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Abstract 

Pressure assisted sintering models such as Skorohod-Olevsky’s, Abouaf’s or Riedel’s 

require the identification of at least four parameters depending on porosity or temperature. 

The identification of these parameters is difficult at high temperature and for high pressures 

because of the non-linear mechanical behavior which makes them closely interconnected. To 

solve this problem, the fully dense behavior is identified first allowing determining the porous 

behavior afterward. This typical approach is well employed for metal or viscous materials. 

However, for ceramics the final stage grain growth makes the fully dense mechanical tests 

irrelevant; because the equivalent dense phase behavior of sintered specimens has bigger 

grains (then longer diffusion distances) than in initial/intermediate stages of sintering. 

Consequently, most of the parameters of these ceramics models compensate the dense 

parameters overestimation by an underestimation in the porous parameters values. In this 

paper we propose a unique formulation based on sinter-forging and die compaction which 

directly identify all the parameters from the porous stage. This comprehensive determination 

is possible by a non-reductive hypothesis on the shear modulus function shape and the 

experimental determination of radial/vertical displacement on sinter-forging tests. Such an 

approach allows an instantaneous determination of the parameters insensitive from the actual 

grain size of the porous ceramic. 
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Nomenclature 

θ Porosity 

�̇� Porosity elimination rate (s
-1

) 

𝜌 Relative density 

𝜎 Stress tensor (N.m
-2

) 

𝑠 Deviatoric stress tensor (N.m
-2

) 

𝜎𝑒𝑞 Equivalent stress (N.m
-2

) 

𝜀̇ Strain rate tensor (s
-1

) 

𝜀�̇�𝑞 Equivalent strain rate (s
-1

) 

n Creep law stress exponent 

A Creep law deformability term (s
-1

Pa
-n

) 

𝐴0 Deformability pre-exponential factor (Ks
-1

Pa
-n

) 

𝑄 Deformability activation energy (J.mol
-1

) 

R Gas constant 8.314 (J.mol
-1

.K
-1

) 

T Temperature (K) 

𝜑 Shear modulus 

𝜓 Bulk modulus 

Pl Sintering stress (Pa) 

𝕚 Identity tensor 

𝛼 Surface energy (J.m
-2

) 

𝑟 Particles radius (m) 

�̇� Trace of the strain rate tensor (s
-1

) 

�̇� Shear strain rate invariant (s
-1

) 

𝑃 Hydrostatic stress (N.m
-2

) 

𝜏 Shear stress invariant (N.m
-2

) 

𝐼1 Trace of the stress tensor (N.m
-2

) 

𝜀�̇� Radial strain rate tensor component (s
-1

) 

𝜀�̇� Axial strain rate tensor component (s
-1

) 

𝜎𝑟 Radial stress tensor component (N.m
-2

) 

𝜎𝑧 Axial stress tensor component (N.m
-2

) 

𝑠𝑟 Radial deviatoric stress tensor component (N.m
-2

) 

𝑠𝑧 Axial deviatoric stress tensor component (N.m
-2

) 

𝜃𝑐 Critical porosity 

𝜇 Bulk modulus exponent 

𝑎, 𝑏, 𝑐 Fitting constants 

𝑡 Time (s) 
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H A constant 

D Diffusion coefficient (m
2
.S

-1
) 

k Boltzmann Constant (1.380 649 × 10
−23

 J.K
-1

) 

𝜙 Stress intensification factor 

HIP Hot isostatic pressing 

SPS Spark Plasma Sintering 

HP Hot pressing 

SF Sinter-forging 
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1. Introduction 

The modeling of the sintering of ceramics is a way to predict the sintering trajectory[1], 

optimize the heating cycle[2], model the specimen distortions during free-sintering[3] and 

determine the specimen porosity distribution for pressure-assisted sintering[4]. Consequently, 

the modeling of sintering is of primary interest in the field of high-performance ceramics, 

including the design of complex shapes ceramics [5]. 

Despite the previous cited advantages, one of the main issues of the sintering modeling is the 

identification of all the sintering mechanical parameters characterizing the high temperature 

shear and bulk porous medium behavior. Numerous theoretical laws[6–9] have been 

employed to circumvent this issue allowing fast identification from limited mechanical 

tests[10,11]. However, most of these theoretical laws suffer from a high degree of idealization 

and corrective approaches [12,13] are employed for ensuring an accurate model prediction of 

the experiments. Therefore, full experimental model identification is more desirable for 

obtaining a stable model in a wide experimental domain. Traditionally, the identification 

method consists of creep tests on fully sintered specimens and numerous mechanical tests 

based on porous specimens to capture the shear and bulk mechanical behavior[14]. Hot 

isostatic pressing (HIP) tests coupled with sinter-forging (SF) are typically employed by 

Nicolle [15] and Besson [16]. In these studies, interrupted HIP cycles were employed by a 

fast release of the pressure and temperature[15]. This method allows an independent 

determination of the hydrostatic behavior. However, the experimental methodology is very 

time consuming and only a few HIP equipment allow quenching the specimens. As proposed 

by Abouaf [14], the HIP tests may be replaced by confined hot pressing tests (HP). This 

method has been applied to "astroloy" alloy [17] and lead[18,19]. In previous studies, the 

latter method has been adapted to the spark plasma sintering (SPS) in die pressing and sinter-

forging configurations for Ti6AlV [20] , nickel [21] and TiAl [22]. 
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The previous traditional experimental approach allows obtaining very accurate sintering 

models for material relatively insensitive to microstructural evolution such as the sintering of 

large particles metals, viscous, vitrification and liquid phase sintering, etc. Sintering models 

should reflect numerous underlying phenomena competing to each other and requiring an 

extensive experimental identification of parameters which are temperature and porosity 

dependent. These phenomena are the densification vs grain growth[23,24], the pore 

coarsening by surface diffusion[25], the changes of sintering mechanisms[2,26], etc. For 

ceramics, the equivalent creep behavior is an important underlying dense phase phenomena 

governing the densification kinetics. The latter is very sensitive to the microstructure at the 

final stage where the grain growth extends the diffusion distances (by the grain boundaries or 

lattice) and then decreases the densification kinetics[27,28]. This aspect is limiting the 

traditional experimental methods consisting of the identification of the fully sintered creep 

behavior (A(T) and n on the right figure 1a) and the injection of these parameters for the 

identification of porous unknown parameters from porous tests (𝜑(𝜃) and 𝜓(𝜃) on the left 

figure 1a). The explanation of these parameters will be detailed in the theory and calculation 

section. For ceramics, the grain growth phenomenon disturbs the creep behavior[23]. The 

sintered specimen having larger grain implies slower creep kinetics (A’(T) and n’ on the right 

figure 1b) than the equivalent dense phase at porous stages (A(T) and n on the right figure 1b). 

Therefore, a method needs to be found in order to identify both the creep and the shear/bulk 

moduli (𝜑(𝜃) and 𝜓(𝜃)) from porous stage. 

The aim of this study is to find a solution to solve the grain growth issue of sintering 

parameters identification for ceramics (or other microstructure dependent materials). The 

main challenge of this study will be to identify a combination of porous high temperature 

mechanical tests allowing an independent identification of the temperature/pressure/porous 

mechanical shear and bulk sintering behavior. Later, we will see that such objective can be 

achieved combining die pressing and sinter-forging tests with vertical/radial displacement 

information. This result allows identifying the sintering behavior independently and for a very 
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restricted temperature/porosity domain of a ceramic without the problem of grain growth 

disturbance of the creep behavior. Such an approach can be generalized to all materials 

experiencing similar microstructural evolution disturbance such as for metal and alloys with 

phase transition or submicron grain powders. 

 

Figure 1 Pressure assisted sintering parameters (in red) identification method, a) for 

materials without dense phase (sand color) microstructure evolution, b) case of ceramic 

having final stage grain growth and a different dense phase creep behavior than the 

equivalent dense phase at porous stage. 

 

2. Theory and calculations 

In this section, the general equations of the continuum theory of sintering [29] will be detailed 

first. The analytical equations for the particular cases of die pressing and sinter-forging will 

be subsequently expressed by the general theory. Finally, the formulation of the system of 

analytical equations for the sintering model identification from porous stage will be presented. 
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2.1. Model description 

The continuum theory of sintering [29] considers a creep underlying dense phase behavior 

where the equivalent stress and strain rate equations obey Norton creep law. 

𝜀�̇�𝑞 = 𝐴(𝑇, 𝐺)𝜎𝑒𝑞
𝑛          (1) 

The term A includes numerous physical constants from the creep theory, the grain size and 

the diffusion coefficient, it is defined by Arrhenius form: 

𝐴(𝑇, 𝐺) = 𝐴0 (
𝐺0

𝐺
)
𝑚 exp(

−𝑄

𝑅𝑇
)

𝑇
        (2). 

This equation shows that the grain growth highly influences the creep behavior. In the case of 

grain boundary diffusion (m = 3), increasing the grain size twice divides the creep strain rate 

by a factor 8. The creep behavior reported in the literature [30] on sintered ceramics can hence 

not be considered at porous stage, since grain sizes are different at least by a factor 5. 

The equivalent stress and strain rate tensors are defined by: 

𝜎𝑒𝑞 =

√𝜏
2

𝜑
+
(𝑃−𝑃𝑙)

2

𝜓

√1−𝜃
         (3) 

𝜀�̇�𝑞 =
1

√1−𝜃
√𝜑�̇�2 + 𝜓�̇�2        (4) 

Where 𝜑  and 𝜓  are unknown functions of the porosity needing to be determined 

experimentally. The terms 𝜏, 𝑃, �̇� and �̇� are the stress and strain rate invariants defined below. 

𝜏 =
√(𝜎𝑥−𝜎𝑦)

2
+(𝜎𝑦−𝜎𝑧)

2
+(𝜎𝑧−𝜎𝑥)2+6(𝜎𝑥𝑦

2 +𝜎𝑦𝑧
2 +𝜎𝑥𝑧

2 )

√3
     (5) 

𝑃 =
𝜎𝑥+𝜎𝑦+𝜎𝑧

3
=

𝐼1

3
         (6) 

�̇� = √2(𝜀�̇�𝑦2 + 𝜀�̇�𝑧2 +𝜀�̇�𝑧2 ) +
2

3
(𝜀�̇�2+𝜀�̇�2+𝜀�̇�2) −

2

3
(𝜀�̇�𝜀�̇� + 𝜀�̇�𝜀�̇� + 𝜀�̇�𝜀�̇�)  (7) 

�̇� = 𝜀�̇� + 𝜀�̇� + 𝜀�̇�         (8) 

The term 𝑃𝑙 is the Laplace stress originated from particle capillarity forces. The latter can be 

defined by the particle radius and the porosity from Skorohod theory [6,29]. 

𝑃𝑙 =
3𝛼

𝑟
(1 − 𝜃)2         (9) 



 8 

Finally, the sintering behavior of a continuum can be defined by:  

𝜎 =
𝜎𝑒𝑞

�̇�𝑒𝑞
(𝜑𝜀̇ + (𝜓 −

1

3
𝜑) �̇�𝕚) + 𝑃𝑙𝕚       (10). 

Similarly, the strain rate formulation of the continuum sintering model can be obtained using 

below equations [29]; 

{
𝑃 =

𝜎𝑒𝑞

�̇�𝑒𝑞
𝜓�̇� + 𝑃𝑙

𝜏 =
𝜎𝑒𝑞

�̇�𝑒𝑞
𝜑�̇�

         (11), 

and the stress tensor deviatoric expression, 

𝜎 = 𝑠 +
1

3
𝐼1𝕚          (12). 

The strain rate formulation is then: 

𝜀̇ =
�̇�𝑒𝑞

𝜎𝑒𝑞
(
𝑠

𝜑
+
(𝑃−𝑃𝑙)

3𝜓
𝕚)        (13). 

Finally, the mass conservation is used to link the volume change rate and the rate of porosity 

elimination. 

�̇�

(1−𝜃)
= �̇�          (14) 

 

2.2. Analytical equations for die pressing SPS  

SPS can be assimilated to a high temperature die pressing test (along the z-axis). Therefore, if 

the lateral powder/die friction is neglected due to the graphite foil double interface [31], the 

external strain rate tensor is reduced to: 

𝜀̇ ≡ (
0 0 0
0 0 0
0 0 𝜀�̇�

)         (15). 

With (1), (10) (8) and (15), and neglecting the capillarity forces compared to the applied stress 

(𝑃𝑙 ≪ 𝜎𝑧) the stress z component is:  

𝜎𝑧 =
�̇�𝑒𝑞

1
𝑛
−1

𝐴(𝑇,𝐺)
1
𝑛

(𝜑𝜀�̇� + (𝜓 −
1

3
𝜑) 𝜀�̇�)       (16). 

Based on equation (15), the following simplification can be made. 
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�̇� = 𝜀�̇�, �̇� = |𝜀�̇�|√
2

3
, 𝜀�̇�𝑞 = |𝜀�̇�|√

𝜓+
2

3
𝜑

1−𝜃
      (17) 

The analytical SPS equation is then: 

|𝜀�̇�| = 𝐴(𝑇, 𝐺) (𝜓 +
2

3
𝜑)

−𝑛−1

2 (1 − 𝜃)
1−𝑛

2 |𝜎𝑧|
𝑛      (18). 

This equation can be compared to the solid state sintering models (see appendix). If the 

capillarity forces 𝑃𝑙 are not negligible and the applied stress is strong enough to ensure no 

radial shrinkage (𝜀�̇� = 0) the equation (18) becomes: 

𝜀�̇� = 𝐴(𝑇, 𝐺) (𝜓 +
2

3
𝜑)

−𝑛−1

2 (1 − 𝜃)
1−𝑛

2 (𝜎𝑧 − 𝑃𝑙)
𝑛     (19). 

2.3. SPS based n and Q determination 

Equation (18) ca be used to identify n by an isothermal SPS test at two pressures and Q by an 

isobar SPS test at two temperatures like for Dorn’s method[32–34]. It is possible to determine 

these creep parameters directly from an SPS curve considering theoretical moduli[4,35]. 

However, from the literature, the theoretical value of the moduli is often overestimated 

[12,16] (see the literature modulus comparison at the end of the article). This can imply a 

compensation of the creep parameters to correct the moduli overestimation[10]. The 

advantage of the method described below, which is based on two curves, is to identify the 

creep parameters n and Q at fixed porosity while removing the possible disturbances from the 

unknown moduli functions.  

2.3.1. . determination of n 

Using mass conservation (14) and equation (18) we obtain: 

|
�̇�

(1−𝜃)
| = 𝐴(𝑇, 𝐺) (𝜓 +

2

3
𝜑)

−𝑛−1

2 (1 − 𝜃)
1−𝑛

2 |𝜎𝑧|
𝑛      (20). 

For two die compaction tests at the same T, 𝜃 and at different applied stress (𝜎𝑧), we obtain: 

|
�̇�1

�̇�2
| = |

𝜎1

𝜎2
|
𝑛

          (21) 

And then : 

𝑛 =
𝑙𝑛(

�̇�1
�̇�2
)

𝑙𝑛(
𝜎1
𝜎2
)
          (22). 
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The identification methodology is reported in figure 2a, the value of n can then be determined 

by the measurement the �̇�𝑖 for different 𝜎𝑖 at same 𝜃 and T. 

If the capillarity forces 𝑃𝑙 are not negligible equation (22) becomes: 

𝑛 =
𝑙𝑛(

�̇�1
�̇�2
)

𝑙𝑛(
𝜎1−𝑃𝑙
𝜎2−𝑃𝑙

)
          (23). 

 

2.3.2. Determination of Q 

Die compaction tests can also be employed to determine the creep law activation energy Q via 

a collection of tests at different temperatures. Taking the temperature dependence of A and 

equation (20), we have: 

|
�̇�

(1−𝜃)
| = 𝐴0(𝐺)

exp(
−𝑄

𝑅𝑇
)

𝑇
(𝜓 +

2

3
𝜑)

−𝑛−1

2 (1 − 𝜃)
1−𝑛

2 |𝜎𝑧|
𝑛    (24). 

Then, for two die compaction tests at same 𝜃 , applied stress (𝜎𝑧)  and for different 

temperatures, we have: 

|
�̇�1

�̇�2
|
𝑇1

𝑇2
=

exp(
−𝑄

𝑅𝑇1
)

exp(
−𝑄

𝑅𝑇2
)
= exp (

𝑄

𝑅𝑇2
−

𝑄

𝑅𝑇1
) = exp (

𝑄

𝑅
(
1

𝑇2
−

1

𝑇1
))    (25) 

the activation energy Q is then determined by: 

𝑄 =
𝑅𝑙𝑛(

�̇�1
�̇�2

𝑇1
𝑇2
)

(
1

𝑇2
−
1

𝑇1
)

          (26). 

As reported in figure 2b, the value of Q can be determined by the measurement the �̇�𝑖 for 

different 𝑇𝑖 at same 𝜃 and applied stress 𝜎𝑧 (see following figure). 
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Figure 2 Die pressing based identification method for the creep law (a) exponent n and (b) 

activation energy Q.  

 

2.4. Analytical equations for sinter-forging  

Sinter-forging configuration consists of a free compression of a porous sample at high 

temperature. In SPS, this configuration is applied by placing a porous pre-consolidated 

sample in a larger die. Assuming no thermal gradients, no friction, neglecting the capillarity 

forces (𝑃𝑙 ≪ 𝜎𝑧) and a homogeneous stress field, the following simplifications are applied to 

sinter-forging. 

𝜎 ≡ (
0 0 0
0 0 0
0 0 𝜎𝑧

) ; 𝜀̇ ≡ (

𝜀�̇� 0 0
0 𝜀�̇� 0
0 0 𝜀�̇�

) ; 𝜏 = √
2

3
|𝜎𝑧| ; 𝑃 = −

|𝜎𝑧|

3
   (27) 

The equivalent stress (3) becomes, 

𝜎𝑒𝑞 = |𝜎𝑧|
√
2

3𝜑
+
1

9𝜓

√1−𝜃
         (28) 

and equation (12) becomes, 

𝑠𝑧 = 𝜎𝑧 −
1

3
𝐼1 = −

2

3
|𝜎𝑧|        (29). 

Injecting the previous simplifications in equation (13), we obtain, 

Time

Time

Time

Time

Time

Time

Die 

compaction

a) b)
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𝜀�̇� = 𝐴(𝑇, 𝐺)(|𝜎𝑧|
√
2

3𝜑
+
1

9𝜓

√1−𝜃
)

𝑛−1

|𝜎𝑧| (
−2

3𝜑
+

−1

9𝜓
)     (30) 

The final expression describing the sinter-forging case is then, 

|𝜀�̇�| = 𝐴(𝑇, 𝐺)(1 − 𝜃)
1−𝑛

2 (
2

3𝜑
+

1

9𝜓
)

𝑛+1

2 |𝜎𝑧|
𝑛      (31) 

As highlighted by Abouaf et al [14,17], at the initial stage sintering the particle point contacts 

cause quasi-instantaneous creep or rearranging implying the moduli tends to close zero at this 

stage.  

 

2.5. Analytical equations for sinter-forging using radial displacement data 

The radial component of the strain rate tensor is expressed as below from equation (13) 

assuming similar hypothesis of equation (27). 

𝜀�̇� = 𝐴(𝑇, 𝐺)(|𝜎𝑧|
√
2

3𝜑
+
1

9𝜓

√1−𝜃
)

𝑛−1

(
𝑠𝑟

𝜑
+

𝜎𝑧

9𝜓
)       (32) 

The radial term deviatoric stress component is defined below, 

𝑠𝑟 = 𝜎𝑟 −
𝜎𝑧

3
=

|𝜎𝑧|

3
, with 𝜎𝑟 = 0       (33). 

Equation (32) becomes, 

𝜀�̇� = 𝐴(𝑇, 𝐺)|𝜎𝑧|
𝑛 (

2

3𝜑
+
1

9𝜓

1−𝜃
)

𝑛−1

2

(
1

3𝜑
−

1

9𝜓
)       (34) 

Using the axial sinter-forging equation (31), we can isolate below moduli expression. 

(
2

3𝜑
+

1

9𝜓
) = 𝐴(𝑇, 𝐺)

−2

𝑛+1|𝜎𝑧|
−2𝑛

𝑛+1|𝜀�̇�|
2

𝑛+1(1 − 𝜃)
𝑛−1

𝑛+1      (35) 

As the axial (31) and radial (34) terms originate from a same sinter-forging test, the porosity 

and then the shear and bulk moduli are the same at each time of the experiment. 

Consequently, it is possible to inject equation (35) into equation (34). 

With below calculations: 
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{
 
 

 
 𝐴𝐴

−2
𝑛+1


𝑛−1
2 =𝐴

2
𝑛+1

|𝜎𝑧|
𝑛|𝜎𝑧|

−2𝑛
𝑛+1


𝑛−1
2 =|𝜎𝑧|

2𝑛
𝑛+1

|�̇�𝑧|
2

𝑛+1

𝑛−1
2 =|�̇�𝑧|

𝑛−1
𝑛+1

(1−𝜃)
𝑛−1
𝑛+1


𝑛−1
2 (1−𝜃)

1−𝑛
2 =(1−𝜃)

1−𝑛
𝑛+1

       (36), 

the final analytical expression of the radial strain rate is: 

𝜀�̇� = 𝐴(𝑇, 𝐺)
2

𝑛+1|𝜎𝑧|
2𝑛

𝑛+1|𝜀�̇�|
𝑛−1

𝑛+1(1 − 𝜃)
1−𝑛

𝑛+1 (
1

3𝜑
−

1

9𝜓
)     (37). 

If the capillarity forces 𝑃𝑙 are not negligible, equations (31) and (37) become: 

𝜀�̇� = 𝐴(𝑇, 𝐺)(

2|𝜎𝑧|
2

3𝜑
+
(−
|𝜎𝑧|
3
−𝑃𝑙)

2

𝜓

1−𝜃
)

𝑛−1

2

(−
2|𝜎𝑧|

3𝜑
+
(−

|𝜎𝑧|

3
−𝑃𝑙)

3𝜓
)    (38) 

𝜀�̇� = 𝐴(𝑇, 𝐺)(

2|𝜎𝑧|
2

3𝜑
+
(−
|𝜎𝑧|
3
−𝑃𝑙)

2

𝜓

1−𝜃
)

𝑛−1

2

(
|𝜎𝑧|

3𝜑
+
(−

|𝜎𝑧|

3
−𝑃𝑙)

3𝜓
)    (39). 

A similar n, Q identification method of sections 2.3.1 and 2.3.2 can also be applied to sinter-

forging. However, the main difficulty will be the estimation of the actual porosity requiring a 

radial displacement measurement probe. In comparison, the method based on die compaction 

can be directly applied in a simple SPS configuration and will be preferred in this study. 

Nevertheless, the identification method of n and Q is described below as these equations can 

be precious to check the overall methodology and highlight experimental discrepancies such 

as a dissimilar mechanical behavior due to temperature measurement error. 

 

2.5.1. Determination of n based on sinter-forging 

For two sinter-forging compaction tests at the same T, 𝜃 and at different 𝜎𝑧, with 𝑃𝑙 ≪ 𝜎𝑧 and 

using equation (31) at two isothermal pressures, we obtain the ratio: 

|
�̇�𝑧1

�̇�𝑧2
| = |

𝜎1

𝜎2
|
𝑛

          (40). 

The stress exponent value can then be determined using, 
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𝑛 =
𝑙𝑛(

�̇�𝑧1
�̇�𝑧2

)

𝑙𝑛(
𝜎1
𝜎2
)
          (41). 

As explained in figure 3a, the value of n can be determined by the measurement of the �̇�𝑖 for 

different 𝜎𝑖 at same 𝜃 and T. 

 

2.5.2. Determination of Q based on sinter-forging 

For the determination of Q, equation (31) is considered developing the temperature dependent 

term A.  

|𝜀�̇�| = 𝐴0(𝐺)
exp(

−𝑄

𝑅𝑇
)

𝑇
(1 − 𝜃)

1−𝑛

2 (
2

3𝜑
+

1

9𝜓
)

𝑛+1

2 |𝜎𝑧|
𝑛     (42) 

For two die compaction tests at same 𝜃, 𝜎𝑧 and different temperatures we have: 

|
�̇�𝑧1

�̇�𝑧2
|
𝑇1

𝑇2
=

exp(
−𝑄

𝑅𝑇1
)

exp(
−𝑄

𝑅𝑇2
)
= exp (

𝑄

𝑅𝑇2
−

𝑄

𝑅𝑇1
) = exp(

𝑄

𝑅
(
1

𝑇2
−

1

𝑇1
))    (43). 

Q is determined by: 

𝑄 =
𝑅𝑙𝑛(

�̇�𝑧1
�̇�𝑧2

𝑇1
𝑇2
)

(
1

𝑇2
−
1

𝑇1
)

         (44). 

The value of Q can be determined by the measurement of �̇�𝑖 for different 𝑇𝑖 at same 𝜃 and 𝜎𝑧 

(see figure 3b). 
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Figure 3 Sinter-forging based identification method for the creep law (a) exponent n and (b) 

activation energy Q. 

 

2.6. Determination of A, 𝜑 and 𝜓 

With the knowledge of the stress exponent n, three unknown parameters remain (A, 𝜑 and 𝜓) 

for identifying an isothermal sintering model. Gathering the analytic formulas for sinter-

forging (31 and 37) and die compaction (18), the following system of equation can be defined. 

{
 
 

 
 (

2

3𝜑
+

1

9𝜓
)𝐴(𝑇, 𝐺)

2

𝑛+1 = |𝜀�̇�|
2

𝑛+1|𝜎𝑧|
−2𝑛

𝑛+1(1 − 𝜃)
𝑛−1

𝑛+1 = 𝐹𝑧𝑎𝑥𝑖𝑎𝑙𝑠𝑖𝑛𝑡𝑒𝑟𝑓𝑜𝑟𝑔𝑖𝑛𝑔(45)

(
1

3𝜑
−

1

9𝜓
) 𝐴(𝑇, 𝐺)

2

𝑛+1 = 𝜀�̇�|𝜀�̇�|
1−𝑛

𝑛+1|𝜎𝑧|
−2𝑛

𝑛+1(1 − 𝜃)
𝑛−1

𝑛+1 = 𝐹𝑟𝑅𝑎𝑑𝑖𝑎𝑙𝑠𝑖𝑛𝑡𝑒𝑟 − 𝑓𝑜𝑟𝑔𝑖𝑛𝑔(46)

(𝜓 +
2

3
𝜑)𝐴(𝑇, 𝐺)

−2

𝑛+1 = |𝜀�̇�|
−2

𝑛+1|𝜎𝑧|
2𝑛

𝑛+1(1 − 𝜃)
1−𝑛

𝑛+1 = 𝑆𝑃𝑆𝑑𝑖𝑒𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛(47)

  

In the above system of equation, the left terms are the unknown parameters and the right 

terms are experimentally measurable responses of each respective test. Due to the form of 

equations (45-47), the elimination of A for identifying the moduli is easy; however, the 

independent determination of A is difficult. To circumvent this issue, the solution selected in 

this paper will be to combine equation (45) and (47) on a single instrumented experimental 

sinter-forging test to eliminate the bulk modulus (𝜓) and develop porosity function of the 

shear modulus (𝜑). This method is explained in the section below. 

Time

Time

Time

Time

Time

Time

Sinter-forging

a) b)
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2.6.1. Radial/axial sinter-forging based approach for determining A and 𝜑 

Both sinter-forging equations (45) and (47), have the term 1/(9𝜓) that can be isolated and 

eliminated obtaining: 

𝐹𝑧 −
2𝐴

2
𝑛+1

3𝜑
= −𝐹𝑟 +

𝐴
2

𝑛+1

3𝜑
        (48). 

and then, 

𝜑 =
𝐴(𝑇,𝐺)

2
𝑛+1

(𝐹𝑧+𝐹𝑟)
          (49). 

Developing, the term 𝐹𝑧 + 𝐹𝑟 based on equations (45) and (47), we obtain, 

𝐹𝑧 + 𝐹𝑟 = |𝜎𝑧|
−2𝑛

𝑛+1(1 − 𝜃)
𝑛−1

𝑛+1 (|𝜀�̇�|
2

𝑛+1 + 𝜀�̇�|𝜀�̇�|
1−𝑛

𝑛+1)     (50). 

Inserting (50) in (49), we obtain, 

𝜑 = 𝐴(𝑇, 𝐺)
2

𝑛+1
|𝜎𝑧|

2𝑛
𝑛+1(1−𝜃)

1−𝑛
𝑛+1

(|�̇�𝑧|
2

𝑛+1+�̇�𝑟|�̇�𝑧|
1−𝑛
𝑛+1)

        (51). 

From Abouaf et al [14,17], the shear modulus fitting function can be defined by the following 

function of the porosity, where 𝜃𝑐 is the critical porosity where the shear modulus tends to 

zero at the initial stage.  

𝜑 = (1 −
𝜃

𝜃𝑐
)
𝜇

         (52) 

The value of  𝜃𝑐 should be closed to the initial porosity (𝜃𝑔𝑟𝑒𝑒𝑛). However, to avoid starting 

with a singularity (𝜑 → 0 at the beginning) a slightly higher value is taken (𝜃𝑐 = 𝜃𝑔𝑟𝑒𝑒𝑛 +

0.1 ) to ensure computation stability. There are very few studies in the literature on 

experimental identification of the moduli without theoretical reductive hypothesis [15–17,20–

22,36,37]. A selection of four experimental shear modulus ("astroloy"[17], alumina[16], 

titanium aluminide[22], nickel[21]) are reported in figure 4a. Taking a critical porosity of 0.4, 

the fitting equation (52) demonstrates a good prediction of all experimental moduli.  
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Figure 4 a) Representation of the shear modulus fitting equation compared to literature 

experimental data, b) Representation of characteristic sinter-forging equations required to 

identify the shear modulus and A parameters. 

 

Combining equation (51) and the shear modulus fitting equation (52), we obtain, 

(1 −
𝜃

𝜃𝑐
)
𝜇

= 𝐴(𝑇, 𝐺)
2

𝑛+1
|𝜎𝑧|

2𝑛
𝑛+1(1−𝜃)

1−𝑛
𝑛+1

(|�̇�𝑧|
2

𝑛+1+�̇�𝑟|�̇�𝑧|
1−𝑛
𝑛+1)

      (53) 

Latter equation can be reorganized to identify A and 𝜑 (indirectly identified by 𝜇) via the 

linear regression below equation left term vs 
(𝑛+1)

2
𝑙𝑛 (1 −

𝜃

𝜃𝑐
) and the data (figure 4b). 

−
(𝑛+1)

2
𝑙𝑛 (

|𝜎𝑧|
2𝑛
𝑛+1(1−𝜃)

1−𝑛
𝑛+1

(|�̇�𝑧|
2

𝑛+1+�̇�𝑟|�̇�𝑧|
1−𝑛
𝑛+1)

) = 𝑙𝑛(𝐴(𝑇, 𝐺)) − 𝜇 (
(𝑛+1)

2
𝑙𝑛 (1 −

𝜃

𝜃𝑐
))   (54) 

In isobar and isotherm conditions, equation (54) gives a straight line. However, as the 

parameter A depends also on the grain size, disturbances may happen at the onset of grain 

growth. It is then recommended to conduct this identification in a stable zone of the 

intermediate stage to determine 𝜇 , after that, the evolution of A with grain size can be 

investigated if wished. If a slight grain growth is active at intermediate stage, it is possible to 

include this phenomenon by developing the creep term in (54) as 𝐴(𝑇, 𝐺) = 𝐴(𝑇) (
𝐺0

𝐺
)
𝑚

 with 

m = 3 for grain boundary diffusion. For zirconia, the grain size shows a plateau up to 97% of 

densification[35].  

Sinter-forging

Time

b)
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0.2

0.4

0.6
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2.6.2. Identification of 𝜓 

Knowing A, n and 𝜑, the bulk modulus 𝜓 can be identified using the ratio of equations (45) 

and (46). 

2

3𝜑
+
1

9𝜓
1

3𝜑
−
1

9𝜓

=
𝐹𝑧

𝐹𝑟
=

|�̇�𝑧|
2

𝑛+1

�̇�𝑟|�̇�𝑧|
1−𝑛
𝑛+1

= |𝜀�̇�||𝜀�̇�|
−1       (55) 

After developments, we obtain the equation of the ratio of the shear and bulk moduli.  

𝜓

𝜑
=

3

9
(
−|�̇�𝑧||�̇�𝑟|

−1−1

2−|�̇�𝑧||�̇�𝑟|−1
)         (56) 

This equation allows obtaining the bulk modulus from sinter-forging axial/radial 

measurements. 

Alternatively, it is possible to use the die pressing analytical equation (47) to determine the 

bulk modulus by : 

𝜓 = 𝐴(𝑇, 𝐺)
2

𝑛+1|𝜀�̇�|
−2

𝑛+1|𝜎𝑧|
2𝑛

𝑛+1(1 − 𝜃)
1−𝑛

𝑛+1 −
2

3
𝜑      (57). 

This method using equations (45-47) assumes the applied stress is the dominant effect 

otherwise the bulk modulus (𝜓) cannot be eliminated using equations (38) and (39). A high 

pressure needs to be applied for this method. If the pressure is limited, a minimization method 

based on equations (38) and (39) should be preferred instead. 

 

3. Experiment and method 

The methodology employed in this paper includes the identification of the creep parameters n 

and Q by die compaction at different pressures (63 MPa and 89 MPa) and temperature 

(1085°C, 1135°C and 1175°C) dwell. The method is described in figure 2; more details on the 

conditions will be specified in the results section. The SPS device “FCT system HPD25” is 

used in 10 mm inner die for die compaction and 15 mm for sinter-forging configuration. 

Interrupted 10 mm inner die compaction test was employed to produce the 10 mm diameter, 

3.4 mm height porous samples placed in the sinter-forging 15 mm die. This way, the initial 
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pre-sintered powder state is closer to the SPS conditions (without the disturbances from 

surface diffusion like in pressure-less sintering). The sinter-forged specimens have a 

dimension change of about -25% of the initial height and +5% of the initial diameter. The die 

compaction and sinter-forging configurations are similar to those in ref [21]. For the sinter-

forging experiment, a graphite foil has been added at the contact interface for minimizing the 

friction[31] and the barrel effect it may generate (not observed in our tests). The specimen 

temperature was taken by a K-type thermocouple near the edge of the specimen (directly on 

the graphite foil for the die compaction and directly on the specimen for the sinter-forging 

configuration). Zirconia “Tosoh TZ-3Y-E”powder was used for this study. This powder as a 

specific surface area of 16 m
2
 g

-1
 and an actual particle size of 40 nm. The SEM[38] and 

TEM[39] analysis confirm the presence of 40 nm crystallites in 167 nm soft agglomerates. 

The determination of A, 𝜑 and 𝜓 with the sinter-forging method presented in figure 4b was 

done for the temperatures 1085°C and 1135°C. The main difficulty of this test was to obtain 

the information of the radial displacement (diametric extension during the test). Without 

specific instrumentation to measure this displacement, numerous experiments were done at 

different isobar isotherm sinter-forging holding times. The determination of these sinter-

forging radial displacement curves was the longest experimental work and takes 11 tests for 

the two temperatures. For the sinter-forging tests, the radial extension data were used to 

calculate the axial stress evolution. After knowing all sintering parameters n, A, 𝜑 and 𝜓, the 

modeling of SPS experiments in die compaction was done. A final adjustment of the sinter-

forging linear curves by equation (54) and SPS modeled curves is performed to obtain a 

model explaining all configurations results.  
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4. Results and discussions 

In this section, the die compaction based identification of the creep parameters is presented 

first. Then, the sinter-forging based identification of the sintering moduli and the final 

modeling of SPS test will be presented. 

 

4.1. Identification of the n and Q creep law parameters 

The method presented in section 2.3 and figure 2 is based on isothermal die compaction tests 

to identify the parameter n with equation (22) at different pressures (figure 2a) and Q with 

equation (26) at different temperatures (figure 2b). The SPS die compaction tests are reported 

in figure 5. The test at 5 kN corresponds to 63 MPa and those at 7 kN corresponds to 89 MPa. 

In order to calculate the porosity elimination rate needed by equations (22) and (26) a fitting 

mathematical equation of the following form was employed. 

𝜃𝑓𝑖𝑡 = 𝑎 − (𝑏 ∗ ln(𝑡 + 𝑐))       (58) 

With the porosity elimination rate curves (on the right of figure 5), the “jump” in the rate 

curves is taken at the same porosity value between two applied stresses at the same 

temperature (to calculate n) or two temperatures at the same stress (to calculate Q). The 

matching zones of identification of n and Q are reported in figure 5. 

The identified parameters are reported in figure 6a for n and figure 6b for Q. An average n 

stress exponent of 1.98 is measured. This value close to 2 can be associated with a grain 

boundary sliding mechanism[27]. Similar values were obtained by Bernard-Granger and 

Guizard [35] at the temperatures 950°C, 1000°C and 1050°C. Concerning the activation 

energy, the values are distributed around 500 kJ/mol with a high dispersion. Bernard-Granger 

and Guizard [35] have found 450 kJ/mol. In the red zone (figure 6b), the values of the 

activation energies are calculated in a zone below 0.2 of porosity and with a couple of 

temperatures including 1175°C. At these temperatures and for closed porosity, the grain 

growth may be active and disturb the identification process (using equation (26)) where the 
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grain size is supposed similar for each couple of porosity. The couple of temperatures 

1085°C-1135°C at porosities higher than 0.2 is considered more accurate and gives average 

activation energy of 400 kJ/mol, a value relatively close to the 450 kJ/mol of Bernard-

Granger and Guizard [35]. 

 

Figure 5 SPS isobar isotherm die compaction tests at a) 1085°C, b) 1135°C, c) 1175°C, the 

porosity curves are represented on the left and the porosity elimination rate are reported on 

the right. 

The last noticeable aspect is the porosity dependence of n and Q. This seems to suggest a slow 

change of mechanism from diffusion (n=1) at high porosity to dislocation motion (n=3) at low 

porosity. However, this slow tendency should be the opposite considering the stress 
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intensification phenomenon is high for high porosity values [27]. For the activation energy in 

the red zone figure 6b, the tendency is inverted and seems not pertinent. This tendency may 

be explained by a non-equilibrium specimen temperature where at the beginning of the 

holding, the temperature at the edge of the specimen can be slightly hotter than the whole 

specimen temperature. If the specimen temperature is gradually homogenized, the similar 

tendency of the one shown in figure 6 can be observed. The advantage of the present 

identification method is to explore the mechanism of evolution at different temperatures and 

porosity ranges. However, the high temperature sensitivity of SPS [40] need to be considered. 

Despite the main grain growth onset is located at porosity closed to 0.05 for zirconia [35], a 

slow grain growth evolution in the submicronic range may also slightly disturb this 

identification such as a potential impact of differential pore coarsening by surface diffusion 

[25]. A similar phenomenon is observed for the Wang and Raj method [41] for pressureless 

sintering. In the latter, the sintering activation energy is identified at different porosities, a 

porosity dependence of Q is often observed[42–44] due to grain growth disturbance, pore 

coarsening and experimental discrepancies. In general, an average value of Q is taken, the 

same is applied here for n and Q. 

 

Figure 6 Die compaction based creep law identification of a) n and b) Q, the couple of 

identification of Q is named as T1-T2—P. 
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4.2. Identification of A, 𝜑 and 𝜓 by sinter-forging 

The determination of the moduli was the most difficult experimental task as equation (54) 

requires the experimental determination of 𝜀�̇�, 𝜀�̇�, 𝜃. The results of the experiments at 1085°C 

and 1135°C are reported in figure 7. Numerous interrupted sinter-forging experiments were 

done to obtain the information of the diametric expansion. A mathematical fitting curve (see 

below equation) have been used to determine unique average curves for 𝜀�̇�, 𝜀�̇�, 𝜃. 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑓𝑖𝑡 = 𝑎 + (𝑏 ∗ ln(𝑡 + 𝑐))      (59) 

 

 

Figure 7 Sinter-forging experimental results for obtaining the height evolution at a) 1085°C, 

b) 1135°C, c) the specimen diameter expansion and via a fitting curve, d) the radial strain 

rate at both temperatures. 

With figure 7 experimental data, the linear regression equation (54) can be used at 1085°C 

and 1135°C using 𝜃𝑐 = 0.6. The two curves are reported in figure 8a where the slope gives 𝜇 

and the origin gives 𝑙𝑛(𝐴) . The noise on these curve reflect the 1 kN spikes randomly 

generates by the load cell close to the lower limit. This noise on the force signal is considered 
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in the model and represents an error of 2 % due to the “rate-dependent” nature of creep based 

sintering behavior at high temperature which mitigates the effect of the noise on the force 

curve. Despite The shear modulus φ can be determined knowing 𝜃𝑐, and taking the exponent 

of the origin, the value of A(T) for each temperature can be determined. Knowing the shear 

modulus 𝜑, the bulk modulus 𝜓 can be determined via equation (56). The results are reported 

in figure 8b and we can see the moduli identified at the two temperatures converge to the 

same curve which depends on the relative density. For this powder, the temperature has no 

effect on the moduli. 

At this stage, all sintering model parameters are determined, the model can be verified by 

simulating the die pressing sintering response at 1085°C and 1135°C using the data of 

figure 5a and 5b. In order to obtain the optimal model accuracy (reduces the disturbances of 

the temperature gradients), an adjustment of the modeling parameter has been done between 

figure 8a and the die pressing modeled curves figure 8c and 8d. Consequently, the matching 

of the model and experimental data is not ideal in figure 8a, 8b and 8c but the model 

represents the optimal solution between the sinter-forging and die pressing configurations. 

Concerning the discrepancy at 1085°C in figure 8a, it was shown in [35,39] that the nano-

zirconia powder may be subjected to a pre-coarsening stage at temperature closed to 1000°C. 

This may explain the slight non-linearity phenomenon at 1085°C as the parameter A depends 

on the grain size. Nevertheless, the error on modeled SPS curves (figure 8c) is less than 3%, 

which is a very satisfactory result considering the way the parameters have been identified 

(sinter-forging tests). The direct regression methods have a higher accuracy because their 

theoretical moduli limit the numbers of variable to identify, but their domain of application is 

quite limited. In comparison, the present method employs minimal theoretical hypotheses and 

identifies all parameters (creep and moduli) directly from the porous stage (without grain size 

disturbance). Therefore, the resulting parameters are valid in a wide range of porosity and 

configurations. 
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Figure 8 Experimental identification of A, 𝜑 and 𝜓, a) sinter-forging linear regression of 

obtaining A and 𝜑, b) determination of 𝜓, c) validation by modeling the die pressing porosity 

evolution at 1085°C and d) 1135°C; optimal modeling parameters are identified by adjusting 

the sinter-forging and die pressing model curves. 

After the optimization, two values of A are obtained. Based on equation (2), it is possible to 

estimate 𝐴0 and Q by plotting ln(AT) function of 1/RT (see figure 9). An activation energy of 

536 kJ/mol is obtained, this value is higher than the 400 kJ/mol obtained in figure 6 for the 

same temperature range. However, only two points are taken and the modeling curves were 

adjusted. If an instrumented sinter-forging test is developed to avoid the time consuming 

interrupted tests, several temperatures can be easily done and a more precise temperature 

dependence can be estimated. 
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Figure 9 Estimation of the temperature dependence of A. 

Finally, this method succeeds to identify the shear and bulk moduli directly from porous 

mechanical testing. The experimentally identified moduli are detailed below. 
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Figure 10 Identified moduli compared with literature moduli from creep[7–

9,45]/plasticity[6,46] based theory and experimental identification for 

metals[15,18,19,21,37], alloys[20,22,47] and ceramics[16]. 

 

5. Conclusion 

In this study, we present a comprehensive formulation of the continuum theory of sintering 

for the direct identification of the shear and bulk moduli and the creep behavior from the 

porous stage. This approach addresses the challenge of dissimilar creep behavior at porous 

and fully dense stages preventing the identification of ceramics sintering modeling parameters 

due to final stage grain growth. In this approach, all the temperature/grain size dependent 

creep parameters and the porous dependent shear and bulk moduli are identified combining 

die pressing and several interrupted sinter-forging tests at high temperatures and pressures. 

One of the main challenges of this identification methodology was to conduct numerous 

interrupted sinter-forging tests to obtain the axial/radial evolution required to distinguish the 

shear and bulk powder behavior during the sintering. However, this time consuming sinter-

forging tests can be highly simplified if an external instrumentation is developed to in situ 
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measure the radial expansion. With such instrumentation, a wider temperatures range can be 

easily conducted. This method will allow exploring the following prospects: 

 the effects of temperature, pressure and porosity on the sintering behavior, 

 the grain size effect on the sintering trajectories at the final stage, 

 the impact of heating rates, electrical current/field on the sintering behavior, 

 the study of flash spark plasma sintering behavior compared to conventional behavior, 

 metals and allows may also need this method if important microstructural changes or 

phase transition/reaction occur during the densification preventing using fully dense 

creep tests like in ceramics. 

 

Appendix: discussion on the link between solid state and continuum sintering models. 

 

The pressure assisted sintering theory involves different creep based mechanisms. Solid state 

hot pressing model has the following equation[27]. 

1

𝜌

𝑑𝜌

𝑑𝑡
=

𝐻𝐷(𝑇)𝜙(𝜌)𝑛𝜎𝑧
𝑛

𝐺𝑚𝑘𝑇
         (62) 

The exponent n and m of this equation may have different values depending on the underlying 

creep mechanism : n = 1, m = 2, for lattice diffusion, n = 1, m = 3 for grain boundary 

diffusion, and n = 1 or 2, m = 1 for grain boundary sliding, n > 3, m = 0 for dislocation based 

creep. 

In theoretical approaches like the sintering map[48,49], each sintering mechanisms are 

considered and zones of dominant mechanisms are identified. For oxide ceramics, the strong 

chemical bonding limits the dislocation motion (unless pressures over GPa is 

employed[48,50]) and makes the diffusion mechanisms dominant. The grain boundary sliding 

is generally associated with diffusion for hot pressing as it follows the grain deformation. In 

practice, equation (62) is considered for the identification of the dominant sintering 
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mechanism. The same is done for the experimental identification by the continuum model 

(18). 

For metal, the question of primarily creep can be considered. Primarily creep is generally 

associated with dislocation hardening mechanisms. This effect can be characterized by SPS 

multistep forging on fully dense samples[15,20,22]. For ceramics, this dislocation 

phenomenon can be reasonably neglected. 

Another simplification of the model concerns the anisotropy of the model. In hot pressing the 

grain are slightly flattened by the absence of radial displacement. As this anisotropy is limited 

and quickly disappears with the grain growth, this contribution is generally neglected. In the 

sinter-forging experiments where the grain can be significantly deformed, the radial extension 

was only 4 % of the initial diameter so the grain anisotropy was not studied. For experiment 

with significant radial displacement (like in metals), the question of anisotropy may be 

considered by comparing the results with Hot Isostatic Pressing (HIP) experiments. For the 

sintering of additive manufacturing materials having an architectured porosity, the anisotropy 

must by intrinsically considered[51]. 

The continuum model (10) is a model bridging solid state sintering model represented by 

equation (62) and the mechanics needed to simulate the sintering by stress and strain rate 

tensors. The continuum model is not different but inspired by the solid state sintering 

solutions. The analytical solution of the continuum model (18) can be compared to equation 

(62) from continuum model, we have 𝜙 = ((𝜓 +
2

3
𝜑)

−𝑛−1

2 (1 − 𝜃)
1−𝑛

2 )

1

𝑛

 and 𝐴(𝑇, 𝐺) =
𝐻𝐷(𝑇)

𝐺𝑚𝑘𝑇
.  

The stress intensification factor 𝜙 is a porosity dependent function bridging all stages. In the 

combined stage sintering theory[52], it was shown that the geometrical parameters of the solid 

state models of each three sintering stages can be defined by a unique porosity function. This 

concept of free sintering is also applied to pressure assisted sintering giving a unique porosity 

function called the stress intensification factor 𝜙 [27]. In the continuum models, the latter 

must distinguish the shear and bulk underlying behavior to connect the tensors.  
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