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ABSTRACT: A new access to artemisinin is reported based on a selective photochemical hydrothiolation of amorphadiene, 
a waste product of the industrial semi-synthetic route. This study highlights the discovery of two distinctive activation 
pathways, under solvent-free conditions or using a photocatalyst promoting H-abstraction. Subsequently, a chemoselective 
oxidation of the resulting photochemically generated thio-ether, followed by a Pummerer rearrangement afford dihydroar-
temisinic aldehyde, a key intermediate in the synthesis of artemisinin. 

The development of new cost-competitive manufactur-
ing routes to the antimalarial drug artemisinin represents 
a major strategy to fight malaria.1 Plant extraction has long 
been the only commercial source, but the increase in 
global demand has raised the need for alternative produc-
tion methods.2 This challenge has fueled impressive devel-
opments in synthetic biology and organic chemistry which 
have led to a new large-scale semi-synthesis where the key 
metabolic intermediate, artemisinic acid, is obtained by 
fermentation using bioengineered yeasts (Saccharomyces 
cerevisiae), and is then transformed into artemisinin by 
means of synthetic chemistry (Scheme 1a).2-3  

Artemisinic acid (AA) is obtained at around 25 g/L and 
is then converted into dihydroartemisinic acid (DHAA) by 
a quantitative and diastereoselective hydrogenation utiliz-
ing a transition metal chiral catalyst.2a DHAA is then trans-
formed into artemisinin in a complex reaction cascade ini-
tiated by a photooxidation process involving singlet oxy-
gen.2a,4 These developments have successfully comple-
mented plant extraction, but have failed to provide a 
cheaper access to artemisinin (Scheme 1a). In this context, 
a critical look at the cost determining issues of the current 
semi-synthesis of artemisinin is key to understand which 
variables need to be addressed to provide a genuinely low-

cost access to this antimalarial drug. This goal could be 
achieved by performing chemical transformations on a 
considerably cheaper and less advanced fermentation in-
termediate than AA. Part of this solution relies on the val-
orization of amorphadiene (AD), a high yielding fermenta-
tion intermediate treated as a waste in the current semi-
synthetic production and likely to be available at very high 
titers (up to 120 g/L) and on industrial scale.5 To date, the 
conversion of AD to DHAA has been reported either using 
hydroboration,5b,6a hydrosilylation,6b epoxidation5a or al-
lylic chlorination.6c However, these procedures feature im-
portant drawbacks such as the use of costly catalysts or re-
agents, or involve protection/deprotection steps of the in-
ternal double bond.  

 



 

Scheme 1: Current semi-synthesis of artemisinin and proposed semi-synthetic route to dihydroartemisinic aldehyde (DHAAl) 
from amorphadiene (AD). 

 

Herein, we report our preliminary developments of a 
metal-free and protecting group-free approach which re-
lies on the use of very low cost reagents. This approach im-
plies a three-step sequence involving a key regioselective 
photochemical hydrothiolation which should, in principle, 
be compatible with the currently operated large scale pho-
tooxidation process to access artemisinin (Scheme 1b).2a 
The photo-hydrothiolation of AD would produce a thio-
ether 1 which would then be oxidized to the corresponding 
sulfoxide 2. The last step of the sequence would rely on a 
Pummerer reaction which, when applied to sulfoxide 2, 
would give rise to the key artemisinin intermediate 
DHAAl. This intermediate was previously transformed 
into diasteromerically pure DHAA in good yields.6, 7  

The anti-Markovnikov hydrothiolation of alkenes (also 
called thiol-ene reaction) has been extensively studied and 
is known to proceed through addition of a thiyl radical 
which is either generated by hydrogen abstraction from a 
thiol (Hydrogen Atom Transfer process, HAT) or by the 
homolytic cleavage of a disulfide.8 As a consequence, hy-
drothiolations are typically initiated by thermal decompo-
sition of radical precursors, such as tert-butyl peroxide or 
azo-bis-isobutyronitrile (AIBN),8 or by photochemical ac-
tivation either by UV irradiation,8,9 or visible-light photo-
catalysis.10 Photochemistry is in principle appealing since 
the current industrial synthesis of artemisinin already op-
erates with large scale semi-batch photochemical reactors 
irradiated with medium pressure mercury lamps emitting 
in the near-UV to visible-light regions of the electromag-
netic spectrum.2a In addition, while radical initiators are 
often used in excess and, at elevated temperatures, photo-
chemical activation is very attractive since photons are 
traceless initiators “operating” at close to room tempera-
ture.11  

We started our investigations in the development of a 
photochemical hydrothiolation addition of AD by screen-
ing literature conditions using UV or visible-light irradia-
tion. Reactions were performed in a commercially available 
photochemical screening device (PhotoRedOx Box®; see 
ESI, part 2)11 with alkyl- and arylthiols in either polar or 

non-polar solvents, as well as under air or under degassed 
conditions. However, these preliminary efforts were vain 
as no traces of the desired thio-ethers were detected in 
these experiments. Instead, under UV and blue light irra-
diation, variable amounts of AD isomers were formed to-
gether with the corresponding disulfide as a result of the 
dimerization of the thiols (5 equiv of thiol were used in 
each case).13 Interestingly, no isomerization occurred in the 
absence of thiol using the same photochemical conditions. 
These results seem to indicate that the generation of a thiyl 
radical might actually occur under such conditions but the 
thiol is promoting isomerization of AD instead of under-
going hydrothiolation. We therefore speculated that in-
creasing the concentration of AD could favor the addition 
of the thiol onto the double bond.14 Indeed, this hypothesis 
was confirmed by running the experiment with thiophenol 
(5 equiv) and AD, under solvent-free conditions and irra-
diation at 365 nm. To our delight, we observed the for-
mation of the desired adduct 1a with 18% selectivity at 36% 
AD conversion together with several unidentified side 
products and diphenylsulfide (detected by GC/MS). How-
ever, despite our efforts, product 1a could not be isolated, 
and its presence was only detected by GC/MS and 1H NMR 
analysis.15 By monitoring the reaction with an excess of 
PhSH (5 equiv) under UV irradiation (365 nm), we ob-
tained a selectivity of 53% in favor of 1a after 4 h irradia-
tion, with 71% AD conversion (Table 1, entry 1). However, 
pure 1a could not be isolated, as the isomerization of the 
double bond followed by hydrothiolation occurred system-
atically and the resulting isomers could not be separated. 
Longer reaction times led to a decrease in selectivity as the 
hydrothiolation took place on the two double bonds (de-
tected by GC/MS). Lowering the reaction temperature 
from 25 °C to 0 °C did not improve the selectivity toward 
the desired thio-ether (25% conversion of AD and 16% se-
lectivity after 1 h).  We also attempted to improve the se-
lectivity of the process by using either electron-rich or elec-
tron-poor thiophenol derivatives but this also turned out 
to be unsuccessful. 



 

We therefore investigated the addition of alkyl thiols un-
der similar conditions [5 equiv of RSH under UV irradia-
tion LED (365 nm) at 25 °C and under solvent-free condi-
tions]. To our delight, the use of alkyl thiols gave, in all 
cases, very clean conversion of AD to 1b-e compared to thi-
ophenol (Table 1), thus enabling the selective functionali-
zation of the exocyclic double bond. The use of ethylthiol 
(EtSH) resulted in an excellent conversion of AD after 18 h, 
and the corresponding adduct 1b was isolated in 73% yield 
(Table 1, entry 2). Mercaptoethanol and  
3-thiopropan-1-ol exhibited higher reactivity compared to 
EtSH, as high AD conversions were observed after only 1 h 
and 3 h, providing the corresponding products with 81% 
and 77% isolated yields, respectively (Table 1, entries 3 and 
4). The secondary thiol, 2-propanethiol, furnished 78% 
conversion of AD, and 1e was isolated in 75% yield alt-
hough, a longer reaction time, 44 h, was required to obtain 
a high conversion (Table 1, entry 5). On the other hand, 
very poor conversion of AD was observed with t-butylthiol 
(t-BuSH) or with 3-mercapto-3-methylbutan-1-ol, even af-
ter a prolonged reaction time (Table 1, entries 6 and 7), 
clearly indicating that increasing the bulkiness of the thiol 
disfavors this addition process. In all cases, the diastereose-
lectivity was modest (dr ~ 60:40) which would ultimately 
lead to a low yield in (11R)-DHAAl. However, this low dr is 
not a limiting factor since we recently disclosed an efficient 
epimerization procedure using the Betti base as a mediator 
for a Crystallization Induced Diastereoselective Transfor-
mation process (CIDT), enabling the conversion of the un-
desired isomer [(11S)-DHAAl] into the desired one [(11R)-
DHAAl].7 

Table 1. Screening of thiols in the hydrothiolation of 
AD under solvent-free conditions. 

 

entry RSH 
time 
(h) 

AD conver- 

sion[a] 
1 yield[b] 

1 C6H5SH 4 71% 1a 53%[c] 

2 EtSH 18 96% 1b 73% 

3 HO(CH2)2SH 1 99% 1c 81% 

4 HO(CH2)3SH 3 80% 1d 77% 

5 iPrSH 44 78% 1e 75% 

6 t-BuSH 24 9% 1f - 

7 
 

24 n.d. 1g - 

Reactions were performed on a 0.59 mmol scale of AD  
using 5 equiv of thiol. [a] Determined by GC/MS analysis. [b] 
Isolated yields after purification on silica gel chromatography. 
[c] Isolated with unidentified by-products with the same mo-

lecular weight according to GC/MS analysis, presumably iso-
mers originating from an isomerization/hydrothiolation pro-
cess.  

According to literature precedents, H-abstraction (or 
HAT) could occur in the absence of a photocatalyst or a 
photoinitiator thanks to the formation of a weak Electron-
Donor-Acceptor complex (EDA) between the thiol and 
AD.16 This type of pre-complexation would preferentially 
occur under neat conditions facilitating the addition step. 
However, in our case, we were not able to ascertain this 
hypothesis using absorption spectroscopy.16b, c  

To enable the addition of sterically hindered thiols, we 
extended our screening to photocatalytic conditions using 
radical photoiniators. Gratifyingly, we identified that in the 
presence of 5 mol % of 2,2-dimethoxy-2-phenylacetophe-
none (DPAP), the addition of secondary and tertiary thiols 
was significantly accelerated (Table 2).17 Under UV-light, 
DPAP undergoes a Norrish type I fragmentation to give a 
benzoyl radical which can initiate a radical chain process 
by H-abstraction.8e, 17 As a result, the coupling between AD 
and iPrSH delivered the corresponding thio-ether 1e in 
77% yield in a significantly shorter reaction time compared 
to the initiator-free method (3 h versus 44 h) (Table 2, entry 
2 versus Table 1, entry 2). Interestingly, under these pho-
toinitiated conditions, the hydrothiolation also worked 
well under diluted conditions (0.5 M), with good selectiv-
ity, albeit with slower conversion rates (Table 2, entries 3-
5). DPAP also enabled the more challenging hydrothiola-
tion of AD by t-BuSH, yielding the desired product in 45% 
isolated yield after 24 h and 68% yield after 72 h (Table 2, 
entries 6 and 7). All reactions were run on a 0.59 mmol 
scale and were monitored by GC/MS analysis before puri-
fication. The reaction was then carried out on gram scale (1 
g, 4.90 mmol) using 20 mol % of DPAP and required longer 
reaction time to reach high conversion (Table 2, entry 7). 
Similar results were obtained with 3-mercapto-3-methyl-
butan-1-ol (Table 2, entry 8). It is important to note that 
the addition of thiophenol remained problematic under 
these catalytic conditions, which might be due to a compe-
tition between the addition of aryl thiyl radicals and the 
isomerization of AD. 

Table 2. Screening of thiols in the hydrothiolation of 
AD in the presence of DPAP as a photoinitiator.[a] 

 

entry RSH solvent 
time 
(h) 

AD conver-
sion[a] 1, yield [b] 

1 iPrSH - 1 47% 1e, 45% 

2 iPrSH - 3 87% 1e, 77% 

3 iPrSH THF 1 11% 1e, 8% 

4 iPrSH MeCN 1 17% 1e, 13% 



 

5 iPrSH PhCl 1 23% 1e, 18% 

6 t-BuSH - 24 60% 1f, 46% 

7 t-BuSH - 72 90% 1f, 68%[a,c] 
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- 24 69% 1g, 48% 

Reactions were performed on a 0.59 mmol scale of AD using 
5 equiv of thiol. [a]Determined by GC/MS analysis. [b]Isolated 
yields after purification by silica gel flash chromatography, the 
diastereoselectivity (60:40) was estimated by 1H NMR analysis. 
[c]The reaction was carried out on gram scale using 20 mol % 
of DPAP. 

According to these results, it is likely that two distinctive 
photochemical activation pathways occur during the AD 
hydrothiolation. One pathway would rely on the direct ab-
sorption of light at 365 nm by either an EDA complex or a 
solvated charge transfer (CT) complex,16b or even induced 
by small amounts of impurities16c which could initiate the 
radical process. In this scenario, no reaction occurs with 
bulky thiols for which UV irradiation in the presence of 
DPAP is crucial. Therefore, the efficiency of the reaction 
seems to be dictated by the concentration of the thiyl rad-
ical and, for less reactive thiols, such as t-BuSH, DPAP en-
ables to restart the radical chain propagation which is oth-
erwise disfavored. Interestingly, the reaction proceeds with 
shorter reaction time in the presence of DPAP than with-
out which could also be due to lower inner filtering effects 
related to the difference in light absorption. 

Having successfully prepared a range of thio-ethers with 
moderate to high yields, we next evaluated the transfor-
mation of 1 to the desired aldehyde, DHAAl. Our first at-
tempts to develop a single step transformation of 1 to 
DHAAl using chlorinating reagents failed, either using sul-
furyl chloride or N-chlorosuccinimide.18 We therefore de-
cided to develop a two-step process involving a chemose-
lective sulfoxidation followed by a Pummerer rearrange-
ment.19,20 In a preliminary study, we synthesized diastereo-
merically enriched thio-ethers prepared from pure iododi-
hydroartemisinin (11R)-A (see ESI, Section 2.4).22 The thio-
ethers (S)-1a, (S)-1e and (S)-1f were oxidized to the corre-
sponding sulfoxides 2a, 2e, 2f, after treatment with m-
CPBA (1.1 equiv) in CH2Cl2 at -10 °C for  
1 h, and these latter were isolated in up to 87% yield as a 
mixture of two diastereomers in a ratio 1 to 1 (Table 3). 

Table 3: Synthesis of sulfoxides 2a, 2e and 2f. 

 

entry 1 (R group) 2, yield 

1 1a (Ph) 2a, 87% 

2 1e (iPr) 2e, 70% 

3 1f (t-Bu) 2f, 87% 

With the sulfoxides in hand, the investigation of the 
Pummerer rearrangement started using literature condi-
tions.19,20 With acetic anhydride or benzoic anhydride, no 
reaction was observed. On the other hand, the reaction 
proceeded very selectively when performed with trifluoro-
acetic anhydride (TFAA) in the presence of trimethylamine 
(Et3N) (Table 4). In this case, full conversion of the sulfox-
ide 2a into a diastereomeric mixture of  
α-substituted sulfide intermediates I was observed by  
1H NMR at room temperature (see ESI, Section 3.2). After 
workup with a saturated aqueous solution of NaHCO3, 
DHAAl was isolated in 57% yield from 2a. This result was 
significantly improved to 71% yield, without epimerization 
of the (11R)-stereocenter, by realizing the workup with a 
NaOH aqueous solution (0.1 M) (Table 4, entry 1). How-
ever, when subjecting 2e or 2f under the same room tem-
perature Pummerer conditions, only traces of DHAAl were 
detected. A temperature screening revealed that DHAAl 
can be obtained from alkyl sulfoxides by conducting the 
experiment at lower temperature. Indeed, DHAAl was iso-
lated in 18% yield from 2e at -10 ºC and in 59% from 2f when 
the reaction was performed at -20 ºC (Table 4, entries 3 and 
4). Lowering the temperature to -40 ºC did not help to im-
prove the yield. The major side product, isolated from the 
Pummerer rearrangement of 2f, was the thioenol com-
pound 3 (see ESI, part 3.4). Noteworthy, in the case of alkyl 
sulfoxides possessing α-CH next to the sulfur atom (2e, R = 
iPr)), the selectivity was lower than in the case of 2a (2a, R 
= Ph) or 2f (2f, R = t-Bu). 

Once the feasibility of each step was demonstrated, the 
entire sequence to access DHAAl from AD was performed 
as a proof of concept using t-BuSH on gram scale (see ESI, 
Section 3.4).  

Table 4: Pummerer rearrangement of sulfoxides 2. 

 

All reactions gave full conversion of 2  

In conclusion, we have investigated the development of 
an original route towards artemisinin from AD, relying on 
a chemoselective photochemical hydrothiolation step. We 

entry 2 (R) T °C time DHAAl, yield 

1 2a (Ph) rt 2.5 h 71% 

2 2e (iPr) rt 1.0 h traces 

3 2e (iPr) -10°C 1.0 h 18% 

4 2f (t-Bu) -20°C 0.5 h 59% 



 

have demonstrated experimentally that this step can pro-
ceed with high selectivity when performed at ambient tem-
perature and under solvent-free conditions with non-steri-
cally hindered alkyl thiols. We also provided evidence that 
this step does not require additives to be initiated, proba-
bly due to the formation of a EDA/CT complex or to weakly 
absorbing species. In addition, we have been able to extend 
this study to the addition of bulkier thiols by adding DPAP 
as a radical photoinitiator. We demonstrated, as a proof of 
concept, that the thio-ether intermediate 1 can be con-
verted to DHAAl by a chemoselective sulfoxidation using 
m-CPBA, followed by a Pummerer rearrangement using 
TFAA. This study provides encouraging results towards the 
development of a potentially cost-competitive process for 
the synthesis of artemisinin from AD. We are currently in-
vestigating potential strategies to increase the overall yield 
in DHAAl, through the development of a continuous flow 
process. 
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