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1 Why use entropy ?

Biology can be described as evolving between typological and population thinking, as proposed by
Ernst Mayr [12]. In other words, biology might either focus on the type (i.e. the invariant or Plato’s
eidos), or focus on the population (in evolutionary biology), or the variation away from the type.
Charles Darwin is of course the main contributor of this new way of thinking, where variation comes
first. Statistics have evidently taken the main stage when it came to quantify the extent of variability,
through the concept of variance. More recently concepts from physical statistics, like entropy, have been
tentatively used as a metrics for variability. Initially forged for measuring the disorder or uncertainty
in a physical system, then reused within the frame of information theory, it is now being increasingly
used as a metrics for variability and used as a proxy for stemness in single cell transcriptomics data.
The goal of that paper is to show that the same metrics can be used to measure very different things
and to clarify for the biologist what is captured by entropy depending on its various usage.

There has been an occasional use of entropy for population-based measurements (see e.g. [22]; [2])
but the recent explosion of single-cell based measurements has really led to a strong increase in the use
of entropy as a relevant metric for quantifying variability.

One of the first paper to advocate for the use of entropy as a measure of variability was [39]. The
authors suggested that "This connection suggests a broad principle : at equilibrium, cell populations
that are subject to strict regulatory constraints should exhibit well-defined and low entropy expression
patterns, whereas those that are subject to weaker regulatory constraints should exhibit more diverse,
higher entropy expression patterns. Viewing variability in this light indicates that PSC (pluripotent
stem cells) populations may be more diverse than differentiated populations because they are subject to
weaker regulatory constraints". The authors went on to propose an information-theoretic interpretation
of stem cell dynamics that views cellular multipotency as an instance of maximum entropy statistical
inference [51].

Since this first proposal, there has been a vast amount of literature that made use of entropy for the
analysis of single cell transcriptomics data. Those types of data have to be seen as of distributions of



values [40], due to the unavoidable stochastic nature of gene expression [34]. This massive use led to a
situation where the use of the term "entropy" can be misleading, because it measures different things.

We therefore propose in the present paper a simple typology that should help non-specialists readers
to better grasp the relevance of that term, and differentiate its various occurences.

2 What is entropy ?

Entropy was first introduced by Rudolf Clausius to express the degradation of energy in thermo-
dynamics at the time of the first industrial revolution [21]. Ludwig Boltzmann later revealed that this
thermodynamical entropy could indeed be expressed as a measure of uncertainty, or mized-up-ness of
a physical system, i.e., a measure of the unpredictability of the microscopic degrees of freedom that
are unknown to an observer recording macroscopic variables [5]. In the 1940’s, this measure of disor-
der was generalized by Claude E. Shannon to form the basis of a new scientific field : "Information
theory" [14,61]. Within this perspective, any signal, measurement or random variable can be assigned
an entropy which measures its unpredictability, or in more celebrated terms its information contents.

Entropy is a functional of the probability density function (PDF). This simply means that given a
signal X, with a probability density function p(z) which is nothing but the normalized histogram of X,
the entropy can be computed using a formula that only involves p :

1) = = [ p(o) ogp(o)do.

In this expression, we have assumed that X takes continuous values, e.g. real numbers, and we have
noted S the support of the PDF, i.e., the set of all possible values that X can take. In that case, p is
said to be continuous and the entropy is often referred to as the differential entropy. Another important
class of signals correspond to those which take discrete values, e.g. integer values. In that case, p is said
to be discrete and the entropy is expressed by the famous Shannon formula

H(X) =~ p(m)log(p(m)).

meS

In practice, and in particular when dealing with single cell transcriptomics, it is usually more comfor-
table to use discrete distributions. This is natural not only if data is composed of integers (for example
a number of molecules), but it is also the form that appears when constructing the histogram of X to
estimate p, whether it is discrete or continuous. The histogram is composed of successive bins indexed
by an integer m € [1; M|, where M is the number of bins in the histogram (see section 2 below). Each
bin represents an interval of possible values for X, and p(m) is related to the probability for the variable
X to have its value in the bin m.

Beware that the Shannon entropy computed after this binning procedure does not estimate consis-
tently the differential entropy. Therefore, one has to be careful when comparing entropies of distributions
using this binning step.

p(m)
w(m)

In practice, it is possible [72] to compute instead — ) o p(m)log ( ) , where w(m) corresponds

to the length of the m'" bin and p(m) correspond to an estimation of p(m) (for instance the proportion
of the sample that falls in bin m).

Other authors (e.g. [32]) proposed to use a normalized entropy, for instance by rescaling Shannon
entropy with its maximum value log(M) : ——== >, -o H(m)log(p(m)) to get a quantity between 0

log(M)
and 1.

The entropy as defined by Shannon is a measure of the uncertainty or information contained in a
signal. If the probability is uniform (think about a regular dice with 6 perfectly equi-probable values,
p(m) = p = 1/6 for all m € [1..6]), then the uncertainty is maximal, and so is the entropy. On the
contrary, if one bin or one of the possible outcome has much larger probability (think about a loaded
dice), than the uncertainty is smaller, and so is the entropy (see Figure 1).
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FIGURE 1 — In the case of a regular dice, the entropy is equal to —(1/6 x log,(1/6)) x 6, that is 2.58.
In the case of the loaded dice the entropy is equal to —(1/2 x log,(1/2)) x 2, that is 1.

The extreme case where only a single value has a non-vanishing probability — which is then equal
to 1 — corresponds to a Dirac distribution (see Glossary below), which has an entropy equal to 0,
according to the Shannon formula.

Additionally, the differential entropy evolves as the logarithm of the variance of the distribution : if
one considers the reduced variable y = (x — p)/o, where T denotes the expected value of X and o its
standard deviation, then

H(X)=H(Y)+logo,

which indicates that the entropy of a dataset X increases with its standard deviation®.

Entropy is therefore a measure of the uncertainty, understood as the possible surprise of an outcome,
and hence a measure of the information contained in the probability distribution. One part of the
entropy is due to the standard deviation of the signal, while another part is related to the shape of its
distribution. As such, it offers a fully relevant measure of variability [9].

3 How to compute entropy

In this review we will focus on the use of entropy for analyzing single-cell omics data. Those are
information regarding the molecular content of one cell at a time [77]. We will more specifically focus on
single-cell transcriptomics data, where a number of mRNA molecules for different genes is determined
at the single-cell level.

There are a number of open issues regarding the proper handling of such single-cell nRNA expression
values. It ranges from the definition of a proper statistical model to account for the specific nature of
those data, including a high proportion of null values ( [11], [55]), up to normalization issues [13]. We
refer the interested reader to a recent review [38].

Single-cell mRNA expression has been shown to be well fitted using a Gamma distribution ( [1];
see Glossary below). It has been shown that a negative binomial distribution, the discrete version of
the Gamma law can be derived under certain conditions (i.e. in a bursty regime) from a mathematical
analysis of a two-states model for gene expression [60]. If one assumes that this is a correct model for
the data, and that the data are good enough for a proper estimation of the parameters of the Gamma
distribution, then one can derive the entropy from the analytical expression of the Gamma, distribution 2.

The alternative path consists in a non parametric estimations of the entropy, as follows.

A single-cell omics experiment will generate values, for example Ct values in the case of an RTqPCR
experiment or the number of mRNAs detected into a number of cells in the case of an RNA-seq expe-
riment. From such continuous or discrete data, one must first estimate the probability distribution the
values were drawn from in order to calculate the entropy. Although this might seems from a biologist’s
point of view like a trivial task, especially in the discrete case of RNA-seq data, a closer examination
shows that this is a really difficult question (see e.g [37], [28], [47]). It can be rephrased as how good is
the estimate the entropy H(X) given by :

H(X) ==Y pmlog(pm)
meM

where P, is the (normalized) frequency at which one can find cells or genes values in the given bin
indexed by m. One should note here that this value is computer for one cell, or one gene (see below), in
other term that it is a univariate distribution. No multivariate version of entropy has been proposed for

1. The entropy of X can be understood as the sum of two terms : the entropy of Y (the normalized version of X,
which is independent of o) which relates to the shape of the PDF, and log o which describes the width of the PDF.

2. H=a—In(B)+InT(a) + (1 — a)p(a) with a = p?/o and 8 = u/o, T being the Gamma function and 1) being the
digamma function.



the single cell field, although it might help to better characterize datasets of intrinsically multivariate
nature.

Pm is not the real probability but an estimate of that probability based upon a limited data set, and
on the choice of the bins. The question then arises as to what is the best binning procedure, and how
it impacts the resulting calculation.

Let’s take an example. Say we have measured the height of 5 persons :

Person  height (m)

P1 1.56
P2 1.70
P3 1.85
P4 1.66
P5 1.78

One can now decide to regroup those individuals by the following size class (bin) :

bin count pdf
[1.5; 1.6] 1 1/5

16;17] 1 1/5
17:18) 2 2/5
18519 1 1/5

The data is then partitioned in discrete boxes (bins) and in each of these one can calculate p,,, and
thus deduce the estimate H = 7/5logh — 4/5log2 = 1.699. But one can also decide to use a more
compact view of the original dataset. This can simply be achieved by increasing the size of the bins,
e.g. from 0.1 to 0.2, to get :

bin count pdf
[1.5; 1.7 2 2/5
[1.7; 1.9] 3 3/5

which leads to an estimate H = 4/5log(2/5) 4+ 9/51log(3/5) = 1.653, that is smaller than the former
one.

At that stage, it is worth mentioning that the maximum likelihood estimation H (X) of Shannon
entropy is always negatively biased [3] :

E,[H(X)] < H(p).

This means that natural estimation of entropy exhibits a tendency to underestimation. Figure 2
illustrates this property. However this bias vanishes as the number of observations increases [3].
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FIGURE 2 — Illustration of the bias in entropy estimation. The function g : p — —plog(p) is map-
ped here. For any random variable p, we have, E[g(p)] < g¢(E[p]) thanks to the concavity of g.
For instance, if p takes values 0.4,0.8 (black dots) with probability 1/2, then E[p] = pp = 0.6 and
E[g(p)] is given by the y-coordinate of the blue dot, whereas g(po) is given by the y-coordinate of

the red triangle. Hence, E[—plog(p)] < —polog(pp). By summing over all bins, this illustrates why

E[H(X)] = =2, E[pilog(p:)] < — >, pilog(p:) = H(p).

There is an abundant litterature as to what should be the proper way of defining a relevant bining
size. It has been shown that extreme bin size (either too small or too large) introduce a bias in the
estimation [49]. Sophisticated methods have been proposed for a proper bin size estimate, ranging from
the use of Doane’s rule ( [48]; [16]), an extension of Sturges’ formula, to the use of the Bayesian Blocks
algorithm, a method designed to find an optimal binning for a set of values without enforcing uniform
bin width ( [66]; [56]). The very existence of so many methods shows how the proper binning still is an
open and difficult question.

Such a binning issue is relevant for scRTqPCR data where the initial values are expressed as a
function of the Ct which is a continuous value. It is also relevant in the case of discrete values like the
counting of molecules in scRNAseq experiments : one can choose a number of bins that is equal to the
highest number of molecules detected in any cell of the dataset (and hence a bin size equal to 1), or
increase the bin size up to having only two bins : one for the zero expression level and the other one for
any non-zero expression level [76].

4 When to study entropy ?

We would first like to point out that one can calculate two sorts of entropies : an IntRAcellular En-
tropy and an IntERcellular Entropy (Figure 3). The IntR Acellular Entropy is endowing a CELL with an
entropy value, whereas the IntERcellular Entropy is endowing a GENE with an entropy value. In other
words, in the IntRAcellular Entropy, one try to capture the heterogeneity of the transcriptional state
of a given cell. In the IntERcellular Entropy, one try to capture the heterogeneity of the transcriptional
state of a given gene across a population of cells.

Based upon a thorough literature search we can then refine this proposal and classify entropy for
single cell omics data analysis into four different categories : one can estimate an entropy per cell or
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FIGURE 3 — A schematic description of the two different entropies. On the first line are displayed
two cells with their mRNA content for three genes. The second line shows how one can estimate an
IntRAcellular Entropy. Here the entropy for Cell 1 is equal to —(1/3 x log,(1/3)) x 3, that is 1.5. The
entropy for Cell 2 is equal to —((1/9 x logy(1/9)) + (3/9 x log,(3/9)) + (5/9 x log,(5/9))), that is 1.3.
The mean IntRAcellular entropy is therefore of 1.4. The third line shows how one can estimate an
IntERcellular Entropy. Here the entropy for Gene B is null, and the entropy for both Gene A and C is
equal to —(1/2 x log,(1/2)), that is 0.5. The mean IntERcellular Entropy is therefore of 0.33

an entropy per gene, and one can use external information (like Gene Ontology of a protein-potein
interaction network) to compute this entropy or obtain it directly from a given distribution. All the
available literature can be classified in such a way (Table 1 below).

IntRAcellular Entropy IntERcellular Entropy
SLICE |[27], scEntropy [36],
Requires external information | MCE [63], SCENT [68],
scEntropy [7§]

dpath [24], Stemld [25],
single-cell  entropy [36],
Without external information Shannon entropy  [48],
Palantir [59],CEE [73], scEn-
tropy [78], scRCMF, [79]

Shannon entropy [18], [50],
[66], [76]

TABLE 1 — The four entry table for entropy use in single-cell omics. In the case of [78] and [36], the
entropy calculation is based upon a Reference Cell (see below) which can be either an external input
of based upon an intrinsic calculation from the dataset. There is no know example of an IntERcellular
Entropy requiring external information, but it could be easily designed, for example by using a given
gene expression distribution as a reference.

4.1 IntRAcellular Entropy requiring an external information

In the SLICE algorithm [27], Gene Ontology (GO) clusters define the external information. Genes
are first attributed to those GO clusters, and then the algorithm computes the entropy of the clusters
distributions. A high entropy is linked with a flat distribution where all GO clusters are more or less
equally represented (i.e. contains a similar number of genes), and there are many potential functions
harboured by the cells, whereas a reduced entropy is linked with a distribution that concentrates on a
smaller amount of clusters/functions, being the hallmark of a differentiated cell.

For the single-cell entropy (SCENT) algorithm, the external information comes from a protein-
protein interaction (PPI) network [68]. scRNA-Seq values are superimposed on top of this PPI network.
Once more, immature stem cells are defined by more promiscuous signaling pathways, whereas more
mature cells are characterized by a narrower distribution. This was an extension of an entropy measure
that was initially defined over bulk tissue data [6].

A similar philosophy was introduced in [63] with the Markov Chain Entropy (MCE) where the
authors compute a Markov transition matrix (see Glossary below) through a PPI. They demonstrate
that the MCE behavior is driven by a correlation between mRNA expression and network connectivity,
and conclude that it outperforms three other single-cell potency models.

4.2 IntRAcellular Entropy without an external information

The Stemld algorithm [25] computes a cell-based entropy H = 721‘4‘ pi,j log(pi ;) where p; ; =
n; ;/N and n;; equals the number of transcripts of gene i in cell j. N equals the total number of
transcripts in each cell, which has been normalized. From this the authors compute an entropy score for



each cluster, as defined by k-medoids clustering, in order to identify stem cell clusters [25]. The authors
assume that a more promiscuous transcriptome, reflected in a higher entropy, would be expected for
stem cells, when a more confined transcriptome would be expected for a mature cell type.

The Palantir algorithm [59] computes yet another entropy value, that also requires the construction
of a Markov transition matrix (see Glossary) with branches. In contrast with MCE, this transition is
built from the data, and not from an external information. One can then compute a vector of branch
probabilities to reach each of the possible terminal states, and compute the entropy of such a vector. It
allows to define a differentiation potential in the sense that immature cells have a higher probability to
reach a large number of terminal states. This indicator, as the previous ones, decrease monotonously as
differentiation proceeds.

The dpath algorithm computes a metagene entropy [24]. It is based upon the construction of meta-
genes (vectors of genes) using a weighted Poisson non-negative matrix factorization (wp-NMF) method,
and on the computation of an entropy on the metagene coefficients V, a probabilistic simplex that indi-
cated the relative weight of each metagene in each cell. The metagene entropy of cell m is then defined
as — Zszl Viern 10g(Viern ). This metagene entropy serves as a measure of how many distinct programmes
(parts) are active (expressed) in a cell and was significantly higher in progenitor cells compared with
more differentiated cells. It therefore allowed the ranking of cells based on their differentiation potential.

Up to that point all observations concluded toward a monotonous decrease of IntRAcellular Entropy
as a function of the differentiation process.

The only exception concern the study of the very early development in human and mouse ( [36], [48],
[79]). In the first two studies, the authors observe a steady increase from the oocyte up to the blastocyst
stage ( [36], [48]). They propose that such an increase in heterogeneity would have been necessary for
cell fate diversifications [48]. Note that the second exception uses the single-cell entropy (scEntropy)
metric, where p;(y) is the distribution density of the components y; ; in y; = z; — r, r being the gene
expression vector r of a Reference Cell [36]. The third study, using the scRCMF algorithm which is a
very similar NMF approach as [24] describes a transient increase of entropy during what the author
describe as "transition states" [79]. The authors do not discuss the discrepancy between their results
and the previously published ones.

The Cellular Entropy Estimator [73] is defined as — Zszl P; ;log(P; ;) where (P; ;) is the probability
for the cell i to be attributed to the cluster j by the SoptSC algorithm [74]. As such it is more a measure
of the ability of a cell to transition to a new state than a measure of stemness per se.

Up to this point, most of the studies have shown that the very early development shows a monotonous
increase in cellular entropy, whereas differentiation from adult stem cells shows a monotonous decrease
in entropy. The only two exception are the use of scEntropy metrics which was shown to increase
during the differentiation of iPSCs into cardiomyocytes [78] and the use of scRCMF during mammalian
preimplantation development [79]. In the first case, it could be the choice of the Reference Cell that
influences such a directionality of entropy changes.In the second case, it would be interesting to see the
result of the application of dpath [24], a very similar algorithm, to an early mammalian development
dataset.

4.3 IntERcellular Entropy without an external information

In any case, the IntRAcellular entropy shows mostly a monotonous behaviour. This is in sharp
contrast with the study by [50]. In this work, we proposed an IntERcellular version of Shanon entropy,
computed from the raw data. For each gene, one can compute its entropy from its distribution in
a population of cells. By measuring single cell gene expression during the differentiation of chicken
erythroid progenitors, we demonstrated the existence of a surge in variability in gene expression in the
midst of this erythroid differentiation process, with a final differentiated state reaching a lower entropy
that the initial one. This was the first example of a differentiation process where IntERcellular Entropy
could evolve in a non-monotonous way.

Very similar results have been obtained in a different setting [66] : the authors have been measuring
single cell expression by RTqPCR during the differentiation of mouse embryonic stem cells along the
neuronal lineage. Using a very similar version of Shanon entropy as in [50], they also observed an increase
in variability at the beginning of the differentiation process.

Such a non-monotonous behaviour of entropy was further corroborated by [76]. To solve the binning
issue (see upper), the authors argue that only two obviously separated levels can be easily distinguished :
the zero expression level and the greater-than-zero expression level. This led them to propose a binary
Shannon entropy, calculated on two bins. Although this might seem like a very different measure than
[50] or [66], they also demonstrate the existence of a surge in entropy in long-term haematopoietic stem
cell differentiation as well as in EML cell line erythroid commitment.



More recently, we computed a gene-based Shannon entropy on Single-cell RNA-seq data from normal
and pathological human bone marrow. We demonstrated the surge in entropy in the main hematopoietic
differentiation pathways on normal and myelodysplastic syndromes samples. We also showed that en-
tropy is increased in hematopoietic stem cell of myelodysplastic syndromes as compared to age matched
control, suggesting a role for gene expression variability in the pathophysiology of this disease [18].

One key point in computing an IntERcellular Entropy lies within the proper definition of the group
of cells on which the gene entropy is computed. In [50] and [66] the cells have been harvested at different
time points offering a natural cell grouping scheme. In [76] the authors group the cells by predefined cell
types, based upon known gene expression patterns. In [18] we propose a more data-driven approach : the
cells are first ordered by their pseudo-time as assessed by Slingshot [64], and the entropy is calculated
on sliding windows across such a pseudo-time. Various re-ordering scheme do exists ( [57], [7]; [8]), but
they have not yet been systematically assessed for their ability to reorder cells in an entropy-relevant
manner.

4.4 Why IntRAcellular and IntERcellular entropy differ ?

At that stage it is remarkable that almost all techniques aiming at measuring an IntRAcellular
entropy do show a monotonous decrease in entropy as the differentiation proceeds, whereas all IntER-
cellular metrics point toward a bell-shaped non-monotonous behavior.

To propose an explanation for those observation, we would like to make a reasoning on a toy dataset,
represented in Tables 2 and 3. We display in those matrices six cells, ranging from stem to mature, and
4 genes. The stem cells are characterized by a low and promiscuous expression of all the genes, thereby
preserving their potential for different lineages choices. As differentiation proceeds, some genes get
repressed and some get activated. This tends to concentrate the gene expression pattern on a smaller
number of genes, thereby reducing the entropy. Ultimately, the mature cell type is characterized by the
expression of a small number of genes (here one), and a low entropy.

In order to account for the surge in IntERcellular entropy, one should now focus on the intermediate
"progenitor" population. In this case, one propose that cells are passing through a stage of so called
‘hesitant’ behaviour [44]. During this stage, each cell explores (at its own pace and independently of
cell division) many different possibilities before reaching a stable combination of genes to be expressed.
This peak of uncertainty can be captured by entropy measurements (see Table 3), but also through the
reconstruction of transcriptional uncertainty landscapes [23], or through the mathematical definition of
a potential energy of a population of cells [70]

Gene 1 | Gene 2 | Gene 3 | Gene 4 Entropy
Cell 1 1 2 4 3 2 (High)
Cell 2 1 2 3 4 2 (High)
Cell 3 5 7 0 0 1.5 (Medium)
Cell 4 0 0 8 5 1.5 (Medium)
Cell5 | 15 0 0 0 0.8 (Low)
Cell 6 | 18 0 0 0 0.8 (Low)

TABLE 2 — Monotonous decrease in cell-based entropy. Cells 1 and 2 are stem cells, 3 and 4 are progenitor
cells and 5 and 6 are mature cells characterized by the elevated expression of Gene 1. All the distribution
gets progressively concentrated on one gene.

5 Discussion

It is no wonder why the entropy concept has become so popular in the era of single cell omics.
Indeed, even though the stochastic nature of gene expression has been anticipated for quite some times
( [31], [33]), single cell studies have established its unavoidable nature ( [34], [20], [67]). This led to the
critical need for tools that can help to make sense of distribution-based evidence [40] away from the
classical mean-based vision [34].

Although all the example in this review are from the single-cell transcriptomics field, one should note
that most, if not all, of the known molecular techniques are being adapted to single cell studies [77].
The resultant high-dimensional single cell data generated require new theoretical approaches and ana-
lytical algorithms for effective visualization and interpretation. Statistical physics tools and especially



Gene 1 | Gene 2 | Gene 3 | Gene 4 | Mean entropy

Cell 1 1 2 4 3
Cell 2 1 2 3 4

Ent 0 0 1 1 0.5 (Low)
Cell 3 5 7 0 0
Cell 4 0 0 8 5

Ent 1 1 1 1 1 (High)
Cell 5 15 0 0 0
Cell 6 18 0 0 0

Ent 1 0 0 0 0.25 (Low)

TABLE 3 — Non-monotonous behavior of gene-based entropy. Cells 1 and 2 are stem cells, 3 and 4 are
progenitor cells and 5 and 6 are mature cells characterized by the expression of Gene 1. The intermediary
phase is characterized by a state of uncertainty in which entropy is peaking ( [50], [44], [23])

information theoretic ones, like entropy, therefore became largely used. There are of course more uses of
entropy in biology, both within (see e.g. [35]) and outside of the single-cell omics field (see e.g. [30], [13]),
but that would be beyond the scope of this review to analyze them all.

Beyond the need for a consensual binning procedure (see upper), one currently missing tool is the
absence of a statistical test for comparing the entropy of two distributions and to decide whether or not
their entropy is significantly different. We are currently working on this issue.

Other indicators of variability do exist, from the variance, up to the coefficient of variation (CV;
o/u), the Fano factor (02/u) and the normalized variance (02/u?). Some authors have proposed a
measure of "transcriptional noise" based on pairwise cell-cell distanced calculated as d = /(1 — p)/2,
with p being the Spearman’s rank correlation coefficient [42].

One has to state here that entropy stands out from those measures, since it can be shown to measure
the variability of the elements within a given distribution, and that its expression is not arbitrary, as it
is the only linear indicator for such a concept [9].

All measures of molecular variability are influenced by a variety of potentially confounding factors,
including a gene’s mean expression [19]. Some author proposed to condition CV values on mean by
computing the residuals of a non-parametric loess regression of CV-mean [69] to eliminate such a mean
dependency.

Such bias advocate for care to be taken when drawing inferences about the role of biological varia-
bility using such indicators. Nevertheless, our review shows that the use of entropy was instrumental in
highlighting the connection between stemness and uncertainty ( [51]) or between differentiation and an
increase in molecular variability ( [26], [43], [17]), leading to the concept of noise-induced differentiation
([54], [71], [20], [10]).

Altogether, those results strongly support the view that cell differentiation is a probabilistic process
( [33], [46]). This is rooted in the fact that cells are neither machines ( [45]), nor simple information
processing devices. Cells (like all living systems) are rooted within a physico-chemical world to which
they belong. Their specific complexity nevertheless sometimes led to the idea that they should be treated
differently that classical physico-chemical systems ( [58]). But their nature of dynamical systems is
exemplified here by the relevance of the use of a statistical physics concept, like entropy.

From a more biological perspective and especially in the field of cancer, further single cells studies-
based entropy analysis of splice variants [41] may help us to better understand the consequences of
splicing alteration in the disease establishment and progression as previously suggested in bulk analysis
[62]. Moreover, future single cell analysis could consider some poorly explored players of the cells, such
as miRNAs [75] or IncRNAs [15] which could vary significantly during normal and pathological processes
of differentiation. Lastly, all these considerations have to be explored again in approaches including the
consequences of spatial cell-cell interactions ( [62], [65], [53]) for example between hematological stem
cells and their niche [4].

In conclusion, we hope the reader is now convinced of the versatility and power of entropy to quantify
the extent of variability contained in a distribution, and that next time he/she will investigate how to
unravel the importance of variability during a biological process, he/she will not hesitate to make the
best use of entropy as a relevant metrics.



6 Glossary

The Dirac delta can be loosely thought of as a function on the real line which is zero everywhere
except at the origin, where it is infinite,

oo if x =0
o(x) =
0ifx#0

and which is also constrained to satisfy the identity

/O:O 0(z)dx = 1.

Intuitively, it correspond to the distribution of a constant random variable. Such random variable
can not be described properly by a probability density function.

The Gamma distribution is a two-parameter family of continuous probability distributions for
positive real values. It is highly versatile and it occur frequently in models used in engineering, business
or biology for which the variables are always positive and the results are skewed (unbalanced), and
therefore not captured by the more "classical" normal distribution.

A Markov transition matrix describes how a random system evolves as a function of time.
Formally, a transition matrix P is a real nonnegative square matrix with each row summing to 1. It
number of rows is equal to the number of possible states for the system, and the i*? row is the probability
distribution of the state at time ¢ + 1, knowing it is in state ¢ at time ¢. Hence, P;; corresponds to the
probability for the system to be in state j at time t + 1 knowing it is in state ¢ at time t.

Let’s imagine three cells, and assume they can transition according to the scheme in Figure 4. Note
that the system has to enjoy the so called "Markov property" meaning that once the current state of
the system is known, his past does not affect the probability for future states

Markgv-eps-converted-to.pdf

FIGURE 4 — Transition graph between three cells

One can then start building P the transition matrix. If one start in state 1, then one has 1/3 chances
to stay in 1, 1/3 chances to transition to 2 and 1/3 chances to transition to 3. This therefore provides
us with the first line in P :

P<1/3 1/3 1/3>

By repeating the operation when starting from state 2, and then 3, one can then complete the matrix :

1/3 1/3 1/3
P=[o0 1/5 4/5
0 0 1

One can then compute an entropy per row, and one can see in the example that this entropy will
be decreasing from cell 1 (H = 1.58) to cell 3 (H =0).
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9 Highlighted papers

* of special interest

[20] Laid the foundation for the study of gene expression variability at the single cell level using a
two reporter system in E. Coli

[1] A technical tour-de-force : counting mRNA and proteins from the same gene at the single cell
level.

[25] The first use of IntRAcellular entropy to characterize stemness at the single cell level.

[10] Demonstrates a functional connection between transcriptome fluctuations andcell decision ma-
king

** of outstanding interest
[50] The first demonstration of a non-monotonous behavior of IntERcellular entropy during a
differentiation sequence.
[34] The first demonstration of cell-to-cell variability in human cells.
[65] A very thoughtful and relevant analysis of the statistical nature of scRNAseq data
[66] A statistical mechanics view of a differentiation process
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