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Abstract 8 

With questions emerging on the presence and risks associated with metabolites and 9 

transformation products (TPs) of organic contaminants in the aquatic environment, progress 10 

has been made in terms of monitoring and regulation of pesticide metabolites. However, less 11 

interest is shown for pharmaceutical residues, although their pseudo-persistence and adverse 12 

effects on non-target organisms are proven. This study provides original knowledge about the 13 

contamination of ten sites located along three French rivers (water, sediments, biofilms, 14 

clams) by pharmaceutical metabolites and TPs, as well as a preliminary environmental risk 15 

assessment. Studied compounds included carbamazepine with five metabolites and TPs, and 16 

diclofenac with three metabolites and TPs. Results show that metabolites and TPs are present 17 

in all studied compartments, with mean concentrations up to 0.52 µg L
-1

 in water, 229 ng g
-1

 18 

in sediments, 2153 ng g
-1

 in biofilms, and 1149 ng g
-1

 in clams. QSAR estimations (OECD 19 

toolbox) were involved to predict the studied compounds ecotoxicities. QSAR models showed 20 

that diclofenac and its metabolites and TPs could be more toxic than carbamazepine and its 21 

metabolites and TPs to three aquatic species representing green algae, invertebrates, and fish. 22 

However, real ecotoxicological effects are still to be determined. The environmental risk 23 

assessment showed that hydroxydiclofenac, 2-[(2-chlorophenyl)-amino]-benzaldehyde and 24 
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dibenzazepine could present a greater risk than other studied compounds for aquatic 25 

organisms. In addition, the risk associated with a mixture of diclofenac and its related 26 

metabolites and TPs has been found to be greater than that of the compounds considered 27 

individually. 28 

Keywords 29 

Pharmaceuticals, metabolites and transformation products, ecotoxicity, risk assessment, rivers 30 

Highlights 31 

 Pharmaceutical degradation products are found in several aquatic compartments. 32 

 Levels of degradation products are comparable with those of their parent compounds. 33 

 By-products have similar or greater risk than pharmaceuticals in water and sediment. 34 

 Some mixtures have a greater risk than pharmaceuticals considered individually. 35 

 36 

1. Introduction 37 

Pharmaceuticals enter into rivers mainly through wastewater discharge (wastewater treatment 38 

plants – WWTPs or septic tanks) and, to a lesser extent, from livestock (Daughton & Ternes, 39 

1999; Fent et al., 2006). These compounds are biologically active and are selected for their 40 

specific actions on the human or animal organism. Therefore, an exposure outside the medical 41 

or veterinary setting may lead to unwanted effects (toxic or disruptive effects) on living 42 

organisms. Many studies have already reported developmental disorders in frog tadpoles 43 

(Foster et al., 2010), fish feminization (Petrovic et al., 2002), changes in diversity and 44 

abundance of microbial communities (Liebig et al., 2010), etc. related to the exposure to 45 

pharmaceutical residues (at concentrations ranging from ng L
-1

 to µg L
-1

) via the aquatic 46 
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environment. In the long term, all these effects could have major consequences on 47 

biodiversity and water use (bathing, drinking water resources) in relation to human health: 48 

e.g. exposure to endocrine disruptors or resistant pathogenic microorganisms (Amarasiri et 49 

al., 2020; Gonsioroski et al., 2020). 50 

In the environment, pharmaceuticals are found not only as active molecules (i.e. parent 51 

compounds), but also as metabolites and biotic or abiotic transformation products (TPs) (Patel 52 

et al., 2019). Pharmaceuticals are first transformed in the human or animal body after uptake. 53 

They are partially metabolized into more polar and soluble forms (pharmacologically active 54 

or not) by a variety of oxidative and conjugative enzymes (glucuronide conjugation, 55 

sulfoconjugation, acetylation, amino acid conjugation, glutathione conjugation and 56 

methylation) (Jančová & Šiller, 2012). These transformations facilitate their elimination 57 

through urine and faeces. Other transformation pathways occur in wastewaters during their 58 

treatment in WWTPs. Pharmaceutical compounds and their metabolites are transformed by 59 

biodegradation and physicochemical reactions (e.g. hydrolytic cleavage of amide bonds, ether 60 

cleavage, demethylation, hydroxylation…) during secondary treatment (Quintana et al., 2005; 61 

Barra Caracciolo et al., 2015). Once released in the environment, pharmaceutical compounds 62 

and their metabolites are further transformed by direct photodegradation initiated by sunlight, 63 

or indirect photodegradation in the presence of free radicals or singlet oxygen (generated by 64 

the action of UV rays on natural organic matter) (Andreozzi et al., 2003). Chemical 65 

hydrolysis and oxydo-reduction reactions can also lead to their transformation (as a function 66 

of pH and temperature). Another main transformation route in the aquatic environment 67 

involves biodegradation by different families of microorganisms if the molecules toxicities do 68 

not inhibit microbial activity (Barra Caracciolo et al., 2015). 69 

While the presence of pharmaceutical compounds in natural waters has been demonstrated 70 

since the 1980s (Patel et al., 2019), many studies report an accumulation of these 71 
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contaminants in other aquatic compartments (Kümmerer, 2004). Thus, sediments can 72 

accumulate pharmaceutical compounds or their metabolites and TPs (Li et al., 2014; Tamtam 73 

et al., 2011) but also favor microbial degradation processes (Kunkel & Radke, 2008). Several 74 

studies have reported significant  accumulation of pharmaceuticals in benthic organisms: river 75 

biofilms (Aubertheau et al., 2017; Huerta et al., 2016) and invertebrates (Burket et al., 2019; 76 

de Solla et al., 2016; Du et al., 2015; Xie et al., 2019), as well as in fish (Brooks et al., 2005; 77 

Huerta et al., 2013; Xie et al., 2019). Only aquatic plants seem not to accumulate these 78 

compounds, or only weakly (Wilkinson et al., 2018). Such a widespread presence of 79 

pharmaceuticals makes it evident that metabolites and TPs of pharmaceutical residues could 80 

also be present in many of these compartments. The issue is all the more important because 81 

metabolites and TPs can exhibit toxicity to living organisms, which can be lower, similar, or 82 

even higher than the parent compounds (Bleeker et al., 1999; Bort et al., 1999; Bourgeois & 83 

Wad, 1984; Schulze et al., 2010). However, the risks associated with these metabolites and 84 

TPs, as well as their presence in the environment, are still very little studied due to their very 85 

large number and the absence of analytical standards for their quantification. 86 

Questioning relating to the presence of organic contaminants metabolites and TPs in natural 87 

waters and drinking water are emerging more and more worldwide. This is largely due to the 88 

knowledge gained on pesticide metabolites and their incidence on health. In France and other 89 

European countries, the presence of pesticide residues and their metabolites in water intended 90 

for human consumption is regulated by Council Directive 98/83/EC which sets quality limits 91 

for pesticides and their relevant metabolites of 0.1 µg L
-1

 per individual substance and 0.5 µg 92 

L
-1

 for the sum of these molecules (European Council, 1998). To date, no regulation relating 93 

to the quality of natural waters includes pharmaceutical residues. However, six molecules or 94 

families of molecules (17-alpha-ethinylestradiol, 17-beta-estradiol, estrone, macrolide 95 

antibiotics, amoxicillin, ciprofloxacin) are included on the Watch list of substances for Union-96 
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wide monitoring established in 2018 by Implementing Decision (EU) 2018/840 (European 97 

Commission, 2018). 98 

The issue of risk assessment is today very important because of the rise of all sorts of 99 

emerging pollutants that form an “environmental soup” of a multitude of compounds, in large 100 

majority at low concentrations. Indeed, it has been shown that organic pollutants may have 101 

unpredictable biochemical interactions when mixed together, leading to different effects of 102 

what might be observed when evaluating the toxicity of a single molecule (Filby et al., 2007; 103 

Sumpter & Johnson, 2005). 104 

The present work draws up a first assessment of the contamination of the aquatic environment 105 

by pharmaceutical metabolites and TPs. Thus, two “iconic” pharmaceutical compounds 106 

(carbamazepine – CBZ and diclofenac – DCF) and eight of their associated metabolites and 107 

TPs were quantified in water, sediments, biofilms, and clams (Corbicula fluminea) from 108 

rivers of Western France. Then, the QSAR toolbox (OECD & European Chemicals Agency, 109 

2020) was used to predict the missing toxicity data for these compounds considered 110 

individually or in mixtures. This allowed a first environmental risk assessment in French 111 

waters and sediments and then to open the discussion about the relevance of considering 112 

pharmaceutical metabolites and TPs for future guidelines and regulations. 113 

2. Material and methods 114 

2.1.Target compounds 115 

Carbamazepine, Diclofenac, and the metabolites and TPs considered in this work are 116 

presented in Table 1. Analytical grade standards of carbamazepine (CBZ), 3-117 

hydroxycarbamazepine (3OH-CBZ), 10,11-epoxycarbamazepine (CBZ-epox), dibenzazepine 118 

(Dibenz), acridone (Acrid), diclofenac (DCF), 4’-hydroxydiclofenac (4’OH-DCFBZ) and 5-119 
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hydroxydiclofenac (5OH-DCF) were purchased from Sigma-Aldrich (Darmstadt, Germany), 120 

while standards of 10,11-dihydro-10,11-trans-dihydroxycarbamazepine (Trans-CBZ) and 2-121 

[(2-chlorophenyl)-amino]-benzaldehyde (Benz) were purchased from Santa Cruz 122 

Biotechnology (Heidelberg, Germany) and Synchem UG & Co. KG (Altenburg, Germany), 123 

respectively. Individual stock solutions were prepared in LC-MS grade methanol (Carlo Erba 124 

Reagents, Val de Reuil, France) at 200 mg L
-1

 and stored at -20 °C. 125 

2.2.Study area and sampling strategy 126 

A sampling campaign was conducted in September 2018 along three rivers (Vienne, Clain 127 

and Thouet) located in the same part of Western France (North of the Vienne and South of the 128 

Deux-Sèvres French departments) (Figure 1). Their watersheds present close rural/urban 129 

occupation, agricultural/socio-economic activities, and hydro-climatic conditions. They are 130 

typical of this part of France. The sampling took place at the end of summer, during the low-131 

water flow period, thus facilitating accessibility to the studied compartments. 132 

Ten different sampling sites were selected based on their location: upstream or downstream 133 

from urban areas (Figure 1). On each site, a surface of 20 m
2
 was prospected to collect 134 

samples of all four compartments of interest. Thus, 2 L of water were grab sampled in a high-135 

density polyethylene (PEHD) bottle. Biofilms were collected from ten rocks chosen randomly 136 

at a depth of 50 to 100 cm. For that, rock surface was scrapped with a clean toothbrush and 137 

ultrapure water (Milli-Q IQ 7000, Merck KGaA, Darmstadt, Germany). Bulk sample of 138 

surface sediment was collected as a composite sample, with a shovel, by pooling three 139 

samples at each location, and sieved on site to < 2 mm. Approximately 100 clams (C. 140 

fluminea) with a size > 16 mm were collected by hand. All samples were transferred to clean 141 

PEHD bottles and stored in a cool box until the end of the sampling day. 142 

2.3.Extraction of target compounds 143 
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Target analytes were extracted from solid matrices (i.e. biofilms, sediments and clams) using 144 

pressurized liquid extraction (PLE) (ASE 350, Thermo Scientific Inc., Waltham, USA) 145 

followed by solid phase extraction (SPE) (Autotrace 150, Thermo Scientific Inc., Waltham, 146 

USA). The method developed by Aubertheau et al. (2017) was used for biofilms and 147 

sediments, while the method developed by Alvarez-Muñoz et al. (2015) was adapted for C. 148 

fluminea. Tables SI-1 and SI-2 summarize the conditions used by matrix. For each sample, 149 

two extraction cells were prepared. Each of the two obtained extracts was diluted with 150 

ultrapure water to 500 mL for biofilms and C. fluminea, and to 1 L for sediments, and loaded 151 

on two SPE cartridges. Then, the four obtained extracts were evaporated to dryness under a 152 

gentle stream of nitrogen at 30 °C (TurboVap LV, Biotage AB, Uppsala, Sweden). Finally, 153 

they were each recovered in methanol/water (10/90; v/v) spiked with increasing 154 

concentrations of a standards mixture (final concentrations of 0, 0.02, 0.05 and 0.1 mg L
-1

) for 155 

standard addition quantification. 156 

Recoveries were determined by spiking each matrix with all analytes to a concentration of 157 

400 ng g
-1

 dry weight and allowing it to dry overnight in the dark at room temperature, before 158 

performing extraction and analysis. This procedure was repeated three times. Recoveries were 159 

between 19-123 % for biofilms, 30-190 % for sediments, and 37-142 % for clams (see Table 160 

SI-3). 161 

2 L of each water sample were filtered through a 0.45 µm PVDF membrane (Durapore, 162 

Merck KGaA, Darmstadt, Germany) before SPE extraction of compounds on Oasis HLB (6 163 

cc, 200 mg) cartridges (Waters Corporation, Milford, USA). Table SI-4 shows the extraction 164 

conditions. Samples were each loaded on four cartridges, and the four obtained extracts 165 

underwent evaporation and restitution with the same conditions as solid matrices. 166 

2.4.Quantification of target compounds 167 
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Compounds were separated using ultra high performance liquid chromatography (UHPLC) 168 

(UltiMate 3000, Thermo Scientific Inc., Waltham, USA) on an Acquity UPLC BEH C18 169 

column (2.1 x 100 mm, 1.7 µm; Waters Corporation, Milford, USA) kept at 30 °C. A flow 170 

rate of 0.4 mL min
-1

 was used with a mobile phase composed of water and methanol, both 171 

acidified with 0.1 % formic acid. A gradient ranging from 10 % to 99 % of methanol in 13 172 

min was applied. 173 

The UHPLC system was coupled with a hybrid quadrupole – time-of-flight (Q-ToF) mass 174 

spectrometer (Impact HD QTOF, Bruker GmbH, Champs sur Marne, France) equipped with 175 

an electrospray ion source (ESI) and operated in broadband collision-induced dissociation 176 

(bbCID) mode. The mass range was from 150 to 500 m/z, the capillary tension was set to 177 

2700 V, the dry gas flow rate was 4.0 L min
-1

, and the dry temperature 250 °C.  Table SI-5 178 

lists the retention times and the exact ionized masses used for identifying all compounds. 179 

4′OH-DCF and 5OH-DCF were subsequently grouped together as “OH-DCF” due to poor 180 

chromatographic separation. 181 

Quantification by standard addition was chosen to normalise for matrix effects. In addition, 182 

the analytical method’s performance was assessed via linearity, limits of detection and 183 

quantification, repeatability and reproducibility, according to the French AFNOR XP T90-210 184 

standard (AFNOR, 1999) (detailed methods are presented in SI-6 and Table SI-7). All limits 185 

of detection and quantification are summarized in Table SI-8. 186 

2.5.Metabolites and TPs ecotoxicity 187 

2.5.1. Prediction of ecotoxicity data 188 

Ecotoxicity data of pharmaceutical metabolites or transformation products are often rare or 189 

even not available at all. For this reason, the OECD Quantitative Structure Activity 190 
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Relationship (QSAR) Toolbox (version 4.4) was used to generate environmental toxicity 191 

endpoints. This toolbox was developed by the Laboratory of Mathematical Chemistry (OASIS 192 

LMC, Bourgas, Bulgaria) for the OECD, in collaboration with the European Chemicals 193 

Agency (ECHA). Its main objective is to use QSAR methodologies to group chemicals into 194 

categories depending on their structure and/or modes of action. This helps to fill data gaps for 195 

a given compound based on the data available for its analogues, by read-across (used for 196 

qualitative endpoints), trend analysis (used for quantitative endpoints if a high number of 197 

analogues with experimental results are identified) or QSAR models. Blázquez et al. (2020) 198 

determined the acute toxicity for aquatic organisms of a biocidal active substance and its 199 

metabolites to assess the suitability of available QSAR models to predict the obtained values. 200 

The advantages of the OECD QSAR Toolbox were also detailed by Schultz et al. (2018). 201 

In this study, the trend analysis approach was used to estimate acute toxicities of individual 202 

compounds with respect to the green algae Pseudokirchneriella subcapitata (EC50, growth 203 

rate, 96 h), the invertebrate Daphnia magna (LC50, mortality, 48 h), and the fish Pimephales 204 

promelas (LC50, mortality, 96 h). This approach involves modeling the relationship between 205 

the considered toxicity endpoint and a physicochemical property (by default, the Log KOW), 206 

using the experimental data available for the compound’s analogues. 207 

The toxicity estimations obtained for the individual molecules were also used for the 208 

prediction of the acute toxicity of a mixture of parent molecule and its associated metabolites 209 

and TPs, respecting the molar fractions observed from the average concentrations measured in 210 

the studied waters (OECD, 2020). For the two mixtures considered (CBZ and its metabolites 211 

and TPs; DCF and its metabolites and TPs), it appears that the compounds exhibit different 212 

modes of action according to the acute aquatic toxicity classification by Verhaar (Modified), 213 

the ECOSAR (ECOSAR is the Ecological Structure Activity Relationships predictive model 214 

developed by the US-EPA) classification for aquatic toxicity, and the acute aquatic toxicity 215 
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modes of action classification by OASIS (OASIS is the laboratory that developed the QSAR 216 

Toolbox). Consequently, trend analysis calculations were performed considering an 217 

independent modes of action approach (OECD, 2020). 218 

2.5.2. Environmental risk assessment 219 

According to the ECHA guidelines (European Chemicals Agency, 2008), experimental or 220 

calculated toxicity endpoints cannot be directly used for an environmental risk assessment 221 

because natural conditions are different than laboratory test conditions. Indeed, ecosystems 222 

are more sensitive to chemical compounds than individual organisms in a laboratory 223 

environment. For this reason, these endpoints (LC50 or EC50) are used for the estimation of 224 

predicted no effect concentrations in water (PNECwater). PNECwater are obtained by dividing 225 

the lowest ecotoxicity value by an appropriate assessment factor. The scarcer the available 226 

data, the higher is the applied assessment factor. In this study, only short-term toxicity data 227 

were available. The estimation of effects on organisms throughout their life cycle was 228 

therefore less realistic than with long-term data. Hence, a high assessment factor of 1000 was 229 

applied (European Chemicals Agency, 2008). 230 

Then, the hazard quotient (HQ) was calculated by dividing the maximal environmental 231 

concentration (MEC) measured in water by the calculated PNECwater. When the HQ is less 232 

than 0.1, the concerned compound does not present any risk for aquatic organisms. An HQ 233 

between 0.1 and 1 indicates a medium risk, while a value above 1 means that the studied 234 

molecule exhibits a high risk for the aquatic ecosystem (Straub, 2002). 235 

For the sediment, no ecotoxicity parameter could be predicted by the QSAR Toolbox. 236 

Therefore, the equilibrium partitioning method (EPM), described in the European Chemicals 237 

Bureau technical guidance document (European Chemicals Bureau, 2003), was used to derive 238 

a PNECsediment from the PNECwater. Thus,                                 239 
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          where     represents the organic carbon/water partition coefficient, hence 240 

providing an estimate of the ability of a compound to be adsorbed on the organic matter of the 241 

sediment. Indeed, a Log KOC greater than 3 indicates potentially significant adsorption on the 242 

sediment (Tissier et al., 2005). Therefore, the PNECsediment value is associated with the 243 

presence of organic matter in the sediment. The MEC is expressed in micrograms of pollutant 244 

per gram of dry sediment, without consideration of organic carbon content, which is of 1 % 245 

on average for this study’s sediments. For the calculation of HQ, the corrected MEC was used 246 

to consider the part of organic carbon present in the sediment. 247 

3. Results and discussion 248 

3.1.Occurrence of pharmaceutical metabolites and TPs in rivers 249 

All studied metabolites and TPs and their parent compounds were found in all samples from 250 

the three rivers. This finding highlights the large occurrence of pharmaceutical metabolites 251 

and TPs in the aquatic environment. Figure 2 and Figure 3 show mean concentrations (± 252 

standard deviation) of DCF and CBZ with their associated metabolites and TPs in waters, 253 

biofilms, sediments, and clams (N.B.: full data are presented in Table SI-9). 254 

For the CBZ family, mean concentrations in water range from 0.18 ± 0.09 µg L
-1

 for Trans-255 

CBZ to 0.52 ± 0.13 µg L
-1

 for CBZ. In biofilms, concentrations are between 258 ± 181 ng g
-1

 256 

for Trans-CBZ and 1735 ± 811 ng g
-1

 for Dibenz. In sediments, concentrations are between 48 257 

± 25 ng g
-1

 for 3OH-CBZ and 128 ± 56 ng g
-1

 for Dibenz. Finally, in clams, levels range from 258 

345 ± 218 ng g
-1

 for Trans-CBZ to 1066 ± 566 ng g
-1

 for Acrid. These results show that mean 259 

concentrations of Dibenz are higher than those of CBZ in most matrices. Acrid is also found 260 

at levels close to those of CBZ. The other metabolites and TPs are generally less concentrated. 261 

For the DCF family, the data show that metabolites and TPs are more concentrated than the 262 

parent compound. Thus, mean concentrations in waters range from 0.19 ± 0.27 µg L
-1

 for 263 
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Benz to 0.26 ± 0.15 µg L
-1

 for OH-DCF. In biofilms, levels vary from 348 ± 349 ng g
-1

 for 264 

DCF to 2153 ± 1532 ng g
-1

 for Benz. In sediments, concentrations range from 51 ± 55 ng g
-1

 265 

for DCF to 229 ± 250 ng g
-1

 for Benz. Finally, in clams, concentrations are between 493 ± 266 

428 ng g
-1

 for DCF and 1149 ± 916 ng g
-1

 for OH-DCF. 267 

It is worth noting that CBZ and its metabolites and TPs are generally present at higher 268 

concentrations than DCF and its metabolites and TPs in water and sediments, while DCF and 269 

its metabolites and TPs are more accumulated than CBZ and its metabolites and TPs in 270 

biofilms (especially Benz) and clams. 271 

As shown in Table 2, in waters, CBZ concentrations are close to the levels determined by 272 

Koba et al. (2018) in a Czech pond used for the tertiary treatment of wastewater effluent (290 273 

– 560 ng L
-1

), but higher than the concentrations measured by Du et al. (2014) in a 274 

watercourse impacted by WWTP releases in central Texas, United States (370 ± 14 ng L
-1

). 275 

DCF levels are of the same order of magnitude as those determined by Koba et al. (2018) (22 276 

– 870 ng L
-1

), or by Wilkinson et al. (2017) in three rivers of southern England (<0.96 – 253 277 

ng L
-1

), but higher than those measured by Du et al. (2014) (86 ± 55 ng L
-1

). Then, in 278 

biofilms, the levels of CBZ are higher than those measured by Aubertheau et al. (2017) in the 279 

Vienne River. For example, at the downstream site of the Châtellerault WWTP, the CBZ 280 

concentration in this study is 1095 ± 28 ng g
-1

, while in the study by Aubertheau et al. (2017) 281 

it was 583.5 ng g
-1

. Likewise for the DCF concentration, which amounts to 64 ± 26 ng g
-1

 at 282 

the downstream site of the Châtellerault WWTP in this study, and to 37.2 ng g
-1

 in the study 283 

by Aubertheau et al. (2017). In addition, in sediments, Koba et al. (2018) determined much 284 

lower levels of CBZ (5.1 – 16 ng g
-1

) and DCF (2.6 – 30 ng g
-1

). Finally, CBZ was not 285 

detected in clams from Taihu Lake in China (Xie et al., 2015), and DCF concentrations (1.41 286 

– 5.42 ng g
-1

) were lower than those measured in this study (493 ± 428 ng g
-1

). 287 



13 

 

Metabolites and TPs are much less studied than their related parent pharmaceuticals (Table 2). 288 

Stülten et al. (2008) detected 4'OH-DCF and 5OH-DCF in WWTP effluents in Germany, at 289 

concentrations higher than the levels measured in this study, up to 0.71 µg L
-1

 and 0.45 µg L
-

290 

1
, respectively. In their study of a Canadian river, Miao & Metcalfe (2003) did not detect 291 

3OH-CBZ or CBZ-epox in any sample, but determined concentrations of Trans-CBZ of 2.2 ± 292 

0.3 ng L
-1

, much lower than those measured in this study. Koba et al. (2018) detected CBZ-293 

epox and Trans-CBZ in a lagoon water at concentrations up to 71 ng L
-1

 (lower than in this 294 

study) and 490 ng L
-1

 (higher than in this study), respectively, and in the sediment at 295 

concentrations lower than the limit of quantification. Finally, Aubertheau et al. (2017) 296 

detected CBZ-epox in the Vienne River biofilms with a maximal concentration estimated at 297 

5.3 ng g
-1

 which is lower than those determined in this study. 298 

The distributions observed for the different compartments can be explained by several 299 

parameters/conditions which probably interact between them. First, the contamination of 300 

biofilms, sediments, and clams depends on the compounds carried by water. However, the 301 

composition of water can change rapidly (Ort et al., 2010) while that of solid matrices is 302 

constrained by sorption/desorption kinetics (Gonzalez et al., 2012). Therefore, concentrations 303 

measured in water samples represent an image of the contamination over a short period of 304 

time while those determined in solid matrices are the result of accumulation over a certain 305 

exposure period. This could explain the significant difference observed in the distribution of 306 

compounds in water compared to the other matrices, especially for the DCF family for which 307 

sediments and biofilms are characterized by a larger presence of Benz in comparison with 308 

water. The differences are less significant for CBZ and its metabolites and TPs – especially 309 

between water and sediment – but some compounds like Dibenz may have significant 310 

variations in distributions. 311 
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Another important parameter to consider is the partitioning of molecules which is generally 312 

linked to their hydrophobicity (expressed via the octanol/water partition coefficient - KOW). 313 

KOW is frequently used to predict the adsorption of pollutants to solids and thus their 314 

bioaccumulation. Rogers (1996) provided a general rule for the application of KOW to the 315 

estimation of sorption: a Log KOW lower than 2.5 indicates a low sorption potential, a Log 316 

KOW between 2.5 and 4 indicates a medium sorption potential, and a Log KOW greater than 4 a 317 

high sorption potential. Therefore, the significant presence of DCF and its metabolites and 318 

TPs in benthic organisms (biofilms, clams) is consistent with their higher Log KOW. Those 319 

compounds are more hydrophobic than CBZ and its metabolites and TPs which exhibit higher 320 

levels in water and sediments. Dibenz presents an exception (Log KOW = 4.06) and this is 321 

reflected in its high accumulation in biofilms. 322 

Finally, the presence of metabolites and TPs in the aquatic environment is also linked to 323 

pharmaceutical compounds degradation pathways. For example, Phototransformation is the 324 

main degradation pathway for DCF in the environment (Boreen et al., 2003), and it takes 325 

place rapidly (t1/2 = 9.6 ± 1.2 h (Poirier-Larabie et al., 2016)), with Benz identified as the most 326 

stable product (Eriksson et al., 2010). This could explain the low proportion of DCF 327 

compared to its metabolites and TPs. Moreover, it is worth noting that Benz is more abundant 328 

in matrices exposed to sunlight (biofilms, sediments) than in clams’ flesh.  CBZ, on the other 329 

hand, is known to be persistent in the environment (Loos et al., 2009).  This compound is one 330 

of the least degraded/eliminated in wastewater treatment processes (32.7 % ± 17.9 % (Luo et 331 

al., 2014); < 0 – 23 % (Jekel et al., 2015)), but leads to the formation of Dibenz and Acrid 332 

(Kosjek et al., 2009). These properties may explain the similarity between the distributions. 333 

3.2.Individual compounds ecotoxicities 334 

Ecotoxicity of pharmaceutical metabolites and TPs was assessed for three different aquatic 335 

trophic levels: algae (Pseudokirchneriella subcapitata), invertebrates (Daphnia magna) and 336 



15 

 

fish (Pimephales promelas) (Figure 4). Values obtained from the QSAR Toolbox highlight 337 

that DCF and its metabolites and TPs (Benz and OH-DCF) have similar toxicities towards 338 

green algae (EC50 ~ 6.01 mg L
-1

). For Daphnia, OH-DCF (LC50 = 2.3 mg L
-1

) is found to be 339 

about 40 times more toxic than DCF (LC50 = 80.1 mg L
-1

), while an abnormally high EC50 340 

value was found for Benz (2.88 10
15

 mg L
-1

) demonstrating the actual limitations of QSAR 341 

models to predict the toxicity of all compounds for all organisms (Boxall et al., 2004). Benz is 342 

4 times more toxic (LC50 = 2.71 mg L
-1

) for P. promelas than its parent compound (LC50 = 343 

11.2 mg L
-1

), while OH-DCF has the same toxicity than DCF (LC50 = 10.7 mg L
-1

). 344 

In the CBZ family, Dibenz stands out from all the other compounds, being the most toxic for 345 

the three studied species. The other metabolites and TPs exhibit toxicities that are slightly 346 

higher, of the same order of magnitude or lower than that of the parent compound. Hence, for 347 

green algae, 3OH-CBZ is as toxic as CBZ (EC50 ~ 19.55 mg L
-1

), while the other compounds 348 

are 10 to 70 times less toxic. Likewise, for P. promelas, CBZ-epox exhibits an LC50 value of 349 

the same order of magnitude as the parent compound (~ 44.7 mg L
-1

), while the other 350 

metabolites and TPs are 3 to 6 times less toxic. On the other hand, for daphnia, 3OH-CBZ and 351 

CBZ-epox (LC50 ~ 36.5 mg L
-1

) are about 3 times more toxic than CBZ, Acrid is as toxic 352 

(LC50 ~ 105.45 mg L
-1

) and Trans-CBZ 65 times less toxic. 353 

All these results are in agreement with the study of Pereira et al. (2020). Indeed, in their 354 

systematic review on the experimental and estimated toxicities of selected pharmaceuticals in 355 

different aquatic compartments, these authors found that DCF and its metabolite 4OH-DCF 356 

have similar toxicities to invertebrates and fish. In addition, they highlighted the higher 357 

toxicities of anti-inflammatory drugs, including DCF, as compared to antiepileptics such as 358 

CBZ. However, results differ regarding the most sensitive species. Indeed, while in our study 359 

results show that green algae is the most sensitive, followed by fish and daphnia, Pereira et al. 360 

(2020) observed that the most sensitive species were fish, followed by invertebrates and algae. 361 
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Nevertheless, their observation was explained by the fact that part of the experimental data for 362 

fish was obtained through cell line or tissue testing, making it difficult to extrapolate the 363 

values to the entire organism. 364 

3.3.Mixtures ecotoxicities 365 

QSAR predictions were also used to assess mixtures ecotoxicities (including parent 366 

compound and its corresponding metabolites and TPs) since field data revealed their 367 

simultaneous presence in water and benthic organisms (biofilms, clams). Figure 4 also reports 368 

the predicted toxicities of mixtures of parent compounds with their associated metabolites and 369 

TPs. 370 

The results show that the toxicity values of DCF or CBZ and their metabolites and TPs 371 

mixtures are overall in the middle range of the individual values predicted for the compounds. 372 

Thus, for Pimephales promelas, the mixture of CBZ and metabolites and TPs (LC50 = 41.5 373 

mg L
-1

) is approximately 12 times less toxic than Dibenz alone (LC50 = 3.27 mg L
-1

). 374 

However, the mixture is 3 to 5 times more toxic than the other metabolites and TPs, when 375 

considered individually. According to the QSAR model, the mixture’s toxicity is lower than 376 

CBZ’s individual toxicity for Pimephales promelas (41.5 mg L
-1

 versus 37.3 mg L
-1

) and 377 

especially for the algae P. subcapitata (37 mg L
-1

 versus 10.4 mg L
-1

). On the contrary, the 378 

model predicts a higher toxicity of the mixture for daphnids. This highlights the importance of 379 

completing experimental ecotoxicological data to confirm mixture effects and hence the 380 

interest of considering metabolites and TPs along with their associated parent pharmaceutical 381 

compounds in the assessment of ecological risks. It is now known that effects resulting from 382 

the exposure to a mixture of organic contaminants can be very different from observations 383 

when evaluating the toxicity of a single compound, as it was already demonstrated for 384 

endocrine disruptors for example (Filby et al., 2007; Sumpter & Johnson, 2005). Until now, 385 

few studies have been interested in this mixture effect with many pharmaceutical compounds, 386 
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and even less with metabolites and TPs. Cleuvers (2003) showed that a mixture of CBZ and a 387 

lipid lowering agent, clofibric acid, exhibited a higher toxicity than the single compounds at 388 

the same concentration during immobilization tests of D. magna. The same author (Cleuvers, 389 

2004) observed acute toxicity of a mixture of anti-inflammatories including DCF, at lower 390 

concentrations than for the individual chemicals. 391 

Wang et al. (2020) were the first to develop a QSAR model to predict mixture ecotoxicities of 392 

fluoroquinolone antibiotics with their photodegradation products for Escherichia coli. Their 393 

results showed that the mixture toxicity of fluoroquinolones derivatives is a concentration 394 

addition of their individual toxicities. Qin et al. (2018) developed a QSAR model to predict 395 

acute mixture ecotoxicities of two antibiotics and four pesticides towards Aliivibrio fischeri. 396 

The 45 studied mixtures exhibited additive, synergistic, and antagonistic effects. The authors 397 

also showed that, compared to traditional concentration additive and independent action 398 

models, their QSAR model better predicted mixture toxicities. 399 

3.4.Comparison with pesticide metabolites 400 

Ecotoxicity values were also predicted for a common pesticide (atrazine – ATZ) and some of 401 

its main metabolites (desethylatrazine – DEA, deisopropylatrazine – DIA, 402 

desethyldeisopropylatrazine – DEDIA, hydroxyatrazine – OH-ATZ, and aniline) to compare 403 

with CBZ, DCF and their metabolites and TPs (Figure 4). Atrazine was banned in France in 404 

2001 but is still found in waters and river sediments. Moreover, ATZ and its metabolite DEA 405 

are frequently responsible for the downgrading of surface waters or groundwater quality. The 406 

comparison with ATZ and its metabolites shows that although DCF and CBZ are less toxic to 407 

the three species of interest than this pesticide, their metabolites and TPs exhibit EC50 and 408 

LC50 values broadly comparable to those of ATZ metabolites. 409 
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As mentioned before, in France, the presence of pesticide residues and their metabolites in 410 

waters is regulated by European Directive 98/83/EC (European Council, 1998) relating to the 411 

quality of waters intended for human consumption. This text sets quality limits at 0.1 µg L
-1

 412 

per individual substance and 0.5 µg L
-1

 for the sum. Water quality controls are increasingly 413 

revealing situations where regulatory quality limits are exceeded for metabolites. Thus, the 414 

French Directorate General of Health approached the ANSES to define a methodology for 415 

identifying relevant metabolites (ANSES, 2019). Considering the possible effects of certain 416 

pharmaceutical metabolites and TPs, this approach should be transposed to identify the most 417 

relevant metabolites and TPs for human and/or environmental health. 418 

3.5.Risk assessment of target compounds in the studied rivers 419 

A methodology was developed to associate both ecotoxicity and persistence data to assess the 420 

risk related to the presence of pharmaceutical metabolites and TPs in the sampled rivers. 421 

Therefore, PNECwater were calculated from the predicted ecotoxicity endpoints for each 422 

individual compound as well as for mixtures, then HQs were obtained by dividing the MEC 423 

observed in waters during this study by the PNECwater (N.B.: a mixture’s MEC is expressed as 424 

the parent molecule’s mass and corresponds to the sum of the individual compounds MECs). 425 

Persistence was evaluated with the ultimate biodegradation index obtained with the 426 

EPISUITE Biowin3 Survey Model included in the QSAR Toolbox (Environmental Protection 427 

Agency, 2012). It should be noted that in this case, only biodegradation is considered in the 428 

persistence, while other processes (hydrolysis, photolysis, etc.) may also transform/degrade 429 

the compounds. For mixtures, the ultimate biodegradation index was obtained by calculating 430 

the mixture’s constituents’ indexes weighted average. Biodegradation indexes vary between 431 

2.25 and 2.75 for the CBZ and DCF degradation compounds, which means half-life of a few 432 

weeks to a few months, with the exception of Trans-CBZ (between 2.75 and 3.25) that 433 

presents a slightly faster biodegradation than the other molecules. 434 
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Figure 5 provides a classification of compounds according to their associated risk (HQ) for 435 

the studied rivers and their biodegradation index. Target compounds can be divided in 4 436 

groups: (1) “compounds already worrying” regarding their persistence and their high 437 

concentrations: OH-DCF, Benz and Dibenz. These compounds have an HQ lower than 1 (~ 438 

qualified as medium risk for aquatic organisms) and are therefore of concern only when 439 

compared to the other studied compounds. The same applies for the notion of persistence in 440 

water; (2) “compounds to watch out for” because of their persistence in the dissolved phase. 441 

These molecules could become of concern if their levels tend to increase: DCF, CBZ, 3OH-442 

CBZ, CBZ-epox and Acrid. (3) “compounds to watch out for” because of how far they have 443 

exceeded the PNECwater: no compound identified in this study; and (4) “compounds not of 444 

concern” including compounds with a level of contamination below PNECwater (HQ < 0.1) 445 

and low persistence in dissolved phase: Trans-CBZ. 446 

The same methodology was also involved to assess risk regarding the sediment compartment. 447 

PNECsediment were derived from the PNECwater by the equilibrium partitioning method. The 448 

KOC of a mixture is its constituents KOC values weighted average. The data thus calculated, as 449 

well as the MEC values measured in the sediments of the three sampled rivers, were used to 450 

deduce the HQs of each compound with respect to benthic organisms. Figure 6 presents the 451 

classification of compounds according to their associated risk in the sediments of the studied 452 

rivers and their biodegradation index. Consequently, OH-DCF and Benz are classified as 453 

“compounds already worrying”; DCF, CBZ, 3OH-CBZ, CBZ-epox, and Dibenz are 454 

“compounds to watch out for – group 2”; and Trans-CBZ is considered as a “compound not of 455 

concern”. Comparison between risks in water and sediments suggests that Dibenz is of higher 456 

concern for aquatic species than for benthic organisms. The rest of the compounds present the 457 

same risk in sediment and in water. In addition, the same behaviour is observed for the 458 
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mixtures, in particular that of DCF and its metabolites and TPs which is of more concern than 459 

the parent compound alone. 460 

The results also show the importance of considering mixtures and not only the parent 461 

compounds, as illustrated by the case of DCF. Indeed, this compound – considered 462 

individually – does not seem to represent a risk (i.e. group 2, Figures 5 and 6), while its 463 

mixture with its metabolites and TPs is already worrying for the aquatic environment because 464 

of their persistence and their high levels. However, this remark is not fully generalized since 465 

CBZ alone and its mixture with metabolites and TPs show the same level of risk. This finding 466 

suggests that it would be necessary to only identify compounds for which it is relevant. 467 

4. Conclusion 468 

Unsurprisingly, pharmaceutical metabolites and TPs have been found in waters, sediments, 469 

biofilms, and clams of the studied rivers, obviously in varying concentrations, but in all 470 

samples.  This widespread distribution and occurrence presumably requires special attention, 471 

at least as much as the presence of pesticide metabolites. Indeed, the use of QSAR models 472 

made it possible to address the lack of experimental ecotoxicological data and to highlight 473 

that some of CBZ or DCF metabolites and TPs could be more toxic than their parent 474 

compounds for aquatic species. Thus, OH-DCF, Benz and Dibenz could represent a risk for 475 

aquatic wildlife because of their relatively high hazard quotients and their relatively slow 476 

biodegradation. The large number of possible metabolites and TPs and the possibility of 477 

individual toxicity also raises questions about a “cocktail effect”. Indeed, compounds may 478 

have unpredictable biochemical interactions when considered in a mixture, resulting in 479 

different (cumulative or not) effects than individual molecules. As shown by QSAR 480 

predictions of mixtures, it appears that the risk for the aquatic environment is higher when one 481 

considers DCF along with its metabolites and TPs. Nevertheless, our results also show that 482 
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this is not generalizable for all parent compounds, e.g. CBZ. Consequently, it is urgent to 483 

identify the most relevant metabolites and TPs – as is done for pesticides – to better prioritize 484 

risk assessment. 485 

For future works, it is important to complete the collected data by conducting sampling 486 

campaigns at different times of the year and not only in summer. This would help better 487 

understand the impact of seasonal variations on pharmaceutical molecules degradation 488 

pathways and the presence and distribution of their metabolites and TPs in the aquatic 489 

environment. Furthermore, it is important to acknowledge that QSAR modelling constitutes a 490 

first estimation of pharmaceutical metabolites and TPs ecotoxicities as well as mixture effects. 491 

Experimental data still need to be generated to confirm these calculations. Our findings 492 

constitute a starting point for further research aimed to determine the risks coming from the 493 

presence of pharmaceutical compounds along with their metabolites and TPs in the aquatic 494 

environment, with the purpose of potentially including them in water management policies. 495 
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Table 1: Properties of selected compounds 750 
Compound Class CAS number pKa* Log KOW* Chemical structure 

Carbamazepine 

(CBZ) 
Parent compound 298-46-4 16.00 2.45 

 
 

3-Hydroxycarbamazepine 

(3OH-CBZ) 
Metabolite 68011-67-6 9.10 1.42 

 
 

10,11-Epoxycarbamazepine 

(CBZ-epox) 
Metabolite 36507-30-9 16.00 0.95 

 
 

10,11-dihydro-10,11-trans-

dihydroxycarbamazepine 

(Trans-CBZ) 

Metabolite 58955-93-4 12.20 -0.21 

 
 

Dibenzazepine 

(Dibenz) 

Metabolite + WWTP 

degradation product 
256-96-2 19.50 4.06 

 
 

Acridone 

(Acrid) 

Metabolite + WWTP 

degradation product 
578-95-0 0.32 1.69 

 
 

Diclofenac 

(DCF) 
Parent compound 15307-86-5 4.05 4.51 

 
 

4’-Hydroxydiclofenac 

(4’OH-DCF) 
Metabolite 64118-84-9 3.76 3.70 
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5-Hydroxydiclofenac 

(5OH-DCF) 
Metabolite 69002-84-2 3.81 3.18 

 
 

2-[(2-chlorophenyl)-amino]-

benzaldehyde 

(Benz) 

Photodegradation 

product 
71758-44-6 8.18 3.65 

 
*Values predicted by the QSAR Toolbox (version 4.4) 751 

 752 
  753 
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Table 2: Mean concentrations and comparison with literature. 754 

 755 

 Compound Measured concentration Literature (ng L
-1

) 

Water 

(µg L
-1

) 

CBZ 0.52 ± 0.13 

 

290 – 560 ng L
-1

 [tertiary treatment pond] (Koba et al., 2018) 

370 ± 14 ng L
-1

 [stream impacted by WWTP]
 
(Du et al., 2014) 

 

DCF 0.20 ± 0.14 

 

22 – 870 ng L
-1

 [tertiary treatment pond] (Koba et al., 2018) 

<0.96 – 253 ng L
-1

 [surface water] (Wilkinson et al., 2017) 

86 ± 55 ng L
-1

 [stream impacted by WWTP] (Du et al., 2014) 

 

4’OH-DCF 

0.26 ± 0.15 

 

710 ng L
-1

 [WWTP effluents] (Stülten et al., 2008) 

 

5OH-DCF 

 

450 ng L
-1

 [WWTP effluents] (Stülten et al., 2008) 

 

3OH-CBZ 0.23 ± 0.08 
 

n.d. [surface water] (Miao & Metcalfe, 2003) 
 

CBZ-epox 0.30 ± 0.07 

 

n.d. [surface water] (Miao & Metcalfe, 2003) 

71 ng L
-1

 [tertiary treatment pond] (Koba et al., 2018) 

 

Trans-CBZ 0.18 ± 0.09 

 

2.2 ± 0.3 ng L
-1

 [surface water] (Miao & Metcalfe, 2003) 

490 ng L
-1

 [tertiary treatment pond] (Koba et al., 2018) 

 

Biofilm 

(ng g
-1

) 

CBZ 722 ± 219 

 

583.5
 
[Châtellerault WWTP downstream] (Aubertheau et al., 2017) 

 

DCF 348 ± 349 
 

37.2 [Châtellerault WWTP downstream] (Aubertheau et al., 2017) 
 

CBZ-epox 329 ± 133 
 

5.3 [Vienne River] (Aubertheau et al., 2017) 
 

Sediment 

(ng g
-1

) 

CBZ 119 ± 54 

 

5.1 – 16 [tertiary treatment pond] (Koba et al., 2018) 

 

DCF 51 ± 55  
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2.6 – 30 [tertiary treatment pond] (Koba et al., 2018) 
 

CBZ-epox 100 ± 47 
 

<LoQ [tertiary treatment pond] (Koba et al., 2018) 
 

Trans-CBZ 57 ± 39 
 

<LoQ [tertiary treatment pond] (Koba et al., 2018) 
 

Clams 

(ng g
-1

) 

CBZ 962 ± 381 
 

<LoD [lake] (Xie et al., 2015) 
 

DCF 493 ± 428 
 

1.41 – 5.42 [lake] (Xie et al., 2015) 
 

 756 

  757 
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Figure 1: Sampling sites; Up. = upstream, Down. = downstream; Black stars indicate 758 

important cities located along the watersheds; Yellow marks indicate the locations of 759 

sampling sites. 760 

 761 

  762 
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Figure 2: Mean levels (± standard deviation) of DCF and its associated metabolites and 763 

TPs in the compartments of interest, along the three studied rivers. 764 

 765 

 766 

  767 
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Figure 3: Mean levels of CBZ (± standard deviation) and its associated metabolites and 768 

TPs in the compartments of interest, along the three studied rivers. 769 

 770 

 771 

  772 
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Figure 4: Ecotoxicity of targeted compounds and mixtures with respect to 773 

Pseudokirchneriella subcapitata, Daphnia magna and Pimephales promelas. The values 774 
were calculated using the QSAR Toolbox trend analysis approach. The lowest toxicity 775 

endpoints are highlighted in red, and the highest in green, indicating the most and the 776 
least toxic product from each studied family towards each species. Ecotoxicities of 777 
individual compounds were used to estimate mixture ecotoxicities by trend analysis, 778 
considering independent modes of actions and molar fractions observed from the 779 
average concentrations measured in the studied waters. 780 
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Figure 5: Highlighting problematic compounds in the waters of the Vienne, the Clain 782 

and the Thouet Rivers according to the associated risk (HQ) but also their level of 783 

persistence (ultimate biodegradation half-life) (inspired by Mazellier et al. (2018)) 784 

 785 
  786 
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Figure 6: Highlighting problematic compounds in the sediments of the Vienne, the Clain 787 

and the Thouet Rivers according to the associated risk (HQ) but also their level of 788 

persistence (ultimate biodegradation half-life) 789 
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