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Abstract 22 

Extreme precipitation theory has been matured over the last decade and stipulates 23 

that the intensity of the extreme precipitation scales with the surface humidity. 24 

Surface humidity changes can further be approximated by the surface temperature 25 

changes. The analytically derived scaling coefficient based on the Clausius-26 

Clapeyron derivative is ~6%K-1 in the tropics. While frequently confronted with 27 

observations over land, the theory has so far only been marginally evaluated against 28 

precipitation data over the ocean.  Using an ensemble of satellite-based precipitation 29 

products and a suite of satellite-based SST analysis all at the 1°-1day resolution, the 30 

extreme scaling is investigated for the tropical ocean (30°S-30°N). The focus is set 31 

on the robust features common to all precipitation and SST products.  It is shown that 32 

microwave constellation-based precipitation products are characterized by a very 33 

robust positive scaling over the 300 to 302.5K range of 2-day lagged SST. This SST 34 

range corresponds to roughly 60% of the tropical precipitation amount. The ensemble 35 

mean scaling varies between 5.67%K-1 +- 0.89%K-1 to 6.33%K-1 +- 0.81%K-1 36 

depending on the considered period and is found very close to the theoretical 37 

expectation. The robustness of the results confirms the fitness of the current 38 

generation of constellation-based precipitation products for extreme precipitation 39 

analysis. Our result further confirms the extreme theory for the whole tropical ocean. 40 

Yet, significant differences in the magnitude of the extreme intensity across the 41 

products prompts the urging necessity of dedicated validation efforts. 42 

  43 
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1 INTRODUCTION 44 

The energy and water exchanges within the Earth system are related to the major 45 

feedback processes responsible for the fate of the Earth climate under increasing 46 

greenhouse gases concentrations (Stephens et al. 2020). The second principle of 47 

thermodynamic and the Clausius Clapeyron law indeed dictate that water vapor in 48 

the atmosphere increases at a rate of 6-7% with each degree warming which is at the 49 

heart of the strongly positive water vapor feedback.  The increased loading of water 50 

vapor in the atmosphere has a strong impact on both the mean precipitation 51 

(Stephens and Ellis 2008) and the distribution of its extreme (Trenberth 1999).  52 

Theory for extreme precipitation dependence on surface temperature has indeed 53 

matured significantly over the last decade and a physically based framework is now 54 

well established (Gorman and Schneider 2009; O’Gorman 2015; Fischer and Knutti 55 

2016). Yet cloud resolving model idealized simulations over tropical oceans exhibit 56 

diverging sensitivities and a number of open questions remains in the tropics (Muller 57 

and Takayabu 2020). Land based studies using conventional precipitation 58 

observations over tropical land also suggests contrasting results (Westra et al. 2014). 59 

Recent investigations using satellite observations nevertheless have identified robust 60 

extreme precipitation regimes in agreement with the theoretical expectations from 61 

thermodynamics (Roca 2019). Over the ocean, on the other hand, the scarcity of 62 

conventional in-situ precipitation observations (Serra 2018) precluded much 63 

investigations of the scaling of extreme precipitation with surface temperature with 64 

notable exceptions. (Allan and Soden 2008) 65 

Using early instantaneous satellite observations from Special Sensor 66 

Microwave/Imager (SSM/I) and monthly SST from Hadley Centre Sea Ice and Sea 67 
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Surface Temperature data set (HadISST) (Rayner et al. 2003), Allan and Soden 68 

(2008) calculated the rate of change of 2.5°x2.5° daily precipitation to tropical mean 69 

monthly SST anomalies. Extreme precipitation shows a scaling ranging from slightly 70 

above, to much larger than their value derived from the Clausius-Clapeyron response 71 

depending on the base line for the anomaly computations. The analysis further 72 

pointed out systematic underestimation of the response of the climate models 73 

prompting for a more in-depth analysis of the behavior of the extremes over the 74 

oceans. The use of tropical mean SST anomaly nevertheless prevents from further 75 

addressing the processes at play.  76 

More recently, using the OceanRAIN dataset of ship based disdrometer precipitation 77 

measurements (Klepp et al. 2018), the scaling of instantaneous (at 1 minute scale) 78 

extreme precipitation to the local simultaneous SST has been revisited for the global 79 

ocean (Burdanowitz et al. 2019). The disdrometer data exhibits a single increasing 80 

regime of the 99th percentile with local SST. The scaling is computed by pooling 81 

available data over a large range of SST (0°C-30°C) and is shown to vary between 82 

6%K-1 and ~9%K-1 depending on the regression technique used. Yet, the small 83 

sample of the ship-based measurements prevents a definitive conclusion and the 84 

relative role of the convective dynamics and of thermodynamics remains to be 85 

clarified at these scales. 86 

In summary, many observation-based assessments of the scaling theory have taken 87 

place under continental conditions while model-based assessments are performed 88 

under oceanic conditions. In comparison, the tropical ocean so far benefited from 89 

very few observationally based investigations. In this paper, we propose to improve 90 

this situation by pooling recent satellite observations at the 1°x1° daily scale of both 91 

precipitation and surface temperature all over the tropical oceans. 92 
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 93 

Over the ocean, the evaluation of these satellite-based products is generally 94 

performed using the few available data from buoys networks (Wu and Wang 2019), 95 

atolls rain gauges observations (Greene et al. 2008) or island based radar 96 

measurements (Henderson et al. 2017). More recently, the release of a new ship-97 

based disdrometer measurements database (Klepp et al. 2018) provides a 98 

complementary reference dataset over some commercial ship routes and research 99 

vessel campaigns. For large space and time scales, consistency analysis can be 100 

performed through water and energy budget conservation analysis (L’Ecuyer et al. 101 

2015).  As a consequence of these limited verification references, compared to land, 102 

the capability of these satellite-based products to describe the precipitation field is 103 

generally not very well documented (Sun et al. 2018), not mentioning under the 104 

extreme rainfall conditions. Instead of elaborating on the difficulty to quantify the 105 

accuracy of the products, the rationale of this study is to focus on the robustness of 106 

the analysis across many satellite products to investigate the thermodynamic scaling 107 

of extreme precipitation with sea surface temperature. 108 

 109 

Section 2 introduces a number of satellite-based products of both precipitation and 110 

SST and details the methodology followed in this study. Section 3 is dedicated to the 111 

presentation of the results and a sensitivity of the results to various assumptions. 112 

Finally, a summary and discussion section ends the paper. 113 
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2 DATA AND METHOD 114 

2.1 PRECIPITATION  115 

The list of the various products under consideration is provided in Table 1.  All the 116 

datasets are used at the same 1°x1° daily resolution over the 30°s-30°n region and 117 

originate mostly from the Frequent Rainfall Observations on GridS (FROGS) 118 

database (Roca et al. 2019) under the DOI https://doi.org/10.14768/06337394-73A9-119 

407C-9997-0E380DAC5598. While the products share some of the raw satellite 120 

observations, they differ in many aspects that can influence their capability of 121 

describing precipitation. They are built from different instantaneous rain rates 122 

algorithms. The daily accumulation from the various products further benefits from 123 

different sampling from single or multiple platforms, from infrared and/or microwave 124 

imagers and/or sounders. Finally, some products also incorporate in-situ corrections.  125 

 126 

The Global Precipitation Climatology Project (GPCP) is a pioneer effort to provide 127 

satellite based precipitation estimates globally (Huffman et al. 1997). We here use 128 

the one degree daily climate data record v1.3 detailed in  Huffman et al. (2001). The 129 

GPCP  1 degree-daily (1DD) product relies on a single microwave platform, infrared 130 

measurements and the GPCC analysis over land. The daily estimates are adjusted 131 

as to mimic the GPCP monthly product when aggregated over a month. Note that the 132 

GPCP monthly product is used in various other products as an adjustment reference. 133 

The Precipitation Estimation from Remotely Sensed Information using Artificial 134 

Neural Networks (PERSIANN) family of products has various incarnations. We here 135 

use the climate oriented product the Climate Data Record (CDR) version, also known 136 

https://doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5598
https://doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5598
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as PERSIANN-CDR v1 (Ashouri et al. 2015). PERSIANN is a based on infrared 137 

imagery and it is adjusted to the GPCP monthly mean. It can be seen as an 138 

alternative downscaling of the GPCP monthly data to that of GPCP 1DD. The 139 

National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center 140 

(CPC) morphing technique (CMORPH) satellite precipitation estimates (Xie et al. 141 

2017) rely on the constellation of both microwave imagers and sounders and infrared 142 

derived cloud motion winds. The blending of the various data is performed thanks to 143 

a Kalman filter (Joyce and Xie 2011). Over the ocean, the product is adjusted onto 144 

the GPCP accumulations. Compared to buoys, CMORPH under (over) estimate 145 

rainfall over the Atlantic (Pacific) ocean (Wu and Wang 2019). The Tropical Rainfall 146 

Measuring Mission Multisatellite Precipitation Analysis (TMPA) product is a widely 147 

used dataset that combines radar, infrared, microwave imagers and sounders 148 

satellite observations (Huffman et al. 2007). Version 7 is used here. Over tropical 149 

Atlantic (Pacific), the TMPA product shows overall under(over)-estimation (Wu and 150 

Wang 2019). Over the northern Indian ocean, the TMPA product generally 151 

overestimated precipitation compared to the buoys but underestimates heavy 152 

precipitation events over 100mm/d (Prakash and Gairola 2014). Note that earlier 153 

investigation noted that TMPA monthly means are similar to the GPCP product over 154 

tropical ocean (Huffman et al. 2007). The Hamburg Ocean-Atmosphere Parameters 155 

and Fluxes from Satellite Data (HOAPS) product provide a satellite based suite of 156 

fresh-water budget parameters including precipitation over sea-ice-free ocean 157 

surface (Andersson et al. 2010). This microwave only product relies on multi-158 

platforms inter-calibrated measurements from SSM/I and Special Sensor Microwave 159 

Imager Sounder (SSMIS) (Fennig et al. 2020).  Version 3.2 of the precipitation 160 

product is used (Andersson et al. 2014). When compared to the oceanRAIN in situ 161 
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data, HOAPS instantaneous rain rate underestimates intensity in the intertropical 162 

convergence zone especially for high rain rate but at the same time, the HOAPS 163 

retrieval overestimates the occurrence of precipitating cases (Bumke et al. 2019). 164 

The Tropical Amount of Rainfall with Estimation of ERors (TAPEER) algorithm makes 165 

use of geostationary infrared imagery together with microwave imager instantaneous 166 

rain rates estimates plus the SAPHIR sounder to estimate daily-precipitation 167 

accumulation (Roca et al. 2020). The addition of the Megha-Tropiques platform in the 168 

constellation is shown to improve the product compared to imagers only 169 

implementation (Roca et al. 2018).The recently released TAPEER product has been 170 

extensively evaluated over West Africa (Gosset et al. 2018) but is not well 171 

characterized over the tropical ocean yet. The Global Satellite Mapping of 172 

Precipitation (GSMaP) product provides high-resolution precipitation estimations 173 

using satellite observations from multiple platforms (Kubota et al. 2020) . This product 174 

is mainly based on the microwave estimation of rainfall from a suite of microwave 175 

imagers and sounders. The microwave instantaneous rain rate estimates (Aonashi et 176 

al. 2009; Shige et al. 2009) are propagated based on cloud motion wind vectors 177 

originally derived from IR geostationary imagery (Ushio et al. 2009). Here the near 178 

real time version 6 product is used. The Integrated Multi-satellite Retrievals for Global 179 

Precipitation Measurement mission (GPM) (IMERG) is developed at NASA based on 180 

infrared observations and on both microwave imagers and sounders data (Huffman 181 

et al. 2020). It takes advantage of the TMPA product, the CMORPH-Kalman Filter 182 

approach (Joyce and Xie 2011) and the PERSIANN-Cloud Classification System 183 

algorithm (Hong et al. 2004). The most recent v6 release of the final run product is 184 

used. Previous evaluation efforts showed that the older version (V4) overestimates 185 

rain-rates compared to buoys observations at hourly 0.1°x0.1° scale over the north 186 
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Indian Ocean (Prakash et al. 2017). Version 5 daily 1°x1° estimates are shown to 187 

underestimate the OceanRAIN measurements on average that is likely due to the 188 

inclusion of very light rain rates in the statistics (Khan and Maggioni 2019). While 189 

IMERGv5 has similar biases with respect to in-situ data than CMORPH and TMPA, it 190 

overall better performs in the estimation of the mean value with the exception of the 191 

Atlantic ocean regime over 4mm/d where the product is shown to significantly 192 

underestimate precipitation (Wu and Wang 2019) . Version 6 of the product benefits 193 

from a refined intercalibration procedure and better interpolation between the 194 

platforms that show improvements on some metrics (Tan et al. 2019)  and should 195 

also reflect on these prior evaluations. The Multi-Source Weighted-Ensemble 196 

Precipitation (MWSEP) is a product that corresponds to a pragmatic approach that 197 

average existing products to provide a best estimate. Over land an optimization 198 

method based on hydrological modelling and observed stream-gauges data is used 199 

(Beck et al. 2017). Over ocean, a merging procedure is also followed. The various 200 

source of precipitation used encompass satellite-based products, rain gauge 201 

measurements and reanalysis results. We use here Version 2.2 (Beck et al. 2019). 202 

From the 2000 on-wards, MSWE estimates over the tropical ocean are weighted 203 

much more towards satellite products than reanalysis. CMORPH, GSMaP-MKV v5 204 

and TMPA v7 RT are blended in MSWE. Note that over ocean TMPA v7 RT and 205 

TMPA v7 are similar and only differ over land. The geographical distribution of the 206 

99th percentile of 3-hourly precipitation of MSWEP2.2 is very close to that of 207 

CMORPH over the tropical ocean (Beck et al. 2019).  208 

 209 

The resulting variety of precipitation distribution from these nine products is illustrated 210 

in Figure 1. The two products that do not rely on the microwave constellation (GPCP 211 
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and PERSIANN) exhibit strongly decreasing occurrence with the daily precipitation 212 

amount; GPCP not having values above 170 mm/d. The TAPEER product exhibits 213 

systematic significant underestimation of the probability of the largest rain 214 

accumulation compared to other microwave-based products. This is likely due to the 215 

relative lack of light rain situations (Roca and Fiolleau, 2020). Note that the TAPEER 216 

product is also only available for a limited time period. Owing to their outlier 217 

distribution and documented biases, those three products are not considered in the 218 

following. The figure further reveals two clusters of products showing both the 219 

occurrence declining smoothly exponentially towards the very high daily precipitation 220 

accumulation. The first cluster is composed of CMORPH, TMPA and MSWEP. The 221 

members of this cluster are very close with MSWEP being built from CMORPH and 222 

TMPA. Both CMORPH and TMPA further share the same adjustment to the common 223 

reference of GPCP pentads over the ocean. The second one includes GSMaP, 224 

HOAPS and IMERG that do not share much in terms of algorithms, methods and 225 

input data. While the two clusters show a similar distribution up to 100 mm/d, above 226 

that threshold, the first cluster systematically underestimates the occurrence 227 

compared to the second cluster. This is consistent with previous analysis that 228 

indicate that the climatological mean behavior of the products is a poor predictor of 229 

the products extreme precipitation (Masunaga et al. 2019). The first cluster products 230 

have further been shown to underestimate the intense rain rates compared to buoys 231 

(Prakash and Gairola 2014; Wu and Wang 2019) that could be related to their 232 

difference with the second cluster.  233 

2.2 SEA SURFACE TEMPERATURE 234 

Satellite based SST products readily provide estimations of the foundation SST, 235 

defined as the ocean temperature at a depth of ~1 meter, below the diurnal layer, at 236 
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high space and time resolution over a long temporal record. Most of the products rely 237 

on optimal interpolation techniques to merge various satellites observations with in-238 

situ measurements. While such products have a well characterized accuracy under 239 

clear sky conditions of ~0.5K (Donlon et al. 2012), their representativity under 240 

(extreme) rainfall conditions is not well documented. Indeed, the cloudiness 241 

associated with the rainfall prevents the use of infra-red measurements and the 242 

microwave signal, while of help in cloudy but non-precipitating cases, is altered by 243 

rain drop emission during the heavy precipitation situations, also preventing SST 244 

estimation in this case (Wentz et al. 2000). As a consequence, the SST estimates 245 

under precipitating conditions mainly rely on the result of the optimal interpolation 246 

method and are smoothed over several days and a large distance. In the following, 247 

we interpret these fields as “synoptic” SST and assess whether such synoptic SST 248 

are a good and robust proxy for the thermodynamics of the extreme precipitation 249 

events over the ocean. A suite of 3 products is used to evaluate the sensitivity of the 250 

scaling to the input data and to the optimal technique implementation and are 251 

summarized in Table 2. All SST products have been regridded at a daily 1°x1° 252 

resolution over the 30°S-30°N region to match the precipitation data using a simple 253 

conservative averaging procedure. 254 

 255 

The Operational Sea Surface Temperature and Ice Analysis (OSTIA) (Donlon et al. 256 

2012) product provides a global foundation SST field derived from satellite 257 

observations in the microwave (2 platforms) and in the infrared (6 platforms) and in-258 

situ measurement at 1/20° and daily resolution since 2007. The analysis is a multi-259 

scale optimal interpolation using a three days assimilation window centered on the 260 

day of the analysis and the background field is the analysis of the previous day. The 261 
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error correlation length scale used in OSTIA in the tropics is around 100 km. The 262 

product Optimum Interpolation Sea Surface Temperature (OISST) (Banzon et al. 263 

2016) uses IR measurements from the Advanced Very High-Resolution Radiometer 264 

(AVHRR) instruments on board the NOAA satellites since 1981. The interpolation 265 

method is similar to that of OSTIA. The error correlation length scales in the tropics 266 

are about 150-200km and 3 days. The nominal resolution is daily at 0.25°. Version 2 267 

of OISST is used here. Finally, the microwave (MW) optimally-interpolated (OI) SST 268 

product from Remote Sensing Systems (Gentemann et al. 2010) is used. As some 269 

rain-contaminated SST estimate may persist in the microwave derived dataset, a 270 

stringent quality control is performed to prevent potentially biased SSTs retrievals. 271 

The error correlation scales used are of 100 km and 3 days, the background field is 272 

the analysis of the previous day and the SST represents a foundation SST remapped 273 

at a daily 1°x1° resolution. This product is referred to as OIRSS in the following. 274 

2.3 METHOD 275 

1) Background on the theory 276 

The background on the scaling of extreme precipitation with surface temperature has 277 

been detailed and reviewed in various publications (O’Gorman 2015; Allan and Liu 278 

2018; Roca 2019; Muller and Takayabu 2020) and is only briefly summarized below. 279 

Based on the dry static energy budget of the atmosphere (Muller et al. 2011), the rate 280 

of extreme precipitation in the tropics can be expressed as follow: 281 

𝑃𝑒 =  𝜖 ∫ 𝜌𝜔 (−
𝜕𝑞𝑠𝑎𝑡

𝜕𝑧
) 𝑑𝑧, (1) 282 

where 𝜖 depicts a precipitation efficiency, 𝜌 the mean density profile, 𝜔 the vertical 283 

velocity, 𝑞𝑠𝑎𝑡 the saturation mixing ratio and with the integral taken from the surface 284 
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to the tropopause. Furthermore, the fractional change of extreme precipitation 
𝛿𝑃𝑒 

𝑃𝑒 
 285 

with warming highlights three contributions, that is the change in microphysics related 286 

to the efficiency term, the change in dynamics through 𝜌𝜔 and the change in 287 

thermodynamics through 
𝜕𝑞𝑠𝑎𝑡

𝜕𝑧
. At the daily 1°x1° scale, with the assumption that the 288 

related change of the dynamic and efficiency contributions remain low with warming 289 

and by neglecting the vertical variations in 𝜔, the scaling of extreme precipitation 290 

becomes (Muller et al. 2011) 291 

𝛿𝑃𝑒

𝑃𝑒
≈

𝛿𝑞𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

(𝑇)

𝑞𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

(𝑇)
. (2) 292 

It points out that the change in precipitation extremes is expected to be more related 293 

to the surface conditions rather than to the column integrated, and at a rate following 294 

the rate of increase of 𝑞𝑠
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 with temperature, that is the Clausius-Clapeyron rate. 295 

In typical tropical sea surface conditions, the expected value ranges between 5.5 and 296 

6.5%K-1. 297 

 298 

2) Methodological aspects 299 

Extreme daily precipitation is characterized using high percentiles of the wet-days 300 

(P>1mm/d) distribution. This index is chosen over others (Zhang et al. 2011) due to 301 

its relevance for scaling investigations (Schär et al. 2016). The scaling of the 302 

precipitation extremes with the sea surface temperature is calculated using the 303 

binning method which is well suited to our investigation given the large number of 304 

available observations (Roca 2019). Indeed, for each 0.5K degree SST interval, 305 

precipitation data from the whole tropical ocean are pooled together and the 99.9th 306 

percentile of the precipitation distribution is estimated. Then after identifying a 307 
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relevant regime, linear regression (in the logarithm space) is used to compute the 308 

scaling factor defined as the rate of change of the 99.9th percentile with sea surface 309 

temperature. 310 

 311 

3) Sensitivity studies for robustness determination 312 

In order to identify the robust aspects of the thermodynamic scaling estimation using 313 

satellite observations, we perform a sensitivity study in complement to the use of 314 

various precipitation and SST products. We explore how the timing between the SST 315 

and the precipitation influences the scaling and how the overall statistical analysis is 316 

sensitive to the selected period.  317 

 318 

As already well explored for continental cases (e.g., Bao et al. 2017) intense 319 

precipitation events can strongly alter the surface heat budget and the surface 320 

temperature. The strong gust and downdrafts associated with deep convection result 321 

in a lower surface temperature compared to the no rain case (Lafore et al. 2016). As 322 

a result, the surface conditions may not represent the large-scale environment of the 323 

event but are impacted by the event itself. As discussed above, the synoptic SST 324 

products assimilation scheme prevents these impacted surface conditions to be used 325 

in the estimation, yet the risk to misattribute a rain event to a given temperature 326 

range because of this coupling is unclear. As a mean to assess the impact on our 327 

findings, the timing of the association between SST and the precipitation event is 328 

varied from simultaneous and lagged up to two days before.  329 

 330 
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The constellation-based precipitation products are characterized by a changing 331 

configuration of the constellation over the last two decades depending on the 332 

availability of microwave imagers and sounders that could influence their capability to 333 

monitor steadily the precipitation in the tropics (Roca et al. 2020).The SST products 334 

are also sensitive to the availability of the microwave imagers and the infrared 335 

radiometers. The availability of these platforms since 2001 is summarized in Figure 2. 336 

The baseline period for our investigation spans 2007-2017 which is the longest 337 

period share by all SST products. It corresponds to the homogeneous cycle of 338 

production of OSTIA  (Donlon et al. 2012) and to the start of the systematic use of 339 

two AVHRR instruments for the OISST product (Banzon et al. 2016). Two other 340 

different periods are considered. The first one is longer, extending back in time until 341 

2001 for which OIRSS and OISST are available and correspond to the availability of 342 

the GSMaP precipitation product. During the 2001 to 2007 era, the microwave 343 

imagers fluctuate from 4 to 6 platforms and the sounders from 2 to 4 while the IR 344 

radiometers increases from 1 to 3.  These constellation configurations are all less 345 

populated than the forthcoming period post 2007 and the products are associated 346 

with less sampling than during the 2007-2017 that could impact our analysis. The 347 

second period is a shorter one and corresponds to a precipitation data rich era that 348 

includes the Megha-Tropiques operations (Roca et al. 2018) and partly includes the 349 

TRMM and GPM platforms along with the SSM/I and SSMIS platforms. This era is 350 

characterized with up to 14 microwave sensors operating simultaneously. The use of 351 

three periods of 18, 11 and 5 years, respectively also permits to assess the sensitivity 352 

of the estimation of the extreme percentile of the precipitation distribution. 353 

 354 
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3 RESULTS 355 

3.1 SIMULTANEOUS ANALYSIS 356 

Figure 3 shows the scaling of the 99.9th percentile as a function of the simultaneous 357 

SST from the OSTIA product for the 6 constellation-based products. The two clusters 358 

of precipitation products previously identified are shown as well. The low cluster 359 

99.9th percentile ranges from 120 to 150 mm/d while the high one spans 170 to 240 360 

mm/d. There is roughly a factor of two among the least value of CMORPH at 297K 361 

and the highest one of IMERG at 302.5K.  The dependence of the high percentile to 362 

the SST is characterized by three regimes. Up to 300.25K, the products do not 363 

exhibit any robust behavior. GSMaP is mainly increasing over this SST range, while 364 

HOAPS extremes decrease; the other products rather show no sensitivity to the SST. 365 

This regime accounts for only 19% of the total tropical precipitation accumulation. 366 

The second regime spans SST from 300K up to 302.5K and is characterized by an 367 

increase of all the products. Almost 56% of the total rainfall belongs to this regime. 368 

For the last regime, above 302.25K and corresponding to 25% of the total rainfall 369 

amount, the precipitation products show a robust decrease of the value of the high 370 

percentile. For the second regime, the ensemble mean of the scaling is ~5%K-1 with 371 

a small coefficient of variation of around 10% and range from 4.21 to 5.75 %K-1 372 

(Table 3a).  A robust scaling, close to the Clausius Clapeyron, is found in this case. 373 

The replacement of OSTIA by OISST does not change the regime decomposition 374 

much (not shown) but the ensemble scaling over the regime 2 is much smaller 375 

(3.4%K-1) and spreads almost twice much more (Table 3b). The use of the OIRSS 376 

data, on the other hand, drastically alters the picture with no well-defined regimes at 377 

all. Over the previous SST range of regime 2, the ensemble scaling is even slightly 378 
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negative (-0.45%K-1). The scaling obtained from simultaneous measurements of 379 

precipitation and surface temperature are hence not robust to the selection of the 380 

SST products. 381 

3.2 LAGGED ANALYSIS 382 

The lagged analysis using the SST of the day before the precipitation does not 383 

change much the overall picture (not shown). Quantitatively, the ensemble mean of 384 

the scaling slightly increases to 5-6%K-1 with a coefficient of variation less than 11% 385 

for all the OSTIA and OISST products (Table 3a and b). The OIRSS product now 386 

exhibits a scaling of 4.4%K-1 +- 0.6%K-1 value. On the other hand, the lagged 387 

analysis at two days before confirms the previously identified low and high 388 

precipitation products clusters and reveals a very robust pattern across the SST 389 

products. Figure 4 confirms the relevance of the range of the scaling regime identified 390 

for OSTIA for all the SST products. The sensitivity of the selection of the upper bound 391 

303K instead of 302.5K (not shown) does not modify the values significantly. With a 2 392 

days lag, the ensemble mean scaling is very similar for each SST product: 5.9, 5.9 393 

and 6.0 %K-1 for OSTIA, OISST and OIRSS, respectively. The ensemble variance is 394 

also similar among the products at around 10% (or 0.65%K-1). The multi precipitation 395 

products and multi-SST products ensemble of 18 combinations statistics reads 396 

5.93%K-1 +- 0.60%K-1. The “cold” regime with SST < 300K remains non-robust at 397 

day-2 lag, with the precipitation products not agreeing on the sensitivity of the 99.9th 398 

percentile to the SST. The warm regime with SST ≥ 302.5K is characterized by a 399 

robust behavior of the precipitation products does not appear robust to the SST 400 

selection. The marked decrease of the extreme in OSTIA after 302.5K is rather 401 

associated with a smooth, steady evolution for OISST and OIRSS. Note that the 402 

GSMaP product, unlike any other product, indicates a CC-like positive scaling over 403 
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most of the cold regime. This unique feature deserves further attention and will be 404 

investigated in the future. 405 

3.3 SENSITIVITY TO THE SELECTION OF THE PERIOD 406 

The analysis for the longer period is summarized in Figure 5. The “cold” regime 407 

results still hold in this case although its upper limit can be revised to 299.5K. The 408 

“warm” regime is now more robust among the SST products but the 302.5K limit is 409 

less clearly marked than for the 2007-2017 period. The values of the 99.9th 410 

percentile is slightly higher for all precipitation products compared to the previous 411 

period. The scaling over the 300K-302.5K regime shows a smoother sensitivity than 412 

before with an ensemble mean value of 4.3 and 5.3 %K-1 for the two SST products 413 

(Table 3b and c). When the range is slightly adjusted to 299.5K and 302.0K, the 414 

regime corresponds to 45% of the total precipitation and the scaling now reads 5.65 415 

and 5.69%K-1 for OISST and OIRSS, respectively. In this case, the spread of the 416 

ensemble scaling for OISST is diminished to ~17% instead of 24% (Table 3b) and 417 

remains the same at ~15% for OIRSS. The ensemble of 12 combinations for all SST 418 

and precipitation products in this case is 5.67%K-1 +- 0.89%K-1. 419 

 420 

Figure 6 confirms the three regimes delineation for the shorter period. The magnitude 421 

of the extreme precipitation is close to that of the 2001-2017 period. The ensemble 422 

mean scaling is slightly larger and now ranges between 6.0 and 6.8 %K-1 while the 423 

18 combinations for all SST and precipitation products is 6.33%K-1 +- 0.81%K-1, also 424 

in close agreement with the theoretical expectation. Owing to its availability over that 425 

period, the TAPEER products is also shown for the sake of completeness but it is not 426 

included in the ensemble statistics. It is in line with the other products, although with 427 
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a much lower magnitude of the p99.9 marker as expected from Figure 1. Yet the 428 

scaling mean value is ~5.1%K-1 which is slightly less than for the other products. 429 

4 SUMMARY AND DISCUSSION 430 

The objective of this study is to explore the scaling of extreme precipitation with 431 

surface temperature over the tropical oceans. The pooling of data originating from an 432 

ensemble of 6 constellation-based precipitation products reveals two clusters of 433 

products that differ in terms of magnitude of the extreme daily accumulation. The 434 

difference between the low cluster (MSWE, TMPA and CMORPH) and the high 435 

cluster (HOAPS, GSMaP and IMERG) spans roughly a factor of two at the most. No 436 

such clustering is found over land, likely due to the inclusion of rain gauges in most of 437 

the products (Roca 2019; Masunaga et al. 2019).  While, buoy-based comparison 438 

suggests the low cluster products indeed underestimate intense precipitation 439 

intensity, no definitive argument yet permits to prefer one cluster from the other.  440 

Despite this magnitude difference, the present results highlight a very robust behavior 441 

of the satellite products extreme precipitation with respect to the SST. The 442 

explanation for the individual product similarities and differences would require a 443 

dedicated study and is out of the scope of the present work that focus on the 444 

precipitation products ensemble robust features. 445 

 446 

The timing of the SST-precipitation relationship has also been explored and it is 447 

shown that the two days lagged investigation exhibits robust regimes across the SST 448 

products. This is likely due to the use of the SST analysis that blends data over 3 449 

days and ~100km to provide an SST estimate under precipitating conditions. Our 450 
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study confirms the fitness for purpose of these analyzed SST for precipitation related 451 

investigations. Specifically, the two days lagged analysis identifies three distinct 452 

regimes: 453 

 454 

A “cold” regime with SST < 300K that corresponds to ~19% of the total tropical 455 

precipitation amount. In this case, while the results are not sensitive to the SST 456 

product selection, nor to the timing of the precipitation-temperature association nor 457 

the length of the record, the various precipitation products exhibit inconsistent 458 

behaviors. The lack of robustness of the results might be due to some structural 459 

errors in the precipitation retrievals and/or to the weak data sampling preventing a 460 

robust estimation of the high percentile of the precipitation distribution. The 99th 461 

percentile (not shown), that ranges between 60 and 100mm/d over the cold regime, 462 

is less sensitive to the data sampling than the 99.9th percentile and shows a lack of 463 

sensitivity that is more reproductible among the products but for HOAPS that still 464 

differs from the other five products.  465 

 466 

A “warm” regime with SST > 302.5K corresponding to ~25% of the total precipitation 467 

amount, is characterized by a systematic decrease of the values of the 99.9th 468 

percentile from 302.5K to the warmest SST under considerations. This warm regime 469 

is also observed over land (Roca 2019) and is usually attributed to relative humidity 470 

limited conditions at warm surface temperature that decrease the intensity of extreme 471 

precipitation over these semi-arid areas. Decrease in the wet-days duration for this 472 

regime has also been identified as a key mechanism over mid-latitudes land 473 

conditions (Utsumi et al. 2011). Further analysis is needed to assess whether these 474 
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very high SST are associated with large scale subsidence and simultaneous 475 

relatively dry boundary layer that could impact the intensity and/or the duration of the 476 

precipitation events and explain the decreasing trend. Burdanowitz et al. (2019) do 477 

not report any such decreasing regime when analyzing instantaneous disdrometer 478 

derived precipitation rate from ship data. They attribute this departure from the 479 

behavior of the continental extreme to the absence of decreasing event duration in 480 

this regime. Yet their analysis is restricted to 1K SST bin up to 303K, and hence 481 

would miss the warm regime identified here. Furthermore, our study shows that the 482 

use of simultaneous SST is detrimental to the scaling computation. It is likely that 483 

using a time lagged analysis of the instantaneous precipitation scaling over an 484 

extended SST range would permit to better delineate the various regimes relevant for 485 

that instantaneous scale. 486 

 487 

The third regime which we call the « Clausius-Clapeyron » regime is ranging from 488 

300K to 302.5K and includes almost 56% of the total precipitation amount. It is 489 

characterized by a steady increase of the extremes with surface temperature. This 490 

regime is robust to the precipitation product, to the SST product and to the length of 491 

the record. When simultaneous SST data are used, the scaling is diminished but for 492 

OIRSS where it simply does not exist. The one day lagged scaling results are robust 493 

to the SST product selection and lead to a scaling around 5.17%K-1 +- 0.85%K-1. The 494 

two days lagged scaling value ranges from 5.67%K-1 +- 0.89%K-1  for the 2001-2017 495 

period to 6.33%K-1 +- 0.81%K-1  for 2012-2016 for all the SST and precipitation 496 

products considered here. While the actual, direct validation or evaluation of the 497 

representation of intense rain accumulation in these products remains challenging, 498 

their common and physically sound behavior indicates that the products are fit for 499 
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exploring the extreme precipitation over the ocean. The robustness of the scaling 500 

analysis across the satellite precipitation products is further very close to the 501 

theoretical expectation for the thermodynamic scaling of ~6%K-1.  This gives us even 502 

more confidence in this generation of satellite precipitation products at the 1° 1-day 503 

resolution over the ocean. The frequency of occurrence of the precipitation greater 504 

than the 99.9th percentile and surface conditions corresponding to the Clausius 505 

Clapeyron regime have been mapped in Figure 7. The figure points out that this 506 

regime is not associated with the climatological ITCZ location as previously noted 507 

(Masunaga et al. 2019). On the other hand, it is associated with the known 508 

climatological rainfall maxima, off the Colombian Coast and in the northern Bay of 509 

Bengal and also seems to align with the climatological distribution of cyclones 510 

occurrence in the East Pacific, West Atlantic, South Indian Ocean and China sea.  511 

 512 

An avenue for further research lies in identifying the contribution of the organized 513 

convection to the scaling physics (Pendergrass 2020; Muller and Takayabu 2020; 514 

Roca and Fiolleau 2020). Our results further prompt for a dedicated investigation of 515 

the contribution of the cyclone precipitation to the scaling physics that is so far not 516 

much promoted. Our results also suggest that community efforts, possibly under the 517 

umbrella of the International Precipitation Working Group (Levizzani et al. 2018) and 518 

the GEWEX/WCRP core-project, are needed to further characterize the absolute 519 

accuracy of precipitation products over the ocean and clarify which clusters of 520 

products is to be understood as a reference, if any. 521 

 522 
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TABLES  

 

 

 

  

Product 
shortname 

Product name and version Period used 
Use of IR 
satellite 

data 

Use of MW 
satellite 

data 

Constellation 
based 

products 
References 

GSMaP GSMaP-NRT-no gauges v6.0 2001-2017 Yes Yes Yes Kubota et al. (2009) 

CMORPH CMORPH V1.0 CRT 2001-2017 Yes Yes Yes Xie et al. (2017) 

MSWE MSWEP 2.2 2001-10.2017 Yes Yes Yes Beck et al. (2017) 

TMPA 3B42 v7.0 2001-2017 Yes Yes Yes Huffman et al. (2009) 

HOAPS HOAPS 2001-2016 Yes Yes Yes Anderson et al. (2014) 

IMERG IMERG V06 final run 2001-2017 Yes Yes Yes Huffman et al. (2018) 

PERSIANN PERSIANN CDR v1 2001-2017 Yes No No Ashouri et al. (2015) 

GPCP GPCP 1DD v1.3 CRD 2001-2017 Yes Yes No Huffman et al. (2001) 

TAPEER TAPEER-BRAIN v1.5 2012-2016 Yes Yes Yes Roca et al. (2020) 

Table 1: List of gridded precipitation products and their acronyms. Note that the MWSEP v2.2 data have been acquired directly from H. Beck. The constellation products are 
using multiple microwave platforms. 
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Product 
shortname 

Product name and version 
Use of 

satellite 
data 

Period used References 

OSTIA 
OSTIA Near Real Time Level 4 

SST 
IR + MW 2007-2017 Donlon et al. (2012) 

OISST 
NOAA CDR OISST AVHRR-only 

v2 
IR 2001-2007 Reynolds et al. (2008) 

OIRSS RSS OI SST MW v5 MW 2001-2017 
Gentemann et al. 

(2010) 

Table 2: List of sea surface temperature products and their acronyms. IR stands for Infra-red and MW for Microwave. 
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a.  

Products 

OSTIA 
2007-
2017 
T(t) 
58% 

OSTIA 
2007-
2017 

T(t-24h) 
56% 

OSTIA 
2007-
2017 

T(t-48h) 
55% 

OSTIA 
2012-
2016 
T(t) 
57% 

OSTIA 
2012-
2016 

T(t-24h) 
56% 

OSTIA 
2012-
2016 

T(t-48h) 
54% 

GSMaP 4.21 5.37 5.38 5.43 6.09 6 

 
CMORPH 

5.26 6.02 6.11 5.74 6.21 6.7 

  MSWEP 4.69 5.61 5.52 5.89 6.69 6.77 

  TMPA 5.09 5.51 5.75 4.93 5.29 5.61 

  HOAPS 5.75 7.14 7.05 5.76 6.82 6.9 

  IMERG 5.19 5.81 5.5 4.85 5.24 5.24 

ENS 5.04 5.95 5.9 5.41 6.05 6.17 

Mean 
ENS 

5.03 5.91 5.89 5.43 6.06 6.2 

STD ENS 0.52 0.65 0.62 0.45 0.67 0.69 

Cvar ENS 10.43 10.93 10.62 8.26 11.1 11.09 

 

Table 3.a: Summary of the sensibility analysis with the value of the slope of the 99.9th percentile as a function of the SST from the OSTIA product over the CC regime 
([300K,302,5K[) in %.K-1. Mean (%.K-1), standard deviation (%.K-1) and coefficient of variation (%) for the ensemble of all the products (ENS), as well as the total rainfall 
accumulation within the regime, are also reported. 
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b. 

Products 

OISST 
2007-
2017 
T(t) 
58% 

OISST 
2007-
2017 

T(t-24h) 
57% 

OISST 
2007-
2017 

T(t-48h) 
57% 

OISST 
2012-
2016 
T(t) 
56% 

OISST 
2012-
2016 

T(t-24h) 
55% 

OISST 
2012-
2016 

T(t-48h) 
54% 

OISST 
2001-
2017 
T(t) 
60% 

OISST 
2001-
2017 

T(t-24h) 
59% 

OISST 
2001-
2017 

T(t-48h) 
58% 

GSMaP 2.64 4.88 6.08 4.27 5.69 6.91 2.78 4.02 4.54 

 
CMORPH 

3.15 4.89 5.37 4.34 5.7 6.4 1.07 1.97 2.42 

  MSWEP 3.35 5.52 6.03 4.87 6.83 7.54 3.08 4.46 4.7 

  TMPA 3.68 5.1 5.44 4.98 5.73 5.88 3.11 4.2 4.47 

  HOAPS 4.5 6.1 7.06 5.19 6.67 7.86 4.18 5 5.58 

  IMERG 3.21 4.84 5.43 3.88 5.7 6.21 2.92 3.93 4.37 

ENS 3.43 5.23 5.95 4.56 6.06 6.84 2.96 4.02 4.46 

Mean 
ENS 

3.42 5.22 5.9 4.59 6.05 6.8 2.86 3.93 4.35 

STD ENS 0.63 0.5 0.65 0.5 0.54 0.78 1.01 1.04 1.04 

Cvar ENS 18.27 9.6 10.99 10.89 8.95 11.48 35.26 26.35 23.94 

 

Table 3.b: Summary of the sensibility analysis with the value of the slope of the 99.9th percentile as a function of the SST from the OISST product over the CC regime 
([300K,302,5K[) in %.K-1. Mean (%.K-1), standard deviation (%.K-1) and coefficient of variation (%) for the ensemble of all the products (ENS), as well as the total rainfall 
accumulation within the regime, are also reported. 
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c. 

Products 

OIRSS 
2007-
2017 
T(t) 
60% 

OIRSS 
2007-
2017 

T(t-24h) 
58% 

OIRSS 
2007-
2017 

T(t-48h) 
57% 

OIRSS 
2012-
2016 
T(t) 
58% 

OIRSS 
2012-
2016 

T(t-24h) 
56% 

OIRSS 
2012-
2016 

T(t-48h) 
55% 

OIRSS 
2001-
2017 
T(t) 
61% 

OIRSS 
2001-
2017 

T(t-24h) 
59% 

OIRSS 
2001-
2017 

T(t-48h) 
59% 

GSMaP -1.54 3.76 5.43 -0.6 3.76 5.07 -2.09 3.01 4.54 

 
CMORPH 

-0.19 4.59 6.82 -0.83 4.8 7.01 -2.82 2.2 4.38 

  MSWEP -1.56 4.1 6.05 -1.02 4.9 6.64 -2.39 3.22 5.3 

  TMPA 2.26 5.46 6.27 1.85 5.21 5.91 1.2 5.37 6.5 

  HOAPS -0.65 4.23 6.36 -1.3 3.79 6.33 -1.14 3.96 5.78 

  IMERG -1.03 4.05 5.1 -1.03 3.77 4.91 -0.88 3.99 5.51 

ENS -0.61 4.28 5.9 -0.62 4.25 5.86 -1.34 3.65 5.34 

Mean 
ENS 

-0.45 4.36 6 -0.49 4.37 5.98 -1.35 3.63 5.34 

STD ENS 1.43 0.6 0.63 1.17 0.67 0.85 1.45 1.08 0.79 

Cvar ENS -316.64 13.73 10.54 -239.42 15.31 14.19 -107.5 29.81 14.86 

 
Table 3.c: Summary of the sensibility analysis with the value of the slope of the 99.9th percentile as a function of the SST from the OIRSS product over the CC regime 
([300K,302,5K[) in %.K-1. Mean (%.K-1), standard deviation (%.K-1) and coefficient of variation (%) for the ensemble of all the products (ENS), as well as the total rainfall 
accumulation within the regime, are also reported. 
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FIGURES 

 

Figure 1: Probability of exceedance of daily 1°x1° accumulated precipitation over the tropical ocean (30°S-30°N) 
for the period 2017-2017 except for the TAPEER product where it is restricted to the 2012-2016 period. The 
probability of exceedance is computed with respect to wet-days with precipitation above 1mm/d. 
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Figure 2: Time series of the availability of microwave imagers and sounders used in the precipitation products of 
the study. Vertical dashed lines indicate the different time periods explored in the study. 
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Figure 3: The value of the 99.9th percentile of the 1°x1° daily accumulated precipitation as a function of the 
contemporaneous SST from the OSTIA product. Each color corresponds to a precipitation product. For the period 
2007-2017. Regimes are separated by vertical dashed lines. The grey shaded area indicates the non-robust cold 
regime between precipitation products. Black dash-dotted lines correspond to the Clausius-Clapeyron 6%K-1 rate. 

See text for details. 
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Figure 4: The value of the 99.9th percentile of the 1°x1° daily accumulated precipitation as a function of the SST 
lagged by 2 days. Each color corresponds to a precipitation product. Solid line for OSTIA, dashed line for OISST 
and dash-dotted lines for OIRSS. For the period 2007-2017. Regimes are separated by vertical dashed lines. The 
grey shaded areas indicate the non-robust cold regime between precipitation products (left) and the non-robust 
warm regime between SST products (right). Black dash-dotted lines correspond to the Clausius-Clapeyron 6%K-1 
rate. See text for details. 
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Figure 5: The value of the 99.9th percentile of the 1°x1° daily accumulated precipitation as a function of the SST 
lagged by 2 days. Each color corresponds to a precipitation product. Dashed line for OISST and dash-dotted lines 
for OIRSS. For the period 2001-2017. Regimes are separated by vertical dashed lines. The grey shaded areas 
indicate the non-robust cold regime between precipitation products (left) and the non-robust warm regime 
between SST products (right). Black dash-dotted lines correspond to the Clausius-Clapeyron 6%K-1 rate. See text 
for details. 

  



42 
 

 

Figure 6 : The value of the 99.9th percentile of the 1°x1° daily accumulated precipitation as a function of the SST 
lagged by 2 days. Each color corresponds to a precipitation product. Solid line for OSTIA, dashed line for OISST 
and dash-dotted lines for OIRSS. For the period 2012-2016. Regimes are separated by vertical dashed lines. The 
grey shaded areas indicate the non-robust cold regime between precipitation products (left) and the non-robust 
warm regime between SST products (right). Black dash-dotted lines correspond to the Clausius-Clapeyron 6%K-1 
rate. See text for details. 
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Figure 7: Map of the ensemble mean frequency of occurrence (%) of precipitation greater than the percentile 99.9th for the CC SST regime ([300 K; 302.5 K[). SST from OSTIA 
over the period 2007-2017, lagged by 2 days, are used to delineate the regime. 


