition according
to the Bloch vectors involved.

2. Beyond the harmonic approximation

In general, the crystal lattice periodicity implies a dis-
crete translation symmetry such that a combined transla-
tion of electron and nuclei by any lattice vector does not
change the many-body density of system. Therefore, any

eigenfunction of the full many-body system, Ψkn(r,R),
can be characterized by a Bloch vector k in the first BZ

Ψkn(r + a,R + a) = eik · aΨkn(r,R) (18)

The quasi-momentum transfers to any electronic wave
function obtained by marginalizing the full wave function
with an arbitrary nuclear wave function χ(R+a) = χ(R),∫
dRχ∗(R)Ψkn(r + a,R) = eik · a

∫
dRχ∗(R)Ψkn(r,R).

(19)

This allows us to extend the concept of the quasi-
momentum of electronic excitations and to establish a
band structure useful for discussing the character of tran-
sition matrix elements for quantum crystals beyond the
harmonic approximation.

3. Born-Oppenheimer approximation

Determining the quasi-momentum of electronic wave
functions in the Born-Oppenheimer approximation based
on the above considerations is not straightforward. Within
the Born-Oppenheimer approximation, the electronic
wave function, ΦR

α (r) = 〈r|ΦR
α 〉, is only determined up to

an arbitrary phase ϕ(R), which depends on the nuclear
positions

ΦR
α (r) ' Φα(r|R)eiϕ(R). (20)

Although ϕ(R) can be fixed (up to a global constant)
by requiring smooth changes with respect to adiabatic
changes of the nuclear position, this is impractical for
numerical computations.
Let us therefore consider that the Born-Oppenheimer

wave function, Eq. (20), up to the unknown phase ϕ(R)
exactly coincides with the harmonic expansion, Eq. (15)
and expand it into the components of the electronic eigen-
states of the perfect crystal

〈ΦR0
qm|ΦR

α 〉 '

[
δqkδm0 + (1− δqkδm0)

(R−R0) ·Aqm
k0

ER0

k0 − E
R0
qm

]
×eiϕ(R) (21)

The unknown phase ϕ(R) can be eliminated considering
the matrix elements

T(q,m;q,m′) =∫
dR|χ(R)|2 (R−R0) 〈ΦR

α |Φ
R0

qm′〉〈ΦR0
qm|ΦR

α 〉

= δqk

[
δm′0 (1− δm0) tqmk0 + δm0 (1− δm′0) tqm

′

k0

]
(22)

for m 6= m′ and tqmk0 denotes a vector matrix element
which can be identified with the coefficients in the har-
monic expansion on the r.h.s. of Eq.(21). Again, any
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FIG. 2: Square modulus of the overlap (defined in eq. (22))
as a function of momentum q for a DFT-HSE calculation of

hydrogen in the C2/c-24 structure at T = 200K and
P = 250GPa. Gi are the reciprocal lattice vectors of the
supercell, k corresponds to the X+ vector of the primitive

BZ (see Fig. 3)

positive density distribution χ(R)2 with 〈R −R0〉 = 0
for the nuclei can be used; in practice one simply aver-
ages over their equilibrium distribution at zero or finite
temperature.
A non-vanishing |T(q,m;q,m′)|2 indicates that the

Born-Oppenheimer electronic wave function, ΦR
α , aver-

aged over the nuclear distribution transforms as an elec-
tronic wave function with crystal momentum q. Cor-
rections beyond the harmonic approximation, as well as
incomplete averaging over nuclear configurations may
modify the results, but the matrix elements remain well
peaked for a single crystal momentum, see Fig. 2 as an
example.
For all the systems considered here, we have also veri-

fied that analysing T(q,m;q,m′) using DFT-HSE wave
function gives the same quasi-momentum to the excita-
tions as one would guess based on the corresponding ideal
crystal states ΦR0

kn (r).

D. Results: Hydrogen

In this section we report the results of the electronic
structure for solid hydrogen in the C2/c-24 structure at
200 K and 248 GPa. The ideal crystalline structure infor-
mation has been obtained by ab initio Random Structural
Search method within the PBE approximation62 and fur-
ther relaxed at constant pressure using the DFT-vdW-DF
functional. We include zero point motion of the protons
using path integrals with the CEIMC algorithm at con-
stant volume and temperature. We consider a nearly
cubic supercell of 96 protons with Lx = 11.12a0, Ly =
9.88a0, Lz = 9.61a0 where a0 is the Bohr radius. Opti-
mized Slater-Jastrow-backflow trial wave functions have

been used for the CEIMC calculations49; details of the
CEIMC simulations are reported in Ref.63. Averages
over ionic positions for the electron addition and removal
energies are obtained with 40 statistically independent
configurations from the CEIMC trajectories.
For a given fixed nuclear configuration, the electron

addition and removal energies are obtained by consid-
ering systems with a variable number of electrons n =
Ne − Np ∈ [−6, 6]. For each system we perform Repta-
tion Quantum Monte Carlo (RQMC) calculations with
imaginary-time projection t =2.00 Ha−1 and time step
τ =0.01 Ha−1 for a 6×6×6 Monkhorst-Pack grid of twists.
We checked that those values are adequate for converging
the addition/removal energies within our resolution. The
electron addition and removal energies are further cor-
rected for finite size effects in leading and next-to-leading
order7.
Figure 3a illustrates the QMC highest occupied and

lowest unoccupied bands at 200 K and for the perfect
crystal plotted on top of the DFT/vdW-DF band struc-
ture of the unitary cell of C2/c-24 hydrogen crystal at
250 GPa. The DFT band structure was rigidly shifted
(“scissor operator”) to match the QMC gap. The QMC
points are sparsely mapped onto the band structure of
the primitive cell of crystalline hydrogen as we have only
computed energies for a few twist values in order to de-
termined the minimum insertion and removal energies
for each twist value of our discrete grid of the supercell.
Values for other momenta could be found by considering
excitations at other twist values.
Figure 4 shows the GCTABC results for the electron

volume density ne defined in Eq. (12) for solid hydrogen
(with and without zero point motion). We also report the
DFT-HSE integrated DOS computed with the procedure
described in section II B. Vertical lines indicate the plateau
region or, equivalently, the valence band maximum (µ−)
and conduction band minimum (µ+) of the quantum
crystal reported in Fig. 3a.
The reduction of the gap due to nuclear motion is of

the order of 2 eV; this big change is caused by its large
zero point motion. More details on the electronic gaps of
thermal hydrogen crystals can be found in Ref.19.

III. OPTICAL PROPERTIES AT FINITE TEMPERATURE

In the previous section, we have discussed how to deter-
mine the fundamental gap and the electronic band struc-
ture with explicitly correlated, many-body approaches,
in particular with QMC methods. It is then natural
to interpret the electron addition/removal energies as
electron/hole excitations with well defined (electronic)
quasi-momentum in the first BZ. The description of these
excitations can be used in approximate single-particle
theories, e.g. describing linear response spectral functions.
In the following, we will focus on the calculation of optical
properties computed within the Kubo-Greenwood (KG)
formalism64,65 taking into account the Born-Oppenheimer
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FIG. 3: (a) Band structure at finite temperature from QMC-CEIMC (orange points with 6× 6× 6 twist grid) and for perfect
crystal QMC (blue points with 8× 8× 8 twist grid) calculations of 96 hydrogen atoms compared with the band structure from
vdW-DF density functional for a unit cell of C2/c-24 hydrogen crystal at 248 GPa. The horizontal lines are the corresponding

valence band maximum (µ−) and conduction band minimum (µ+) of the thermal crystal determined in Fig. 4. (b) The
symmetry points of the Brillouin-Zone path. The actual path reported in panel (a) (X+,G+,X′+,Y+) was rigidly shifted

from the one indicated in panel (b) by ( 2π
16Lx

, 2π
16Ly

, 2π
16Lz

) to better match the QMC twist grid.
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FIG. 4: Mean electron density from QMC-CEIMC
calculations (orange solid line) and the integrated DOS

computed with HSE density functional (orange dashed line)
for C2/c-24 hydrogen crystal at 248 GPa and 200 K plotted

together with the RQMC electron density for a perfect
hydrogen crystal (blue line).

dynamics of the nuclei.

A. Semi-classical averaging

Let us assume that the exact electron-nuclear wave
function can be factorized into |αn〉 ' |ΦR

α 〉 |χn〉, where

{ΦR
α , E

R
α } is the (Born-Oppenheimer) solution of the elec-

tronic problem that depends parametrically on the nuclear
configuration R. Here {|χn〉 ,Ωn} are the nuclear wave-
functions and energies, and εRα = ER

α − ER
0 denotes the

Born-Oppenheimer excitation energy. Let us assume that
the nuclear eigenstates are well described by the ground
state Born-Oppenheimer energy surface E0(R), and ne-
glect any the dependence on electronic excitations α 6= 0.
Since the electrons can be considered to be in the

ground state for the temperatures considered here, we
can write the Kubo-Greenwood (KG) conductivity as a
thermal average over nuclear states only,

σ(ω, T ) =
1

Z

∑
n

e
− Ωn
kBT σn(ω), (23)

where Z =
∑
n e
−Ωn/kBT . Within this theory, σn(ω)

takes the form

σn(ω) ∝ 1

ω

occ.∑
α

unocc.∑
β,m

| 〈χn|PR
αβ |χm〉 |2

×δ(εβm − εαn − ~ω), (24)

where α indicates the initial electronic states in the
valence band |ΦR

α 〉, β and m are the final electronic
and nuclear states in the conduction band, respectively,
PR
αβ = 〈ΦR

α | ∇ |ΦR
β 〉 the matrix element of the single elec-

tron momentum operator for a given (fixed) nuclear con-
figuration R, and εαn = 〈χn|εRα |χn〉 + Ωn is the total
electron-nuclear excitation energies.

The conventional quasiclassical procedure introduced by
Williams51 and Lax52 (WL) substitutes the nuclear states
m with a continuum and replaces the eigenvalues εαn in
Eq. (24) by the electronic Born-Oppenheimer excitations
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for a fixed nuclear configuration εRα (see refs.52,53)

σWL
n (ω) ∝ 1

ω

occ.∑
α

unocc.∑
β

〈χn| |PR
αβ |2δ(∆εRβ,α − ~ω) |χn〉

(25)

with ∆εRβ,α = εRβ − εRα . Using second order perturba-
tion theory, it has been argued that this expression con-
siders, in an effective way, the phonon-assisted indirect
transitions53,54. However, for light nuclei such as hydro-
gen, replacing the nuclear spectrum by a classical contin-
uum might not be accurate enough in the temperature
regime explored by experiments.

B. Quantum averaging

An alternative procedure is to consider only direct
transitions between pairs of electronic states of quantum
or thermally averaged bands taking into account only
nuclear zero point motion and thermal renormalizations
of the bands, but neglecting phonon assisted transitions.
In practice, we replace the eigenvalues in Eq.(24) by
their quantum/thermal average neglecting explicit phonon
contributions.
Considering low temperatures, nuclear states will oc-

cupy essentially only the nuclear ground state and a few
low-lying phonon excitations, so that phononic energies
can be neglected compared to typical electronic excitation
energies

εβm − εαn ≈ εβn − εαn (26)

The summation over nuclear states m can be replaced
using the completeness relation

∑
m |χβm〉〈χβm| = 1,

σn(ω) ∝ 1

ω

occ.∑
α

unocc.∑
β

〈χαn| |PR
αβ |2 |χαn〉

×δ(εβn − εαn − ~ω). (27)

Within CEIMC the nuclear configurations, including
zero point motion and phononic excitation at finite tem-
perature, are sampled exactly according to the Born-
Oppenheimer PES without any explicit phonon sampling,
so that Eq. (27) cannot be applied directly. However,
at zero temperatures, the nuclear average involved in
calculating the matrix elements fully separates from the
nuclear average in the electronic excitation energies. As-
suming this factorization to hold also at low, but finite
temperatures, we obtain

σ(ω, T ) ∝ 1

ω

occ.∑
α

unocc.∑
β

〈|PR
αβ |2〉

×δ(〈∆εαβ〉 − ~ω)

(28)

We have obtained effectively a Kubo-Greenwood conduc-
tivity, where the δ function is represented as a gaussian

with the eigenvalues and matrix elements averaged over
the nuclear states. Eq. (28) is valid at low temperatures
and when the transition matrix elements do not correlate
with the eigenvalues. This effectively means that the
transitions are computed for electronic eigenvalues aver-
aged over the nuclear motion. We will call this procedure
Quantum Averaging.

C. Results: crystalline hydrogen and carbon diamond

Here we illustrate the different renormalization proce-
dures of the absorption spectra for solid C2/c-24 hydrogen
at 200 K and for carbon diamond at 297 K. While nu-
clear configurations of hydrogen are obtained as described
in section IID for carbon diamond we used the cubic
supercell containing 64 atoms with the lattice constant
3.56712Å appropriate for room temperature66. The nu-
clear configurations for carbon are obtained from the path
integral molecular dynamics with the PBE functional us-
ing i-PI and QuantumEspresso67,68.
The absorption is computed for 40 fixed nuclear con-

figuration within the Kubo-Greenwood formalism imple-
mented in KGEC code69 using DFT. In hydrogen we used
HSE functional with 8× 8× 8 k-grid and 2× 2× 2 q-grid
to sample the Fock operator, the kinetic energy cut-off
was set to 40 Ry and the gaussian smearing to 0.2 eV.
In Carbon we used PBE functional with 10 × 10 × 10
k-grid, 60 Ry of the cut-off and 0.35 eV smearing. For
both systems the PAW pseudopotentials were used.

Figure 5a shows the absorption spectra of hydrogen at
248 and 290 GPa together with the absorption of ideal
crystal at 250 GPa, computed with the HSE functional
at the same conditions as for quantum crystals. The dif-
ference between the semiclassical and quantum averaging
is particularly noticeable in the region of the onset of
absorption (low energy/low absorption). The reduction of
the gap at 248 GPa, given by the difference in the onset of
the ideal and quantum absorption profiles is compatible
with the reduction obtained by QMC in section IID.

The fundamental gap is often determined in exper-
iments by using the Tauc extrapolation of absorption
profiles70. Figure 6a illustrates the Tauc analysis of our
absorption profiles for C2/c-24 hydrogen at 200K at two
pressures. The gap value is determined from the value of
the intercept of a linear fit of

√
ωα vs ω with the horizontal

axis. At 290 GPa, the semi-classical procedure predicts
the gap to be closed at variance with the fundamental
gap of ∼ 0.4 eV from the HSE band structure (orange
vertical dashed line). The absorption profile by Quantum
Averaging provides a more consistent value of the gap. At
248 GPa, the gap from the semi-classical absorption is
∼ 0.8 eV, about 0.5 eV smaller than the fundamental gap
from the HSE band structure (blue vertical dashed line).
Again the gap extracted from the absorption profile by
quantum averaging is in better agreement with the one
from the band structure.
The results for carbon, which are shown in Fig. 5b,



8

(a) Hydrogen (b) Carbon

FIG. 5: Optical absorption for (a) C2/c-24 quantum crystals at 200K and (b) carbon diamond at 297 K using the semiclassical
(WL) and quantum (QA) averaging procedures. The black dashed lines indicate the absorption of an ideal crystal.
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FIG. 6: Tauc analysis of the absorption profiles for (a) C2/c-24 quantum crystals at 200K and (b) carbon diamond at 297 K
using the semiclassical (WL) and quantum (QA) averaging procedures. Values of the gap extracted from the intercept of the
linear fits and the horizontal axis are reported in the legend. The dashed vertical lines indicate the values of fundamental

band-gaps computed using the HSE functional for hydrogen (a) and PBE for carbon (b).

demonstrate a smaller reduction from ideal to thermal
crystal absorption. The results are compatible with the
ones by Zachrias et al. Ref.54 up to a horizontal shift in the
absorption profile used there to match the GW band gap.
Since carbon is heavier than hydrogen, one expect the
semiclassical averaging to become more accurate. From
Fig. 5b we see that the difference between semiclassical
and quantum averaging profiles is much smaller than

in hydrogen. The gaps extracted from the absorption
profiles for carbon, see Fig. 6b, are also compatible with
the gap extracted from the PBE band structure. Note,
however, that the gap values extracted from the Tauc
analysis depend on the gaussian smearing in computing
the absorption profile and on the fitting range used.
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IV. CONCLUSIONS

In this work we have discussed electronic structure and
optical properties for quantum crystals where quantum
and thermal nuclear motion is important. We have fo-
cused on low temperatures assuming the validity of the
Born-Oppenheimer approximation. First, we addressed
the fundamental electronic gap in terms of electron addi-
tion and removal energies which can be directly computed
using many-body Quantum Monte Carlo methods with-
out relying on perturbation theory. We presented the
methodology in the canonical and grand-canonical ensem-
bles, the latter giving access to density of states. The
averaging over motion of the ions is based on their thermo-
dynamic definitions, e.g. the electronic (energy) density
ne(µ) (e(µ)). Therefore, the resulting energy gap might
be different from a semi-classical approach where addition
and removal energies for individual nuclear configurations
are considered independently.
We then discussed how the electronic band-structure

can be established for quantum crystals assigning to each
addition/removal energy a well-defined crystal momentum
for averages over nuclear equilibrium distributions. We
presented an explicit procedure to determine the crystal
momentum for electronic wave functions in the Born-
Oppenheimer approximation without the need to explic-
itly fix the phase of the BO nuclear wavefunction.

We then discussed the calculation of optical conductiv-
ity using the Kubo-Greenwood formula. For light nuclei at
low temperatures, we have shown that the semi-classical
approximation should be replaced by a ”quantum average”
which takes into account the quantization of the nuclear
motion, similar to the fundamental gap discussed before.
We have applied our methodology to study the band

structure and density of states of hydrogen C2/c-24 crystal
at 200K and 250GPa where CEIMC has been used to
sample the nuclear density matrix, and the QMC methods
for the addition/removal energies.
Concerning optical properties, we have calculated

the optical absorption for hydrogen and carbon dia-
mond where we have approximated the electronic Born-
Oppenheimer energies by DFT Kohn-Sham eigenvalues
and discussed the differences between the quantum aver-
age and the semi-classical approximation. At low temper-
atures, only the quantum averaging procedure correctly
reproduces the onset of absorption consistent with the
one expected from the fundamental energy gap. As ex-
pected, in the case of carbon, the difference between the
two methods are much smaller than for hydrogen.
This work paves the way for a more controlled and

thermodynamically consistent investigation of electronic
structure from many-body theory. Such procedures are
particularly needed for strongly correlated systems which
have important thermal and quantum ionic motions. The
optical responses of such materials are one of the most
basic and accurate experimental probes of their electronic
properties. Hence simulation methods need to be able
to consider all important effects to make unambiguous

comparisons with experiment.
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Appendix A: Grand-canonical twist averaging boundary
conditions

Here we give the procedure to apply the grand-canonical
twist averaging boundary conditions (GCTABC)56 for
the total energy calculations with varying numbers of
electrons and twist angles. At each twist angle, θ, the
electronic wave function obeys55

Ψ(r1 + Lxx̂.., rNe) = eiθxΨ(r1, .., rNe). (A1)

and is used to calculate the Ne electron ground state
energy E0(Ne, θ).

At zero (electronic) temperature in the grand-canonical
ensemble, the probability for a number, Nθ

e ) of electrons
for a given twist angle θ is proportional to

P(Nθ
e ) ∝ exp[−β(E0(Ne, θ)− µNe)] (A2)
−−−−→
β→∞

min
Ne

[E0(Ne, θ)− µNe],

where µ is the chemical potential.
In practice, within GCTABC, the ground state energy

E0(Ne, θ) is computed for different number of electrons,
Ne, independently of the twist vector θ. A uniform back-
ground charge is used to ensure global charge neutrality.
Given µ and θ we can then determine Nθ

e from Eq. (A2).
Equivalently, since ∂E0(Ne, θ)/∂Ne = µ at the minimum
of Eq. (A2), we can also scan the energy differences for
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each value of the chemical potential, µ, and determine
Nθ
e from bracketing

E0(Ne, θ)− E0(Ne − 1, θ) 6 µ < E0(Ne + 1, θ)− E0(Ne, θ),

(A3)

resulting in an optimal number of electrons at each value
of the chemical potential and twist Nθ

e (µ).
To reduce finite size effects we further average over M

twist angles and divide by the volume of the supercell to
obtain

e(µ) =
1

MV

∑
θ

E0(Nθ
e , θ) (A4)

ne(µ) =
1

MV

∑
θ

Nθ
e (µ) (A5)

the electronic and energy density ne(µ) and e0(µ).
The resolution of the densities depends on the underly-

ing twist grid, but the resolution of the chemical potential
depends on the statistical error.

The twist grid error on the energy can be improved by
calculating the Legendre transform of the grand potential
as described in Ref.59 or may be fully eliminated by using
symmetries and twist pockets as described in refs.56,58.
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