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Circulation patterns in the North Atlantic Ocean have changed and re-organized multiple
times over millions of years, influencing the biodiversity, distribution, and connectivity
patterns of deep-sea species and ecosystems. In this study, we review the effects
of the water mass properties (temperature, salinity, food supply, carbonate chemistry,
and oxygen) on deep-sea benthic megafauna (from species to community level) and
discussed in future scenarios of climate change. We focus on the key oceanic controls
on deep-sea megafauna biodiversity and biogeography patterns. We place particular
attention on cold-water corals and sponges, as these are ecosystem-engineering
organisms that constitute vulnerable marine ecosystems (VME) with high associated
biodiversity. Besides documenting the current state of the knowledge on this topic,
a future scenario for water mass properties in the deep North Atlantic basin was
predicted. The pace and severity of climate change in the deep-sea will vary across
regions. However, predicted water mass properties showed that all regions in the North
Atlantic will be exposed to multiple stressors by 2100, experiencing at least one critical
change in water temperature (+2◦C), organic carbon fluxes (reduced up to 50%), ocean
acidification (pH reduced up to 0.3), aragonite saturation horizon (shoaling above 1000
m) and/or reduction in dissolved oxygen (>5%). The northernmost regions of the North
Atlantic will suffer the greatest impacts. Warmer and more acidic oceans will drastically
reduce the suitable habitat for ecosystem-engineers, with severe consequences such
as declines in population densities, even compromising their long-term survival, loss of
biodiversity and reduced biogeographic distribution that might compromise connectivity
at large scales. These effects can be aggravated by reductions in carbon fluxes,
particularly in areas where food availability is already limited. Declines in benthic biomass
and biodiversity will diminish ecosystem services such as habitat provision, nutrient
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cycling, etc. This study shows that the deep-sea VME affected by contemporary
anthropogenic impacts and with the ongoing climate change impacts are unlikely to
withstand additional pressures from more intrusive human activities. This study serves
also as a warning to protect these ecosystems through regulations and by tempering
the ongoing socio-political drivers for increasing exploitation of marine resources.

Keywords: North Atlantic, deep-sea, biodiversity, biogeography, water masses, vulnerable marine ecosystems

INTRODUCTION

Deep-sea ecosystems (i.e.,>200 m water depth; Levin et al., 2019)
have been traditionally considered vast habitats characterized
by a stable and homogeneous environment (i.e., darkness and
constant low temperatures). Such conditions were thought to
indicate a lack of barriers for dispersal, resulting in large
biogeographic areas with broad distributions of deep-sea species
(Smith et al., 2006; McClain and Hardy, 2010). In the last few
decades, new technologies have enabled sampling of some remote
ecosystems, revealing new descriptions of species, and ecological
paradigms (Danovaro et al., 2014; Cunha et al., 2017). These
include the discovery of various geomorphological features and
the diversity of their associated ecosystems, such as those in
submarine canyons (Fernandez-Arcaya et al., 2017), seamounts
(Morato et al., 2013), hydrothermal vents (Ramirez-Llodra et al.,
2007b), cold-water coral reefs (Roberts et al., 2006) or sponge
grounds (Hogg et al., 2010). Biodiversity has been also proved
to be enhanced by numerous factors, including high habitat
complexity (Buhl-Mortensen et al., 2010; Henry et al., 2010;
Beazley et al., 2013), carbon cycling (Duineveld et al., 2012;
White et al., 2012; Cathalot et al., 2015; Rix et al., 2016; Soetaert
et al., 2016), recently discovered ecological interactions (Buhl-
Mortensen and Mortensen, 2004; Carreiro-Silva et al., 2017;
Henry and Roberts, 2017), or chemosynthetic production in the
deep-sea (Ramirez-Llodra et al., 2007a; Rodrigues et al., 2013;
Levin et al., 2016). Thus, the old view of low diversity, food-
poor, and low metabolic activity has been reconsidered in many
deep-sea areas (Ramirez-Llodra et al., 2010; Danovaro et al., 2014;
McIntyre et al., 2016; Cunha et al., 2017).

Besides seafloor topography and sedimentary features (Levin
and Sibuet, 2012; Tong et al., 2012; Collart et al., 2018), many
other factors can drive biodiversity and biogeography in the deep-
sea (Henry et al., 2014; Radice et al., 2016). Most of them are
inherent to, or related to, the water mass characteristics, including
temperature (Yasuhara and Danovaro, 2014), flow regime
(Mienis et al., 2007; van Haren et al., 2014), oxygen concentration
(Levin, 2003; Woulds and Cowie, 2007), organic matter supply
(White et al., 2012; Cathalot et al., 2015), and circulation patterns
(Henry et al., 2014; Somoza et al., 2014) among others. In
the North Atlantic Ocean, the Atlantic Meridional Overturning
Circulation (AMOC) re-distributes warm, saline water masses of
the upper water column northwards, compensated by a returning
flow of cooler fresher waters at depth. In addition, the properties
and spatial extent of water masses in the North Atlantic vary
on inter-annual to decadal timescales creating a fluctuating
environment at local, regional and basin scales. To preserve
deep-sea biodiversity and ensure sustainable socio-economic

development in the North Atlantic Ocean, ecosystem-based
management is needed on the same spatial and temporal scales
as the key ocean circulation features and atmospheric drivers
(Johnson et al., 2018; Armstrong et al., 2019). Re-organizations
in the North Atlantic water mass structure have been occurring
since the Atlantic’s genesis 200 mya, influencing the biodiversity,
distribution and connectivity of deep-sea communities and
species. For instance, the re-organizations in water mass structure
related to AMOC and Sub-Polar Gyre dynamics during the early
Holocene triggered an unprecedented post-glacial re-expansion
of the cold-water coral (CWC) Lophelia pertusa over 7,500 km
in ∼400 years (Frank et al., 2011; Henry et al., 2014; Wienberg
and Witschack, 2017; Hebbeln et al., 2019). Thus, changes in the
North Atlantic deep-water circulation are of particular interest
in order to understand deep-sea species distribution, community
composition, ecosystem functioning and dynamics. Moreover,
this can shed light on future climate changes and how they affect
deep-sea organisms.

This review does not intend to provide an exhaustive summary
of all previous studies on oceanographic factors influencing deep-
sea megafauna, but instead focuses on studies that clearly discuss
the implications of water mass properties on biodiversity and
biogeography. Thus, we address the importance of the North
Atlantic circulation, from 20◦ to 70◦ N, and the role of the
key water masses and their properties to derive a basin-scale
synoptic view of key ocean controls on the deep-sea biodiversity
and biogeography patterns. We particularly focus on sessile
megafaunal species, such as CWCs and sponges, compiling
results obtained from experimental work, field observations and
modeling on these organisms from physiological to community
level. These organisms form Vulnerable Marine Ecosystems
(VME), which occur from the continental shelves to the bathyal
regions of the deep-sea, connected in many cases across the
entire North Atlantic through the basin-scale circulation. The
vulnerability of these ecosystems is defined as the likelihood
to experience substantial alteration from short-term or chronic
disturbance, and the likelihood to recover in a given time
frame (FAO, 2009). This, in turn, is related to the ecosystem
characteristics such as rarity, fragility, structural and functional
significance, longevity, slow growth rates or similar traits that
limit the probability of recovery (FAO, 2009). Cold-water corals
and sponges present many of these life-history traits and are also
ecosystem-engineering organisms (Jones et al., 1994) which are
able to form complex three-dimensional habitats such as CWC
reefs, coral gardens or sponge grounds that promote life and
enhance biodiversity in the deep-sea.

The North Atlantic circulation patterns, as well as the
physical and chemical properties of the deep ocean, are already
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experiencing changes due to climate change (Purkey and
Johnson, 2010; Helm et al., 2011; Levin and Le Bris, 2015; Perez
et al., 2018). A clear understanding of the patterns and drivers
of deep-sea benthic biodiversity is needed to inform and develop
future projections under climate change conditions. In this sense,
different projections for future water mass properties in the deep
North Atlantic basin have been simulated and are presented
in this work. The possible consequences for deep-sea benthic
communities in these future scenarios are discussed considering
the effects of the current and future water mass properties. This
review aims to facilitate the integration of current knowledge
on biodiversity related to water masses properties as well as the
likelihood of future changes and consequences on the ecological
and evolutionary trajectories of deep-sea ecosystems. Such
information is needed to identify the assessment, management
and regulation actions to support proper management and
preservation of the deep-sea VMEs.

NORTH ATLANTIC CIRCULATION AND
KEY WATER MASSES

Atlantic Meridional Overturning
Circulation
The North Atlantic is globally important due to the conversion
of upper waters to denser intermediate and deep waters. In
this review, we mainly considered and discussed the circulation
patterns and water masses in the North Atlantic ranging from 20◦
to 70◦ N latitude and 78◦ W to 10◦ E longitude, but occasionally
address some aspects of the tropical and more northern regions
when necessary. The AMOC consists of a northward flowing
upper limb balanced by a southward flow at depth. The warm and
salty waters transported northwards within the Gulf Stream, both
recirculate within the subtropical gyre and flow, via the North
Atlantic Current (NAC), into more northern areas (Figure 1).
Around 40% of the water entering subpolar latitudes continues
northward over the Greenland-Scotland Ridge into the Nordic
Seas (Sarafanov et al., 2012) where it is subject to further heat
loss and mixing. The resulting, denser intermediate and bottom
waters are trapped to the north of the Greenland-Scotland Ridge;
however, some overflows into the North Atlantic (Hansen and
Østerhus, 2000). The remaining 60% of the water transported
northwards in the NAC recirculates cyclonically within the
subpolar gyre (Sarafanov et al., 2012). As the waters circulate,
they become cooler and fresher, and are subject to winter storms,
particularly in the Labrador and Irminger Seas (Yashayaev, 2007;
Jong and Steur, 2016). The resulting intermediate water mass
flows southward, along with the overflow waters, in the Deep
Western Boundary Current forming the return limb of the
AMOC (Figure 1). Recent work suggests that the AMOC is
dominated by dynamics to the east of Greenland, rather than
convection in the Labrador Sea (Lozier et al., 2019).

AMOC strength has varied through time. During the last
glacial maximum, 19–21 kya, a moderate to strong AMOC
probably persisted in the intermediate layers (Lynch-Stieglitz
et al., 2007; Lippold et al., 2009; Ritz et al., 2013). This was

FIGURE 1 | Schematic of the main circulation in the North Atlantic Ocean
color coded by water mass type. Main currents are labeled as: the North
Atlantic Current (NAC), Azores Current (AC), Irminger Current (IC), Labrador
Current (LC), and Deep Western Boundary Current (DWBC).

followed by a slowdown of the AMOC between 12 and 19 kya,
coinciding with the abrupt Younger Dryas event (Hughen et al.,
1998). Fossil records indicate that the currently wide-spread
CWC Lophelia pertusa remained in a few refugia during the last
glacial maximum and Younger Dryas (Henry et al., 2014). The
rapid spin-up of the AMOC after the Younger Dryas (Rogerson
et al., 2006; Xie et al., 2012) coincided with a rapid and wide-
spread return of L. pertusa to northern Europe after a hiatus of
over 65 kyr (Frank et al., 2011). Today, the AMOC is still a crucial
part of the Earth’s climate system. However, models indicate that
it is likely to weaken by 2100 (Gregory et al., 2005), whilst recent
studies suggest that the AMOC may have weakened in the past
100–200 years (Caesar et al., 2018; Thornalley et al., 2018).

Key Water Masses
As the properties and depth distribution of water masses varies
spatially across the North Atlantic (Liu and Tanhua, 2019), we
describe the key water masses in general terms in four depth
bands: upper bathyal (200–1000 m), intermediate bathyal (1000–
2000 m), lower bathyal (2000–3000 m) and abyssal (>3000 m).
Mean properties and associated variability ranges for each depth
band are shown in Table 1.

In the upper bathyal depth range (200–1000 m), the
predominant upper water mass is North Atlantic Central Water
(NACW), which is found in the topmost 500–800 m. However,
several denominations of this water mass exist. For example,
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“subtropical” NACW (found south of around 42◦N) is warmer
and more saline, whilst “subpolar” NACW found to the north
is cooler and fresher (Ríos et al., 1992). NACW properties also
vary zonally (Ríos et al., 1992; Pollard et al., 2004). In eastern
areas, the NACW (termed eastern NACW, ENACW) is warmer
and more saline, whilst western NACW (WNACW) is cooler and
fresher. However, the freshest, coldest and densest water mass
found in the upper 800 m is seen in the western subpolar basins
and is termed SubArctic Intermediate Water (SAIW; García-
Ibáñez et al., 2015). This water mass is also found further east
and south, but in these areas, it is found below the NACW layer
at around 500 m (Pollard et al., 1996; Wade et al., 1997). The final
key upper bathyal water mass is Antarctic Intermediate Water
(AAIW) which is again found below the NACW layer. AAIW,
which has been observed as far north as 60◦N (Tsuchiya, 1989),
has a slightly elevated salinity but is most easily identified by a
mid-depth silicate maximum (Read, 2000).

At intermediate bathyal depths (1000–2000 m), two main
water masses are observed: Mediterranean Outflow Water
(MOW) and Labrador Sea Water (LSW). The MOW overflows
the Straits of Gibraltar and spreads out at around 1200 m in
the Atlantic (García-Ibáñez et al., 2015). It is characterized by a
mid-depth salinity maximum with low dissolved oxygen (DO)
concentrations and has been traced to at least 60◦ W and 52◦
N (Needler and Heath, 1975; Bower et al., 2002). The LSW is a
denser water mass characterized by a broad salinity minimum
and high DO concentrations (Read, 2000). It is centered upon
approximately 1500 m, although its exact density varies inter-
annually with changes in convection depth in the Labrador Sea
(Yashayaev, 2007).

In the lower bathyal range (2000–3000 m), the main water
masses are those that have overflowed the Greenland-Scotland
Ridge. The main locations for dense overflow are south of the
Faroes and between Greenland and Iceland (Hansen et al., 2016;
Jochumsen et al., 2017). These overflow waters are cool, dense
and well oxygenated, and together with the less dense LSW exit
the subpolar gyre as North Atlantic Deep Water (NADW).

The densest water mass in the North Atlantic, found at abyssal
depths (>3000 m), is Antarctic Bottom water (AABW). This
water mass is easily identified by its high silicate concentration
(McCartney, 1992). Whilst it is more prevalent in southern areas,
a diluted form is also seen in the eastern subpolar basins (Van
Aken and De Boer, 1995; New and Smythe-Wright, 2001).

WATER MASS PROPERTIES AS
DRIVERS OF DEEP-SEA BIODIVERSITY
AND BIOGEOGRAPHY

Marine biodiversity at the global-scale, shows decreasing
biodiversity with both increasing depth (Rex et al., 2006; Roberts
et al., 2009b; Costello and Chaudhary, 2017) and increasing
latitude (Rex et al., 1993; Lambshead et al., 2000; Gage, 2004).
These patterns have been usually related to the decreasing organic
carbon flux to the seafloor (Willig et al., 2003; Rex et al., 2005)
and to decreasing water temperature at depth (Lambshead et al.,
2000). These different trends in biodiversity and distribution
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are commonly driven by the physical, chemical, and biological
properties of the water masses (e.g., Levin et al., 2001; Mohn
et al., 2014; Yasuhara and Danovaro, 2014; Buhl-Mortensen et al.,
2015; Eigaard et al., 2016). However, the strong collinearity
among water mass properties and depth, make it very difficult
to discern the roles of hydrostatic pressure and other depth-
correlated parameters (Mortensen et al., 2001; Lundsten et al.,
2010). For instance, L. pertusa reefs off Norway occur in waters
as shallow as 50 m; with it being impossible to determine
whether temperature (up to 10◦C) or salinity (down to 32)
limit the upper bathymetrical distribution (Mortensen et al.,
2001). Therefore, assertions on the potential controls of deep-
sea species distributions should be taken with caution (Huff
et al., 2013). In addition, the relative importance of these
factors varies between taxa and regions, but also with the spatial
and temporal window of observation (Buhl-Mortensen et al.,
2015; Radice et al., 2016). Temperature is usually one of the
leading factors at the global scale and over longer time scales
(Watling et al., 2013; Yasuhara and Danovaro, 2014; Buhl-
Mortensen et al., 2015), whereas at medium spatial scales (10 s
of km), the presence of large geomorphological features and
biological structures is significant (Henry and Roberts, 2007;
Buhl-Mortensen et al., 2010). Substrate typology and food supply
appear more important at finer spatial scales (m to km; Vetter
and Dayton, 1998; McClain and Barry, 2010; Collart et al., 2018)
and over shorter time scales (Yasuhara and Danovaro, 2014).

In fact, observations of deep-sea biodiversity actually showed
a wide variability of trends with depth or latitude, from increases
(e.g., polychetes, bivalves, and foraminifera; Sanders, 1968; Allen
and Sanders, 1996; Olabarria et al., 2005), decreases or irregular
trends (e.g., gastropods Stuart and Rex, 2009), to no relationship
with depth or latitude (e.g., asteroids, Price et al., 1999) depending
on the taxa considered (Gage, 2004; Stuart and Rex, 2009;
Costello and Chaudhary, 2017). These trends can also result from
other factors, such as large-scale environmental heterogeneity
imposed by topography, bottom currents, and strong variations
in nutrient input (Willig et al., 2003; Kendall and Haedrich, 2006),
or oxygen minimum zone impingement (Levin and Gage, 1998;
Rogers, 2000).

This variability in controls of deep-sea species distribution
illustrates the complexity of large-scale patterns in deep-sea
biodiversity and the difficulty of interpreting them as the product
of a single mechanism (Lambshead et al., 2000; Danovaro et al.,
2009; Costello and Chaudhary, 2017). Chronic under-sampling
of the deep-sea (Ramirez-Llodra et al., 2010) frustrate efforts
to obtain a comprehensive broad scale snapshot of the spatial
distribution of biodiversity and prevents the full characterization
of species distributional ranges. This renders the extraction of
biogeographic patterns difficult (Costello and Chaudhary, 2017),
where species richness, isolation and endemicity are also likely
to play important roles (McClain and Hardy, 2010; Moalic et al.,
2012; Watling et al., 2013; Costello and Chaudhary, 2017). For
instance, broad faunal distributions across ocean-basin scales
have been described for some soft-bottom taxa inhabiting the
vast abyssal plains (Smith et al., 2006). However, large scale
distributions (Van Dover et al., 2002; McClain, 2007; Clark
et al., 2010) and genetic homogeneity (McClain and Hardy, 2010;

Teixeira et al., 2013) have also been observed for several endemic
species from highly patchy and specialized environments, such
as hydrothermal vents and seamounts. In addition, the published
information on the effect of water mass properties in the deep-
sea megabenthic communities heavily relies on the responses of
the most studied organism, the reef-forming CWC L. pertusa.
Due to the imbalance level of information available among the
different taxa, caution should be exercise since the responses of
L. pertusa might not be necessarily representative of other less-
or unstudied taxa.

Sea Temperature
The relative spatio-temporal stability of water temperature below
∼1000 m depth, has historically led to this factor receiving
less attention as a possible control of deep-sea biodiversity
(Yasuhara and Danovaro, 2014). However, it is likely that
stability makes deep-sea organisms highly sensitive to small
temperature changes, as evidenced by significant temperature–
diversity relationships detected in several studies (Danovaro
et al., 2004; O’Hara and Tittensor, 2010; Yasuhara and Danovaro,
2014). Temperature might be the most important factor shaping
recent large-scale biodiversity patterns (at least at the alpha
diversity level) due to different physiological tolerances of deep-
sea taxa (Tittensor et al., 2010; Yasuhara and Danovaro, 2014).
Over a broad range of temperatures, the response of deep-sea
diversity is unimodal with a peak at around 5–10◦C (Yasuhara
and Danovaro, 2014). Nevertheless, the responses to temperature
at species level are widely variable and usually related to the life-
history traits. For instance, the response might be size dependent
as observed for the mussel Bathymodiolus azoricus. The thermal
niche in this species is broader for intermediate sizes than for
small or large mussels (Husson et al., 2017). Overall, small species
with very short generation times from days to months, such as
nematodes (Danovaro et al., 2004), react strongly and rapidly to
temperature changes but also may adapt to such changes through
generations. In contrast, large taxa with longer generation times
of years, such as mollusks, corals or echinoderms (Rowe et al.,
1992), might in general be more resilient to the effects of rapid
changes, but then may be unable to adapt over short time scales
(Yasuhara and Danovaro, 2014).

Thermal boundaries and optimal temperature seem to be
mainly species-specific in deep-sea taxa. The distribution of the
reef-forming CWCs L. pertusa and Madrepora oculata, 4–12◦C
(Freiwald, 2002; Davies and Guinotte, 2011; Naumann et al.,
2014), match the temperature range of cold intermediate North
Atlantic waters below the summer thermocline. These conditions
are generally found in relatively shallow waters (50–1000 m) at
high latitudes, and at great depths (up to 4000 m) at low latitudes
(Roberts et al., 2006, 2009b). Some deep-sea octocorals, like
Radicipes gracilis, Acanella arbuscula and Acanthogorgia armata,
can be found at lower temperatures, 1.5–6.1◦C (Buhl-Mortensen
et al., 2015). However, thermal ranges also vary intra-specifically
between populations inhabiting different geographic regions. For
example, L. pertusa is commonly found between 12.5 and 14◦C
in the Mediterranean Sea (Tursi et al., 2004; Freiwald et al., 2009).
Likewise, M. oculata can temporarily tolerate temperatures up to
20◦C in the Indian Ocean (Keller and Os’kina, 2008).
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Species-specific tolerance, together with the magnitude and
time of exposure to increased temperatures, are determinant
for the response of the deep-sea organisms as observed in their
natural environment (Guihen et al., 2012; Mienis et al., 2014), as
well as in experimental conditions (Dodds et al., 2007; Naumann
et al., 2014). For instance, a natural increase of 4◦C in 24 h
(up to 12◦C) was observed at Tisler reef (Norway) followed by
a mass mortality event of the sponge Geodia baretti, although
it did not affect the L. pertusa reef despite exceeding its typical
physiological temperature limit (Guihen et al., 2012). However,
a subsequent ex situ experiment exposing the same sponge to
acute thermal conditions (up to 5◦C above ambient temperature
for 14 days) did not induce any mortality (Strand et al., 2017).
These results suggest that other processes (e.g., low oxygen
concentrations, elevated nutrients levels, reduced salinity and
disease) in combination with the heat wave could be responsible
for the mortality event in those sponges. The upper temperature
limit for L. pertusa is around 15◦C but, it can survive short
term (24 h) temperature spikes up to 20◦C as demonstrated
in aquaria experiments (Brooke et al., 2013). Temperature
changes have a strong effect on CWC metabolism, with a
specific acclimation among taxa. Experimental research proved
that L. pertusa has a greater capacity to change its respiratory
metabolism and acclimatize to decreased temperature (from 12
to 6◦C) than M. oculata (Naumann et al., 2014). The different
thermal tolerances have been also used to explain the dominance
of M. oculata in warmer Mediterranean waters and L. pertusa
in colder regions of the NE Atlantic. However, L. pertusa also
forms important reefs off SE USA and the Gulf of Mexico
(Reed et al., 2006; Brooke and Schroeder, 2007; Mienis et al.,
2012a; Georgian et al., 2014), highlighting also the importance
of different geographic populations (Brooke and Schroeder, 2007;
Georgian et al., 2014; Brooke et al., 2017). The scleractinian CWC
Dendrophyllia cornigera also reduced respiration and calcification
rates when temperature was experimentally lowered to 8◦C
(Gori et al., 2014). The physiological performance of this species
increased when elevating temperatures from 12 to 17.5◦C, while
that temperature change negatively impacted other CWC species
such as Desmophyllum dianthus (Naumann et al., 2013). Indeed,
D. cornigera seems to be absent from most of the NE Atlantic,
where temperatures range from 5 to 10◦C (Purser et al., 2013;
Dullo et al., 2008; Roberts et al., 2009a).

In addition, temperature might trigger more important effects
on deep-sea biota in combination with other factors or stressors
(synergies), such as ocean acidification, low food availability,
or reduced oxygen (e.g., Lunden et al., 2014; Gori et al., 2016;
Büscher et al., 2017).

Salinity and Density
Overall, salinity only varies up to one unit worldwide at deep
depths, but some biogeographic areas of distinct salinity can be
identified in the main basins (Watling et al., 2013). In the North
Atlantic, the most saline waters are those carried in the upper
column, the Gulf Stream, and in the MOW northward spreading
into the eastern Atlantic (Figure 1). In contrast, salinity becomes
more uniform in the deepest waters below 3500 m, with some
influence of upper water layers down to 2000 m depth (Watling

et al., 2013). Salinities up to 800 m depth in the northernmost
areas of the NW Atlantic show much lower values due to the
influence of ice cover (Watling et al., 2013). For instance, glacial
meltwater has had a large impact on freshwater inputs to the
NW Atlantic, where increasingly large seasonal fluxes have been
observed (Belkin, 2004).

The occurrence of CWCs in the NE Atlantic has been
correlated in some areas with water density, a parameter defined
by salinity and temperature (Dullo et al., 2008; Davies et al., 2010).
Living L. pertusa reefs were firstly delimited to a narrow water
density envelope (potential density; σθ = 27.35–27.65 kg m−3),
which further studies in other North Atlantic regions proved
to be larger than initially suggested (σθ = 27.1–27.84 kg m−3;
Davies et al., 2010; Huvenne et al., 2011; Kenchington et al.,
2017). This highlights the importance of physical conditions for
CWCs growth and distribution, and the role of intermediate
water masses limiting these boundaries (Mortensen et al., 2001;
Bryan and Metaxas, 2006). Another example is the presence of
a peak in the number of deep-sea taxa in the depth range (800–
1300 m) where MOW is often found (Schönfeld and Zahn, 2000),
with variations in near-bottom MOW current strength linked to
abundance variability (Zenk and Armi, 1990).

Salinity changes during larval stages of benthic organisms
are likely to significantly affect their survival rates (Pechenik,
1999). Although this topic is scarcely investigated, experimental
work conducted with L. pertusa demonstrated that larvae can
survive at salinities as low as 25 for long periods of time (up
to 10 months) and cope with changes in salinity of up to
five units (Strömberg and Larsson, 2017). Vertical migration
of Lophelia larvae were also observed in aquaria (Strömberg
and Larsson, 2017), suggesting that in nature, Lophelia larvae
may migrate to the surface, where they would likely be exposed
to a wide range of salinities and water densities and may
cross water mass boundaries (Strömberg and Larsson, 2017).
In contrast, other experiments with shallow water invertebrates
(e.g., mussels, starfish, and sea urchins) revealed that the presence
of haloclines inhibit larvae vertical migration (Sameoto and
Metaxas, 2008). Thus, this high plasticity to salinity gradients and
the great longevity of L. pertusa larvae could facilitate the wide
geographical dispersal range and distribution for this species.
Whether this versatility is shared by other deep-sea species due
to selective pressure for broad scale dispersal remains to be
investigated and could shed light on the role of currents and water
masses on connectivity patterns.

Currents and Food Supply
Food availability is one of the main drivers related to the
occurrence, distribution abundance and diversity of deep-sea taxa
(Tittensor et al., 2011; Pape et al., 2013; Pusceddu et al., 2016).
The vertical flux of organic matter from surface waters to the sea
floor (∼1–10 g C org·m−2

·yr−1; Glover and Smith, 2003; Watling
et al., 2013) is the principal food source for most of the deep-
sea organisms below 200 m (Davies et al., 2009; Wagner et al.,
2011). For instance, the carbon of CWCs skeletons is mainly
derived from this surface organic carbon (Griffin and Druffel,
1989; Sherwood et al., 2005; Roark et al., 2009).
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Food particles are also transported laterally by advective
fluxes, facilitating the expansion in the distribution of deep-sea
taxa to areas not located beneath regions with high primary
production (Davies et al., 2009; Mienis et al., 2009; Hebbeln
and Wienberg, 2016). Thus, the occurrence of deep-sea benthic
suspension feeders, such as CWCs and sponges, is frequently
associated with highly hydrodynamic environments (Mohn et al.,
2014). These areas are characterized by strong current velocities,
with ∼15 cm·s−1 on average (Duineveld et al., 2007; Davies
et al., 2009; Mienis et al., 2012b; Khripounoff et al., 2014) but
peaking up to 80 cm·s−1 (Davies et al., 2009), that enhance
particle suspension (Mienis et al., 2007; Roberts et al., 2009a;
White and Dorschel, 2010; Khripounoff et al., 2014; van Haren
et al., 2014) and prevent burial by sediments (White et al., 2005;
Roberts et al., 2006; Mienis et al., 2007). Cold-water corals in
particular seem to prefer areas with periodically varying flow
speeds (Ruggeberg et al., 2007; Davies et al., 2009; Mienis et al.,
2012a; van Haren et al., 2014), which allow high food supply
during the peak current period and high capture rates under
low flow (Purser et al., 2010; Orejas et al., 2016). To maximize
encounter rates with food particles, CWCs can adjust their
colony morphologies to face into the prevailing bottom current
(Mortensen and Buhl-Mortensen, 2004; Roberts et al., 2009a).
Intensified hydrodynamics are also associated with unique
current patterns, such as recirculation gyres, or topographically
steered currents like water cascading in submarine canyons
(Canals et al., 2006; Palanques et al., 2006; Mulder et al.,
2012; Khripounoff et al., 2014), and collision of water masses
against seamounts (Genin and Dower, 2007; White et al., 2007a;
Lavelle and Mohn, 2010). These areas are usually hot-spots for
CWCs and sponges (Thiem et al., 2006; Rowden et al., 2010;
Huvenne et al., 2011; Wagner et al., 2011; Howell et al., 2016;
Serrano et al., 2017a).

The boundaries between water masses can also help to
redistribute and pump the suspended food particles to deeper
ecosystems (White et al., 2005, 2007b). Internal waves can occur
at the interface of two water masses with different densities
as well as along the pycnocline (Dorschel et al., 2007; Mienis
et al., 2007; Wienberg et al., 2009; Pomar et al., 2012). For
example, coral mounds in the Campeche Bank (Gulf of Mexico)
were formed only during interglacial periods when an interface
between the AAIW and the Tropical Atlantic Central Water
existed; since during glacial ones this boundary was replaced
by a vertically homogeneous water column (Matos et al., 2017).
Similarly, fossil records of coral mounds at the Porcupine
Seabight (NE Atlantic) indicate that mound aggradation was
active when the boundary between MOW and ENACW was
at a similar depth level as the mounds (Raddatz et al., 2014).
While current coral mounds are located in the permanent
thermocline between these two water masses (De Mol et al.,
2005; White and Dorschel, 2010). Occurrence of conspicuous
concentrations of deep-sea sponge grounds (Rice et al., 1990;
Klitgaard et al., 1997) and L. pertusa reefs (Frederiksen et al.,
1992) have been found on the upper slope all around NW Europe,
where the combination of a steep slope with the hydrographic
conditions cause internal waves that accelerate local currents
(Mienis et al., 2007).

Recent studies showed reciprocal feedback between the
occurrence of suspension feeders and the enhancement of food
supply in their inhabiting areas. It has been suggested that cold-
water sponges transform dissolved organic matter to particulate
forms, making it available to higher trophic levels (De Goeij
et al., 2013; Cathalot et al., 2015; McIntyre et al., 2016; Rix et al.,
2016). In addition, CWC framework and mounds areas have
more suspended particles than the surrounding coral rubble or
no-reefs areas (Guihen et al., 2013; Cathalot et al., 2015; Soetaert
et al., 2016; Van Oevelen et al., 2018).

Carbonate Chemistry
Carbonate chemistry influences marine organisms through its
critical role in mediating physiological reactions and determining
the availability of carbonate ions required for biocalcification
(Pörtner and Farrell, 2008; Doney et al., 2012). Deep waters are
characterized by low pH, resulting from microbial degradation
of organic matter, and low concentrations of carbonate ions
(Wenzhöfer et al., 2001; Perez et al., 2018). Therefore, deep-sea
calcifying organisms, such as, corals, mollusks, echinoderms and
bryozoans, may be particularly sensitive to changes in carbonate
chemistry (Guinotte et al., 2006; Doney, 2009; Wicks and Roberts,
2012). Calcium carbonate minerals in the oceans occur mainly
in the form of aragonite and calcite. Aragonite presents a
more resistant structure for high energy environments and it is
formed by scleractinian corals, some mollusks and bryozoans.
In contrast, calcite is less prone to dissolution and forms the
shells and skeletons of foraminifera, echinoderms, crustaceans,
calcareous sponges and most gorgonian corals (Ries et al., 2009;
Ries, 2010). However, both minerals dissolve at low carbonate ion
concentrations. Thus, the distributions of deep-sea ecosystem-
engineering organisms with carbonate skeletons, are largely
restricted to waters above the carbonate saturation horizon (SH;
Guinotte et al., 2006; Davies and Guinotte, 2011; Yesson et al.,
2012), i.e., those oversaturated for calcium carbonate minerals.
Other calcifying taxa, such as echinoderms, are found throughout
the world’s oceans, but are far less abundant or even absent in
undersaturated waters (Lebrato et al., 2010). The carbonate SH
in the North Atlantic is very deep, >2000 m (Guinotte et al.,
2006), but still constrains the distribution of multiple deep-sea
calcifying organisms.

Ocean absorption of anthropogenic CO2 has already reduced
natural pH values (∼0.12) since the preindustrial time (Hennige
et al., 2014) and the calcium carbonate saturation state (�;
Orr et al., 2005; Perez et al., 2018); affecting particularly
the intermediate and deep waters masses (Sweetman et al.,
2017). Therefore, multiple studies have already focused on the
impacts of ocean acidification (OA) in deep-sea organisms in
the last decade.

Experimental OA studies on corals, mollusks and
echinoderms, have predominantly showed reduced
growth/calcification in response to reduced pH in adults
and juveniles (Wicks and Roberts, 2012; Gazeau et al., 2013;
Wall et al., 2015). However, responses can be species-specific
or even region specific for a given taxa (Ries et al., 2009;
Gazeau et al., 2013; Maier et al., 2019). For instance, low
pH values (∼7.9–7.7) caused the deformation of skeletons
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in the CWC L. pertusa (Hennige et al., 2015; Wall et al.,
2015). Nevertheless, experimental studies using the CWCs
L. pertusa and M. oculata from the NE Atlantic and the
Mediterranean Sea showed that the two species were able to
calcify and grow in acidic and undersaturated conditions (Form
and Riebesell, 2012; Maier et al., 2013, 2019; Hennige et al.,
2014; Büscher et al., 2017). Also, Norwegian populations of
L. pertusa could maintain growth at low pH with elevating
feeding rates (Georgian et al., 2016). In contrast, L. pertusa
inhabiting low carbonate or undersaturated conditions in
the Gulf of Mexico and California showed great reductions
in calcification rates and increased skeletal dissolution
(Lunden et al., 2014; Georgian et al., 2016; Kurman et al.,
2017; Gómez et al., 2018). Thus, resilience to OA effects
might be related to adaptation in CWC, either genetic or
due to acclimation in early stages (Kurman et al., 2017).
The capacity of CWCs to cope with OA has been related to
their ability to increase internal pH at the site of calcification
(McCulloch et al., 2012a; Raybaud et al., 2017). However,
it remains unclear whether calcification can be sustained
indefinitely, as this is an energy demanding process (20–30%
of CWC energy budget; Cohen and Holcomb, 2009) and OA
also affects the coral metabolism (Hennige et al., 2014) and,
the loss of the tissue surrounding and connecting polyps
(Gammon et al., 2018).

Another important reported consequence of OA is the
dissolution of shells and skeletons exposed to corrosive low
pH seawater (Rodolfo-Metalpa et al., 2011; Doney et al., 2012).
The dissolution effect is more pronounced in dead carbonate
skeletons which lack the organic protective tissue, as observed
in different mollusk gastropods, CWCs (Tunnicliffe et al., 2009;
Rodolfo-Metalpa et al., 2011) and tissue-free portions of skeletons
of L. pertusa (Hennige et al., 2015; Wall et al., 2015). Therefore,
one of the most important predicted consequences of OA
is the dissolution and weakening of the reef framework that
may result in their structural collapse (Hennige et al., 2015;
Büscher et al., 2019).

The impact of OA on other ecosystem-engineering organisms,
such as octocorals or sponges, is still poorly known. Experimental
studies showed a reduction in calcification and growth in
Corallium rubrum (Cerrano et al., 2013), suggesting that
gorgonians may also be negatively affected by OA. However,
a study from the Southern Ocean found that, despite some
evidences of dissolution in gorgonians, many species thrive
in undersaturated conditions to at least −30% without major
impacts in skeletal structure or growth rates (Thresher et al.,
2011). The long-term acclimation to these conditions and
unlimiting food supply are thought to facilitate tolerance of
low-carbonate environments (Thresher et al., 2011). Calcareous
sponges are expected to suffer similar impacts than other
calcifying organisms under acidified conditions. However, most
sponges have siliceous spicules and therefore, are generally
more tolerant of OA and might even benefit from future
acidified conditions (Bell et al., 2018). The silica cycle in the
deep ocean is still not well understood (Ragueneau et al.,
2000) but the silica flux from surface to deep waters could
be strongly affected by OA (Petrou et al., 2019). However,

the dissolved silica from the spicule mats formed by the
sponges might be enough to build their new skeletal material
(Chu et al., 2011; Maldonado et al., 2017, 2019). The very
few studies on the impacts of OA in calcareous sponges,
mainly included shallow water species and short-term responses
(Goodwin et al., 2014; Morrow et al., 2015; Bates and Bell, 2018;
Bell et al., 2018). Despite the high tolerance to OA reported
(Goodwin et al., 2014; Morrow et al., 2015), species- specific
differences were found (Bell et al., 2018) resulting in negative
impacts on some sponges such as, mortality, tissue degradation
(Bates and Bell, 2018) or changes in the associated microbial
community (Bell et al., 2018). Bioeroding sponges have been
the major focus of the OA studies in this group since they are
potentially becoming more efficient under acidified conditions,
thereby, accelerating the weakening of CWC reef frameworks
(Wisshak et al., 2012, 2014). In addition to its important
role in biomineralization/dissolution processes, OA might also
lead to mortality, compromised reproduction (Verkaik et al.,
2017) and/or the development of early life stages of benthic
organisms (Kurihara, 2008; Dupont and Thorndyke, 2009; Byrne,
2011). Although synergic effects of OA and other factors have
been seldom studied for deep-sea taxa, the few published
studies suggest a great susceptibility of CWCs species to OA
in combination with warming and/or deoxygenation, with
decreased metabolic and calcification rates, increased skeletal
dissolution, and induced mortality (Lunden et al., 2014; Georgian
et al., 2016; Gori et al., 2016).

Oxygen Concentration
Most of the global ocean has DO values near saturation,
ranging from 2.5 ml·l−1 off SW Africa to 6 ml·l−1 in
the NW Atlantic (Watling et al., 2013). The highest DO
values are generally associated with the colder, deeper, and
more recently formed waters since DO solubility decreases
with increasing temperatures and is consumed during
degradation of organic matter. For instance, a drastic drop
in DO, from 6.85 to 5.40 ml·l−1was observed in the Galicia
Bank at MOW depths between 800 and 1200 m, which
is warmer than the surrounding ENACW and NADW
(Wienberg et al., 2009; Serrano et al., 2017a). Indeed, the
L. pertusa reefs in this area inhabit the MOW-ENACW
boundary (Somoza et al., 2014; Serrano et al., 2017a,b). The
majority of L. pertusa colonies found in the North Atlantic
coincide with a range of relatively low to moderate DO
values (∼1.5–5 ml·l−1), which occurs between 300 and 1600
m water depth (Davies et al., 2010; Somoza et al., 2014;
Brooke et al., 2017).

Most organisms are not very sensitive to variations in DO
until it drops below a certain threshold, when they suffer
from a variety of stresses related to reduced metabolic rates,
leading ultimately to death, if the low oxygen concentrations
remain for too long (Keeling et al., 2010). Thresholds for
hypoxia vary greatly between marine taxa (Vaquer-Sunyer and
Duarte, 2008), but when concentrations are above 1 ml·l−1,
effects on mega- and macrobenthic diversity are probably minor
(Levin and Gage, 1998).
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Hypoxic and anoxic conditions are common in all oceans
(Kamykowski and Zentara, 1990), varying from permanent zones
to gradients over geologic time (Reichart et al., 1998; Ramirez-
Llodra et al., 2010), seasonally varying areas (Guihen et al., 2018)
or episodic events (Rogers, 2000; Levin, 2018). These different
temporal scales drive different adaptations and tolerance levels in
benthic taxa. Extensive permanent hypoxic zones, where oxygen
is limiting for living organisms (Levin et al., 2001; Stramma et al.,
2010), occur at midwater regions (100–1200 m depth), being
present in the Atlantic only in the south basin, off Namibia
and Angola (Hebbeln et al., 2017; Hanz et al., 2019). These
oxygen minimum zones (OMZs; 0.2–0.5 ml·l−1) are formed
by microbial degradation of organic matter beneath highly
productive waters (Levin et al., 2001). For the bathyal fauna
in the Atlantic, hypoxia might have more influence on species
richness, while organic matter regulates species distribution and
community evenness (Levin and Gage, 1998). Thus, within
OMZs the mega- and macrofauna exhibit low species richness
and very high dominance, but dense aggregations at the edges,
where high organic matter fluxes and still suitable DO levels
may occur (Levin, 2003). While annelid species are prevalent
in the OMZ cores (Rogers, 2000; Soltwedel, 2000; Levin et al.,
2001; Ramirez-Llodra et al., 2010), taxa with calcified shells or
exoskeletons, such as echinoderms, crustaceans and mollusks,
tend to be absent (Rogers, 2000). Benthic organisms inhabiting
OMZs maximize the oxygen uptake through morphological
and physiological adaptations, such as: raised ventilation rates,
increased respiratory surfaces, reduced diffusion distances,
development of respiratory pigments, vertical migrations, or
enzymatic adaptation to anaerobic metabolism (Levin, 2003).
OMZs may also present a barrier, disrupting species distribution
or isolating populations across the inhospitable waters (Rogers,
2000). Thus, oxygen exerts tremendous control on marine
biodiversity mostly through thresholds effects on evolution,
physiology, reproduction, behavior, and species interactions
(Levin and Le Bris, 2015).

However, living colonies of calcified organisms such as the
CWCs L. pertusa and M. oculata have been found in South
Atlantic OMZs at DO levels of 0.6 and 1.1 ml·l−1, respectively
(Hebbeln et al., 2017; Hanz et al., 2019), drastically reducing
the previous limiting DO levels obtained by modeling and
experimentation (2.37 ml·l−1; Dodds et al., 2007; Davies et al.,
2008). The effect of hypoxia on the occurrence of L. pertusa when
food supply is high enough is difficult to be determined (Levin
and Gage, 1998; Freiwald, 2002; White et al., 2005; Roberts et al.,
2006). Nevertheless, recent studies in these OMZs suggest that
CWCs and the associated fauna may compensate unfavorable
conditions induced by low DO and high temperatures with
an enhanced food availability (Hanz et al., 2019). Experimental
research revealed that L. pertusa maintains constant rates of
oxygen consumption over a range of DO concentrations, and
colonies are able to survive short-time periods of anoxia (1 h) and
hypoxia (up to 96 h; Dodds et al., 2007). However, both oxygen
consumption and survivorship are sensitive to temperatures
(6.5–9◦C; Dodds et al., 2007). Indeed, oxygen consumption
of L. pertusa at 11◦C was 50% higher than that recorded at
9◦C (Dodds et al., 2007). Complete mortality of L. pertusa

nubbins has been observed at DO levels of 1.5 ml·l−1and 14◦C
(Lunden et al., 2014).

DEEP-SEA BENTHIC ECOSYSTEMS
SHAPED BY THE NORTH ATLANTIC
WATER MASSES

The biodiversity of VMEs and the biogeographical affinities in
deep-sea benthic communities can vary over space and time
due to regional and basin-scale changes in the oceanographic
conditions. On one hand, this section discusses local scale effects
through examples of how key water masses and oceanographic
processes affect VMEs at particular locations of the North
Atlantic. On the other hand, we also provide a larger scale
overview of the distribution of the main VMEs at a basin-scale
and the critical roles of water masses in the species distribution,
connectivity, endemicity and biodiversity patterns. We mainly
focused on ecosystem-engineering organisms such as CWC and
sponges, but more information on VME records across the North
Atlantic can be found in the open access databases of multiple
international organizations related to scientific, management and
conservation purposes (e.g., ICES, NOAA).

Cold-Water Coral Reefs and Gardens
Cold-water corals have a global distribution (Tittensor et al.,
2009; Yesson et al., 2012), being particularly well described
throughout the North Atlantic in both eastern (e.g, Roberts
et al., 2009a; Foubert et al., 2011; Buhl-Mortensen and Buhl-
Mortensen, 2014; Serrano et al., 2017b) and western basins
(e.g., Reed et al., 2006; Brooke and Schroeder, 2007; Buhl-
Mortensen et al., 2015; Hourigan et al., 2017). Aggregations
of CWCs have previously been described as either “reefs”
or “coral gardens” (OSPAR, 2008). Coral gardens can consist
of very different species and groups of corals inhabiting the
seafloor in close spatial proximity (Rossi et al., 2017), and
are very often found to be dominated by gorgonians, bamboo
corals (Octocoral, Alcyonacea) and/or black corals (Hexacorallia,
Antipatharia; ICES, 2007; OSPAR, 2008). Their flexible skeletons
and the arborescent vertical development of many of these
species give them the appearance of “animal forests” (Rossi
et al., 2017). In contrast, Scleractinians (also known as stony
corals) often occur at relative high densities or develop reefs with
multigenerational growth that might produce sizable calcium
carbonate structures over time (Rossi et al., 2017). There are few
scleractinian CWCs that build reefs and L. pertusa, being one of
the main reef-building organisms in the deep-sea (Figure 2), is
the most ubiquitous and studied species in the North Atlantic.
Overall, the distribution of CWCs have been mainly correlated
with water temperature and highly hydrodynamic areas (e.g.,
Frederiksen et al., 1992; Davies et al., 2009; Buhl-Mortensen et al.,
2015). In particular, L. pertusa reefs are present in waters with
salinities higher than 34 and temperatures between 4 and 12◦C,
corresponding to depths as shallow as 100 m at high latitudes
(Mortensen et al., 2001; Dullo et al., 2008; Buhl-Mortensen
et al., 2015) but down to 1200 m in other continental margins
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FIGURE 2 | Images showing the diversity of Vulnerable Marine Ecosystems,
including cold-water coral reefs, coral gardens and sponge grounds, at
different locations across the North Atlantic Ocean. (A) Astrophorid sponge
ground typical of the Davis Strait area (2500 m), credit: Department of
Fisheries and Oceans, Canada. (B) Cold-water coral reef dominated by
Madrepora oculata, with scarce colonies of Lophelia pertusa and black corals
(Antipathes dichotoma) at Gazul mud volcano (380 m, northern Gulf of Cadiz),
credit: Instituto Español de Oceanografía, INDEMARES project. (C) Lophelia
pertusa reef from Logachev Mounds (600 m, Rockall Bank), credit: J.M.
Roberts, University of Edinburgh (Changing Oceans Expedition 2012, RRS
James Cook cruise 073). (D) Coral garden formed mainly by Narella versluysi
and N. bellisima with some Hexactinellid sponges (1000 m) in the Formigas
seamount (Azores), credit: MEDWAVES, ATLAS project. (E) Cup corals
(Desmophyllum dianthus), Solenosmilia variabilis, bivalves (Acesta
cryptadelphe), a brisingid seastar (Novodinia sp.), and an octopod in a
consolidated mud wall (1300 m) at Norfolk Canyon, credit: Steve Ross.
(F) Coral garden of white and red Paragorgia arborea in Baltimore Canyon
(430 m), credit: Steve Ross.

(De Mol et al., 2002) and canyons (De Mol et al., 2011; Hourigan
et al., 2017; van den Beld et al., 2017).

The MOW seems to represent one of the main water masses
driving the distribution of CWCs across the NE Atlantic (Dullo
et al., 2008; Somoza et al., 2014), promoting connectivity by
the natural export of Mediterranean species and populations
(Henry et al., 2014; Arnaud-Haond et al., 2017; Boavida et al.,
2019). Several studies noted the presence of deep-sea suspension
feeding species previously known only from the Mediterranean
(e.g., the sponges Geodia anceps, Coelosphaera cryosi, and Petrosia
raphida) at NE Atlantic locations, such as the Gulf of Cadiz
(Spain; Palomino et al., 2016; Sitjá et al., 2018). This area is
dominated by aggregations of scleractinians and gardens of large
gorgonians and black corals (e.g., M. oculata, Acanthogorgia
spp., Antipathes dichotoma, Leiopathes glaberrima; Figure 2) with
particular locations, such as Gazul mud volcano, representing
a biodiversity hotspot with more than 400 associated species
(Rueda et al., 2016; Ramalho et al., 2018; Sitjá et al., 2018).
The current distribution of living L. pertusa and M. oculata
in the canyons of the Bay of Biscay coincides with the lower
limit of the boundary between the ENACW and the MOW

(De Mol et al., 2011), as does the distribution of carbonate
mounds and CWC reefs in the Porcupine Seabight (De Mol
et al., 2002, 2005; White and Dorschel, 2010) and other contourite
systems in the NE Atlantic (Van Rooij et al., 2007a,b; Hernández-
Molina et al., 2009). Indeed, the intensification of currents and
the increased flow of MOW into the NE Atlantic after the last
glacial period, mentioned in the previous section, is thought to
have allowed Mediterranean CWCs to recolonize the Porcupine
Seabight (De Mol et al., 2005; Henry and Roberts, 2008; Henry
et al., 2014). This hypothesis was also supported by genetic data
for L. pertusa (Henry et al., 2014; Boavida et al., 2019). It may
also hold true for M. oculata, although this species shows a more
complex pattern of genetic differentiation. This suggests multiple
refugia at the origin of the post-glacial recolonization of the NE
Atlantic, as well as stronger present day barriers to connectivity
(Boavida et al., 2019).

Biogeographic regions or affinities are also related to water
mass properties (McClain and Hardy, 2010; Watling et al.,
2013). Faunistic communities in the Galicia Bank (NW Spain)
encompass Macaronesian, Mediterranean, NE and NW Atlantic
species, due to the confluence of different intermediate and deep
water masses in the area (Ruiz-Villarreal et al., 2006; Cartes
et al., 2013). The afore mentioned turbulent ENACW-MOW
boundary might allow the transport of coral larvae along the NE
Atlantic margins (Somoza et al., 2014). At the Mid Atlantic Ridge,
the Azores region hosts an exceptional biodiversity of CWCs
(Figure 2), mostly gorgonians (75% of the octocoral species
of European waters), with a greater affinity to the Lusitanian-
Mediterranean biogeographic region (71% shared species) and
to a lesser extent to the NW Atlantic (Braga-Henriques et al.,
2013; Sampaio et al., 2019). The presence of multiple intermediate
and deep water masses (NACW, subpolar origin waters, MOW,
AAIW, NADW; Johnson and Stevens, 2000; Amorim et al.,
2017) along the slopes of many seamounts are hypothesized
to shape composition and bathymetrical distribution of coral
gardens in the Azores (Braga-Henriques et al., 2013). Braga-
Henriques et al., 2013 reported maximum Antipatharian diversity
at 400–500 m coinciding with the cold and less dense NACW;
whilst the maximum diversity of Alcyonacea (e.g., Viminella
flagellum, D. meteor, Callogorgia verticillata, and A. armata)
occurs at 500–600 m coinciding with the less saline subpolar-
origin waters. The maximum diversity of Scleractinians (e.g.,
Caryophyllia cyathus, M. oculata, and L. pertusa) occurs at 500–
800 m and for Stylasteridae (e.g., Errina dabneyi) at 800–1000 m,
which appear to be more diverse and abundant where the saltier
and warmer MOW waters occur. It should be noticed, however,
that this pattern was based mostly on corals collected as bycatch
from longline fishing.

In the NW Atlantic, a L. pertusa reef was recently discovered
in the Davis Strait area (Kenchington et al., 2017) on a steep slope
with relatively stable bottom temperature, the highest salinities
at intermediate depths (800–900 m) and exceptional persistently
high currents of >15 cm s−1 at 1000 m. Signals of consistent
vertical and horizontal transport over the reef area likely arose
through a combination of local convection from the surface
and advection of cooled and freshened waters at depth from
the Irminger Sea to the east (Kenchington et al., 2017). Further
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to the south, in the Flemish Cap, biodiversity patterns of trawl
caught invertebrates, including CWCs, were associated with the
intensity of long-term trawling effort (NAFO, 2018). But also, the
presence of the warmer NAC supports higher diversity in Flemish
Cap areas under the influence of this water mass (NAFO, 2018).
Whether the NAC supports higher diversity only by warming the
bottom water or also through the northward transport of larvae
from richer biogeographic regions in the south remains unclear.

Finally, the Gulf Stream mainly influences the oceanography
of much of the southern part of the NW Atlantic, delimiting
a biogeographic latitudinal boundary between warm-temperate
and cool-temperate regions, particularly in the vicinity of Cape
Hatteras (offshore North Carolina, United States). This is a
transition region for many faunal groups, particularly fish and
corals, which reach their southern and northern limits in this area
(Ross and Quattrini, 2007; Obelcz et al., 2014; Csa Ocean Sciences
et al., 2017). Off Nova Scotia (Canada) and the Mid-Atlantic
Bight (United States), CWCs occur (Buhl-Mortensen et al., 2015;
Csa Ocean Sciences et al., 2017) mainly in areas influenced by
warm southwestward meanders of the Gulf Stream (Mienis et al.,
2014). Similarly to the NE Atlantic, L. pertusa re-established at∼7
kya in the NW Atlantic, in the Cape Lookout area (offshore North
Carolina, United States), after a glacial period (Hebbeln et al.,
2019). Ocean surface productivity and deep-sea temperatures
reached interglacial levels several thousand years earlier, but did
not facilitate L. pertusa to return to this area. Only the dramatic
increase of the hydrodynamics∼7 kya was likely to have enabled
the return of this CWC (Matos et al., 2015). The intrusion of the
Gulf Stream into the upper slope and the consequent increase of
food supply is assumed to have promoted the re-establishment of
L. pertusa (Matos et al., 2015; Hebbeln et al., 2019).

Deep-Sea Sponge Grounds
An intriguing feature of invertebrate communities in the deep-
sea of the North Atlantic is the occurrences of large-sized
(massive) sponges which form distinct habitats referred to as
sponge grounds. One of the first reports of these habitats
was by Rice et al. (1990), who observed dense aggregations
(density values ∼1.5 ind·m−2) of the hexactinellid Pheronema
carpenteri (Figure 2) in the Porcupine Seabight (NE Atlantic).
Subsequently, records of sponge grounds came both from the
eastern (e.g., Klitgaard and Tendal, 2004; Howell et al., 2016;
Roberts et al., 2018; Kazanidis et al., 2019) and western deep
North Atlantic (e.g., Murillo et al., 2012, 2016a, 2018; Knudby
et al., 2013; Kenchington et al., 2014; Beazley et al., 2018).
These included records not only of hexactinellids, but also of
demosponges and especially those from the family Geodidae
(Order Astrophorida, commonly known as ostur; Figure 2).
Specifically, extensive studies in the NE Atlantic by Klitgaard
and Tendal (2004) revealed two types of ostur: firstly, a boreal
ostur dominated by G. barretti, G. macandrewi, G. atlantica,
Isopsphle graei, Stryphnus ponderosus, and Stelletta normani
found at the Faroe Islands, Norway, Sweden, Barents Sea, and
Iceland. Secondly, a cold water ostur characterized by the same
genera but represented by different species, i.e., G. mesotriaena,
I. graei pyriformis, and S. rhaphidiophora found north of Iceland,
Denmark Strait, East Greenland, and north of Spitzbergen.

Cárdenas et al. (2013) supported the observations of boreal and
arctic species of geodids put forward by Klitgaard and Tendal
(2004) and extended the description to the full North Atlantic.

The species composition of deep-sea sponge grounds in the
NW Atlantic, from Davis Strait to Flemish Cap (Murillo et al.,
2012, 2016b, 2018), is similar to the boreal sponge grounds
described by Klitgaard and Tendal (2004) for the NE Atlantic,
while arctic astrophorids are found in southern Baffin Bay
(Murillo et al., 2018). Dense aggregations of a globally unique
population of the glass sponge Vazella pourtalesii is found on the
Scotian Shelf over large spatial scales (Beazley et al., 2018). Glass
sponges are also common on the walls of submarine canyons
in the Mid-Atlantic Bight (Csa Ocean Sciences et al., 2017). In
contrast, glass sponge grounds formed by P. carpenteri form
extensive aggregations in the NE Atlantic. Further south in the
NE Atlantic, the Gorringe Bank (SW off Portugal coast) is a
hotspot for demosponge fauna (Xavier and Van Soest, 2007).
The influence of the Azores current and the MOW in this area
and the presence of several seamounts, allows the presence of
demosponge assemblages with a wide Atlanto – Mediterranean
distribution (61%) together with highly endemic (28%) species
(Xavier and Van Soest, 2007).

Hydrography plays an important role in shaping the
distribution of these dense sponge grounds, and several authors
have noted the association of sponges with particular water
masses due to their temperature and salinity characteristics or
the hydrodynamic conditions, such as tides and internal waves,
which enhance the food supply (Bett, 2001; Klitgaard and Tendal,
2004; Murillo et al., 2012; Beazley et al., 2015, 2018; Roberts
et al., 2018; Davison et al., 2019; Kazanidis et al., 2019). For
example, in the continental margin offshore of Newfoundland
(eastern Canada), there is evidence for a relationship between
dense sponge aggregations with a warm (∼3.0–3.5oC), and salty
(∼34.85–34.90), water mass that occurs between ∼1300 and
1723 m depth and is thought to be a remnant of the Irminger
Current (Beazley et al., 2015). Modeling work to predict the
presence of deep-sea sponge grounds concluded that depth
and bottom minimum salinity were major predictors of the
distribution of sponge grounds in these areas (Knudby et al.,
2013). As in the Flemish Cap area, boreal geodiid species in Davis
Strait and Baffin Bay (NW Atlantic) were associated with the
presence of water transported in the Irminger Current (Figure 1),
while the Arctic geodiids were associated with Baffin Bay Deep
Water between 1200 and 1800 m depth, and Baffin Bay Bottom
Water > 1800 m. This association of boreal sponge grounds
with Irminger Water in the areas mentioned above, points to
it being a major determinant of distribution, with the NAC
and its branch, the Irminger Current, providing a connectivity
pathway between the NE and NW Atlantic (Bersch et al., 1999),
potentially explaining the basin-scale distribution of some of
these species. As the NAC and Irminger Currents (Figure 1) are
integral to the AMOC (Cuny et al., 2002), any changes in this
circulation may impact the distribution of deep-water sponges.
Interestingly, geodiid sponge grounds off the Flemish Cap and
Grand Banks have persisted for the last 130 kya (Murillo et al.,
2016a), despite large shifts in water mass structure alternating
between the warmer Atlantic waters and the cooler Labrador
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Current. Murillo et al., 2018 further noted that the structure-
forming Geodia species were found in areas with high primary
production and fast currents that would provide the high food
supply needed to reach their large biomasses. The importance
of current regime and interactions between water masses has
also been shown for the Faroe-Shetland Channel deep-sea sponge
aggregations (Kazanidis et al., 2019), the Arctic sponge ground on
the Schultz Seamount (Arctic Mid-Ocean Ridge; Roberts et al.,
2018) and deep-sea aggregations of hexactinellids in the NE
Atlantic (Rice et al., 1990; Barthel et al., 1996).

FUTURE WATER MASS PROPERTIES IN
THE NORTH ATLANTIC

The occurrence of CWCs reefs and gardens (Mortensen et al.,
2001) and sponge grounds (Murillo et al., 2012; Beazley et al.,
2015; Howell et al., 2016) have been tightly related to water mass
properties and circulation (e.g., Davies et al., 2009; Mohn et al.,
2014; Kenchington et al., 2017; Lacharité and Metaxas, 2018) as
well as the forcing of climate conditions such as glacial periods,
the presence and strength of fronts, etc. (e.g., Frank et al., 2011;
Montero-Serrano et al., 2011; Hebbeln et al., 2019). However,
climate models forecast that anthropogenic climate change will
modify circulation patterns and fluxes, energy flow and water
mass properties of the Atlantic Ocean by 2100 (Mora et al.,
2013; Rahmstorf et al., 2015; Sweetman et al., 2017; Osman et al.,
2019). A 25% weakening of the AMOC is predicted, and although
a collapse of the AMOC is thought unlikely, it has not been
excluded (Schmittner, 2005; Liu et al., 2018; Thornalley et al.,
2018). The deep ocean is already experiencing changes in physical
and chemical properties due to warming, OA or deoxygenation,
which are predicted to impact deep-sea ecosystems (Levin and Le
Bris, 2015; Johnson et al., 2018).

Based on the projections of Mora et al. (2013); Sweetman
et al. (2017), and Morato et al. (2020), which used all available
data generated by Earth System Models (Earth System Grid
Federation, 2019), we reviewed the forecasted changes in the
water mass properties at the seafloor in the deep North
Atlantic (20◦–70◦ N and 78◦ W–10◦ E). Namely, we evaluated
how potential temperature at the seafloor (◦C), particulate
organic carbon (POC) flux at 100 m depth (mg C·m−2

·d−1),
DO concentration at the seafloor (ml·l−1) and pH at the
seafloor, and were forecasted to change from 1951 to 2000
(historical simulation) to 2081–2100 (RCP8.5 or business-as-
usual scenario). The POC flux at the seafloor was calculated
was calculated based on CIMP5 ocean biogeochemical nutrient–
phytoplankton–zooplankton– detritus models (Fu et al., 2016)
and the Martin curve (Martin et al., 1987) with an export
depth set to 100 m. Forecasted changes in aragonite and calcite
� at the seafloor, as described in Morato et al. (2020), were
also evaluated here. The multimodel averages of the projections
of water mass properties based on all available Earth System
Models ensure the highest possible precision and accuracy of
the predictions (Mora et al., 2013). Further details of projections
and model performance can be found in Mora et al. (2013).
It is important to note that the business-as-usual scenario is

the IPCC worst-case scenario where greenhouse gas emissions,
world population growth and technology development (Riahi
et al., 2011) continuously increase. Consequently, the projected
future water mass properties are the most extreme forecasts and
present greater uncertainty than other intermediate scenarios.
Nevertheless, these forecasts and their possible consequences for
VMEs in the North Atlantic are critical for decision-makers for
the development of long-term sustainable management plans
(Rheuban et al., 2018).

Global warming due to the influx of CO2 to the atmosphere
increased ocean temperatures both in surface and deep waters
(Purkey and Johnson, 2010; Levitus et al., 2012). The average
global temperature of the upper ocean (0–2000 m) has already
warmed by∼0.09◦C between 1955 and 2010 (Levitus et al., 2012).
Recent climate models forecast an average 0.76◦C temperature
increase at bathyal depths but with no major changes in the
abyss by 2100 (Table 1). However, some northern areas of the
North Atlantic will experience an increase in temperature >1◦C
or >2◦C (Figure 3), with the largest increases in temperature in
the upper and intermediate bathyal layers (Table 1). In contrast,
a large bathyal area between the Azores and Iceland has been
forecasted to experience a decrease in seafloor temperatures of
∼0.7◦C (Figure 3). This is one of the few areas in the world’s
oceans where seafloor temperatures are predicted to decrease
instead of increase.

Enhanced warming of the upper ocean, stratification and
OA is expected to reduce the export flux and quality of POC
that reaches the seafloor (Smith et al., 2008; Jones et al., 2014;
Sweetman et al., 2017). On average, most of North Atlantic
bathyal seafloor is not currently food limited (POC flux > 10 mg
C·m−2

·day−1; Table 1 and Figure 3). However, the POC flux
is predicted to decrease by 2100 up to 40% in the continental
margins and critically to reduce by >50% in the central-eastern
Atlantic (Figure 3).

The deep North Atlantic is the most alkaline of the world
oceans (Sweetman et al., 2017) with present-day pH values
ranging on average from 7.91 to 8.14 (Figure 4 and Table 1).
Model predictions indicate that pH at the seafloor will further
decrease by ∼0.2 in the bathyal zone, with smaller changes in
the abyss (Figure 4 and Table 1). The greatest reduction in
pH (>0.3) is expected at higher latitudes (Figure 4) in waters
shallower than 1000 m, as a result of the subduction of high-CO2
waters via the AMOC (Gehlen et al., 2014; Sweetman et al., 2017;
Perez et al., 2018).

Large decreases in the carbonate � have been predicted
worldwide (Orr et al., 2005), with severe changes in the
North Atlantic (Perez et al., 2018). Present-day aragonite �
in the North Atlantic varies greatly with depth (Figure 4).
In general, bathyal depths are supersaturated, while abyssal
areas are undersaturated (Table 1). However, aragonite � is
expected to decrease by ∼32% above 3000 m depth and by
∼8% at the bathyal seafloor (Table 1). Thus, most of the deep
North Atlantic will become undersaturated in aragonite by
2100 (Figure 4). On average, the aragonite SH will shoal by
∼800 m to depths of around 3000 m in the western North
Atlantic, and by ∼1500 m to depths of 2000 m in the central
and eastern North Atlantic (Figure 4). Shoaling will be greater
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FIGURE 3 | Present and future scenarios predicted for temperature, particulate organic carbon (POC) flux and dissolved oxygen at the seafloor in the North Atlantic
Ocean. Changes, as increment (1) between periods, were measured as the difference between present-day and the modeled conditions by 2100. Areas with critical
changes in the values of a given water mass property are highlighted.

in the northernmost areas moving aragonite SH to depths as
shallow as 200 m. Areas deeper than 3000 m will experience
smaller changes (Figure 4). Most of the North Atlantic seafloor
is also currently supersaturated in calcite, except for areas
below 5000 m (Table 1 and Figure 4). Similar reductions are
expected for calcite � in the bathyal and abyssal areas, but with
most of the seafloor remaining supersaturated. The calcite SH
will shoal to 4500 m in the southernmost parts of the North
Atlantic (Figure 4).

Ocean warming also causes the loss of DO in ocean waters,
through reduced solubility, intensified biological respiration,
and increased stratification of water masses (Keeling et al.,
2010; Levin, 2018). The open ocean has already lost on
average 2% of DO since the preindustrial era, particularly
in intermediate waters between 100 and 1000 m depth
(Stramma et al., 2010; Bopp et al., 2013; Levin, 2018). Model
simulations forecast that most of the seafloor below 200 m is
currently well oxygenated (>5 ml·l−1; Figure 3 and Table 1).
A slight decrease of ∼5% in both abyssal and bathyal zones

is expected by 2100 (Figure 3 and Table 1). A maximum
decrease of 10% in DO will occur in northernmost areas
(Figure 3), but no moderately (∼1.5 ml·l−1) or severely
(< 0.5 ml·l−1) hypoxic conditions are expected in the North
Atlantic in the future.

RISKS AND IMPACTS OF FUTURE
ENVIRONMENTAL SCENARIOS IN
DEEP-SEA BENTHIC ECOSYSTEMS

The assessment of ecologically critical climate conditions requires
an understanding of how climate (i.e., environmental conditions)
drives biological responses (see section Water Mass Properties
as Drivers of Deep-Sea Biodiversity and Biogeography), forecasts
of how climate will change (see section Future Water Mass
Properties in the North Atlantic), and an identification of
where those critical climate changes will occur (Diffenbaugh and
Field, 2013). To contribute to this discussion, we built maps
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FIGURE 4 | Present and future scenarios predicted for pH and aragonite and calcite saturation states at the seafloor in the North Atlantic Ocean. Changes, as
increment (1) between periods, were measured as the difference between present-day and the modeled conditions by 2100. Areas with critical changes in the
values of a given water mass property are highlighted.

of cumulative critical changes. Cumulative critical changes were
assumed to be (1) temperature increases >1◦C (Figure 5A) or
>2◦C (Figure 5B; IPCC, 2014), (2) POC flux reductions >40%
(Figure 5A) or >50% (Figure 5B; Mora et al., 2013; Sweetman
et al., 2017), (4) pH reductions >0.3 (IPCC, 2013), and (4) new
areas where aragonite and (5) calcite saturation was reduced to
levels <1 (Caldeira and Wickett, 2003; Orr et al., 2005). Two
values of critical changes were adopted for temperature and
POC flux reduction because of the uncertainty about the degree
of change that is critical for the survival of deep-sea benthic
communities. Maps of cumulative critical changes were produced
by identifying how many of the five water mass properties will
change to the afore mentioned critical water mass properties
at a certain cell. Most abyssal areas of the North Atlantic are
forecasted to experience critical environmental changes affecting
deep-sea benthic biodiversity (Figure 5). Northern areas, such
as the Labrador Sea, Davis Strait and Western Greenland, will
experience critical changes of pH, aragonite saturation and
temperature (Figure 5). The NE Atlantic region close to the Bay
of Biscay will experience changes in aragonite, pH, and POC flux.

Several regions will also experience critical changes of at least
two parameters. A large area of the Azores is expected to present
critical changes in aragonite saturation and POC flux, while the
NW Atlantic will face critical changes in aragonite saturation or
temperature (Figure 5).

Climate models forecast that the deep seafloor at high
latitudes of the North Atlantic is likely to experience warming
of 2◦C. Despite many CWC reefs occurring in these regions,
temperature is not expected to exceed the range (4–12◦C)
where L. pertusa is generally found in the North Atlantic
(Gass and Roberts, 2006; Roberts et al., 2009b), nor exceed the
mortality temperatures reported, >14◦C (Brooke et al., 2013;
Lunden et al., 2014). Warming is more likely to impact CWCs
living close to their upper temperature limit of physiological
tolerance (e.g., Gulf of Mexico; Brooke et al., 2013; Lunden
et al., 2014, and the Mediterranean Sea; Gori et al., 2016).
In addition to increased average temperatures, marine heat
waves are already becoming more frequent under climate
change conditions (Frölicher et al., 2018), causing devastating
impacts on marine ecosystems and/or even mass mortality
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FIGURE 5 | Predicted cumulative critical changes in seafloor conditions in the
North Atlantic Ocean by 2100. Critical conditions include temperature
increase of (A) >1◦C or (B) >2◦; particulate organic carbon (POC) flux
reduction of (A) >40% or (B) >50%; pH reduction >0.3 and aragonite and
calcite saturation levels <1. Dissolved oxygen will not likely achieve hypoxic
conditions values <1.5 ml·l-1 in 2100 so it was not included.

events (Guihen et al., 2012; Cavole et al., 2016; Frölicher and
Laufkötter, 2018). Despite the tendency of marine heatwaves to
mainly propagate in surface waters, they might impact deep-
sea ecosystems as well, particularly in the northernmost areas of
the North Atlantic, where CWCs and sponges inhabit shallower
waters due to the colder conditions.

Some scleractinian CWC species are able to calcify and grow
under warmer conditions (1 3–4◦C), even when combined with
acidified waters (Hennige et al., 2014; Büscher et al., 2017; Maier
et al., 2019). However, the energetic cost of these process in
such conditions may diminish other biological and physiological
processes, or prevent sustained growth over long-term periods
(Dodds et al., 2007; Hennige et al., 2015). This is particularly
true when combined with aragonite undersaturation and low
food conditions. Thus, the resilience of CWCs to warming
and acidification may be reduced in areas with limited food
(McCulloch et al., 2012b), compromising coral metabolism and
even the survival of corals (Maier et al., 2016).

The predicted shoaling of the aragonite SH is expected to
lead to a loss of suitable habitat for slow-growing reef-forming
CWC species (Davies and Guinotte, 2011; Perez et al., 2018),
which are commonly found at aragonite SH depth at present-
day (Guinotte et al., 2006; Davies and Guinotte, 2011). According
to model simulations, during the pre-industrial period, 87% of
CWC reefs were surrounded by aragonite oversaturated waters,
while projections for 2100 suggest that around 73% of these reefs
will suffer from undersaturated waters (Guinotte et al., 2006;

Zheng and Cao, 2014). Scleractinian CWCs in the NE Atlantic
are predicted to be particularly vulnerable to OA since they are
mainly formed by aragonite, with 75% of CWCs below 1000 m
being exposed to aragonite undersaturated waters by 2060 under
the “business as usual” RCP 8.5 scenario (Perez et al., 2018).
According to climate models forecasts, northern areas within the
Reykjanes Ridge below 1000 m and Davis Strait and western
Greenland as shallow as 200 m may be exposed to corrosive
(i.e., aragonite understaturated) waters in the future. Despite the
apparent physiological resilience of CWCs to OA, how OA or
the high energetic cost for adaptation will affect other important
physiological processes, such as reproduction, is still unknown.
The long-term survival of reefs may be impaired by the chemical
dissolution and biological erosion of the unprotected tissue of the
reef framework exposed to corrosive waters (Hennige et al., 2015;
Schönberg et al., 2017; see also section Water Mass Properties
as Drivers of Deep-Sea Biodiversity and Biogeography). The
balance between construction and erosion processes ultimately
determines if the reef will grow or recede (Schönberg et al., 2017).
Shifts toward net negative balances may lead to loss of reef growth
potential, reef structural collapse, and diminished ecosystem
service provisioning such as nutrient cycling, carbon storage and
habitat provision, with severe consequences such as the loss of
biodiversity associated with these ecosystems (Rossi et al., 2019).

This shoaling of aragonite undersaturated waters and the
resultant reduction of habitat suitability for L. pertusa in the
NW Atlantic due to OA can also have important consequences
on the connectivity pathway between the NW and NE Atlantic
populations (Kenchington et al., 2014). However, most of the
large living CWCs reefs and banks on the Atlantic coast of
USA occur in waters shallower than 1000 m depth and some
in the NE Atlantic above 200 m (e.g., Mingulay reef complex,
Rockall Bank on the UK continental shelf, CWC reefs on the
Norwegian shelf), which will not be subjected to corrosive
waters. Thus, those might provide a refuge for important habitat-
building species such as L. pertusa in the North Atlantic. The
conservation of these VMEs within Marine Protected Areas
(Johnson and Kenchington, 2019) where for example trawling
is banned, provides additional support to ensure the long-
term survival of these habitats under regional predictions of
85% CWC loss due to aragonite SH shoaling for this area of
the NE Atlantic (Jackson et al., 2014). Deep-sea ecosystems
in more southerly locations of the North Atlantic (e.g., Cape
Cod, the Azores or the Bay of Biscay) are located above the
aragonite SH shoaling depths predicted for 2100 and will thus
be protected from corrosive waters. However, as suggested from
several experimental studies, reduction of pH even continuing
within supersaturated water, might also negatively impact CWCs
and gorgonians growth (Maier et al., 2009; Bramanti et al., 2013;
Gómez et al., 2018).

The model forecasting suggests large reductions in POC fluxes
in areas where shoaling of the aragonite SH and warming is
also expected, including Iceland, Greenland and Eastern Canada,
where the northernmost populations of L. pertusa are found.
This will likely reduce the biogeographic distribution of this reef-
forming species. The reductions in POC can have extreme effects
in areas such as the Azores, where food availability is already
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limited (Jones et al., 2014). In particular, seamount features, such
as the many seamounts in the northern Mid-Atlantic Ridge, are
projected to experience large declines in POC fluxes and benthic
biomass (Jones et al., 2014). Global projections of changes in POC
export associated with other climate change effects suggest CWC
ecosystems will suffer the greatest declines in benthic biomass
and biodiversity and as a consequence, in ecological functioning
and services provided (Jones et al., 2014; Armstrong et al., 2019).

REMARKS FOR THE FUTURE

With the potentially significant future changes in ocean water
masses and circulation, deep-sea VMEs, such as the CWC reefs,
gardens and sponge grounds found in the North Atlantic, are
very likely to experience a dramatic loss of species diversity and
population densities. However, many knowledge gaps remain in
the biological processes and oceanographic dynamics in the deep-
sea. Critical information for predicting tipping points, adaptation
or resilience are still unknown for most of the deep-sea benthic
organisms at species, population, and community-level processes
(Hebbeln et al., 2019). An improved understanding of these
drivers would help enable us to more clearly identify and describe
the various impacts of climate change. It will also help us to
understand the risks and how to mitigate them better, e.g.,
where we need to be more precautionary in terms of economic
development of marine resources, where we may need to step up
investment in monitoring and management, or how to establish
efficient conservation strategies to preserve these fragile and
precious deep-sea ecosystems.

The loss in biodiversity will potentially reduce severely the
ecosystem resilience to both climate change adaptation and
mitigation. Despite of the socio-political pressures for increasing
the exploitation of marine resources, the deep-sea VMEs which
are more likely to be impacted by multiple stressors are unlikely
to withstand these additional pressures from human activities.
Multiple interactive stressors imposed by global climate change
and anthropogenic activities will impair the biological impacts
and responses beyond the influence of any single variable
(Hofmann et al., 2010; Büscher et al., 2017). Therefore, the
backdrop of climate change will narrow the margins for safe
ecological and thus operational limits of existing and emerging
ocean industries over the next century. Further, most of the

areas currently closed to protect VMEs in the North Atlantic
will be impacted by climate change (Johnson et al., 2018) and
will require monitoring and reconsideration of boundaries in
future. Beyond marine spatial planning, regulatory frameworks
and conservation actions, the blue economy should adopt
precautionary approaches so as not to further push living
marine resources beyond their tipping points and to ensure
sustainable development.
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