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To coordinate specialized organs, inter-tissue communication appeared during
evolution. Consequently, individual organs communicate their states via a vast interorgan
communication network (ICN) made up of peptides, proteins, and metabolites that
act between organs to coordinate cellular processes under homeostasis and stress.
However, the nature of the interorgan signaling could be even more complex and
involve mobilization mechanisms of unconventional cells that are still poorly described.
Mesenchymal stem/stromal cells (MSCs) virtually reside in all tissues, though the biggest
reservoir discovered so far is adipose tissue where they are named adipose stromal
cells (ASCs). MSCs are thought to participate in tissue maintenance and repair since the
administration of exogenous MSCs is well known to exert beneficial effects under several
pathological conditions. However, the role of endogenous MSCs is barely understood.
Though largely debated, the presence of circulating endogenous MSCs has been
reported in multiple pathophysiological conditions, but the significance of such cell
circulation is not known and therapeutically untapped. In this review, we discuss current
knowledge on the circulation of native MSCs, and we highlight recent findings describing
MSCs as putative key components of the ICN.

Keywords: adipose tissue, native mesenchymal stromal cell, stroma homeostasis, endogenous reservoir, rare
cells in circulation

INTRODUCTION

Each organ is a combination of a functional compartment, the parenchyma, and a stromal
compartment, the stroma, supporting the parenchymal cells of the organ (Feeback, 1987). The
main function of the stromal compartment is to structure and remodel functional tissue in
order to ensure organ homeostasis (Scadden, 2012). In normal tissue, stroma maintains the
tissue microenvironment and sustains cell growth in various ways with spatial and temporal self-
limitations (Huet et al., 2019). Conversely, stroma imbalance nurtures organ imbalance, which
can eventually lead to tumor progression (Valkenburg et al., 2018). Among the cell types residing
in the stroma, mesenchymal stem/stromal cells (MSCs) are key components allowing stroma’s
supportive function. MSCs attract lots of attention because they hold great promise for a multitude
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of emerging therapies in regenerative medicine since they
promote tissue repair in various degenerative contexts such as
osteoarthritis, bone defects, myocardial infarction, inflammatory
bowel disease, or neurodegenerative disorders. As such, they have
been the subject of clinical trials for more than 20 years (Galipeau
and Sensébé, 2018; Pittenger et al., 2019). MSC identification
and characterization rely on in vitro work, and long steps of
culture are needed to collect a usable amount of cells (Dominici
et al., 2006). Culture-expanded MSCs consist of a heterogeneous
population of cells exhibiting various phenotypes and functional
properties, and the extent of these properties depends on the
tissue, donor, and species of origin, isolation technique, and
culturing protocols (Ankrum et al., 2014). Such variations are
known to limit the potential of MSCs for clinical translation, and
strategies to enhance engraftment are needed (Hou et al., 2005;
Hénon, 2020).

In the past few years, investigating the endogenous repair
mechanisms of injured tissues has paved the way for future
“in situ” strategies to potentiate the body’s own repair capacity
(Andreas et al., 2014). In this regard, pharmacological activation
of endogenous stem cell mobilization from either the blood
or a tissue-specific niche is a promising approach (Krankel
et al., 2011). Consequently, both triggering and controlling
the endogenous mobilization of MSCs represent an additional
strategy to achieve effective tissue repair and regeneration. In
this review, we present the current state of knowledge and
unresolved gaps about the circulation of endogenous MSCs and
propose MSC interorgan trafficking as a complementary pathway
of communication.

WHAT DO WE KNOW ABOUT THE
CIRCULATION OF ENDOGENOUS
MESENCHYMAL STEM/STROMAL
CELLS?

Circulating Mesenchymal Stem/Stromal
Cells: Myth or Reality?
Studies reporting the mobilization, circulation, and recruitment
of endogenous MSCs are sparse and heterogeneous (Roufosse
et al., 2004) and generated lots of conflicting results (Ojeda-Uribe
et al., 1993; Lazarus et al., 1997; Zvaifler et al., 2000; Wexler et al.,
2003). Consequently, the presence of blood circulating MSCs is
still debated (Mansilla et al., 2006; Wang et al., 2006; Hoogduijn
et al., 2014).

Yet, several studies show that endogenous MSCs are found in
the bloodstream of various species, but their frequency is rare
[0–0.025 colonies/10e6 of peripheral blood mononuclear cells
(He et al., 2007)]. Conversely, the circulation of endogenous
MSCs greatly increases in response to various types of injuries.
Indeed, skeletal traumas, regardless of their severity (Alm et al.,
2010), cardiomyopathies (Marketou et al., 2014, 2015), coronary
syndrome (Wojakowski et al., 2008), skin burns (Mansilla et al.,
2006), liver damages (Chen et al., 2010; Liu et al., 2015), and
some types of cancers (Fernandez et al., 1997; Bian et al.,
2009) are some examples of clinical situations triggering this

increase. Whether endogenous MSCs circulate in vivo is not a
matter of debate anymore but rather a matter of methods of
investigation, time frame (Churchman et al., 2020), and clinical
context. Such limitations relate to a lack of precise knowledge
of functional, phenotypic, and molecular criteria that define
endogenous circulating MSCs.

Immunophenotypic Characteristics of
Circulating Endogenous Mesenchymal
Stem/Stromal Cells
Despite extensive efforts to characterize MSCs, the
definition of in vivo identity(ies) of MSCs is still very
obscure (Parekkadan and Milwid, 2010). In humans,
the canonical MSC surface marker combination
CD13+/CD44+/CD73+/CD90+/CD105+/CD34−/CD31−/CD45−
directly derives from their in vitro culture expansion (Dominici
et al., 2006). However, many factors, from the harvesting
methodology to the conditions of cell culture, dramatically
influence MSC phenotype and functions (Bara et al., 2014;
Jones and Schäfer, 2015; Pittenger et al., 2019; Walter et al.,
2020). In that regard, we and others have demonstrated that
cell surface marker profiles of in vitro expanded human MSCs
differ compared to freshly isolated cells and those residing
in their native microenvironment (Sengenès et al., 2005;
Maumus et al., 2011; Bara et al., 2014). In particular, the
absence of CD34 is considered among the prerequisites to
identify MSCs; however, we have shown that CD34 is strongly
expressed in native adipose-derived MSCs and that cell culture
abolishes its expression (Sengenès et al., 2005; Maumus et al.,
2011). Moreover, though some of the MSC markers appear
constitutively expressed regardless of environment (Jones et al.,
2006), “immunophenotypic drifts” are expected while MSCs
circulate. Indeed, the expression of membrane markers such
as CD29, CD44, CD73, and CD90, which all regulate MSC
adhesion/migration processes, is known to change dramatically
to allow MSC detachment and further migration (Rege and
Hagood, 2006; Ode et al., 2011; Qian et al., 2012; Xu and Li,
2014). Consequently, using flow cytometry analysis with a
combination of surface markers (validated in vitro) to detect
circulating native MSCs may lead to underestimation and
generates conflicting results when compared with studies using
functional assays to detect MSCs [such as colony-forming
unit-fibroblast (CFU-F) activity] (Fellous et al., 2020; Figure 1).
Indeed, the level of blood circulating CD45−/CD271+ MSCs
shows higher correlation to CFU-F numbers than the one of
CD45−/CD73+/CD90+/CD105+ MSCs (Rebolj et al., 2018).
This illustrates that understanding MSC heterogeneity holds
promise for refining the definition of MSCs. In that regard, the
analysis of MSC heterogeneity from various tissue [bone marrow
(BM), adipose tissue (AT), skeletal muscle] is under active
investigation using single-cell RNA sequencing technologies
(Burl et al., 2018; Hepler et al., 2018; Baryawno et al., 2019;
Wolock et al., 2019). However, though powerful, those studies
will inform about the signature(s) of native tissue-resident MSC
subpopulations but will fail for circulating MSCs. Interestingly,
high-throughput technology capable of efficiently capturing
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FIGURE 1 | The hypotheses explaining the controversy over endogenous mesenchymal stromal cell circulation in vivo.

without marker-based approach and molecularly interrogating
rare cells in the circulation at single-cell resolution is under
development to study circulating tumor cells (CTCs) (Cheng
et al., 2008). Those technologies will be of great utility both to
capture and to enable single-cell transcriptome analysis of rare
and limited cell populations of circulating endogenous MSCs.

How Do Endogenous Mesenchymal
Stem/Stromal Cells Navigate in the
Bloodstream?
Little is known about the behavior of MSCs in flowing
blood, and our current understanding mostly derives from
intravascular infused cultured-expanded MSCs from which we
could infer the behavior of native MSCs. While circulating
MSCs are always considered to be isolated cells floating in the
bloodstream, recent studies demonstrated the close interaction
of MSCs with the blood microenvironment. Indeed, using
in vivo confocal microscopy, it has been reported that the
majority of intravascular MSCs are in contact with platelets
and/or neutrophils (Teo et al., 2015). Additionally, BM-derived
MSCs bind platelets that shield them from surface adhesion,
so that they barely adhere at all in the blood flow via a
mechanism involving podoplanin, the endogenous ligand for
C-type lectin-like receptor 2 (CLEC-2) (Sheriff et al., 2018; Ward
et al., 2019). CLEC-2 is being expressed broadly, including in
platelets, inflammatory leukocytes, and lymphatic endothelial
cells. Moreover, platelet depletion decreases MSC trafficking to
sites of injury (Langer et al., 2009; Teo et al., 2015). Platelet
functions extend beyond the immediate environment of the

thrombus (Golebiewska and Poole, 2015). For instance, they play
important roles for tissue regeneration (Eisinger et al., 2018),
and they also contribute to tumor metastasis (Tesfamariam,
2016). Indeed, it is admitted that CTCs are partly covered with
platelets to provide them with “stealth” properties and help their
survival in the circulation, where they are challenged by physical
forces in the circulation (Nieswandt et al., 1999; Heeke et al.,
2019). Whether circulating endogenous MSCs are not single cells
traveling the blood alone but are accompanied by other cell
types and partners possibly modifying their immunophenotype
needs more investigations (Figure 1). However, targeting the
interaction of MSCs with other cells is a promising tool and future
research to improve endogenous MSC detection, collection,
and trafficking.

What if Not Just the Blood?
The peripheral blood is considered as the bona fide route for
native MSC trafficking (He et al., 2007). Indeed, the detection
of blood-borne CFU-Fs was earlier (Maximow, 1928) than
the detection of BM CFU-Fs (Friedenstein et al., 1968, 1970).
However, it is well established that some types of stem cells
such as hematopoietic stem cells recirculate daily between the
BM and the blood and egress to extramedullary tissues via
the lymphatic system (Massberg et al., 2007). Until a few
years ago, the composition of the lymphatic fluid was virtually
unknown. This lack of knowledge was mostly due to the technical
difficulty in cannulating lymphatic vessels and the small amount
of collected fluid. Over time, some of these technical issues
have been resolved, and as such, lymph “omic” composition
in physiological and pathological conditions received a lot of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 January 2021 | Volume 8 | Article 598520

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-598520 December 24, 2020 Time: 17:12 # 4

Girousse et al. MSCs as Sensors of the Bodily Stromas

attention (Santambrogio, 2018). However, the precise cellular
composition of lymph is still obscure, and immune cell transit
was mostly investigated (Platt and Randolph, 2013). Yet, we have
demonstrated that MSCs originating from AT, the ASCs (Zuk
et al., 2001; Gimble and Guilak, 2003), are found in the lymph
fluid in response to lymph node inflammation (Gil-Ortega et al.,
2013). Other studies indicate that systemically infused MSCs
can be found in secondary lymphoid organs [e.g., mesenteric
lymph nodes after intracardiac infusion (Li et al., 2012), lymph
nodes, Peyer patches, spleen (Schwarz et al., 2014)]. Interestingly,
Han et al. (2020) very recently reported the presence of lots of
circulating cells able to form spheroids in the thoracic duct of
a mouse model of melanoma, though distant metastases were
not developed. Altogether, those data suggest that as cancer cells
do, MSCs may exploit several bodily fluid systems as natural
transportation routes (Follain et al., 2020; Figure 1).

Whether the clinical context, fluid biomechanics, and tissue
microenvironment have a role in the initial choice of the
fluid route is unknown. As well, accessibility of blood and
lymphatic vasculature may strongly influence the pathway
taken for MSCs to transit. Finally, flow velocities and shear
stress are lower in lymphatic vessels (Dixon et al., 2006),
and lymphatic dissemination has been suggested as less
deleterious than dissemination through the blood for some
type of cancer cells (Wong and Hynes, 2006). Lymph fluid
could thus represent a more favorable route for MSCs since
their survival may benefit from the passive, low-shear system
of fluid transport characteristic of lymphatics. Consequently,
an improved understanding of this process might provide
a new avenue for targeting MSC transit and might explain
conflicting results. At last, the fibroblastic nature of MSCs
allows considering extra-circulatory alternative routes, such
as connective tissues, for MSC mobilization (Figure 1). The
potential for such trafficking events, putative mechanisms, and
potential functional roles represents important questions for
future investigation.

WHICH PHYSIOLOGICAL RESERVOIRS
MAY BE MOBILIZED?

MSCs reside in virtually all postnatal organs and tissues; however,
not all organs contain the same amount of MSCs (da Silva
Meirelles et al., 2006; Crisan et al., 2009). BM is generally
considered as the major reservoir of mobilizable MSCs (Koh
et al., 2007; Koning et al., 2013). Nevertheless, together with
the absence of unique specific markers, the lack of MSC
tissue-specific markers impairs the parallel analysis of various
physiological reservoirs. Consequently, it is very likely that the
role played by extramedullary organs in participating in the pool
of circulating endogenous MSCs is underestimated. Indeed, AT is
a large source of MSCs, named ASCs (Zuk et al., 2001; Gimble and
Guilak, 2003). The uncultured stroma–vascular fraction (SVF)
from AT usually contains up to 30% of ASCs. This is 2,500-fold
more than the frequency found in BM (Fraser et al., 2008; Baer
and Geiger, 2012). Consequently, AT represents so far the largest
physiological reservoir of MSCs.

In the attempt of investigating to what extent AT contributes
to the pool of circulating endogenous MSCs, we and others
have shown that endogenous ASCs are mobilizable and that
such mobilization is triggered in response to various types of
stresses from inflammation to fat overload (Zhang et al., 2009;
Kolonin, 2012; Gil-Ortega et al., 2013, 2014; Girousse et al., 2019).
Consequently, AT also largely accounts for the pool of circulating
endogenous MSCs, but animal models are still needed to clearly
evaluate the respective part played by BM vs. AT.

WHY DO ENDOGENOUS
MESENCHYMAL STEM/STROMAL
CELLS CIRCULATE?

Whatever the reservoir, circulating endogenous MSCs belong to
the group of blood-circulating rare cell populations, classified
by Schreier and Triampo (2020) into “constructive” and
“destructive” cell types. MSCs are mostly considered as
constructive cell types because of their repair and/or homeostasis
maintenance properties. The current knowledge on the
functional roles of MSCs mainly relies on studies using in vitro-
expanded MSCs (Keating, 2012; Galipeau and Sensébé, 2018;
Pittenger et al., 2019). The struggles in clearly defining native
MSCs negatively influence advancement in understanding their
role(s) in vivo and what is more the role of their circulation. Last,
since MSCs virtually reside in all postnatal organs and tissues (da
Silva Meirelles et al., 2006; Crisan et al., 2009), one may wonder
why MSCs circulate toward distant “injured/inflamed” sites,
while resident ones could perform the same activities.

The Interorgan Communication Network
The long-term maintenance of an organism’s homeostasis
and health relies on the accurate regulation of organ–organ
communication (Silverthon et al., 2009). To do so, the
central nervous system regulates many organ behaviors using
hormones or neurons and organs developed systems to directly
communicate their states to one another. This interorgan
communication network (ICN) is made up of soluble factors
such as peptides, proteins, and metabolites that act between
organs to coordinate essential and specialized cellular processes
under homeostasis and stress (Droujinine and Perrimon, 2016;
Figure 2). Recent studies show that more than 15% of the
protein-coding genome encodes for roughly 3,000 secreted
proteins, but only a handful of them has been properly
annotated (Uhlen et al., 2010; Lindskog, 2015). Consequently,
the nature of the ICN remains largely a mystery (Droujinine
and Perrimon, 2013). The interorgan communication is seen
to occur through secreted molecules; however, accumulating
data show that organs communicate their state via other ways.
For instance, extracellular vesicles (EVs) have emerged as a
novel messaging system of the organism, mediating cell–cell and
interorgan communication (Gould et al., 2003). EVs are secreted
membranous structures, entrapping nucleic acids, diverse cellular
proteins, and metabolites, and are predicted to transfer their
packaged molecules from one cell to another (Gould et al., 2003).
EVs traffic to local or distant targets to execute defined biological
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FIGURE 2 | The stromastat hypothesis within the interorgan communication network during basal and after tissue damage.

functions (Théry et al., 2009; Thomou et al., 2017; Margolis
and Sadovsky, 2019). Consequently, the ICN encompasses other
modes of communication than secreted molecules, and as such,
whether the circulation of MSCs is a way of communication
between organs needs to be considered.

Circulating Mesenchymal Stem/Stromal
Cells, a Way to Communicate Between
Bodily Stromas
As stated above, the stromal compartment of each organ
structures, nurtures, and remodels the functional compartment
to ensure organ homeostasis. MSCs, being a central cellular
component of bodily stromas, can be viewed as stroma “sentinel,”
sensing stromal state and ultimately the organ state. The
following scenario regarding the role of circulating endogenous
MSCs may be proposed.

Just as suggested for the regulation of body temperature or AT
mass in the form of thermostat and adipostat, respectively, bodily
stromas could be regulated by a set point to ensure the organism’s
homeostasis that we will name here the “stromastat.” Organ
failure leading to stromastat modification could be detected by
resident MSCs and trigger the early and rapid transfer from
MSC reservoirs to the failing organ. This early transfer of
MSCs would support the resident pool of MSCs to allow the
rebalance of the failing organ. In parallel, to ensure stromastat,
data report that the mobilized reservoir may be replenished
(Koning et al., 2013; Figure 2). Thus, a possible answer to the
meaning of MSC circulation could be that MSCs may represent
the cellular part of the ICN. Indeed, evidence that MSCs may
belong to the ICN is accumulating. For instance, following organ

imbalance (e.g., inflammation, metabolic stress), we observed
that ASCs transfer very early from AT toward inflamed lymph
nodes (Gil-Ortega et al., 2013) or injured/remodeling skeletal
muscle (Girousse et al., 2019). Similar results were also reported
for BM-derived MSCs in response to other inflammatory/injury
contexts such as myocardial infarction (Fukuda and Fujita, 2005),
cranio cerebral trauma (Deng et al., 2011), and encephalomyelitis
(Koning et al., 2013). Interestingly, independently of the clinical
context or the reservoir investigated, the common point of
those studies is the kinetic with which MSCs transfer from
their reservoir to the unbalanced site. Such interorgan MSC
transfer involves few amounts of cells when compared to the
pool of local MSCs. However, we and others have demonstrated
that, though discrete, such infiltration dramatically impacts the
fate of the organ repair/regeneration/remodeling (Kumar and
Ponnazhagan, 2012; Hu et al., 2013; Koning et al., 2013; Girousse
et al., 2019). In addition to this, the impact of this rare MSC
population could be amplified by the production of EVs, like an
inverted funnel effect.

CONCLUSION AND PERSPECTIVES

Both the mobilization and circulation of endogenous MSCs in
physiology and pathology are undoubtful as seen in the present
review. However, there are still several questions to be resolved
before understanding the meaning of such circulation. One
can argue that this is merely explainable because of current
available technologies and lack of MSC-specific markers. Indeed,
being a population of rare cells in the blood, we have only
scratched the surface of the potential of circulating MSCs in
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diagnostics and regenerative medicine. It appears that in case of
“emergency,” MSCs traffic from adipose or BM reservoir toward
distant “injured/inflamed/imbalanced” organs where infiltrated
MSCs trigger local mechanisms to allow repair/regeneration.
In return, the MSC provider replenishes its own reservoir so
that both compartments balance their respective MSC pools,
suggesting the presence of a set point that we suggested
to name the “stromastat” (Figure 2). How the stromastat
regulates organ responses to various stresses and pathological
contexts is completely unexplored. This interorgan way of
communication may be an unsuspected source of therapeutic
targets to help in maintaining whole-organism homeostasis.
At last, a better understanding of the control of endogenous
MSC circulation, including the description of mobilization and
attraction mechanisms, will represent an essential step that will
condition their therapeutic potential.
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