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Abstract 

Flash sintering is a very promising method with a great potential for the ultra-rapid 

production of objects with firing processes of mere seconds. However, the transition from few 

millimeters samples to larger scales is a key issue. In this study, we explore the spark plasma 

sintering approach allowing a stable hybrid heating in flash condition and producing near net 

shape sintered specimens. Two electric current configurations are employed for diameters of 

15 and 30 mm to determine the effect of scale change and of electric current concentration. 

These experiments coupled with a Multiphysics simulation indicate that stable flash 

conditions can be reached for 30 mm specimens. However, even if the electrical current 

concentration is very effective at small sizes, it generates peripheral hot spots for large 

specimen dimensions. The blackening effect on zirconia flash specimens acts then as an 

indicator of the specimen thermal history.  
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Nomenclature 

θ Porosity 

�̇� Porosity elimination rate (s
-1

) 

𝜎 Stress tensor (N.m
-2

) 

𝜎𝑒𝑞 Equivalent stress (N.m
-2

) 

𝜀̇ Strain rate tensor (s
-1

) 

𝜀�̇�𝑞 Equivalent strain rate (s
-1

) 

n Creep law stress exponent 

A Creep law deformability term (s
-1

Pa
-n

) 

𝐴0 Creep pre-exponential factor (Ks
-1

Pa
-n

) 

m Creep law grain size sensibility exponent 

𝑄 Sintering activation energy (J.mol
-1

) 

R Gas constant 8.314 (J.mol
-1

.K
-1

) 

T Temperature (K) 

𝜑 Shear modulus 

𝜓 Bulk modulus 

Pl Sintering stress (Pa) 

𝕚 Identity tensor 

�̇� Trace of the strain rate tensor (s
-1

) 

�̇� Shear strain rate invariant (s
-1

) 

𝐼1 Trace of the stress tensor (N.m
-2

) 

�̇� Grain growth rate (m.s
-1

) 

𝐺 Grain size (m) 

𝐺0 Initial grain size (m) 

𝑝 Grain growth equation grain size exponent 

𝐾 Grain growth factor (m
1+p

.s
-1

) 

𝑘0 Grain growth pre-exponential factor (m
1+p

.s
-1

) 

𝑄𝐺 Grain growth activation energy (J.mol
-1

) 

SPS Spark Plasma Sintering 

ETMM Electro-Thermal-Mechanical-Microstructural 

𝐽 Electric current density (A m
-2

) 

�⃗⃗� Electric field (V m
-1

) 

J Electric current density norm (A m
-2

) 

E Electric field norm (V m
-1

) 

𝜎𝑒𝑙𝑒𝑐 Electric conductivity (S m
-1

) 
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𝜌 Density (kg m
-3

) 

𝐶𝑝 Heat capacity (J kg
-1 

K
-1

) 

T Temperature (K) 

𝜅 Thermal conductivity (W m
-1

 K
-1

) 

𝜑𝑐𝑜𝑛𝑣 Convective heat flux (W m
-2

) 

ℎ𝑐𝑜𝑛𝑣 Convective heat flux coefficient (W m
-2 

K
-1

) 

𝑇𝑤𝑎𝑡𝑒𝑟 Water temperature (300 K) 

𝑇𝑠𝑜𝑙𝑖𝑑 Calculated solid temperature (K) 

𝐽𝑟𝑎𝑑 Surface radiosity (W m
-2

) 

𝜎𝑠 Stefan Boltzmann constant (5.67E-8 W m
-2 

K
-4

) 

ϵ Emissivity 

G Thermal irradiation flux (W m
-2

) 

Nr Refractive index 

𝑒𝑏(𝑇) Surface radiation produced (W m
-2

) 

𝑟𝑒𝑓𝑙 Reflected radiative heat flux (W m
-2

) 

𝜑𝑟𝑠𝑠 Net inward radiative heat flux (W m
-2

) 

�⃗⃗� Normal unit vector 

𝐽𝑛 Imposed normal electric current density (A m
-2

) 

𝐽𝑐 Contact current density (A m
-2

) 

ECR Electric surface contact resistance (Ω m
2
) 

Ui Contact i face electric potential (V) 

�̇�𝑐 Contact heat flux (W m
-2

) 

TCR Thermal surface contact resistance (m
2
 K W

-1
) 

Ti Contact i face temperature (K) 

α Coefficient of thermal expansion (T
-1

) 
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1. Introduction 

Since the discovery of flash sintering in 2010[1,2], many efforts have been employed to study 

the underlying heating/sintering mechanisms and to scale up this ultra-rapid process[3–5]. 

The flash sintering involves an abrupt heat dissipation followed by the sintering of the 

specimen in mere seconds. For zirconia, this “flash event” is mostly initiated by the NTC 

(negative temperature coefficient) resistivity of this material generating an incubation stage 

and an abrupt current flowing in the ceramic at high temperature[6]. The ultra-rapid sintering 

kinetics are generally not explained by the heating speed that would require higher 

temperatures and suggest additional mass transport mechanism or kinetic mechanisms[1,7]. 

Concerning the non-thermal mass transport mechanisms, we can cite the current effects 

(electromigration[8,9], electroplasticity[10–12], Frenkel pair cascade[7]) and the field effects 

(for instance, the ponderomative forces[13–15]). Concerning the thermal/kinetics effects, we 

can cite the localized heating[7,16,17], the high heating rate effect on delayed pore surface 

diffusion [18,19]. We may also cite the non-equilibrium state of grain boundaries[20,21] and 

grain boundary complexion[22,23]. The origin of the flash sintering ultra-rapid mechanism is 

still under hard debate[24,25]. It must bear in mind that the high thermal instability of flash 

sintering makes the estimation of the effective temperature very difficult due to the presence 

of hot spots and temperatures gradients[3,26,27]. It is then difficult to separate the thermal 

and non-thermal effects. 

In flash sintering, the cooling flux generates thermal gradient at the edges of the 

specimen[28]. The NTC behavior tends to amplify these thermal gradients by a higher 

volumetric dissipation in the hot area where the current tends to concentrate[29,30]. For 

materials having low thermal conductivity like zirconia, this phenomenon is even more 

amplified and hot spots may appear. Dong [31] has expressed this in a figure of merit based 

on thermal relaxation theory. In microwave sintering, the hot spot formation is typically 

observed in the case of the direct heating of zirconia[29]. The latter is initiated by cooling 
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fluxes by conduction, convection and radiation at the edge[28]. The finite element simulation 

helps in predicting and quantifying these fluxes. For SPS[32], the cooling fluxes at the 

specimen boundaries are only caused by the conduction through the surrounding graphite 

elements acting as susceptors in direct contact. The thermal gradients are strongly influenced 

by the electrical and thermal contacts which play a similar role are thermal barrier and 

dissipate heat at the boundaries[33–36]. These hybrid heating characteristics concentrate the 

heat in the powder making flash SPS more stable and more controllable than the conventional 

resistive approach. In addition, the punches and die allow controlling the external shape of the 

flashed specimen.  

Different flash SPS approaches have been developed. The first is based on a sinter-forging 

configuration where a graphite felt or foil is used to initiate the heating. Zirconia[37], 

ZrB2[38], SiC[39–42], Nd-Fe-B[43], TiB2-hBN[44], B4C[45] materials have been produced 

by this method. This method is very interesting for achieving high density of refractories as 

the radial shrinkage allows the pore flattening and porosity elimination during the sinter-

forging SPS approach[46,47]. High dimension specimens have been produced by this 

method[39]. Another approach uses a graphite die to control the final shape of the sample. 

The graphite die is generally electrically insulated by a boron nitride spray to concentrate the 

electrical current in the powder and the graphite foil which initiate the heating and act as a 

susceptor. This configuration has been used to sinter ZrB2, MoSi2, Al2O3[48], SiC[49]. In a 

previous study[50], it was shown that this configuration provides an electro-thermal-

mechanical confinement to the powdered specimen that can be ultra-rapidly heated and 

sintered with very controllable and homogeneous conditions. In the latter, we showed that 

these ultra-rapid conditions allowed the sintering of almost all materials from dielectrics, 

semiconductors to metals. These experiments were done on alumina, zirconia and nickel and 

for 10 mm diameter samples. However, the preservation of these stable ultra-rapid conditions 

for bigger samples is still questionable. 
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In this work, the scalability of flash SPS of zirconia is tested for cylindrical samples with 

diameter ranging from 15 to 30 mm. The flash sintering is investigated in different 

configurations of electrical current to identify stable heating/sintering conditions. A fully 

coupled electro-thermal-mechanical-microstructural simulation of the different tests is 

conducted to model the temperature, porosity and grain size fields of each flash test. 

 

2. Theory and calculations 

2.1 Electro-Thermal-Mechanical-Microstructural model (ETMM Model) 

The ETMM simulation of spark plasma sintering includes the coupled Joule heating and 

sintering governing equations. The Joule heating obeys the charge conservation and heat 

transfer equations. 

∇. 𝐽 = ∇. (𝜎𝑒𝑙𝑒𝑐 �⃗⃗�) = 0          (1) 

∇. (−𝜅∇𝑇) + 𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
= 𝑱𝑬          (2) 

Where 𝑱𝑬 is the volumetric electrical power dissipated. 

The sintering part is simulated with the continuum theory of sintering [24,51,52]. The local 

momentum equation of the mechanical part is: 

∇. 𝜎 = 0           (3). 

The porous viscoplastic sintering behavior is defined by the strain rate and stress tensor 

relationship: 

𝜎 =
𝜎𝑒𝑞

�̇�𝑒𝑞
(𝜑𝜀̇ + (𝜓 −

1

3
𝜑) 𝑡𝑟(𝜀̇)𝕚) + 𝑃𝑙𝕚       (4). 

The expression of the shear 𝜑 and bulk  𝜓 moduli (porosity functions) can be theoretically 

approximated [51,53]. However, a SPS-based experimental identification method has been 

developed [54–56]. For the ceramics the independent identification of the moduli and creep 

parameters is very challenging due to the grain growth disturbances on the creep behavior at 

the final stage. A method allowing the direct identification of both the creep and moduli 
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directly from porous stage with tests like sinter-forging has been developed[57]. Below, 

moduli and creep law was obtained for the zirconia powder employed in this study: 

𝜑 = (1 −
𝜃

0.6
)

3.4

           (5) 

𝜓 = 0.07
(1−𝜃)5.8

𝜃
           (6) 

𝜀�̇�𝑞 =
1.34𝐸3[𝑃𝑎−2𝑠−1𝐾] 

𝑇
(

𝐺0

𝐺
)

𝑚

exp (
−536[𝑘𝐽 𝑚𝑜𝑙−1]

𝑅𝑇
)𝜎𝑒𝑞

2       (7) 

with the expressions: 

𝜀�̇�𝑞 =
1

√1−𝜃
√𝜑�̇�2 + 𝜓�̇�2          (8) 

and the strain rate tensor invariants: 

�̇� = 𝜀�̇� + 𝜀�̇�+𝜀�̇�          (9) 

�̇� = √2(𝜀�̇�𝑦
2 + 𝜀�̇�𝑧

2 +𝜀�̇�𝑧
2 ) +

2

3
(𝜀�̇�

2+𝜀�̇�
2+𝜀�̇�

2) −
2

3
(𝜀�̇�𝜀�̇� + 𝜀�̇�𝜀�̇� + 𝜀�̇�𝜀�̇�)    (10). 

The volume change rate is related to the porosity elimination rate by the mass conservation 

equation: 

�̇�

(1−𝜃)
= 𝜀�̇� + 𝜀�̇�+𝜀�̇�          (11). 

The grain growth is modeled by the following rate equation. 

Ġ =
𝐾(𝑇)

𝐺𝑝             (12) 

𝐾(𝑇) = 𝐾0 exp (
−𝑄𝐺

𝑅𝑇
)          (13) 

 

2.2 Boundary and interface conditions 

The electro-thermal boundary conditions and mesh of the SPS column are represented in 

figure 1. An anisotropic mesh is employed to have three elements in the 0.2 mm thickness of 

the graphite foil where the electrical current is concentrated in flash conditions. The electrode 

water cooling is modeled by a convective flux [34,58,59] with the following equation: 

𝜑𝑐𝑜𝑛𝑣 = ℎ𝑐𝑜𝑛𝑣(𝑇𝑤𝑎𝑡𝑒𝑟 − 𝑇𝑠𝑜𝑙𝑖𝑑)        (14). 
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The graphite surfaces radiate towards each other and metallic adjacent surfaces of the SPS are 

maintained at room temperature. The heat loss by radiation is calculated by the surface to 

surface radiation module of comsol defining the radiosity flux 𝐽𝑟𝑎𝑑 as the sum of the surface 

thermal radiation ϵ𝑒𝑏(𝑇) and the reflected part (refl) of the incident flux G. 

𝐽𝑟𝑎𝑑 = 𝑟𝑒𝑓𝑙 + ϵ𝑒𝑏(𝑇) = (1 − ϵ)𝑮 + ϵ(𝑁𝑟)2𝜎𝑠𝑇4       (15). 

For a surface, the net inward heat flux 𝜑𝑟𝑠𝑠 is defined by: 

𝜑𝑟𝑠𝑠 = ϵ(𝑮 − 𝑒𝑏(𝑇))          (16). 

 

Figure 1 Flash SPS configuration, (a) 30 mm samples configuration and model boundary 

condition (b) mesh. 

A graphite emissivity of 0.8 is chosen [33]. The natural convection [60,61] is neglected since 

the cavity is under vacuum. The electric boundary conditions are the following: the ground is 

located at the lower electrode, a numerical PID is incorporated [62] at the upper electrode via 

a normal current density 𝐽𝑛  and electrical insulations are considered for all other surfaces 
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−�⃗⃗�. 𝐽 = 𝐽𝑛            (17) 

The electric and thermal contact resistances (ECR and TCR) have a high influence on the 

thermal field [34,35,63–65] and obey: 

𝐽𝑐 =
1

𝐸𝐶𝑅
(𝑈1 − 𝑈2)           (18) 

�̇�𝑐 =
1

𝑇𝐶𝑅
(𝑇1 − 𝑇2)           (19). 

The ECR TCR and temperature-dependent electro-thermal properties have been taken from 

[33] and [66]. The electrical conductivity of zirconia has been taken from [67] where flash 

sintering was applied with an alumina die without graphite foil, allowing to get an estimation 

of the zirconia resistivity under vacuum conditions at high temperatures. In the calculation, 

the boron nitride spray interfaces are assumed to be electrically insulating. All the material 

properties are gathered in the appendix. 

 

3. Experiment and method 

All experiments have been conducted on the SPS apparatus “FCT HPD25” with the 

graphite grade mersen 2333. A 40 nm yttria stabilized zirconia nano-powder (Tosoh TZ-3Y-

E) is employed for this study. Two tooling geometries are employed. The geometry of the 

30 mm sample diameter tests is reported in figure 1a. For the 15 mm tests, the heights of the 

punches and die are similar and the die diameter is reduced to 45 mm. The sintering sample 

height is 2 mm for all experiments, 2 and 8 g of powder are taken for the 15 and 30 mm tests, 

respectively. Two electrical current configurations are used: one conventional (called “die 

heating”) where the current can flow through the punches, graphite foil, die and another 

referred as “concentrated” where the die is electrically insulated by a boron nitride spray 

(figure 1a) to concentrate the current in the powder and the graphite foil acting as a susceptor 

(called “concentrated” configuration). In order to complete this explorative design, two 

thermal cycles were imposed to the punch temperature, one typical with a 100 K/min ramp 

and another at 1000 K/min to impose flash but controlled conditions. A dwell is programmed 
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at 1400 °C but the test is manually stopped when the displacement indicates the end of the 

sintering process. The powder quantity is calculated for 2 mm thick sintered samples. The 

experimental design includes 8 tests with the combinations of the three following parameters: 

of the specimen diameter (Ø15, Ø30, scalability), heating rate (100, 1000 K/min) and electric 

current configurations (“die heating”, “concentrated”). The samples relative density was 

measured by Archimedes’s method and the average grain size was determined on polished 

surfaces using the linear intercept method with Mendelson’s  stereological factor (1.56) [68]. 

An ETMM simulation of each of these tests has been conducted to describe the differences in 

the Multiphysics fields (temperature, porosity, grain size, etc.). The calculations have been 

done via the simulation software COMSOL Multiphysics® with the heat transfer module for 

the surface to surface radiation and electro-thermal contact resistance and the nonlinear 

material module to implement manually the sintering physics. The obtained microstructures 

have been analyzed by SEM on polished cross-section surfaces. 

 

4. Results and discussions 

4.1. ETMM simulation calibration 

The simulation study started by conducting a calibration of the thermal field (with in 

particular the lateral contact resistance which differs from [33,66]). Once the ECR, TCR have 

been adjusted with the punch/die pyrometers, the grain growth and the creep grain size 

exponent m were adjusted to correspond to the final relative density and grain size for all 

tests. As said earlier, the moduli and creep behavior was determined previously [57]. The 

latter employed electrically insulated and isothermal conditions at the porous stage. The 

following values were obtained k0 = 0.04 m
1+p

.s
-1

, QG = 575 kJ/mol, p = 1.63 (from [69]) and 

m = 2. The graphite/foil/graphite ECR and TCR formulas obtained are 3.11E
-7

exp(-2.61E
-

3
T) Ωm

2
 and 1.79E

-3
exp(-1.53E

-3
T) m

2
KW

-1
 respectively. The outcome of this calibration is 
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shown in figure 2 where the ETMM simulation was conducted and compared to the 

experimental values for the test Ø30 mm, 100 K/min, in “die heating” current configuration. 

 

Figure 2 Calibration/verification of the electro-thermal-mechanical-microstructural 

simulation: (a) temperature curves, (b) temperature field of the SPS column, (c) grain size, 

(d) displacement, (e) specimen final relative density field, (f) simulated average relative 

density curve. 

4.2. SPS tests curves 

The punch temperature, SPS displacement, RMS current (Irms) and voltage (Urms) curves 
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without stabilization is observed while the sintering duration is 30 sec between 800 and 

1400°C of apparent temperatures. This behavior of the temperature, current/voltage 

experimental curves is similar to the 15 mm tests. 

In order to compare the behavior of the apparent sintering response to all tests, the 

displacement curves are plotted vs the apparent temperature in figure 4a. When using the 

concentrated configuration, the sintering zones take place about 150 K lower than it does with 

the die heating method. For the 15 mm diameter tests, the curves at 1000 K/min are 

systematically shifted toward higher temperatures. For the 30 mm diameter tests, this shift is 

smaller for the “die heating” configuration and inverted for the “concentrated” configuration 

where slightly lower sintering temperature is observed for the highest heating rate. These 

observations suggest a significant temperature difference between the apparent punch 

temperature and the effective powder temperature. In the next section, the ETMM simulations 

of all the 8 tests are fully disclosed to describe the internal fields and their differences. 
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Figure 3 Temperature, displacement, rms current and voltage experimental data for the 

30 mm tests, (a) die heating configuration 100 K/min, (b) die heating configuration 

1000 K/min, (c) electric current concentration configuration (concentrated configuration) at 

100 K/min, (d) electric current concentration configuration at 1000 K/min. 

 

In figure 4b, the simulated average relative density curves are plotted vs time to compare 

the expected sintering duration and compare the final relative density with the experimental 

data. In overall, the model fits well all final relative densities (error less than 5 %). These 

curves indicate a densification rate of about 20 %/min for 100 K/min and 130 %/min for 
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1000 K/min for sintering duration of about 250 sec, and 30 sec, respectively. These curves 

also show the impact of the grain growth on the slowing down of the densification curves due 

to equation (7). 

The very interesting aspect of these curves (figure 4b) is that ultra-rapid sintering rates 

could be obtained without modifying the sintering model parameters identified at the same 

applied pressure and in isothermal and electrically insulated conditions in ref[57]. To 

carefully describe this, the simulated temperatures disclosed in the next section must be 

discussed as well. This suggests experimentally that the measured moduli at porous stage give 

a better description of the true porous skeleton (with pore shape different than spherical 

pores). This suggests a high sintering reactivity of powders under flash conditions.  

 

 

Figure 4 (a) Displacement and (b) simulated relative density curves, “dh” and “conc” refer 

to the “die heating” and “concentrated” configurations respectively. 
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4.3. Electro-thermal-mechanical-microstructural simulation of the concentrated / die 

heating configurations  

In this section, the ETMM simulations of all the tests are displayed and compared to each 

other. Each figure compares the experimental/simulated temperature curves in the punch/die 

and in the sample, the SPS column simulated temperature field at the end of the heating (the 

minimum temperature scale is fixed at 900 °C) and the temperature, grain size, relative 

density of the sample at the end of the cycle. 

The 15 mm diameter tests in “die heating” electrical current configuration are reported in 

figure 5. The heating is concentrated in the punches where a temperature of 1900 °C is 

observed. In the sample, the temperature is distributed from 1600 °C in the center to 1540 °C 

at the edge where lower grain size and densification are observed. At 1000 K/min, the 

temperatures/grain sizes are very similar and despite the high heating rate, the densification is 

close to the one observed on the 100 K/min test. The sintering seems to follow the high 

heating rates. An overshoot with temperatures 150 K higher is observed for the test at 

1000 K/min. 
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Figure 5 Simulated ETMM model of the 15 mm diameter specimens in die heating 

configuration at 100 K/min and 1000 K/min. 
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The 15 mm diameter tests in “concentrated” electrical current configuration are reported in 

figure 6. The temperature distribution is very different from the “die heating” configuration. 

Is this case, the electrical current is highly concentrated in the powder/graphite and foil/die 

interface at low temperatures where the zirconia powder behaves practically like a dielectric. 

At high temperatures, the zirconia powder becomes conductive and the current lines are 

distributed between the powder and graphite foil. A significant heat is then dissipated and 

confined in the powder zone. The specimen temperature has a vertical gradient with cooler 

temperatures near the contact zone with the punches, and higher temperatures, grain sizes and 

relative density near the center. Because of this significant heat concentration in the sample, 

the apparent temperature measured in the punches is 200 K lower than the sample. At 

1000 K/min, the latter is increased to 500 K at the end. The temperature distribution is 

relatively close to the 100 K/min test but the thermal confinement is bigger due to the 

significant reduction of time for the heat to diffuse from the specimen zone to nearby graphite 

tooling. 
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Figure 6 Simulated ETMM model of the 15 mm diameter specimens in “concentrated” 

configuration at 100 K/min and 1000 K/min. 
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Figure 7 Simulated ETMM model of the 30 mm diameter specimens in die heating 

configuration at 100 K/min and 1000 K/min. 
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Figure 8 Simulated ETMM model of the 30 mm diameter specimens in “concentrated” 

configuration at 100 K/min and 1000 K/min. 
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points out a hot spot near the edge. In particular, a thin black zone is present at mid height. A 

similar distribution has been observed by simulation the Peltier effect in SPS of colusite sulfur 

thermoelectric specimens [70]. The latter generates local temperature maximums by the 

coupling of the thermoelectric flux [66] and the thermal contact resistance. However, without 

the information of the Seebeck coefficient at such high temperatures for zirconia, it is difficult 

to conclude on the origin of this phenomenon. A competition between the reduction front and 

the pollution species diffusion may also be present. 

Concerning the blackening effect on zirconia samples, the aspect of each sintered sample 

was described in figure 9. Comparing these aspects to the simulated temperatures, this effect 

seems to appear for the high temperatures > 1500 °C and preferentially during the 

“concentrated” configurations where the concentration of the electrical current in the powder 

seems to accelerate the reduction phenomena. The blackening effect is well known is the 

zirconia flash sintering, it is associated with a reduction phenomenon appearing near the 

electrodes and propagating through the other[72,73]. The latter is often accompanied by a 

significant rise of the electrical conductivity switching from ionic conduction to electronic 

conduction. For SPS imposing reductive conditions, this effect may be accelerated. 
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Figure 9 Polished SEM microstructures of the specimens at 100 K/min, 1000 K/min and for 

the “die heating” and “concentrated” electrical current configurations. 
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5. Conclusion 

In this study, the flash spark plasma sintering of zirconia is investigated from medium to large 

size samples. The exploration consisted of comparing the typical SPS configuration in electric 

current distribution and heating rate (100 K/min) to ultra-rapid heating rates (1000 K/min) 

and concentrated electrical current configuration. The experiments and electro-thermal-

mechanical-microstructural simulations of each case show that the thermal distribution of the 

15 mm and 30 mm sizes are radial for a classic electrical current and becomes axial when the 

die is electrically insulated. Submicronic microstructures have been obtained with a good 

stability between the center and the edge. The exception is the 30 mm test in “concentrated” 

configuration showing intense grain growth and blackening effect at the edges. This shows 

the scalability limit of the “concentrated” configuration where the die is electrically insulated. 

Processing ultra-rapid heating over 15 mm specimens requires distributing the current in the 

die to avoid excessive overheating in the graphite foil during the preheating. 

The thermal-sintering model shows that the sintering follows the high heating rates to 

sintering time down to 30 sec when 1000 K/min is employed. This suggests the need to use 

experimentally determined moduli which would help in predicting the high reactivity of the 

microstructures during ultra-rapid sintering. 
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Appendix 

Table A Temperature dependent material properties of graphite, electrodes, and 

zirconia[33,62,74,75]. 

Materials  Expression 

Graphite 

Cp 

(J .kg
-1

.K
-1

) 

34.3+2.72.T-9.6E-4.T
2
 

Electrode 446.5+0.162.T 

Zirconia 

(43+2.35.T-4.34E-3.T
2
+4.25E-6.T

3
-2.09E-9.T

4
+4.05E-

13.T
5
).θ 

Graphite 

κ 

(W.m
-1

.K
-1

) 

123-6.99E-2.T+1.55E-5.T
2
 

Electrode 9.99+0.0175.T 

Zirconia (1.96-2.32E-4.T+6.33E-7.T2-1.91E-10.T3).(1-1.5θ) 

Graphite 

ρ 

(kg .m
-3

) 

1904-0.0141.T 

Electrode 7900 

Zirconia (6132-9.23E-2.T-7.26E-5.T
2
+4.58E-8.T

3
-1.31E-11.T

4
).θ 

Graphite 

𝜎𝑒𝑙𝑒𝑐 

(S/m) 

1/[1.70E-5-1.87E-8.T+1.26E-11.T
2
-2.46E-15.T

3
] 

Electrode 1/[(50.2+0.0838.T-1.76E-5.T
2
).1E-8] 

Zirconia 

10509.exp(-11920/T).(1-1.5θ)  300-1200K 

(0.223.T-267).(1-1.5θ)  1200-1370K 

5886.exp(-6894/T).(1-1.5θ) 

Graphite 

α 

(T
-1

) 

-1.25E-12.T
2
+3.68E-9.T+1.33E-6 

Electrode 4.48E-9.T+1.09E-5 

Zirconia -1.31E-12.T
2
+3.98E-9.T+5.50E-6 
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Figure captions 

Figure 1 Flash SPS configuration, (a) 30 mm samples configuration and model boundary 

condition (b) mesh. 

Figure 2 Calibration/verification of the electro-thermal-mechanical-microstructural 

simulation: (a) temperature curves, (b) temperature field of the SPS column, (c) grain size, (d) 

displacement, (e) specimen final relative density field, (f) simulated average relative density 

curve. 

Figure 3 Temperature, displacement, rms current and voltage experimental data for the 

30 mm tests, (a) die heating configuration 100 K/min, (b) die heating configuration 

1000 K/min, (c) electric current concentration configuration (concentrated configuration) at 

100 K/min, (d) electric current concentration configuration at 1000 K/min. 

Figure 4 (a) Displacement and (b) simulated relative density curves, “dh” and “conc” refer to 

the “die heating” and “concentrated” configurations respectively. 



 30 

Figure 5 Simulated ETMM model of the 15 mm diameter specimens in die heating 

configuration at 100 K/min and 1000 K/min. 

Figure 6 Simulated ETMM model of the 15 mm diameter specimens in “concentrated” 

configuration at 100 K/min and 1000 K/min. 

Figure 7 Simulated ETMM model of the 30 mm diameter specimens in die heating 

configuration at 100 K/min and 1000 K/min. 

Figure 8 Simulated ETMM model of the 30 mm diameter specimens in “concentrated” 

configuration at 100 K/min and 1000 K/min. 

Figure 9 Polished SEM microstructures of the specimens at 100 K/min, 1000 K/min and for 

the “die heating” and “concentrated” electrical current configurations. 

 


