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27 Abstract: 

28 Metal-organic frameworks (MOFs) act as versatile coordinators for the 

29 subsequent synthesis of high-performance electrochemical catalysts by 

30 providing dispersed metal-ion distribution, initial coordination condition, and 

31 modular dopant atom ratios, etc. In this work, a copper-based crystalline MOF 

32 trans-[Cu(NO3)2(Him)4] was synthesized as a novel precursor of a 

33 carbon-based electrochemical valence-alternating NC@CuxO catalyst. 

34 Through simple temperature modulation of the pyrolysis procedure, the 

35 gradual transformation towards highly-active catalytic nanocomposite was 

36 characterized and investigated to ascertain the signal enhancing mechanism 

37 during H2O2 detection. Owing to its proprietary structure and ensuing 

38 electrochemical reduction activity, a proof-of-principle sensor using 

39 NC@CuxO as transducer was able to provide an amplified sensitivity of 2330 

40 μA mM-1 cm-2. In addition, its facile one-vessel preparation and the intrinsic 

41 non-enzymatic nature suggests a wide range of potential applications in 

42 medical settings.

43 Keywords:

44 Metal-organic framework derivate, Non-enzyme catalyst, Electrochemical 

45 biosensor, Fenton-like signal amplification, One-pot synthesis

46
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47 The electrochemically active material, or rather the transducer, plays an 

48 imperative role in the construction of an electrochemical biosensor 1. Its 

49 intrinsic properties, such as active center density, electron transfer ability, as 

50 well as, internal structure and external morphology, set the fundamental 

51 performance of the derived sensing systems or devices 2-4. Use of 

52 metal-organic frameworks (MOFs) as self-sacrificed precursors 5, 6 provides 

53 invaluable properties, such as: 1) tunable initial coordination environment and 

54 heteroatom doping, that can be easily achieved through the selection of 

55 multitudinous ligand molecules; 2) atomic migration process can be accessed 

56 and manually paused to obtain a series of products with diverse composite 

57 configurations, including metal centers at different valence states or more 

58 precisely the nuanced electronic regulation states, or carbon substrates with 

59 various interconnecting degrees or doping ratios, and active catalysis clusters 

60 with distinguished diameters; 3) porous characteristics can be inherited, thus 

61 allowing high-throughput mass diffusion and interfacial contact 7, 8. Already, 

62 some state-of-the-art single atom catalysts (SACs) with satisfactory 

63 performance have been synthesized using MOFs as starting templates 9, 10.

64 Copper-based MOFs or derived nanomaterials have drawn conspicuous 

65 attention due to their specific enzyme-like activities, reasonable cost efficiency 

66 and robust stability 11-13. According to the aforementioned advantages, these 

67 copper-based enzyme mimics have been well accepted as signal transducers 

68 to construct sensitive biosensor systems 14. Copper species, no matter in 
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69 forms of elementary clusters 15, 16, compound nanoparticles 17 or even 

70 secondary coordination units 18, show prominent redox activity, with or without, 

71 extra potential energy from the external circuit. In some latest articles, more 

72 complex copper-based transducer materials with excellent and versatile 

73 capabilities were synthesized from MOFs-contained composite precursors, 

74 e.g. with several 2D materials like graphene, C3N4 or MXene 19. All these 

75 treasures figure out an efficient clue of massively converting homogeneous 

76 structural units inside the MOF crystal into highly disperse nano-catalysts 

77 decorated upon a simultaneously generated substrate, and meanwhile 

78 investigate the transiting procedure of some certain catalysis activity to the 

79 other 20. 

80 In the present communication, we designed the synthesis of a crystalline 

81 MOF-derived CuxO composite catalyst, serving as an electrochemical 

82 peroxidase mimic. Inspired by the coordination structure of copper catalysts, 

83 both the ligand atoms and the central metal valence state of the catalysis unit 

84 were modulated simply using a short period of differential thermal treatment. 

85 Thanks to the uniform texture of the crystalline precursor, the generation 

86 process of a well-tuned transducer material was monitored and sought. An 

87 electrochemical Fenton-like signal enhancing mechanism was herein 

88 discussed, in view of the derived prototype biosensor and its corresponding 

89 interfacial reactions (Fig. 1A). We expect that this novel and concise 

90 transducer material will provide proprietary engineering insights in providing 
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91 improved biosensor devices suitable for commercialization 21, 22.

92
93 Fig. 1. Stepwise modulation from crystalline MOF precursor to active electrochemical 
94 transducer. (A) Schematic overview of the preparation and signal amplification mechanism of 
95 the composite transducer material NC@CuxO. (B) Crystal structure diagram of the MOF 
96 precursor trans-[Cu(NO3)2(Him)4]. (C) Three comparative routes to prepare MOF precursors 
97 with distinguished preferential crystallographic orientation and lattice shrinkage or bulge. (D) 
98 FT-IR spectra of the obtained crystalline precursors with arrows and blue dashed lines or 
99 region indicating critical changes of the transmittance peak. (E) SEM image of the board-like 

100 precursor cystals. (F and G) TEM images of the layered transducer material NC@CuxO after 
101 a short period of pyrolysis under air atmosphere.

102 To ascertain that copper atoms were highly dispersed at the initial precursor 

103 stage, powder X-ray diffraction (PXRD) was performed immediately after 

104 lyophilization (Supplementary methods). All of the main peaks have been 

105 indexed as a well-defined orthorhombic phase of trans-[Cu(NO3)2(Him)4] 
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106 crystal (PDF 27-1527) 23, indicating that the copper ions were strictly 

107 hexa-coordinated by four nitrogen atoms (from imidazole) and two oxygen 

108 atoms (belonging to the nitrate ions) (Fig. 1B). The specific crystal herein was 

109 obtained according to the following procedures: N,N’-carbonyldiimidazole (CDI) 

110 underwent decomposition in some polar solvents like ethanol, thus, releasing 

111 free imidazole (Him) molecules as well as di-esters of carbonic acid or 

112 imidazole-N-carboxylic esters, as shown in eq.1. Whereas, in the presence of 

113 lattice water, CDI was possible to be hydrolyzed into carbonate ions (eq.2) 

114 which would further react with copper ions and generate stable basic 

115 modalities 24.

116

117 In order to know the priority of the aforementioned possible reaction routes, 

118 two contrast synthesis strategies were introduced. In detail, anhydrous copper 

119 nitrate with CDI and CuNO3·3H2O with imidazole were each examined under 

120 the same ethanol-solvent condition and compared in terms of their respective 

121 diffraction peaks which almost kept the same with a slight peak shift of about 

122 10-2 degrees, implying lattice shrinkage and bulge of these copper-imidazole 

123 frameworks due to the differences in accessory products (Fig. 1C and Fig. S1) 

124 25. Interestingly, the preferential crystallographic orientations echoed by the 

125 diffraction peak intensities, however, were significantly different between the 
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126 two groups. From the Fourier transform infrared spectrometer (FT-IR) spectra, 

127 it is clear that these Cu-MOFs acquired through different formulas maintained 

128 perfectly identical chemical bonds. The transmittance peak variations from the 

129 ligand monomers suggested probable reaction routes and the inner 

130 connections of MOFs, detailed as follows: 1) the vanishing of carbonyl 

131 stretching vibration at ~1735 cm-1, as well as the strong broad band from 2200 

132 to 3100 cm-1, respectively indicated the decomposition of CDI, and the 

133 following coordination reaction of derived imidazole with copper ion which 

134 accompanied the collapse of N–H···N hydrogen bonds; and 2) the strong 

135 vibration peak at 1394 cm-1 that can be assigned to the amide C–N of CDI 

136 red-shifted to 1340 cm-1 as a result of the formation of ester C–O bonds in all 

137 MOF samples (Fig. 1D and Fig. S2) 26. These results imply that regardless of 

138 the presence of lattice water, CDI reacts with ethanol thereby generating ester 

139 species.

140 The bluish violet Cu-MOF powder exhibited tabular hexagon-like 

141 morphology with a thickness of hundreds of nanometers in scanning electron 

142 microscope (SEM) images (Fig. 1E). After the pyrolysis process under air 

143 atmosphere, the resulting NC@CuxO catalyst, showed an obviously 

144 decreased plane size down to 10-nm scale, according to the transmission 

145 electron microscope (TEM) results (Fig. 1F and 1G). Furthermore, the 

146 absence of aggregated nanoparticles suggested highly dispersed catalytic 

147 sites. To further understand the transformation from a Cu-MOF precursor to a 
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148 copper-based catalyst and its accompanying H2O2 reduction properties, 

149 thermogravimetric-differential scanning calorimetry (TG-DSC) analysis was 

150 conducted at a 5 ℃ min-1 heating rate (Fig. 2B). A sharp weight loss was 

151 noticed from 200 to 240 ℃, accompanied with a clear exothermic peak at 

152 226 ℃. Thereafter, three representative temperature points (200, 300 and 

153 400 ℃) were set with their corresponding products named NC@CuxO-L, 

154 NC@CuxO and NC@CuxO-H respectively.

155 When the Cu-MOF precursor was heated at 200 ℃ for 2 hours, the 

156 obtained NC@CuxO-L still preserved the typical lattice characteristics of 

157 trans-[Cu(NO3)2(Him)4], and its weight loss can be attributed to the desorption 

158 of solvent molecules and the decomposition of thermolabile esters. With a 

159 further rise in temperature, broad peaks of graphite and copper oxide 

160 appeared in the NC@CuxO PXRD spectrum (Fig. 2A). By substituting the 

161 measured value of full width at half maximum (FWHM) into the Scherrer 

162 equation, the crystallite size of the newly formed copper oxide was calculated 

163 to be several nanometers, which was in accordance with the lack of gathered 

164 clusters in the TEM image 27. Via calcination at 400 ℃, the derived 

165 NC@CuxO-H showed striking peaks identical to that of CuO, owing to the 

166 deep substitution of oxygen for the initial coordinated nitrogen through atomic 

167 transfer.
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168
169 Fig. 2. Temperature modulation of the valence state of the central metal as well as the 
170 neighboring ligand atoms and vacancies. (A) XRD spectra of the pyrolyzed samples under 
171 different heat-treatment temperature. (B) TG-DSC curves of the self-sacrifice MOF precursor 
172 in air atmosphere with the heating rate of 5 ℃ min-1. High-resolution XPS spectra of Cu 2p 
173 (C) and O 1s (D) orbitals of the under-heated NC@CuxO-L, experimental NC@CuxO and 
174 over-heated NC@CuxO-H samples.

175 A mutually corroborating result was obtained by investigating the chemical 

176 state alternations of atoms. In both NC@CuxO-L and NC@CuxO samples, the 

177 high-resolution X-ray photoelectron spectroscopy (XPS) spectra of Cu 2p 

178 orbitals displayed relatively weaker satellite peaks and slightly lower binding 
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179 energies of both the 2p1/2 and 2p3/2 orbitals than that of NC@CuxO-H (Fig. 2C). 

180 Due to the existence of CuO nanocrystalline in NC@CuxO, we surmised that 

181 these features ought to be attributed to the abundant intermediate low-valent 

182 Cu(I) rather than Cu(II) of coordinated state or compound state 28. Taking O 

183 1s spectra into consideration, on the other dimension, the gradual shift of the 

184 predominant sub-peaks from 532.2 to 529.7 eV can help determine the exact 

185 components of the aforementioned NC@CuxO catalysts. In detail, 

186 NC@CuxO-L displayed Cu-MOF-like characteristics with respect to crystal 

187 structure, and the chemical state of organic oxygen assigned as incompletely 

188 decomposed esters. NC@CuxO-H, at the other extreme, exhibited canonical 

189 CuO properties with a standard XRD pattern and typical XPS spectrum 

190 features, such as the intensive satellite peaks of Cu 2p and the nearly 

191 complete conversion to lattice oxygen which belongs to the metal-oxide 

192 compounds (Fig. 2D).

193 The aforementioned under- or over- heating treatments exhibit variance in 

194 the resulting functional ingredient of the composite catalyst NC@CuxO. On 

195 one hand, the crystalline framework collapsed and recombined as a N-doped 

196 carbon substrate. The copper atoms, on the other hand, were gradually 

197 aggregated and oxidized into nanoscale CuO nanoparticles, while preserving 

198 an overall amorphous state with abundant oxygen vacancies (Fig. 2D) 29. 

199 Therefore, the uniformly dispersed catalytic centers of reductive copper oxide 

200 in NC@CuxO determined their high reaction activity towards oxidizing 
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201 substances. Simultaneously, the internal structural porosity is substantially 

202 retained which guarantees sufficient mass transfer during the catalyzing 

203 procedures (Fig. S3 and S4). The Cu-MOF precursor’s periodic atom 

204 distributions and definite melting point enable the investigation of some critical 

205 catalyst-evolving processes, such as metal migration and oxygen transfer, by 

206 simply modulating temperature.

207
208 Fig. 3. Electrochemical catalysis behavior investigation of the transducer material to support 
209 sensitive sensing of H2O2 concentration. (A) Electrochemical redox characteristics of the 
210 MOF-residual dominant (NC@CuxO-L, top), O-vacancy abundant (NC@CuxO, middle) and 
211 deeply oxidized (NC@CuxO-H, bottom) samples as transducers in the absence and presence 
212 of 0.05 mM H2O2. (B) Cyclic voltammograms of NC@CuxO electrode at different scan rates 
213 from 10 to 250 mV s-1 in condition of saturated nitrogen without H2O2. (C) Cyclic 
214 voltammogram of NC@CuxO electrode in response to H2O2 concentrations of 0 to 0.5 mM 
215 with an insert exhibiting the linear fitting of the reductive peak-current density values. (D) 
216 Chronoamperometric responses of NC@CuxO to stepwise addition of H2O2 at -0.5 V (vs. 
217 SCE). (E) Selectivity test of the biosensor against some common interferences in body fluid, 
218 including 1 mM Na+, K+, ascorbic acid, uric acid and glucose.

219 Based on the characteristics of the NC@CuxO catalyst species, their 

220 respective electrochemical behaviors were further examined using cyclic 
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221 voltammetry (CV) (Fig. 3A). In the absence of H2O2, the lower-heated sample 

222 showed inconspicuous redox peaks, implying an inert electron transfer ability 

223 of the Cu-N coordinate-bond dominated MOF material. In contrast, the 400 ℃ 

224 pyrolyzed product exhibited both obvious redox peaks (CuI/CuII, Ep= -0.34 and 

225 -0.15 V) due to the formation of conductive carbon substrates. In regard to the 

226 NC@CuxO, its undiscovered reduction peak at this particular potential window 

227 indicated that copper existed in a low valence state in CuxO and the 

228 electrochemically oxidized copper ions would then be released into the liquid 

229 phase, resulting in an irreversible procedure. When the solution contained 

230 0.05 mM H2O2, a strong reduction peak appeared around -0.45 V, significantly 

231 deviating from the CV curve without adding H2O2. It is worth noting that the 

232 oxidization peak, in the meanwhile, became quite indistinct especially when 

233 the H2O2 concentration increased. This result implied that reductive copper in 

234 NC@CuxO preferred to react with the oxidizing substances derived from H2O2 

235 decomposition, prior to being electrochemically oxidized at the anode (eq.3).

236 The emphasis in sensitive H2O2 detection lays on enhanced signal 

237 transduction or an amplified feedback. Therefore, the catalysis mechanism 

238 and its signal conversion process was studied first. The NC@CuxO modified 

239 glassy carbon electrode (GCE) was tested by cyclic voltammetry at different 

240 scan rates in 0.1 M PBS and 0.3 M KCl solution (Fig. 3B). With increasing 

241 scan rate from 10 to 250 mV s-1, both of the anodic and cathodic peak 

242 currents were measured as linear with the square root of the scan rate (Fig. 
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243 S5), indicating characteristic diffusion-controlled electrochemical redox 

244 behaviors 30 from which we inferred a Fenton-induced enhancing mechanism:

245 Trigger:   NC@CuxO red,Cu(I) + H2O2 → NC@CuxO ox,Cu(II) + ·OH + OH-  

246 (eq.3)

247 Amplification:  NC@CuxO red,Cu(I) + ·OH → NC@CuxO ox,Cu(II) + OH-  (eq.4)

248 Transduction and Reset:   NC@CuxO ox,Cu(II) + e- → NC@CuxO red,Cu(I)  

249 (eq.5)

250 The highly dispersed Cu(I) catalysis centers of CuxO efficiently accelerated 

251 the decomposition of H2O2, while releasing an equivalent amount of ·OH 

252 radicals. Thereafter, increased reductive copper sites would be oxidized 

253 through rapid radical reactions. At the reduction potential, the newly generated 

254 Cu(II) would then get reduced by capturing the electrons from the outer circuit. 

255 More importantly, the electrochemical procedures at the electrodes were 

256 shown to be rapid, which meant this redox cycle (eq.3-5) would continuously 

257 proceed until the diffusion limit and simultaneously provide amplified current 

258 response 31. In addition, this catalytic process relied on not only the valence 

259 state of copper centers, but also the structural configuration of ligand atoms 

260 and defects, which can be supposed from the poor activity of both the 

261 NC@CuxO-L and NC@CuxO-H samples.

262 By adding H2O2 solutions of differing concentrations (Fig. 3C), the current 

263 intensity of the reduction peak at -0.45 V was identified as a linear coefficient 

264 of the concentration, with a corresponding linear equation: j (mA cm-2) = 
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265 -2.33C (mM) - 0.05 (R2=0.9998), ranging from 10 μM to 0.5 mM. The limit of 

266 detection for the NC@CuxO sensor, (LOD= 3σ/Sd, where σ represents the 

267 standard deviation of the current density value measured in blank solution, and Sd 

268 stands for the slope of linear regression calibration line), reached 6.67 nM. Fig. 3D 

269 shows the amperometric response towards concentrated H2O2 solutions. The 

270 cathodic current rapidly achieved steady states and increased in pace with the 

271 addition of H2O2. The selectivity and stability of this proof-of-principle 

272 biosensor were also evaluated as these two important parameters could 

273 reflect whether an artificial catalyst could mimic or even surpass natural 

274 enzymes in practical use. From Fig. 3E, we can conclude that NC@CuxO has 

275 good selectivity towards H2O2. The i-t curve in Fig. S6 exhibited the stability of 

276 this electrochemical sensor for long-term continuous detection. After dropping 

277 in 1 mM H2O2 solution, the output current could keep steady for more than 1 h, 

278 indicating that the NC@CuxO nanocomposite did not leach out from the 

279 electrode during multiple cycles of electrochemical redox process, while 

280 maintaining high catalytic activity. By simply modulating the thermal redox 

281 condition of a well-characterized crystalline MOF precursor, both the chemical 

282 valence and coordination environment of the central metal were adjusted to 

283 render a transducer enhanced signal feedback. In comparison with previous 

284 studies which introduced other functional materials or not, this NC@CuxO 

285 electrode offers a highly competitive sensitivity, as well as other decent 

286 performances (Table 1). 
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287 Table 1. Comparison of copper-based electrochemical H2O2 transducer materials on catalysis 
288 mechanism and sensitivity performance.

Transducer 
material

Active-center type
Redox 

potential (V)
Additional 
materials

Sensitivity
(μA mM-1 cm-2)

LOD
(μM)

References

CuO nanoflowers monoclinic CuO -0.4
(vs. Ag/AgCl) n.a. 956.69 0.85 32

Cu2O nanopaticles ~100 nm size with (111) 
facets

-0.42
(vs. Ag/AgCl) n.a. 28.0 0.2 33

3DIO 
Au/NiO@CuO Ni3+ species 0.5

(vs. Ag/AgCl)
CuO skeleton & 

AuNPs 650.2 0.0037 34

CuNPs@Y-1,4-N
DC-MOF/ERGO

CuNPs supported by 
ERGO

-0.2
(vs. SCE)

Y-1,4-NDC- 
MOF & ERGO 8.8 0.43 35

Cu2O-rGO-P cubic Cu2O
-0.4

(vs. Ag/AgCl) rGO paper 77* 3.78 36

NCNT MOF CoCu Co(0) & Cu(0) 0.5
(vs. Ag/AgCl) Co(0) 639.5 0.206 37

Cu-Mo2C/C Synergic Mo2C
 with Cu(0)

-0.4
(vs. SCE)

hexagonal 
β-Mo2C

392.7 0.04 38

NC@CuxO
Amorphous CuxO with 

oxygen vacancies
-0.45

(vs. SCE) n.a. 2330 0.00667 This work

289 * estimated from the offered linear regression curve.

290 We presented, herein, a sensitive H2O2 sensor constructed with a tailored 

291 amorphous CuxO composite catalyst. The corresponding mechanism of 

292 enhanced signal transduction were stepwise investigated from the precursor 

293 conformation, to its catalytic evolution, up to a final amplified electron 

294 cascades. With the initial copper-nitrogen square domains converting into 

295 low-valent amorphous copper oxide catalytic centers, the resulting current 

296 remarkably increased due to its synergistic enhancement, contributed by both 

297 rapid radical and electrochemical reactions. Moreover, the structural property 

298 of specific neighboring ligand-atom configuration was proven to be a factor as 

299 predominant as the valence state of central metals. From the perspective of 

300 material, catalysis and the final sensing application, the way to design and 
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301 modulate a proper copper-based transducer was comprehensively explored. 

302 We envision that our work would hold the prospect for accurate bio-analyte 

303 quantitation and promote the mainstreaming of precision diagnosis and 

304 medicine.
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