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ABSTRACT

In the �rst paper of this series (Rhea et al. 2020), we demonstrated that neural networks can robustly
and e�ciently estimate kinematic parameters for optical emission-line spectra taken by SITELLE at
the Canada-France-Hawaii Telescope. This paper expands upon this notion by developing an arti�cial
neural network to estimate the line ratios of strong emission-lines present in the SN1, SN2, and SN3
�lters of SITELLE. We construct a set of 50,000 synthetic spectra using line ratios taken from the
Mexican Million Model database replicating H ii regions. Residual analysis of the network on the test
set reveals the network's ability to apply tight constraints to the line ratios. We veri�ed the network's
e�cacy by constructing an activation map, checking the [ N ii ] doublet �xed ratio, and applying a
standard k-fold cross-correlation. Additionally, we apply the network to SITELLE observations of
M33; the residuals between the algorithm's estimates and values calculated using standard �tting
methods show general agreement. Moreover, the neural network reduces the computational costs by
two orders of magnitude. Although standard �tting routines do consistently well depending on the
signal-to-noise ratio of the spectral features, the neural network can also excels at predictions in the
low signal-to-noise regime within the controlled environment of the training set as well as on observed
data when the source spectral properties are well constrained by models. These results reinforce the
power of machine learning in spectral analysis.

Keywords: Machine Learning; ISM; Galaxies

1. INTRODUCTION

Emission-line nebulae are a critical part of our under-
standing of galactic evolution and radiative processes;
thus, they are a primary targets of observation in ex-
tragalactic astronomy (Kennicutt 1984; Veilleux & Os-
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terbrock 1987; Kewley et al. 2019). H ii regions form
from clumps of gas in the interstellar medium (ISM)
when young O/B stars irradiate the surrounding envi-
ronment (e.g. Franco et al. 2000; Osterbrock & Fer-
land 1989; Shields 1990). The region becomes either
partially or fully ionized depending on the budget and
hardness of ionizing photons, the morphology and the
total mass of the mother cloud. H ii regions are primar-
ily composed of Hydrogen and Helium; however, they
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contain non-negligible amounts of metals (e.g. Shields
& Tinsley 1976; Garnett & Shields 1987; Kennicutt &
Oey 1993; Oey & Kennicutt 1993). Through recom-
bination and collisonal processes between the ionized
atoms and the free electrons, the nebula emits character-
istic strong emission-lines which indicate their underly-
ing chemical structure (e.g. Baldwin et al. 1981; Craw-
ford et al. 1999; Kewley et al. 2001; Kewley et al. 2006;
Kewley et al. 2019). In the optical, the primary emis-
sion lines include, but are not limited to, the Balmer se-
ries (i.e. H�� 6563, and H�� 4861), ionized oxygen (i.e.
[O ii ]�� 3726, 3729, and [O iii ]�� 4959, 5007), ionized ni-
trogen (i.e. [N ii ]�� 6548, 6583), and ionized sulfur (i.e.
[S ii ]�� 6716, 6731). By studying the relative ratios of
these lines, the primary emission and ionization mech-
anism can be determined. Sources that power ionized
emission di�er and the regions themselves are catego-
rized into several distinct classes: classicalH ii regions
(e.g. Viallefond 1985; Melnick et al. 1987), shock in-
duced regions such as supernova remnants (e.g. Fesen
et al. 1985; Danziger & Dennefeld 1976), and planetary
nebulae (e.g. Miller 1974; Oserbrock 1964). Several
diagnostics exist to categorize emission nebulae based
o� their line ratios (e.g. Baldwin et al. 1981; Kew-
ley et al. 2019; Constantin & Vogeley 2006; D'Agostino
et al. 2019). Nevertheless, these di�erent diagnostics
have limitations due to the multi-parameters physical
nature of these objects which is not exempt of degener-
acy. With that in mind, we want to test the hypothesis
that �tting multiple strong lines directly using model
predictions (e.g. CLOUDY, MAPPINGS; Ferland et al.
2017 Allen et al. 2008) that covers typical physical con-
ditions in the gas could help minimize the errors associ-
ated on the line parameters (intensity, broadening and
velocity), provide a pathway to classi�cation of the neb-
ulae directly from the �t, and potentially signi�cantly
increase the computational e�ciency of the procedure
as well as providing a new angle to estimate uncertain-
ties.

The recent advent of integral �eld spectroscopy is ex-
panding our knowledge of emission-line nebulae with
their increased spatial and spectral resolution; these in-
struments are pushing the ability of existing analysis
tools due to their resolution. (e.g. S�anchez et al. 2012;
Leroy et al. 2016; Bundy et al. 2014; Martins et al. 2010).
SITELLE, an Imaging Fourier Transform Spectrograph
(IFTS) located at the Canada-France-Hawai'i Telescope,
is one such instrument. SITELLE has an unrivaled �eld
of view of 110� 110 and produces data cubes containing
over 4 million pixels. Each pixel contains a spectrum.
(e.g. Baril et al. 2016; Drissen et al. 2019). SITELLE
has a spectral resolution between 1 and 20,000. It's in-

strumental line shape is described by a cardinal sinc
function. It can be convolved with a Gaussian (Martin
et al. 2016) to account for natural broadening of the ob-
served lines. Spectral �ts must be done cautiously to ac-
curately model the line shape and capture the e�ects of
sidelobes of the sinc, which can greatly in
uence the es-
timated 
ux of an emission-line (e.g. Martin et al. 2012).
In many �eld of astrophysics, it is necessary to model re-
solved and unresolved (blended) lines accurately. Emis-
sion line parameters are the root information used to
infer physical properties of locally-resolved nebulae as
well as classifying them, but they are also crucial for
proper characterisation of galaxies at di�erent redshift.
For the later, the line parameters are essential to fully
understand how internal and external processes a�ect
galaxies as one cannot disentangle active galactic nu-
cleus, stellar winds, supernovae, etc, multiple feedback
processes that a�ect the whole galaxy in di�erent ways
and at di�erent scales.

In this paper we apply an arti�cial neural network to
SITELLE spectra in order to obtain the strong emission-
line ratios and validates its results by comparing with
the line ratio derived from a standard line �tting tech-
niques. We demonstrate the capability of the machine
learning algorithm in low signal-to-noise regimes. Inx2,
we describe the synthetic data used to train and test
the algorithm. It is important to note that although
the method is tested here on well resolved objects, it
could as well be used on galaxy at higher redshift and
on integrated spectra. Additionally, we dissect the neu-
ral network and its hyperparameters. In x3, we describe
how the network was trained and how it compares with
the standard �tting procedure. In x4, we explore the
impact of the signal-to-noise on the algorithm in addi-
tion to applying it on a real observation of M33, a well
resolved local galaxy. We conclude inx5.

2. METHODOLOGY

In the �rst article of the series, Rhea et al. (2020),
we explored the application of a convolutional neural
network to calculate the kinematic parameters from
SITELLE spectra. In this paper we expand the use
of machine learning to calculate another critical set of
physical parameters, the line ratios of strong emission-
lines. As in the previous paper, the initial step in any
machine learning application is to assemble the appro-
priate training set.

2.1. Synthetic Data

In order to facilitate the training of the network
used to estimate strong-line ratios, we rely on care-
fully constructed synthetic spectral data. Synthetic
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data for emission-line sources must account for both
the instrumental line shape (ILS) of an instrument for
a given spectral resolution and the relative intensities
and broadening of the lines available through obser-
vations. The network was developed for use in the
SIGNALS program, which uses SITELLE to observe in
three bands: SN1 (365{385 nm), SN2 (480{520 nm),
and SN3 (651{685 nm). The synthetic data, and ob-
served data, contain approximately 841 channels in SN3,
219 channels in SN2, and 171 channels in SN1. Each
strong emission-line's ILS (H� (6563)�A, [O ii ]� 3726,
[O ii ]� 3729, H� (4861)�A, [O iii ]� 4959, [O iii ]� 5007,
[N ii ]� 6548, [N ii ]� 6583, (H� (6563)�A, [S ii ]� 6716, and
[S ii ]� 6731, was separately modeled using the rou-
tine orb.fit.create cm1lines model (Martin et al.
2012); ORBis the software kernel written for SITELLE,
the imaging Fourier Transform Spectrometer on the
Canada-France-Hawaii Telescope (Martin et al. 2016;
Martin & Drissen 2017; Baril et al. 2016). ORBSand
ORCSbuild upon the ORBkernal and are used for data
reduction and data analysis, respectively.

Following the SIGNALS large program instrumental
con�guration for the observations, we set the maximal
spectral resolution in SN1 and SN2 to R� 1000 and in
SN3 to R� 5000 (Rousseau-Nepton et al. 2019) to create
the training set. Since the resolution varies as a func-
tion of location in a SITELLE spectral cube, we allow for
variations within our spectral resolution to R � 200 less
than the maximal value (e.g. Martin & Drissen 2017).
Previous work reveled that this is a key parameter for
an accurate training of the algorithm (Rhea et al. 2020).
To fully sample the velocity and broadening space ex-
pected in the SIGNALS catalog (and in keeping with
our previous study), we randomly select the velocity pa-
rameter from a uniform distribution between -200 and
200 km s� 1 and the broadening parameter between 10
and 50 km s� 1 . These values represent expected val-
ues for typical HII regions (e.g. Epinat et al. 2008);
additionally, at R � 5000 SITELLE is unable to resolve
the broadening parameter below 10 km s� 1 (Rousseau-
Nepton et al. 2019). The resolution, broadening, and
velocity were randomly selected with replacement for
each synthetic spectra so that we sample the entire pa-
rameter space (e.g., James et al. 2013). Furthermore,
the signal-to-noise ratio varied randomly between 5 and
30 with respect to the Halpha emission { meaning that
Halpha emission is at least 5 times over the noise. How-
ever, this does not ensure that all lines are above the
noise. The noise was assigned to each spectral channel
individually and was randomly sampled from a normal
distribution centered around the chosen signal-to-noise
ratio with a sigma of 1.

The last element required to create synthetic spectra
is the relative amplitude of the strong emission-lines.
For each type of nebulae, we used di�erent databases.
Following the methodology described in detail in Rhea
et al. (2020), relative line amplitude of the HII re-
gions were sampled from the Mexican Million Models
database (3MdB; Morisset et al. 2015) BOND simula-
tions (Vale Asari et al. 2016). Following standard proce-
dure, we use 70% of the synthetic data for the training
set, 20% for the validation set, and 10% for the test set
(e.g., Breiman 2001).

In contrast with our previous study, Rhea et al. 2020,
we require all strong lines sampled in the SIGNALS ob-
servations to be present. We also add the restriction
that all strong emission-lines must have an amplitude
equal to or greater than 12% of the H� amplitude. This
threshold corresponds to a signal-to-noise ratio of 3 for
the faintest targets in the SIGNALS sample whose H�
surface brightness is approximately 8� 10� 17 erg s� 1

cm� 2 arcsec� 2 (Rousseau-Nepton et al. 2019). While
the impact of this threshold is discussed more in-depth
in x 4.2, note that consistently, the training, validation,
and test sets for the primary CNN used in this paper
all adhere to this signal-to-noise constraint. Moreover,
we select a Balmer decrement by randomly sampling a
value between 2 and 6 from a uniform distribution with
a sampling increment of 0.01. We then apply reddening
at each wavelength sampled in our spectra following the
procedure outlined in x 2.5.

We create 50,000 mock spectra in the form of FITS
�les which contain the emission-line information (e.g.
velocity, broadening, resolution, emission-line 
uxes) in
addition to the spectrum itself.

2.2. Arti�cial Neural Networks

In this paper, we study the application of an arti�cial
neural network to the problem of strong emission-line
ratio estimation. Using the synthetic spectra described
in x2.1, we train a network to approximate the function
which maps SITELLE spectra to their corresponding
line ratios.

2.2.1. The Algorithm

Feed Forward arti�cial neural networks (ANN) con-
tain three principal layers: the input layer, the hidden
layer(s), and the output layer (e.g. Hansen & Salamon
1990). The input layer consists of the preproccessed
data that will be used to train the network and eventu-
ally be fed unseen inputs to make predictions. In this
case, the input layer is the combined SN1, SN2, and SN3
SITELLE observations described previously. The out-
put layer consists of line ratio estimates. The hidden lay-
ers contain an ensemble of nodes which are parametrized
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[S ii ]� 6731/[S ii ]� 6716 [S ii ]/H � [N ii ]/H � [N ii ]/[ S ii ] [O iii ]/H � [O ii ]/H � [O ii ]/[ O iii ] H� /H � *

0.73-0.79 0.27-1.18 0.27-2.03 0.14-6.97 0.33-2.47 0.24-6.97 0.60-30.89 1.93-5.99

Table 1 : Ranges of line ratio parameters from synthetic spectra. The distribution of the parameters are all skewed
heavily to the lower values (with the exception of the [S ii ] doublet ratio which is evenly distributed over a small
range) which represents the likelihood of �nding those parameters in the simulations from which these values are
obtained. After applying an arcsinh transformation, the variables are normally distributed. * The wide range is due
to arti�cially injected dust redenning following the prescription described in x2.5.

by a linear function that takes the input, x , multiplies it
by a weight matrix, w, and adds a bias,b. The node is
then activated by a predetermined function. A common
activation function, the Recti�ed Linear Unit (ReLU), is
employed in every layer of the network used in this paper
except for the �nal layer (e.g. Chen et al. 1990). The
ReLU function, g(w � x + b) = max(0 ; w � x + b), takes
the value of the node unless the value is negative; in that
case, it takes the value 0. The result is a non-negative
value for each node in a layer where the vector-valued
function of each layer,l , is denoted ash l (x ,b,w). In tra-
ditional neural networks, such as the network applied in
this work, the layers arefully-connected; thus, each node
in a layer is connected to all nodes in the previous and
subsequent layer.

After calculating h l (x ,b,w) sequentially for each
layer, we have a vector-valued output f (x ,b,w). We
can calculate the loss between the �nal predictions, f,
and the correct outputs, y . We adopt the Huber loss
function which is de�ned as:

k� (f; y : w; b)) =

8
<

:

1
2 (y � f (w; b))2 jy � f (w; b)j � �

� jy � f (w; b)j � 1
2 � 2 otherwise

(1)
where � is a tune-able parameter and initialized as 1.
The Huber loss function is often employed since it re-
duces the e�ects of outliers on the �nal cost calculation
(e.g. Huber 1964).

We then minimize the loss function through back-
propagation in which we alter the weights and biases
(Hecht-Nielsen 1989):

arg min
w;b

k(f; y ; w; b) (2)

We apply the Adam implementation of the stochastic
gradient descent algorithm in order to minimize the loss
function (Lechevallier & Saporta 2010; Kingma & Ba
2017). In this manner, we are able to train the net-
work by updating the weights and biases until the loss
function is minimized on the training set.

2.3. The Network and Hyper-Parameters

In order to determine the structural parameters of the
network, we �rst constructed four networks; The �rst

Figure 1 : Final mean absolute percentage error after
�ve epochs of training as a function of the number of
layers in the neural network. Each layer contains 1000
nodes and is activated by arelu function. The graphics
show the curve for the mock training, validation, and
test sets. We emphasize that the synthetic data used in
the structural parameter tuning were not used again.

network had two hidden layers, the second network three
hidden layers, and so on. Since the problem is nonlin-
ear, we did not test a single hidden layer network. We
note that the training, validation, and test sets used to
determine the structural parameters contain only 10000
synthetic spectra. These spectra were not re-used in
the �nal training, validation, and testing ensemble. Ini-
tially, each hidden layer contained 1000 nodes. This
number is su�cient to test the optimal number of layers
(e.g. Sheela & Deepa 2013). Figure 1 demonstrates that
the MAPE plateaus for the training set at four layers.
However, since the mean squared error (MSE) increase
in both the validation and test sets between three and
four layers, we chose three layers as the optimal value.
Although the �gure is not included, the same patterns
hold for the mean absolute error. Next, we applied a
grid search on the number of hidden neurons allowing
each to vary from 64, 128, 256, 512, and 1024 nodes.
The MSE was minimized for all sets when the �rst layer
has 1024 nodes, the second layer has 1024 nodes, and
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Figure 2 : Graphical depiction of the arti�cial neural network employed in this paper. The spectrum vectors for SN1,
SN2, and SN3 are combined to form a single input vector which is then passed through a series of three fully connected
layers. A linear activation function takes the �nal layer and compresses it into a �nal prediction for each line ratio.

the third layer has 512 nodes. Figure 2 graphically de-
picts the entire network. The structure of the algorithm
is as follows:

1. Concatenate spectral vectors from SN1, SN2, and
SN3 as input

2. Fully Connected Layer with ReLU Activation
(1x1024)

3. Dropout (25%)

4. Fully Connected Layer with ReLU Activation
(1x1024)

5. Dropout (15%)

6. Fully Connected Layer with ReLu Activation
(1x512)

7. Fully Connected Output Layer with Linear Acti-
vation (1x8)

We determined the optimal hyperparameter values by
using the grid search and random search cross-validation
techniques implemented insklearn . The batch size's
optimal value was determined to be four. Additionally,
we adopt a normal random distribution as the initial-
ization of the hidden layer neurons (Thimm & Fiesler
1995; de Castro et al. 1998). The data are normalized
using to the maximum value in the the SN3 �lter which
corresponds to the maximum value in the combined �l-
ter. We note that this is not necessarily the amplitude
of the H� line. We use thetensorflow implementation
of the ADAMoptimization algorithm.

Initial testing of the algorithm revealed a systematic
bias of approximately 10% in the residuals (seex3 for
more details). In order to account for the bias, we
applied two techniques: a transformation of the tar-
get variables and a regularization parameter. Initially,
the distributions of the target variables (i.e. the line
ratios the network is predicting) were skewed positive;

we thus applied several transforms on the target vari-
ables (e.g. log10 , ln , arcsinh , etc.). Experimentation
showed that applying an arcsinh transformation re-
sulted in normalized target variable distributions. Fur-
thermore, this reduced the systematic bias considerably
(e.g. Zheng & Casari 2008; Kuhn & Johnson 2019).
Additionally, we applied a simple l2 regularization tech-
nique with � = 5 � 10� 4 (e.g. Phaisangittisagul 2016;
van Laarhoven 2017).

In order to increase the accuracy of the method and
provide error estimates, we employ a technique known
as deep ensembling (Lakshminarayanan et al. 2017).
This method leverages the fact that each neural network
is independent of the other. We train ten individual
networks with the same architecture but with di�erent
weight initializations. We then apply each network to
the test data individually. We average the classi�cation
probabilities and allow the standard deviation to act as
an uncertainty estimate.

2.4. SITELLE Data

SITELLE observations of the Southwest Field of M33
led by P.I. Laurie Rousseau-Nepton were taken during
the Queued Service Observation Period 18B (Program
18BP41). The galaxy was imaged in the three primary
�lters: SN1, SN2, and SN3. Both the SN1 and SN2 ob-
servations were taken at a spectral resolutionR � 1000,
while the SN3 observation was taken at a spectral reso-
lution R � 5000. Although we do not analyse the data
from the following two galaxies in detail in this paper,
we demonstrate the feasibility of applying the network
to two additional SIGNALS galaxies: M95 (Program
19A) and NGC4214 (Program 18A). These observations
represent a subsample of the SIGNALS survey. We note
that the authors are members of the SIGNALS science
team. The raw data were reduced and calibrated using
SITELLE's Level-1 reduction software, ORBS (version
3.1.2 Martin et al. 2012).

2.5. Dereddening
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Since we are using emission-line ratios spanning a
large range of wavelengths, we must include the e�ects
of dust attenuation by reddening the spectra (Calzetti
et al. 1994; Buat & Xu 1996; Pettini et al. 2001). We
calculate dereddening following the standard procedure
of postulating an e�ective dust screen attenuation to
obtain the intrinsic emission-line 
uxes (F0;� ),

F0;� = Fobs;� e� � = Fobs;� e� V q� ; (3)

whereFobs;� is the observed 
ux, � � is the optical depth
at a given wavelength, � V is the optical depth in the
V -band, and the shape of the dust attenuation curve is
parametrized by q� � � � =�V . We adopt the Cardelli
et al. (1989) attenuation law with a total-to-selective
extinction RV = 3 :1. We use the Balmer decrement,
de�ned as Bd = Fobs;H� =Fobs;H� , to calculate � V :

� V =
1

qH� � qH�
ln

Bd

Bd;in
; (4)

where Bd;in is the intrinsic Balmer decrement. We as-
sume this value to be 2.87, which is appropriate for the
Case B, an electronic temperature of 10 000 K and low
density (e.g. Osterbrock & Ferland 1989). Deredden-
ing is applied to the line ratios post calculation by the
neural network.

3. RESULTS

3.1. Optimal Synthetic Data

In this section we discuss the primary results of the
paper and address the e�cacy of the ANN when ap-
plied to optimal SITELLE HII regions sythethic spec-
tra in order to predict the following strong emission-line
ratios : [N ii ]� 6548/[N ii ]� 6583, [S ii ]� 6731/[S ii ]� 6716,
([S ii ]� 6716+[S ii ]� 6731)/H� , [N ii ]� 6583/H� , H� /H � ,
[N ii ]� 6583/([S ii ]� 6716+[S ii ]� 6731), [O iii ]� 5007/H� ,
([O ii ]� 3726+[O ii ]� 3729)/[O iii ]� 5007, and
([O ii ]� 3726+[O ii ]� 3729)/H� .

We train and validate the network using the syn-
thetic data described in x2.1. The mean absolute er-
rors (

P N
i abs(ytrue i � ypred i ); N is the number of train-

ing and validation input) on the training and valida-
tion are 0.0555 and 0.1207, respectively. The algorithm
is applied to the test set; Figure 3 shows the relative
errors achieved by the network when recovering each
emission-line ratio. We note that all line-ratios recov-
ered from SN3 have a low residual standard deviation;
this is attributed to the higher spectral resolution in
SN3 compared to SN1 and SN2. All error plots re-
veal approximately Gaussian error distributions with a
positive skew. In order to validate these results using
the standard �tting techniques, we use the ORBroutine

fit.fit lines in spectrum. We individually �t each
�lter; however, within a given �lter, we �t all emission-
lines simultaneously and supply the routine with the
correct velocity and broadening parameters initially in
order to retrieve the best possible �ts. The lines were �t
with a sincgauss function (Martin et al. 2016). Table
2 displays the comparison between the relative errors
obtained using standard �tting routines and our ANN
on the training set. In these conditions, the network
outperforms the standard method for line ratios in all
three �lters. It is important to note that the relatively
high errors in the �ts are largely due to signal-to-noise
e�ects (see x4.2 for the discussion). Appendix A con-
tains the residuals binned by signal-to-noise for both
the neural network and standard �ts. These plots illus-
trate that the neural network is capable of outperform-
ing a �tting routine in the low SNR (signal-to-noise)
regime when compared within the training set environ-
ment. Importantly, the H � /H � errors have the potential
to be reduced signi�cantly which will lead to higher �-
delity dereddening estimates.

3.2. Noise Classi�cation

In this section we evaluate the network used to classify
a spectrum as noisy or clean; we de�ne a spectrum clean
if the SNR of all strong emission-lines is above a certain
pre-determined threshold { in this case 5% that of H� .
This value was determined by running our network on
the SN3 spectra of varying thresholds (from 1%{20%).
The results indicated that below 5%, the ability of the
network to recover the line ratios becomes inhibited.

Synthetic spectra for all �lters were created in a
method identical to that described in x 2.1 except that
we removed the requirement that all strong emission-
lines have an amplitude equal to at least 12% that of H� .
Spectra were classi�ed as noisy if any emission-line had
an amplitude less than 5% that of H� ; otherwise, the
spectrum was classi�ed as noiseless. In spectra where a
single strong emission-line amplitude was below the cho-
sen threshold, several other lines were also beneath the
threshold; thus, this constraint accurately categorizes
data into noisy and noiseless. We created 1,000 noisy
and 1,000 noiseless spectra with signal-to-noise ratios of
H� varying between 5 and 30.

We use a Decision Tree Classi�er, but in order to re-
duce bias and probabilistic errors, we aggregate several
trees into a Random Forest. The data were randomly
shu�ed; 90% were set aside for training, and 10% for
testing. Using 10 estimators (or 10 decision trees), the
Random Forest Classi�er reports 100% accuracy in clas-
sifying the two spectral types resulting in a diagonal
confusion matrix. Although reaching perfect accuracy
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Fitting Procedure [S ii ]� 6731/[S ii ]� 6716 [S ii ]/H � [N ii ]/H � [N ii ]/[ S ii ] [O iii ]/H � [O ii ]/H � [O ii ]/[ O iii ] H� /H �

ORB 426.68% 17.87% 36.67% 163.56% 190.89% 96.30% 558.75% 90.90%

ORB (SNR>10) 42.51% 18.74% 19.06% 26.67% 35.82% 55.43% 100.07% 20.14%

ANN 0.94% 19.18% 30.242% 31.67% 24.68% 8.99% 15.36% 6.75%

Table 2 : Standard deviation calculations for relative errors of strong emission-line ratios. The top row reports values
calculated using the standardORBroutine while the second row calculates the same values for test set spectra with a
signal-to-noise ratio greater than ten; comparatively, the bottom row contains values obtained using our ANN. [S ii ]
refers to the addition of the [S ii ] doublets: [S ii ]� 6713 and [S ii ]� 6731; similarly, [O ii ] refers to the addition of the
two primary [ O ii ] lines: [O ii ]� 3726 and [O ii ]� 3729. Note that [O iii ] refers only to a single line: [O iii ]� 5007. As
expected, the values calculated can be signi�cantly elevated because the test set contains spectra in the extremely low
signal-to-noise regime. We discuss the e�ects of signal-to-noise in detail inx4.2.
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Figure 3 : Density plots of line ratio relative errors calculated using the ANN described inx2.2. We note that the
errors follow an approximately Gaussian distribution with a non-negligible positive skew.

is relatively rare in machine learning scenarios, the well-
de�ned and simple task allow the Random Forest Clas-
si�er to achieve 100% accuracy. Furthermore, if instead
70% of the data is taken for training, the power of the
algorithm allows us to simply increase the number of es-
timators in order to obtain the same perfect accuracy. A
future paper will dig deeper into the Noise classi�cation
problem.

4. DISCUSSION

4.1. Veri�cation of the Network

Although neural networks trained on synthetic data
are notoriously di�cult to verify, we explore several
methods to test whether the network is accurately learn-
ing the line ratios and is portable to real data (e.g.
Bishop 1994; Krogh & Vedelsby 1995). We apply
the following three techniques: k-fold cross-validation,
tracking the static [ N ii ]� 6548/[N ii ]� 6583 ratio, and a
saliency map.

We apply a standard k-fold cross-validation by parti-
tioning our synthetic data set into ten equal-sized allot-
ments. We then train and validate the network with nine
of the ten partitions allowing the �nal partition to serve
as the test set. This process is repeated until each parti-
tion has been served as a test set (e.g. Bengio & Grand-
valet 2004; Picard & Cook 1984). This method validates
the network's estimates by testing the network for over-
�tting. Over�tting occurs when the network learns the
training set but is unable to generalize to new data.
If the network is susceptible to over�tting, then the �-
nal accuracy scores of the k-fold cross-validation model
will di�er signi�cantly. A k-fold cross-validation analy-
sis of our network indicates no overt over�tting in the
model since the accuracy are all within several percent-
age points of one another (Molinaro et al. 2005; Cawley
& Talbot 2010).

Additionally, we estimate the line ratio
[N ii ]� 6548/[N ii ]� 6583 which is expected to be constant
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Figure 4 : Relative error as a function of signal-to-
noise for the [N ii ] doublet: [N ii ]� 6548/[N ii ]� 6583. The
black dots represent the median relative error in a given
signal-to-noise bin while the grey bars are the 1-� errors
associated with a given bin.

throughout all emission-line nebula and is frequently set
to 3 in �tting code (e.g. Schirmer et al. 2013). This
is re
ected in the synthetic data set. Figure 4 reveals
that the calculated [N ii ] doublet ratio relative error be-
tween the true and network-estimated value is between
0 and -1% while the standard deviation is approximately
0.27%. Therefore, the network accurately replicates the
static relation between the [N ii ] lines.

Subsequently, we calculate the saliency map of the
network. In order to calculate the saliency map, we cal-
culate the derivative of the input with respect to the
output of the neural network: @[input ]

@[output ] . By multiplying
the gradients together, we are left with our desired par-
tial derivative (e.g. Simonyan et al. 2014). We normalize
the values to unity in order to compare their relative im-
portance with ease. In this manner, input nodes with a
saliency value of zero do not a�ect the neural network,
while input nodes with a saliency value of 1 have the
most importance in a�ecting the neural network's esti-
mation. In Figure 5, we show the saliency values plotted
over a reference spectrum with a signal-to-noise of 20; we
note that saliency values less than 0.05 are not included
in the �gure. The saliency map clearly shows that the
network prioritizes the amplitude of the emission lines.
However, the map also reveals the importance of the re-
gions adjacent to the emission-lines and the areas of the
spectrum in between emission-lines. This re
ects the
importance of the sidelobes of the ILS on the 
ux ratio
estimates.

4.2. E�ects of Varying Signal-to-Noise

Signal-to-noise constrains the e�cacy of traditional
�tting methods (e.g. Campbell et al. 1986; Endl &

Cochran 2016). In this section, we compare the e�ects of
signal-to-noise on the standard �tting techniques imple-
mented in ORBcompared to the arti�cial neural network
described in this paper.

In order to study the e�ects of the signal-to-noise on
the e�cacy of line ratio estimates, we bin the line ratio
residuals as a function of signal-to-noise. A signal-to-
noise bin is created at each integer value of the sampled
signal-to-noise used to create the synthetic data (5-030).
Residuals were calculated by taking the estimated value
and subtracted the ground truth and dividing that value
by the ground truth value; the value was then multiplied
by 100 to make it a percentage. We then removed all
outliers; outliers are de�ned as residual values more than
3-� o� the median value. We then calculated the median
value of the remaining set of residuals in each signal-to-
noise bin. Errors were calculated as the 1-� deviations
from the median. The plots are shown in appendix A.
Figure 7 demonstrates that the residuals do not change
as a function of the signal-to-noise when calculated by
the neural network. Conversely, the residuals and their
associated errors are greatly reduced in high signal-to-
noise regimes (R > 20) when calculated using standard
�tting techniques.

4.3. Application to M33

Having demonstrated the feasibility of using a neural
network to estimate strong emission-line ratios, we apply
our methodology to the Southwest �eld of M33 studied
in our previous article (Rhea et al. 2020). This �eld con-
tains several previously identi�ed emission region types
(classicH ii regions, supernova remnants, and planetary
nebulae; e.g. Zaritsky et al. 1989; Hodge et al. 1999;
Viallefond et al. 1986); additionally, this �eld is a SIG-
NALS target. All �ts (both from the algorithm devel-
oped here andORCS) were run using a computing server
located at the CFHT headquarters in Waimea, Hawaii
named iolani . The server has 2 IntelXEON E5-2630 v3
CPUs operating at 2.40GHz with 8 cores each. The
con�guration also has 64 GB of RAM available for com-
puting purposes.

To compare our results with those from theORCS�t-
ting pipeline, we �t each cube seperately usingORCS. We
use the fit lines in region function to �t the strong
emission-lines present in a given �lter. Within a �lter,
the lines are �t simultaneously with a single sinc func-
tion convolved with a Gaussian which returns each line's

ux, velocity, and broadening (Martin & Drissen 2017).
ORCS�ts the observed data to a sinc function convolved
with a Gaussian using the Levenberg-Marquardt least
squares optimization algorithm. Velocity and broaden-
ing priors were determined by �tting a binned (8 � 8)
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Figure 5 : Activation Map of the SN1, SN2, and SN3 �lters using the reference spectrum. The relative weights are
centered on emission line peaks and surrounding regions re
ecting the importance of amplitude and side-lobes on 
ux
ratio estimations. The signal-to-noise of this sample spectrum is approximately 20.

data cube. The �nal unbinned �ts ( � 4 million spax-
els) of SN3 took approximately 11 days, SN2 took 5.5
days, and SN1 took 1.8 day. We note that these calcula-
tions are done in parallel. Additionally, we applied the
trained neural network to the cube. By comparison, the
machine learning methodology requires approximately
18 computing hours, non-parallelized, to complete the
entire cube (all three �lters). This represents a reduc-
tion in computation time by approximately 2 orders of
magnitude. Additionally, we applied the network out-
lined in Rhea et al. (2020) to calculate the velocity and
broadening in order to have a more robust timing analy-
sis. We report that the addition of this network did not
add any signi�cant amount of time to the overall �tting
of the data cube. These results reinforce the notion in-
troduced in Rhea et al. (2020) that by taking a machine
learning approach to the analysis of IFU data cubes we
can greatly reduce the time required for computation
while retaining the accuracy of the results with a proper
training.

Although there does not exist a known ground-truth
value for these line ratios, we calculate the residuals be-
tween the machine learning predictions and standard
ORCS�ts in order to quantify the accuracy of the algo-
rithm. Normalized residual plots for each line ratio can
be found in appendix B. A visual inspection of the resid-
ual plots reveal that the machine learning algorithm re-
turns similar values to those calculated byORCS. Results
deviate most strongly in regions which we show in Rhea
et al. (2020) to be best described by multiple emission
pro�les, regions identi�ed as non-H ii regions, and those
with a low signal-to-noise ratio. We note, however, that
the normalized residual plots (Figures 9 and 10) show
general agreement between the standardORCS�ts and
those calculated by the neural network. Furthermore,
discrepancies between theORCSand neural network es-
timates illustrate the limitations of such an approach
when used as a replacement to global �tting algorithms
such asORCS. These results further indicate the impor-
tance of taking multiple emission pro�les into account

Figure 6 : Coadded H� and [N ii ]� 6583 emission map.
The image illustrates the density of emission-line regions
in the outskirts of M33. All pixels with an H � 
ux
less than 2� 10� 17erg s� 1 cm� 2 are masked out which
corresponds to a signal-to-noise ratio of approximately
5.

when modeling { this is the topic of the following paper
in the series.

5. CONCLUSIONS

Applications of machine learning in astronomy are
broad: from the estimation of stellar spectral param-
eters (e.g., Fabbro et al. 2018) to the discovery of ob-
jects of interest in extensive astronomical surveys (e.g.,
�Skoda et al. 2020). In this work, we apply an arti�cial
neural network to combined-�lter (SN1, SN2, and SN3)
SITELLE data representing typical SIGNALS large pro-
gram observations. The network is designed to calcu-
late important emission-line ratios for H ii -like regions
which are present in the primary SITELLE �lters. We
train, validate, and test the algorithm using synthetic
data created with the ORBSsoftware package. We adopt
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physically-derived line amplitudes from the Million Mex-
ican Model Database (Morisset et al. 2015). Our results
indicate that the network can potentially constrain the
line ratios with greater precision than the standard line
�tting technique implemented in ORCSif the source spec-
tral properties are well represented in the training set.
To demonstrate the applicability of the method beyond
synthetic data, we apply the network to the Southwest
�eld of M33. Timing analysis indicates that the network
can analyze the entire cube approximately 100 times
faster than the standard methods.

These results not only have an impact on the compu-
tational aspects of line ratio calculations, but they also
carry scienti�c implications. Although our knowledge of
galactic dynamics has expanded considerably over the
past several decades, spectroscopic conclusions are re-
stricted by the rigor of the �tting schemes employed and
precision of the results. In this paper, we have demon-
strated that machine learning algorithms can consider-
ably increase the precision of emission line ratios in both
low and high signal-to-noise regimes. This has profound
implications on the study of these regions since it will
allow stricter categorization using methods such as line-
ratio diagnostics in conjunction with BPT diagrams (e.g.
Baldwin et al. 1981; Kewley et al. 2006; Kewley et al.
2019). These methods require concise measurements in
order to accurately categorize the emission-region type
and break any model degeneracies.

Following up on the success of our �rst report, the
work presented here represents the second article in a
series of articles covering the application of machine
learning algorithms to SITELLE data cubes. Our re-

sults have been encouraging in mapping out emission
line ratios in pixels dominated by H ii region emission
serves as a proof-of-concept that using machine learn-
ing to identify line 
uxes is a viable methodology. We
note this work is not meant to be a replacement to
global line �tting algorithms. Identifying regions con-
taining multiple, blended emission components, as well
as multiple sources of emission with spectral features
not represented in a training set remains to be ex-
plored. Additionally, example code can be found at
https://github.com/sitelle-signals/Pamplemousse.
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APPENDIX

A. SIGNAL-TO-NOISE AND RESIDUALS

In this section we display the signal-to-noise vs residual plots described inx4.2. Figure 7 displays the signal-to-noise
vs residual plots for each line ratio calculated using the machine learning algorithm described inx2.2. Figure 8 shows
the signal-to-noise vs residual plots for each line ratio calculated usingORBas described inx3.

B. LINE RATIO RESIDUAL PLOTS

This section contains the line ratio residual plots (ORCS �ts - ANN estimates; Figures 9 and 10). The two methods
are in agreement in regions found to be best described by a single emission pro�le for each strong-line (see Rhea et al.
(2020) for details); in regions best described by two emission pro�les, the results di�er signi�cantly. In the subsequent
paper, we will explore machine learning techniques to determine whether or not emission regions are best described
by a single or double emission pro�le.
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(a)[ S ii ]� 6731/[ S ii ]� 6716 (b)([ S ii ]� 6731+[ S ii ]� 6716)/H �

(c)[ N ii ]� 6583/([ S ii ]� 6731+[ S ii ]� 6716) (d)[ N ii ]� 6583/H �

(e)([ O ii ]� 3726+[ O ii ]� 3729)/H � (f)[ O iii ]� 5007/H �

Figure 9 : Residual Plots created by taking the di�erence between theORCS�ts and the values calculated by the
arti�cial neural network for the Southwest Field of M33 normalized by the ORCS�t values. As discussed in the text,
regions with large discrepancies between the ORCS and ANN �ts are generally either not classicH ii regions or are
described best by multiple components.
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(g)([ O ii ]� 3726+[ O ii ]� 3729)/[ O iii ]� 5007 (h)[ S ii ]� 6731/[ S ii ]� 6716

(i)H � /H �

Figure 10 : Extension of Figure 9.
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