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Abstract: Progress in microscopy technology has a long
history of triggeringmajor advances inneuroscience. Super-
resolution microscopy (SRM), famous for shattering the
diffraction barrier of light microscopy, is no exception. SRM
gives access to anatomical designs and dynamics of nano-
structures, which are impossible to resolve using conven-
tional light microscopy, from the elaborate anatomy of
neurons and glial cells, to the organelles and molecules
inside of them. In this review, we will mainly focus on a
particular SRM technique (STEDmicroscopy), and explain a
series of technical developments we have made over the
years to make it practical and viable in the field of neuro-
science. We will also highlight several neurobiological
findings on the dynamic structure-function relationship
of neurons and glia cells, which illustrate the value of live-
cell STEDmicroscopy, especiallywhen combinedwith other
modern approaches to investigate thenanoscale behavior of
brain cells.

Keywords: extracellular space; glial cells; SMLM; STED;
super-resolution microscopy; synapse.

Zusammenfassung: Fortschritte in der Mikroskopie-
Technik haben in der Vergangenheit immer wieder große
Durchbrüche in den Neurowissenschaften ausgelöst. Die
superauflösende Fluoreszenzmikroskopie, berühmt für die
Durchbrechungder Beugungsgrenze der Lichtmikroskopie,
bildet hier keine Ausnahme. Sie ermöglicht beispiellosen
Zugang zum anatomischen Aufbau und der Dynamik von
Nanostrukturen, die mit konventioneller Lichtmikroskopie
nicht auflösbar sind, von der ausgefeilten Anatomie der
Nerven- und Gliazellen bis hin zu den Organellen und
Proteinen in ihrem Inneren. In diesem Überblicksartikel
werden wir hauptsächlich auf die STED-Mikroskopie ein-
gehen und eine Reihe von technischen Neuerungen erläu-
tern, die wir im Laufe der Jahre anwendungsspezifisch
dafür entwickelt haben. Wir werden dabei einige unserer
neurobiologischen Untersuchungen und Resultate über
Synapsen, Gliazellen und den Extrazellulär-Raum vor-
stellen, wo die ,live-cell‘ STED-Mikroskopie in Kombination
mit anderen modernen Ansätzen einen entscheidenden
Beitrag leisten konnte.

Schlüsselwörter: Extrazellulärer Raum; Gliazellen; SMLM;
STED; Super-Resolutions-Mikroskopie; Synapsen.

Introduction

Progress in microscopy technology has a long history of trig-
gering major advances in neuroscience, most prominently
with Golgi’s staining technique in the 1870s, electron micro-
scopy (EM) in the 1950s, confocal microscopy, 2-photon mi-
croscopy, fluorescent proteins, and optogenetics in recent
times. Synergistic and self-amplifying, these innovations
have dramatically accelerated the symbiotic progress of
technology and biology, the discovery of biological lumi-
nescence and the runaway success of GFP-based biosensors
being a prime example.

In fact, one of the great controversies in neurosci-
ence history exemplifies the role that new tools and tech-
nology play for scientific progress. Enabled by technical
breakthroughs in staining and viewing samples of human
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brain tissue, the Spanish neuroanatomist Ramon y Cajal
made seminal observations about the shape and arrange-
ment of brain cells (DeFelipe, 2009). Against the reigning
‘reticular theory’ promoted by Camillo Golgi, who thought of
thebrain as adiffuse networkof anastomosingneurons, Cajal
proposed the ‘neuron doctrine’ where discrete, physically
separated cells (neurons) transmit electrical signals at special
microscopic junctions (chemical synapses) formed by den-
dritic spines. Both of them were partly right in the end,
sharing a Nobel Prize in 1906, because neurons have syn-
apses and gap junctions that mediate stochastic-quantal and
gradual-analogue electrical communication, respectively, as
since proven by more modern cell biology techniques.

In the perpetual cycle of innovation and discovery, the
advent of super-resolution microscopy (SRM) is a recent
milestone. It refers to fluorescence imaging techniques that
cleverly exploit the ‘on–off’ behaviour of fluorophores to
resolve features in a sample that remain obscure to con-
ventional lightmicroscopy. Recognized by theNobel Prize in
2014 (shared by Stefan W. Hell, William E. Moerner and Eric
Betzig) for breaking the diffraction barrier of light micro-
scopy (which is around 200 nm), SRM opens a new window
on the “nanocosm” of biological life.

Indeed, SRM methods are on track to offer single-digit
nanometer spatial resolution, unearthing ever more data on
the molecular organization and dynamics of cells and tis-
sues. SRM is a powerful tool, especially in neuroscience,
because it can capture the extremely elaborate morphology
of neurons and glial cells, as well as the crowded arrange-
ment of organelles and molecules inside of them (Figure 1)
(Tønnesen and Nägerl, 2013). As the anatomical designs and
dynamics of these nanostructures are tightly linked to brain
functions, there is a huge interest to develop and apply SRM.
Accordingly, SRM is becoming a mainstay in biology de-
partments and core facilities around the world only a few
years after their principles andprototypeswere developedby
a handful of bio-photonics labs.

In this review article, we will explain the basic princi-
ples of SRM and highlight several methodological in-
novations and neurobiological applications we have driven
over the last few years.

SRM basics

To understand how super-resolution can be achieved, we
first need to appreciate why the resolution of conven-
tionalmicroscopy is limited. Photons that are emitted by a
point source of light (such as a single fluorophore) are
diffracted by the optics of the microscope, causing them
to be projected into a blurry spot instead of a nice and
crisp point on the retina, camera screen or other light
detector. The size of this spot (Δr) corresponds to the
‘diffraction limit of light microscopy’ or the ‘spatial res-
olution’ of the microscope, which is incarnated by Abbe’s
simple formula Δr = λ/2·NA, where λ denotes the wave-
length of the light and NA the numerical aperture of the
microscope objective.

Importantly, if there is just one fluorophore, it can be
localized very precisely by calculating the geometric
center of the spot. However, if there are too many fluo-
rophores that are too close to each other (closer than Δr),
this localization step becomes impossible and the fluo-
rophores can no longer be distinguished as their images
merge into a blurry whole. This is the case of conventional
fluorescence microscopy where basically all fluorophores
emit photons at the same time, making the image irre-
deemably fuzzy.

There are mainly two ways to get around this problem
and achieve a resolution that is 10 times or even a hundred
times better than Δr (Figure 2). In both cases, the fluores-
cent dye molecules, and the ability to control their photo-
physical state with light, take centre stage.

Figure 1: Super-resolution microscopy opens a window into the nanocosm of the brain.
SRM can capture the extremely elaborate nanoscale anatomy of neurons and glial cells, as well as the way organelles and proteins are
arranged inside of them.
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On the one side, one can find methods that are based on
the detection of singlemolecules (such as PALM, STORMand
uPaint) (Fürstenberg and Heilemann, 2013). Instead of
exciting many fluorophores at the same time, only a sparse
subset is stochastically turned on at a given time, using a
special switching mechanism. Under such conditions, it is
possible to determine very precisely the location of individual
fluorophores, to ‘localize’ them, assigning each of them a
spatial coordinate. By repeating this cyclemany thousands of
times, each time turningonadifferent subset offluorophores,
a super-resolved image can be constructed bymerging all the
individual localizations (Figure 2A).

By analogy, single-molecule localization microscopy
(SMLM), as it is commonly referred to, is like drawing a
picture in pointillist style, but only after shrinking down all
the little dots that collectively produce the composite image.
While SMLM is the method of choice for imaging nanoscale
protein distributions in cells because of its unrivalled spatial
resolution (<10 nm) and ability to provide quantitative in-
formation on the number and diffusion of single molecules,
its overall temporal resolution is quite slow (on the order of
minutes per image).

On the other side, there are methods that reduce the
fluorescence spot in laser-scanning microscopes (such as
STED and RESOLFT) (Hell, 2007). This reduction is achieved
by a second laser (the STED laser), which can de-excite, or
‘turn off’, molecules by stimulated emission, well known
from laser physics. By shaping the STED laser like a donut, it
can suppress the fluorescence on the edge of the excitation
spot, while leaving it untouched in the middle of the donut,
effectively increasing the spatial resolution of the micro-
scope (Figure 2B).

Acquiring a STED image then is like drawing with a

pencil that is mounted in front of two closely spaced erasers

so that the pencil marks left behind become much thinner.

While STED imaging generally offers less spatial resolution
(∼20–30 nm) than SMLM, it can be relatively fast (on the
order of seconds per image) and is well-suited for volumetric
imaging of diffusible cytosolic fluorophores to reveal nano-
scale cell morphology.

Not only does SRM cost extra time and money, it also
comes at the price of technical challenges and setbacks
due to its more stringent requirements and taxing condi-
tions compared to conventional microscopy. With SRM, it
is typically more challenging to obtain sufficient signal/
noise ratios, depth penetration, sample stability. SRM
techniques are also more prone to phototoxicity and
photobleaching. Hence, for many years, its application
was limited to imaging chemically fixed samples very
close to the coverslip and remained disconnected from
other experimental approaches or measurements. This
immaturity was a far cry from the wide scope and effec-
tiveness of well-established fluorescence techniques,
such as 2-photon microscopy or simple wide-field
imaging.

Fortunately, numerous incremental technical im-
provements cumulatively have made a big difference for
SRM performance, from sample labelling (engineering
tags that are brighter and more photostable, smaller,
more specific and less invasive) to microscope ins-
trumentation and optics (with tighter engineering tol-
erances, digital control and automation) to image
processing and analysis (with more computing power
and better algorithms). Having come of age, SRM is now
an indispensable tool for cellular and molecular
neuroscience.

In the following, we will describe our journey to
making STED microscopy easier to use and more im-
pactful, explaining a series of innovations and tweaks we
have introduced over the years.

Figure 2: Two major ‘tricks’ to crack the diffraction limit of light microscopy.
(A) In SMLM, only a sparse subset of fluorophores is stochastically turned on at a given time, making it possible to localize each of them very
precisely. By repeating this cycle many thousands of times, a super-resolved image can be constructed by merging all the individual
localizations. (B) In addition to an excitation laser, a STEDmicroscope is also equippedwith a second laser with the purpose of de-exciting the
molecules. By shaping this laser like a donut, it can strongly suppress the fluorescence on the edge of the excitation spot, thereby increasing
the spatial resolution.
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STED microscopy in living brain
tissue

After the demonstration that STEDmicroscopy can greatly
improve live-cell imaging of neurons in brain slices
(Nägerl et al., 2008), properly resolving their morpho-
logical details for the first time with photons instead of
electrons, it became desirable tomake STED amore useful
tool for neurobiologists.

To image in multiple colours is essential for dis-
tinguishing different cellular structures (e.g. presynaptic
axons, postsynaptic dendrites, glial processes).While this
is a given for conventional fluorescence microscopy, it is
more difficult to achieve for STED microscopy where the
STED laser constrains the available spectral bandwidth.
Sidestepping this problem, we came up with a robust
method for two-colour STED imaging of neuronal
morphology (Tønnesen et al., 2011). By using spectrally
similar fluorophores (e.g. GFP and YFP), it is possible to
get away with a single pair of excitation and STED lasers
to simultaneously image both fluorophores at super-
resolution. The two overlapping fluorescence signals can
be spectrally separated by simple image processing
(‘linear unmixing’). This solution avoids the cost and
complexity of adding lasers to address each fluorophore
separately and rules out chromatic errors to boot.

Many neurobiological questions can only be addressed
inside live brain tissue, which demands a certain amount of
tissue depth penetration. Unfortunately, the quality of the
STED donut degrades rapidly with imaging depth inside
biological tissue, obliterating spatial resolution and image
contrast.With early STEDmicroscopes,whichweredesigned
for oil-immersion objectives, it was only possible to image a
few microns into the tissue because of a large mismatch in
refractive index between the oil–sample interface. This
causes spherical aberrations, which blur out the excitation
and STED laser spots. Switching to a glycerine-immersion
objective (which has a smaller mismatch and a correction
collar to reduce aberrations), proved to be a simple and
effective remedy. It significantly extended the depth pene-
tration of STED, making it possible to resolve cellular actin
structures as thin as 70 nm at depths of 80 μm below tissue
surface (Urban et al., 2011).

In another tack, we developed a new combination of
2-photon and STED microscopy, aiming to combine the
unique benefits of both techniques. It enabled us to image in
acute brain slices beyond the debris and damaged cells on
the surface from cutting the slices (Bethge et al., 2013). We
have also adopted an approach to preserve the STED donut
by shaping the wavefront of the STED laser beam (Bancelin

et al., 2021). It is based on ‘adaptive optics’, a technique
originally developed by astronomers to counteract the opti-
cal aberrations from the Earth’s atmosphere (Rodríguez and
Ji, 2018). When combined with modern computational tools
like machine learning, it is possible to optimize the adaptive
parameters on the fly, which will greatly facilitate main-
taining a good donut deep inside heterogenous tissue.

Another way to achieve higher depth penetration in fixed
tissue samples is tomodify theopticalproperties of the sample
itself. Recently, we demonstrated that embedding brain slices
in a refractive index-matching medium renders them trans-
parent and suppresses the spherical aberrations at the oil–
sample interface (Angibaud et al., 2020).

Armed with these technical improvements, we set out
to address several interesting neurobiological questions
about the morphological dynamics and plasticity of neu-
rons and glial cells. In essence, STED microscopy could
solve the classic impasse, where light microscopy can do
live-cell imaging but doesn’t have enough resolution,
while EM has enough resolution but can’t do live-cell
imaging.

Experiments were usually—unless stated differently—
performed in cultured organotypic hippocampal slices,
which is a very stable and accessible experimental prepa-
ration that retains the main anatomical relationships and
synapto-physiological properties of the intact hippocampus.

Spine neck plasticity regulates
synapse compartmentalization

Dendritic spines, the tiny dendritic membrane pro-
trusions that Cajal famously observed and drew, are the
postsynaptic structural compartments of excitatory
synapses in the brain. Despite intense investigations for
more than a century, these beautiful structures are still
quite enigmatic (Figure 3A). Conspicuously shaped, with
a prominent head and elongated neck, spines transform
synaptic signals through chemical and electrical
compartmentalization (Adrian et al., 2014; Yuste, 2013).
However, the impact of spine morphology on synapse
compartmentalization remained difficult to assess,
because spines, especially their necks, are so small and
difficult to resolve. Enabled by a combination of STED
and modern electrophysiological and biophysical tech-
niques, we could illuminate the relationship between the
nanoscale structure and function of spines (Tønnesen
et al., 2014).

We demonstrated that spine necks become substan-
tially wider and shorter after the induction of functional
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synaptic plasticity induced by glutamate uncaging. These
changes could reflect a structuralmechanism tomodify the
strength of synapses (Figure 3B), because any changes that
reduce the electrical resistance of the spine neck (which is
what neckwideningwould be expected to do)will decrease
the amplitude of excitatory synaptic potentials (EPSP) in
the spine head.

Counterintuitively, this reduction in EPSP would actu-
ally potentiate the synapse by preventing spine voltages
from reaching the Nernst (reversal) potential of the synaptic
conductance, where the ionic current into the spine ceases
to flow. For this disinhibition effect to be physiologically
noticeable, the synaptic conductance and neck resistance
would have to be high enough for spine EPSPs to approach
the reversal potential, which is likely to be the case for
spines with large heads and long or thin necks (Tønnesen
and Nägerl, 2016).

Axon plasticity tunes conduction
speed of action potentials

Several studies over the 20 years have punctured the classic
view of axons as electro-anatomical cables that faithfully
conduct action potentials (AP) in an all-or-none fashion
to downstream synaptic targets (Debanne et al., 2011;
Rama et al., 2018). It was shown that axons have a va-
riety of sophisticated ways to regulate AP conduction
(Sasaki et al., 2011) and synaptic transmission (Alle and
Geiger, 2006), and thus the timing of signal processing
in the brain. While AP conduction speed in unmy-
elinated axons depends strongly on axon diameter,
it was unknown whether AP conduction speed could be
dynamically regulated by activity-dependent changes
in this biophysical parameter. Again, given the minute

Figure 3: Dissecting the functional nano-
anatomy of the brain using live-cell STED
microscopy.
(A) A typical pyramidal neuron in the brain,
which projects elaborate dendritic and
axonal arbors. Experimental induction of
synaptic plasticity (LTP) resulted in spine
head enlargement/spine neck widening (B)
and transient enlargement of axonal
boutons (C). (D) Astrocytic processes
exhibit a reticular organization in their
hyperfine processes. (E) Mapping the Ca2+

signals onto the super-resolved
morphology showed astrocytic Ca2+ activity
associated with single synapses. (F) Unique
astrocytic Ca2+ patterns associated with
individual synapses. (G) The combined use
of the hippocampal window preparation
and a long working distance objective (top)
gives access to CA1 hippocampal neurons
in vivo (bottom). (H) In vivo chronic super-
resolution imaging (2P-STED microscopy)
reveals a high turnover rate of dendritic
spines in the hippocampus.
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dimensions of the structures involved, this question could
not be addressed by conventional light microscopy.

Enabled by time-lapse STED imaging paired with

electrophysiology in hippocampal brain slices, we

showed that high-frequency AP firing induced physical

enlargement of axons, where axonal boutons showed a

transient increase, which was followed by a sustained

widening of the intervening axonal shafts (Figure 3C).

These structural dynamics weremirrored by bidirectional

changes in AP conduction speed. A causal link between

the nano-structural and functional changes was also

supported by pharmacological experiments and mathe-

matical modelling, which closely predicted the effects on

AP conduction. Our findings revealed a novel structural

plasticity mechanism that tunes the timing of fast elec-

trical signalling (Chéreau et al., 2017).

Astrocytic nanostructures generate
calcium signals at tripartite
synapses

If conventional light microscopy struggles to resolve
neuronal morphology, it totally fails for astrocytes, a type
of glial cells in the brain, which has an even more elabo-
rate morphology than neurons. Their nanoscale pro-
cesses wrap around synapses, forming so-called tripartite
synapses, whose elements are thought to be all in close
communication to tune synaptic transmission and plas-
ticity. Perisynaptic astrocytic processes are responsible
for glutamate uptake from the synaptic cleft and appear
to release neuroactive substances that can modulate syn-
aptic transmission. But because everything looks so fuzzy
under a normal microscope, it has been difficult to witness
how astrocytes interact with synapses (Rusakov, 2015).

To overcome this problem, we turned to 3D-STED
microscopy and combined it with confocal Ca2+ imaging
and FRAP experiments to assess their signalling activity
and biophysical properties. We observed that astrocytic
processes form a reticular meshwork of nodes and shafts
that were frequently arranged as rings (Figure 3D–F). The
nodes gave rise to spontaneous Ca2+ signals, which ten-
ded to stay confined, but could also spread to neigh-
bouring nodes via the shafts. FRAP experiments indicated
that nodes can effectively compartmentalize diffusible
signals by virtue of their structural design. Mapping the
Ca2+ signals onto the STED-resolved morphology showed
that astrocytic Ca2+ activity was associated mostly with
single synapses, consistent with the idea that astrocytes

can communicate ‘privately’ with many different synap-
ses at the same time.

Altogether, our study shines new light on the nano-
scale organization of astrocytes in live brain tissue, iden-
tifying astrocytic nodes as the elusive anatomical structure
that may regulate neuronal communication at tripartite
synapses (Arizono et al., 2020).

Two-photon STED microscopy
reveals turnover of hippocampal
spines in vivo

Rewiring neural circuits through synapse formation and
elimination is thought to be a key mechanism of learning
and memory. While experience-dependent spine plasticity
has been extensively studied in superficial cortical areas
using 2-photon microscopy, little is known about it in the
hippocampus, despite its outsize importance for memory
processing. This knowledge gap was mainly due to diffi-
culties in gaining optical access to this deeply embedded
brain structure, and the fact that 2-photon microscopy
struggles to correctly report hippocampal spine density
(Attardo et al., 2015; Gu et al., 2014), which can be 10 times
higher for hippocampal than cortical neurons (Holtmaat
et al., 2006).

In this context, we set out to develop a super-
resolution approach to monitor spine plasticity over
extended time periods in the hippocampus in vivo, devel-
oping further our 2-photon STED microscope. To gain op-
tical access, we surgically removed a piece of cortex above
the hippocampus and implanted a metal cylinder into the
space created. We also retrofitted our 2-photon STED mi-
croscope with a long-working distance objective to opti-
cally reach the hippocampus below the cortical surface.
Performing repeated ‘chronic’ imaging of fluorescently
labelled hippocampal neurons in anesthetized mice, we
monitored their spine density and spine turnover over a
few days (Pfeiffer et al., 2018).

Because of the high acuity of our imaging approach, the
measured spine density was more than twice as high as the
values reported by previous 2-photon studies, in good
agreement with the gold-standard EM literature. Enabled by
this high spine detection efficiency, we could follow indi-
vidual spines through time. We observed that a stunning
40% of them turned over (i.e. were lost or replaced, while
their total number, or density, stayed constant) during four
days of observation (Figure 3G and H). Our study provides
direct evidence for a high level of circuit remodelling in the
hippocampus, supporting the view that hippocampal
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synapses serve as transient buffers and dynamic relays for
newly formed memory traces.

Super-resolution shadow imaging
(SUSHI) of the extracellular space

Despite all of its strong points, fluorescence microscopy
has the distinct disadvantage that you only see what you
label, leaving you literally in the dark about the rest.

To get a non-biased and truly comprehensive view,
we have developed an ‘inverted’ strategy to label brain

tissue. Instead of marking individual cells, we simply la-
bel and image the spaces between the cells, using a highly
diffusible but membrane-impermeable fluorescent dye
and a homemade 3D-STEDmicroscope. Collectively, these
in-between spaces are called the extracellular space of the
brain (ECS), taking up roughly 20% of the volume of the
brain and containing cerebrospinal fluid and the extra-
cellular matrix.

We named the technique ‘super-resolution shadow
imaging’ or SUSHI (Tønnesen et al., 2018) because all cells
appear as dark shadows in a bright sea of fluorescence
(Figure 4A). SUSHI generates a super-resolved negative
imprint of the space occupied by membrane-bound

Figure 4: New applications for STED microscopy.
(A) An inverted SUSHI image showing imprints of all brain cells in the tissue. This can be combined with positively labelling of a particular cell
type such as neurons (B) and astrocytes (C). (D) Combination of STED and PALM makes it possible to image nanoscale dendritic spine
morphology (orange, STED) together with scaffolding proteins (pink, PALM) and receptor dynamics (blue, uPAINT) (left). White arrow indicates
‘spinules’, a type of ‘mini-spine’ extending from dendritic spines, where receptors are especially dynamic (right).
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cellular structures. As in regular photography, the nega-
tive image holds the same structural information as the
positive image, making it possible to view the anatomical
organization of live brain tissue in a sweepingly pano-
ramic, yet exquisitely detailed way.

Even though the labelling is inherently unspecific,
different cell types can readily be distinguished based on
their shape. It is even possible to discern synaptic clefts,
owing to the nanoscale spatial resolution and favourable
contrast conditions, where the super-thin but brightly
labelled extracellular fissures stand out against the pitch-
black cellular structures that Sandwich them (Figure 4A).

Labelling the ECS rather than individual cells comes
with several practical advantages. It is easy to apply, and is
much more resistant to photobleaching and phototoxicity.
This is because bleached dye molecules get continuously
replenished via diffusion and toxic photoreaction products
don’t build up inside the cells but wash away rapidly.

Not only is SUSHI—especially in combination with
positively highlighted cells (Figure 4B and C)—useful for
imaging cells and their anatomical relationships, it can
also reveal the complex nano-architecture of the ECS.
Surrounding all cells, the ECS is the obligatory transit
station for extracellular signalling molecules and thera-
peutic substances, influencing neuronal communication
and the efficiency of drug treatments.

EM andMRI have been used to reveal the ECS, but they
provide only grossly distorted/static or imprecise/macro-
scale views, respectively. In fact, the ECS shrinks down to a
uniformly thin layer after chemical fixation for EM, bearing
little resemblance with its live version, which is actually
very voluminous and heterogenous.

Physiologically regulated (Xie et al., 2013) and highly
sensitive to experimental stimulations (Arizono et al., 2021;
Tønnesen et al., 2018), the ECS provides a dynamic and
biophysically influential three-dimensional stage, where
neurons and glia cells perform in concert. As a versatile
technique, SUSHI can be readily applied to other tissues and
organs, from tumours to salivary glands (Stolp et al., 2020).

SRM2 to image the molecular and
morphological organization of live
cells

Over the last few years, we have seen a growing diversi-
fication and cross-fertilization of SRM techniques, to-
wards more quantitative, multiproperty and integrated
analyses of ever more complex biological samples. While
SRM offers wonderful opportunities to unravel nanoscale

structures and events, current SRmicroscopes do not offer
a good way to reveal both protein distributions and the
morphological shape of cells. It meant either one or the
other, but not both.

Recently, hybrid SRM modalities were introduced that
incorporate optical motifs of STED to enhance the spatial
precision of SMLM, such as MINFLUX (Balzarotti et al.,
2017) and LocSTED (Puthukodan et al., 2020), but they
remain essentially single-molecule imaging techniques.

We have recently overcome this problem by combining
fully-fledged versions of SMLM and STED on a single plat-
form, offering a ‘best-of-both-worlds’ solution (Inavalli et al.,
2019). It places the molecular information in the context of
the morphological organization of the cells, which is crucial
for deciphering cellular nanobiology.

In essence, the new platform makes it possible to
closely correlate, in space and time, the data from both
imaging modalities. Based on an optimized workflow,
one can rapidly and repeatedly switch back and forth
between the PALM and STED modes without undue
spectral crosstalk and bleaching of the fluorescent
probes of the respective modalities.

Using this new approach, we could resolve the distribu-
tion and diffusional mobility of several prominent synaptic
proteins, such as glutamate receptors (subunits of AMPA re-
ceptors, GluA1 and GluA2) and scaffolding proteins (PSD95),
within distinct dendritic microstructures in dissociated
neuronal cell cultures.We observed that GluA1molecules are
basically arrested inside PSD95 clusters in the spine head but
diffuse around rapidly in spinules, which are tiny protrusions
projecting from the spine heads (Inavalli et al., 2019), giving
us intriguing new insights into the nanoscale dynamics of the
molecular machinery of synapses.

Modular and flexible by design, the new platform also
incorporates other SRM techniques, such as uPAINT and
SUSHI, thereby opening a doorway to important discov-
eries in cellular biology and neuroscience (Figure 4D).

Outlook

Progress in neuroscience will continue to be shaped by ad-
vances in optical microscopy, coming from molecular
biology, physics, chemistry, engineering and computer
sciences. The new neurophotonics technologies will in time
eclipse everything we currently know in terms of speed,
precision and gentleness to record and manipulate the key
players of brain function from genes and molecules to cells
and circuits.

It’s probably the right time to start dreaming about
linking in vivo brain nano-structure, including the ECS, with
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nano-physiology and even higher brain functions such as
memory and sleep, breaking down the barriers between the
different scales and concepts.

To achieve this ambitious goal, we will need more
technology ‘mash-ups’, combining fluorescence SRM
with more macroscale and label-free imaging modalities
like photoacoustic imaging, MRI or Raman spectroscopy.
This would produce complementary and correlative data
for a given biological system or give each of the tech-
niques a leg up, opening experimental access to more key
parameters on wider temporal and spatial scales.

All thiswill require the creative imagination of stubborn
pioneers and the swarm intelligence of the scientific com-
munity, who come up with stimulating controversies and
keep the cycle of innovation and discovery turning, very
much in the spirit of Cajal and Golgi!
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