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Key Points Summary 

 

● Most vertebrate eyes have rod and cone photoreceptors, which use a signal transduction 

pathway consisting of many biological processes to transform light into an electrical response. 

● We dissect and quantify the contribution of each of these processes to the photoreceptor 

light response by using a novel method of analysis that provides an analytical solution for the 

entire time course of the dim-flash light response. 

● We find that the shape of the light response is exclusively controlled by deactivation 

parameters. Activation parameters scale this shape and alter response amplitude. 

● We show that the rising phase of the response depends on Ca2+ feedback, and we identify 

the deactivation parameters that control the recovery phase of the response.  

●  We devise new methods to extract values for deactivation and activation parameters 

from a separate analysis of response shape and response amplitude. 
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ABSTRACT 

Vertebrate eyes have rod and cone photoreceptors, which use a complex transduction pathway 

comprising many biological processes to transform the absorption of light into an electrical 

response. A fundamental question in sensory transduction is how these processes contribute to 

the response. To study this question, we use a well-accepted phototransduction model, which we 

analyze with a novel method based on the log-transform of the current. We derive an analytical 

solution that describes the entire time course of the photoreceptor response to dim flashes of 

light. We use this solution to dissect and quantify the contribution of each process to the 

response. We find that the entire dim-flash response is proportional to the flash intensity. By 

normalizing responses to unit amplitude, we define a waveform that is independent of the light 

intensity and characterizes the invariant shape of dim-flash responses. We show that this 

waveform is exclusively determined by deactivation rates; activation rates only scale the 

waveform and affect the amplitude. This analysis corrects a previous assumption that the rising 

phase is determined entirely by activation rates. We further show that the rising phase depends 

on Ca2+ feedback to the cyclase, contrary to current belief. We identify the deactivation rates that 

control the recovery phase of the response, and we devise new methods to extract activation and 

deactivation rates from an analysis of response shape and response amplitude. In summary, we 

provide a comprehensive understanding of how the various transduction processes produce the 

cellular response. 
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INTRODUCTION 

The signal transduction cascade of vertebrate rod and cone photoreceptors is a complex multistep 

process by which light-activation of a photopigment is transformed into a current response (see 

Burns & Pugh, 2010; Arshavsky & Burns, 2012; Reingruber et al., 2015; Fain, 2019). The 

photoreceptor response depends crucially on the interplay of two key molecules: the effector 

enzyme phosphodiesterase-6 (PDE), and the second messenger cyclic guanosine monophosphate 

(cGMP), which controls the opening of cyclic-nucleotide-gated (CNG) channels in the plasma 

membrane. Rhodopsin activation is coupled via a G-protein cascade to the activation of PDE, 

such that the number of activated PDE that are present in the outer segment at any time reflects 

the change in light intensity stimulating the photoreceptor. The light-signal encoded by the time 

course of light-activated PDE is then converted into a current response, because activated PDE 

hydrolyses cGMP and produces a net reduction in the number of open CNG channels. Finally, 

Ca2+-feedback modulates the transduction cascade, and this process is also light dependent 

because Ca2+ concentration is controlled by influx through CNG channels which close during the 

light response.  

Experiments over the past 50 years have revealed many biological and biochemical 

details of this interconnected signaling pathway. More recently, considerable insight has come 

from experiments on genetically engineered photoreceptors, where specific components of the 

signaling cascade have been genetically modified. These findings have stimulated the 

development of sophisticated models, which we roughly classify into two main categories and 

which have different but complementary objectives. In the first category, modeling and 

mathematical analysis has been used to understand specific aspects of the photoreceptor 

response, for example (1) response amplification during the initial phase of the light response 
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(Pugh & Lamb, 1993, 2000), (2) dark noise and the variability of the single-photon response 

(Rieke & Baylor, 1996; Rieke & Baylor, 1998; Holcman & Korenbrot, 2004; Reingruber & 

Holcman, 2008a; Caruso et al., 2011; Reingruber et al., 2013), (3) spatio-temporal properties of 

cGMP diffusion and GMP hydrolysis by activated PDE (Cameron & Pugh, 1990; Olson & Pugh, 

1993; Dumke et al., 1994; Koutalos & Yau, 1996; Holcman & Korenbrot, 2004; Caruso et al., 

2006; Reingruber & Holcman, 2008b; Gross et al., 2012b), or (4) analysis of Ca2+-feedback for 

light-adaptation and cGMP synthesis (Tranchina et al., 1991; Calvert et al., 1998; Burns et al., 

2002; Chen et al., 2010c; Gross et al., 2012a). In the second category, highly complex models 

have been proposed to reproduce a large variety of experimental data including the effects of 

gene deletions and adaptation to background light  (Field & Rieke, 2002; Andreucci et al., 2003; 

Hamer et al., 2003; Hamer et al., 2005; Reingruber & Holcman, 2008a; Shen et al., 2010; 

Korenbrot, 2012; Invergo et al., 2014; Astakhova et al., 2015; Lamb & Kraft, 2020).  

Most recent models have been of this second category and have contained many 

equations and parameters that can be adjusted by numerical fitting procedures. These models 

attempt to describe the photoreceptor response in all of its intricacy, but because of this large 

parameter space, it is difficult to infer from simulations and fittings how individual parameters or 

parameter combinations affect various properties of the light response. For example, the recovery 

phase of flash responses can be fit with a single exponential, but because there are many 

deactivation rates it is not obvious how the fitted exponential time constant relates to the various 

rates of the model. Another drawback of complex models is that considerable effort is required to 

implement them in order to use them for data analysis. This may explain why simple concepts 

like amplification constant, recovery time, and dominant time constant are still frequently 

applied to analyze data and to extract parameter values: the amplification constant introduced by 
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Pugh and Lamb (1993) can be determined by fitting the initial phase of a flash response with a 

quadratic function, the recovery time constant by fitting the recovery phase with a single 

exponential, and the dominant time constant from a Pepperberg plot (Pepperberg et al., 1992).  

A closer examination, however, reveals that the mathematical expressions or procedures 

that relate these concepts to underlying model parameters are not derived from a precise analysis 

of a phototransduction model. For example, the formula for the amplification constant has been 

derived from an analysis of amphibian rod responses without taking deactivation processes into 

account (Lamb & Pugh, 1992), and this formula was then subsequently generalized to many 

other species (Pugh & Lamb, 1993, 2000). It still remains unclear exactly how deactivation 

processes affect the rising phase. As another example, in WT rods recovery and dominant time 

constants are both identified with the PDE deactivation rate (Krispel et al., 2006; Tsang et al., 

2006; Chen et al., 2010a), which is based on empirical observations of how these values change 

between phenotypes but lacks a theoretical basis. 

To be able to perform a comprehensive mathematical analysis that provides a 

mathematical foundation for these widespread concepts, we have focused on a simple but 

representative model that comprises all the relevant transduction processes that are known to be 

necessary for a realistic flash response. We use a new mathematical approach based on the log 

transform of the current normalized by the amplitude of saturating flash responses to derive 

analytic expressions for the entire dim-flash response. We then apply these analytic results to 

verify the validity of asymptotic expressions, and to dissect the contributions of individual 

processes of the transduction pathway to the various phases of a flash response. In this way, we 

obtain a comprehensive understanding of how the variety of biochemical processes synergize to 

determine the final response.  



 7 

 

METHODS 

ANIMALS AND RECORDINGS 

The data we used to analyze photoreceptor responses came from experiments previously 

described (Ingram et al., 2019; Ingram et al., 2020; Reingruber et al., 2020). The recordings 

were taken from WT and GCAPs-/- rods, and Gnat1-/- and Gnat1-/-;GCAPs-/- cones. 

GCAPs-/- mutants lack the guanylyl-cyclase activating proteins (GCAPs), which are closely 

associated with guanylyl cyclase in both rods and cones and mediate Ca2+-dependent modulation 

of the rate of the cyclase. In GCAPs-/- mutants, Ca2+-dependent feedback to the cyclase is absent 

(�̂� = 1, see below). Recordings from cones were made from Gnat1-/- retinas lacking Gnat1, the 

alpha-subunit of the rod G protein transducin. Cones in the mouse retina receive input from rods 

through connexin-36 gap junctions (Asteriti et al., 2017; Jin et al., 2020), and this input is 

deleted in Gnat1-/- cones. There is no effect on cone transduction, however, with the result that 

Gnat1-/- cones essentially behave like WT cones (Ingram et al., 2019). As we have previously 

explained (Reingruber et al., 2020), rod WT and GCAPs-/- responses had different collecting 

areas because GCAPs-/- rod responses were recorded with suction electrodes, whereas WT rod 

(and cone) responses were recorded in retinal slices with voltage clamp. 
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MODEL 

We used a simplified phototransduction model that has been previously described  (Reingruber 

et al., 2020). Except for the activation of transducin and the inclusion of Ca2+ feedback, this 

model is similar to that used by Pugh and Lamb to analyze the rising phase of the light response 

(Lamb & Pugh, 1992; Pugh & Lamb, 1993). In brief, the photoreceptor current 𝐼 as a function of 

the cyclic guanosine-nucleotide (cGMP) concentration 𝑐𝑐𝑔 is approximated as 𝐼 = 𝐼𝑑 (
𝑐𝑐𝑔

𝑐𝑐𝑔,𝑑
)
𝑛𝑐ℎ

, 

where 𝐼𝑑 and 𝑐𝑐𝑔,𝑑 are the current and cGMP concentration in darkness, and 𝑛𝑐ℎ is the 

cooperativity constant of the channel. This approximation for the current assumes that the 

concentration of cGMP that half activates the channels is large in comparison to the basal cGMP 

concentration in darkness (Lamb & Pugh, 1992; Pugh & Lamb, 1993). The cGMP synthesis rate 

as a function of the Ca2+ concentration is 𝛼(𝑐𝑐𝑎) =
𝛼𝑚𝑎𝑥

𝑐𝑐𝑎
2 +𝐾𝛼

2 = 𝛼𝑑
𝑐𝑐𝑎,𝑑
2 +𝐾𝛼

2

𝑐𝑐𝑎
2 +𝐾𝛼

2 , where 𝑐𝑐𝑎,𝑑 is the 

calcium concentration in darkness, 𝐾𝛼 determines the sensitivity of the rate to Ca2+ (Tranchina et 

al., 1991; Burns et al., 2002; Hamer et al., 2003; Gross et al., 2012b; Lamb et al, 2018), 𝛼𝑑 =

𝛽𝑑𝑐𝑐𝑔,𝑑 is the synthesis rate in darkness that balances cGMP hydrolysis, and 𝛽𝑑 is the rate 

constant of cGMP hydrolysis in darkness (dark cGMP turnover rate). 

 For the PDE activation cascade, we assumed that light-activated visual pigment activates 

the G-protein transducin, which activates cGMP phosphodiesterase-6 (PDE). We let 𝑅∗ be the 

number of pigment molecules activated by the flash, 𝑇∗ the number of activated transducins, and 

𝑃∗ the number of light-activated PDEs. The parameter 𝑘𝑎𝑐𝑡  is the rate of activation of transducin 

by a single activated visual pigment, 𝜇𝑟ℎ is the deactivation rate of a light-activated visual 

pigment molecule, and 𝜇𝑝𝑑𝑒 is the deactivation rate of a light-activated PDE. The activation rate 
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𝑘𝑡𝑟  is the rate by which 𝑇∗ generates 𝑃∗, and 𝜇𝑡𝑟 is the deactivation rate of  𝑇∗ (the rate of 

decrease of T* concentration). Because the generation of a P* is accomplished by binding of T*, 

we have 𝑘𝑡𝑟 = 𝜇𝑡𝑟, such that a single 𝑇∗ generates a single light-activated PDE. The intermediate 

step by which 𝑇∗activates PDE is often assumed to be fast and therefore omitted (Lamb & Pugh, 

1992; Pugh & Lamb, 1993). We decided to keep this step as a representative reaction to study 

the effect of intermediate processes that delay the response without amplifying it. The value of 

𝜇𝑡𝑟 in Table 2 has been estimated in Reingruber et al. (2020) by fitting the model to the data. It 

therefore has to be considered as an effective value, which does not necessarily reflect the 

biological time scale by which T* activates PDE.  

With dimensionless quantities that are normalized with steady-state values in darkness, 

�̂�𝑐𝑔 =
𝑐𝑐𝑔

𝑐𝑐𝑔,𝑑
, �̂�𝑐𝑎 =

𝑐𝑐𝑎

𝑐𝑐𝑎,𝑑
,  𝐾𝛼 =

𝐾𝛼

𝑐𝑐𝑎,𝑑
 , �̂� =

𝛼

𝛼𝑑
=

1+ 𝐾𝛼
2

𝑐�̂�𝑎
2 + 𝐾𝛼

2 , and 𝐼 =
𝐼

𝐼𝑑
= �̂�𝑐𝑔

𝑛𝑐ℎ, the transduction 

equations are  

𝑑

𝑑𝑡
𝑅∗ = 𝜙(𝑡)− 𝜇𝑟ℎ𝑅

∗ 

𝑑

𝑑𝑡
𝑇∗ = 𝑘𝑎𝑐𝑡𝑅

∗ − 𝜇𝑡𝑟𝑇
∗ 

𝑑

𝑑𝑡
𝑃∗ = 𝑘𝑡𝑟𝑇

∗ − 𝜇𝑝𝑑𝑒𝑃
∗ 

                 
𝑑

𝑑𝑡
�̂�𝑐𝑔 = 𝛽𝑑�̂�(𝑐�̂�𝑎) − (𝛽𝑑 + 𝛽𝑠𝑢𝑏𝑃

∗)�̂�𝑐𝑔 

where 𝜙(𝑡) is the light intensity and 𝜅 is the collecting area.  
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It remains to provide an equation for the Ca2+ concentration 𝑐�̂�𝑎(𝑡). As shown in 

Reingruber et al. (2013), the  Ca2+ dynamics can be modelled as 
𝑑

𝑑𝑡
�̂�𝑐𝑎 = 𝜇𝑐𝑎(𝐼 − �̂�𝑐𝑎), where the 

rate constant 𝜇𝑐𝑎  depends on the dark current, the outer segment volume, the buffering capacity 

𝐵𝑐𝑎, and the fraction of the CNG current that is carried by Ca2+ (see Eq. 33 in the SI of 

Reingruber et al., 2013). This equation further assumes that the half-saturating Ca
2+ 

concentration Kex of the exchanger is large compared to the dark Ca
2+ 

concentration 𝑐𝑐𝑎,𝑑 (Pugh 

& Lamb, 2000). With 𝐵𝑐𝑎 = 80 we computed 𝜇𝑐𝑎 ≈ 23𝑠
−1 for a mouse rod (Reingruber et al., 

2013), and with a smaller buffering capacity 𝐵𝑐𝑎~50 (Gross et al., 2012a), we would get 𝜇𝑐𝑎 ≈

37𝑠−1. For a mouse cone, due to the smaller volume, the value of 𝜇𝑐𝑎  would be much higher. 

Because 𝜇𝑐𝑎  is large and not rate limiting, we simplify and use the approximation �̂�𝑐𝑎(𝑡) ≈ 𝐼(𝑡), 

such that the Ca
2+ 

concentration changes proportional to the current. This approximation 

becomes exact in the limit 𝜇𝑐𝑎 → ∞.  

With the new variables �̃�∗ = 𝑛𝑐ℎ𝛽𝑠𝑢𝑏𝑃
∗, �̃�∗ =

𝑛𝑐ℎ𝛽𝑠𝑢𝑏𝑘𝑡𝑟

𝜇𝑝𝑑𝑒
𝑇∗, �̃�∗ =

𝑛𝑐ℎ𝛽𝑠𝑢𝑏𝑘𝑡𝑟𝑘𝑎𝑐𝑡

𝜇𝑝𝑑𝑒𝜇𝑡𝑟
𝑅∗, 𝑦 =

−𝑛𝑐ℎln�̂�𝑐𝑔 = −ln𝐼 and �̂�𝑐𝑎 = 𝑒
−𝑦, the previous system of equations becomes  

𝑑

𝑑𝑡
�̃�∗ = 𝜇𝑟ℎ(𝜙(𝑡) 𝜉 − �̃�

∗) 
 

𝑑

𝑑𝑡
�̃�∗ = 𝜇𝑡𝑟(�̃�

∗ − �̃�∗) 
 

 

(1) 

𝑑

𝑑𝑡
�̃�∗ = 𝜇𝑝𝑑𝑒(�̃�

∗ − �̃�∗) 
 

𝑑

𝑑𝑡
𝑦 = �̃�∗ − 𝛽𝑑𝐻(𝑦) , 

 

where the gain 𝜉 is defined as 
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𝜉 =
𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏𝑘𝑡𝑟

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 𝜇𝑡𝑟
=
𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏

𝜇𝑟ℎ𝜇𝑝𝑑𝑒
 , (2) 

 

and 

𝐻(𝑦) = 𝑛𝑐ℎ (𝑒
𝑦
𝑛𝑐ℎ�̂�(𝑒−𝑦) − 1) = 𝑛𝑐ℎ (𝑒

𝑦
𝑛𝑐ℎ

1 + 𝐾𝛼
2

𝑒−2𝑦 +𝐾𝛼2
− 1) . 

 

(3) 

 

Eq. 1 shows that the activation rates affect the response only from the gain 𝜉 by means of the 

product 𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏 , which effectively modulates the flash intensity 𝜙. In this respect, 𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏 

behaves similarly to the collecting area 𝜅 and could as well be incorporated into a modified 

collecting area �̃� = 𝜅𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏 . We have, however, elected to keep these variables separate for 

conceptional clarity. The parameter nch cannot be treated in this way, because it further affects 

the value of the function H(y) in Eq. 3.  

 

Analytic results for PDE activation 

The equations for PDE activation are linear and can be solved analytically, 

�̃�∗(𝑡) = 𝜅𝜉 ∫ 𝜙
𝑡

0

(𝑠)𝑔𝑝(𝑡 − 𝑠)𝑑𝑠 
(4) 

 

with Green's function (also known as the impulse-response function) given by 

𝑔𝑝(𝑡) = 𝜇𝑟ℎ𝜇𝑝𝑑𝑒𝜇𝑡𝑟

(

 
 

𝑒−𝜇𝑟ℎ𝑡

(𝜇𝑟ℎ − 𝜇𝑡𝑟)(𝜇𝑟ℎ − 𝜇𝑝𝑑𝑒)
+

𝑒−𝜇𝑡𝑟𝑡

(𝜇𝑡𝑟 − 𝜇𝑟ℎ)(𝜇𝑡𝑟 − 𝜇𝑝𝑑𝑒)
+

+
𝑒−𝜇𝑝𝑑𝑒𝑡

(𝜇𝑝𝑑𝑒 − 𝜇𝑡𝑟)(𝜇𝑝𝑑𝑒 − 𝜇𝑟ℎ) )

 
 
     (5) 
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The function 𝑔𝑝(𝑡) is symmetric in 𝜇𝑟ℎ, 𝜇𝑡𝑟 and 𝜇𝑝𝑑𝑒. For a flash at time 𝑡 = 0 with intensity 𝜙 

and duration 𝛥𝑡, we have 𝜙(𝑡) = 𝜙(𝜃(𝑡) − 𝜃(𝑡 − 𝛥𝑡)), where 𝜃 is the Heaviside (or unit step) 

function. If the flash duration 𝛥𝑡 is short and the flash produces 𝑅0
∗ = 𝜅𝜙𝛥𝑡 photoisomerizations, 

we get from Eq. 4 the approximation �̃�∗(𝑡) ≈ 𝑅0
∗𝜉𝑔𝑝(𝑡). 

 

Analytic results for dim-flash responses 

It is not possible to solve Eq. 1 analytically with the non-linear function 𝐻(𝑦) from Eq. 3.  For 

dim flashes where 𝑦 ≪ 1, however, we can approximate 𝐻(𝑦) by the leading-order term of its 

Taylor expansion. Because 𝐻(𝑦) = 0 for y = 0, the leading order term is the linear expression 

𝐻(𝑦) = 𝑦(1 − 𝑛𝑐ℎ�̂�′), where 

�̂�′ =
𝑑

𝑑�̂�𝑐𝑎
�̂�(�̂�𝑐𝑎)|𝑐�̂�𝑎=1 = −

2

1 + 𝐾𝛼
2
  

(6) 

 

The parameter 𝛼′ describes how strongly the dark cyclase activity is modulated by Ca2+. For 

GCAPs-/- mutants we have 𝛼′ = 0. With the parameters in Table 2, we compute for a WT rod 

𝛼′ ≈ −1.14, and for a WT (Gnat1-/-) cone 𝛼′ ≈ −1.17, such that 1 − 𝑛𝑐ℎ�̂�′ ≈ 3.8 for rod or 

cone photoreceptors. In the leading order approximation, we have 
𝑑

𝑑𝑡
𝑦 = �̃�∗ − 𝛽𝑑𝑦, where we 

have introduced the effective dark turnover rate 

𝛽𝑑 = 𝛽𝑑(1 − 𝑛𝑐ℎ�̂�′) .                                    (7) 

We note that 
𝑑

𝑑𝑡
𝑦 = �̃�∗ − 𝛽𝑑𝑦  also corresponds to the first order approximation of a 

GCAPs-/- photoreceptor with dark turnover rate 𝛽𝑑 and cyclase activity �̃� = 𝛽𝑑𝑐𝑐𝑔,𝑑 (we assume 
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that the dark cGMP concentration is unchanged). Because �̃�∗(𝑡) is the same for WT and 

GCAPs-/- photoreceptors, we thus find that as a first approximation that a WT photoreceptor is 

described by the equations for a GCAPs-/- photoreceptor with increased dark turnover rate 

𝛽𝑑 = 𝛽𝑑(1 − 𝑛𝑐ℎ�̂�′)  and increased cyclase activity �̃� = 𝛽𝑑𝑐𝑐𝑔,𝑑. This finding reveals a profound 

connection between the dim-flash responses of WT and GCAPs-/- photoreceptors: the dim flash 

response (and also single-photon response) of a WT photoreceptor with dark turnover rate 𝛽𝑑 is 

identical to the dim-flash response of a GCAPs-/- photoreceptor with increased dark turnover rate 

𝛽𝑑 given by Eq. 7, thus confirming the importance of the dark GMP turnover rate for the kinetics 

of the flash response (Nikonov et al., 2000).  

 With the linear approximation 𝛽𝑑𝐻(𝑦) = 𝛽𝑑𝑦, we obtain the solution  

𝑦(𝑡) = 𝜅𝜉 ∫ 𝜙
𝑡

0

(𝑠)𝑔𝑦(𝑡 − 𝑠)𝑑𝑠, 

(8) 

 

with Green's function 

𝑔𝑦(𝑡) = 𝜇𝑟ℎ𝜇𝑝𝑑𝑒𝜇𝑡𝑟 (−
𝑒−𝜇𝑟ℎ𝑡

(𝜇𝑟ℎ − 𝜇𝑡𝑟)(𝜇𝑟ℎ − 𝜇𝑝𝑑𝑒)(𝜇𝑟ℎ − 𝛽𝑑  )
−

𝑒−𝜇𝑡𝑟𝑡

(𝜇𝑡𝑟 − 𝜇𝑟ℎ)(𝜇𝑡𝑟 − 𝜇𝑝𝑑𝑒)(𝜇𝑡𝑟 − 𝛽𝑑)

−
𝑒−𝜇𝑝𝑑𝑒𝑡

(𝜇𝑝𝑑𝑒 − 𝜇𝑟ℎ)(𝜇𝑝𝑑𝑒 − 𝜇𝑡𝑟)(𝜇𝑝𝑑𝑒 − 𝛽𝑑  )
−

𝑒−�̃�𝑑𝑡

(𝛽𝑑 − 𝜇𝑟ℎ)(�̃�𝑑  − 𝜇𝑡𝑟)(�̃�𝑑  − 𝜇𝑝𝑑𝑒)
).            (9)

 

Note that 𝛽𝑑𝑔𝑦(𝑡) is symmetric in 𝜇𝑟ℎ, 𝜇𝑝𝑑𝑒 , 𝜇𝑡𝑟 and 𝛽𝑑. For a short flash we have 𝑦(𝑡) ≈

𝑅0
∗𝜉𝑔𝑦(𝑡). The time course of the normalized cGMP concentration is �̂�𝑐𝑔(𝑡) = 𝑒

−
𝑦(𝑡)

𝑛𝑐ℎ =  

𝑒
−
𝑅0
∗𝜉

𝑛𝑐ℎ
𝑔𝑦(𝑡)

. 
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 If 𝜇𝑟ℎ and 𝜇𝑡𝑟 are large compared to 𝜇𝑝𝑑𝑒 and 𝛽𝑑, the response at its maximum amplitude 

is governed by 

𝑔𝑦(𝑡) ≈ 𝜇𝑟ℎ𝜇𝑝𝑑𝑒𝜇𝑡𝑟 (−
𝑒−𝜇𝑝𝑑𝑒𝑡

(𝜇𝑝𝑑𝑒 − 𝜇𝑟ℎ)(𝜇𝑝𝑑𝑒 − 𝜇𝑡𝑟)(𝜇𝑝𝑑𝑒 − 𝛽𝑑)
−

𝑒−�̃�𝑑𝑡

(𝛽𝑑 − 𝜇𝑟ℎ)(𝛽𝑑 − 𝜇𝑡𝑟)(𝛽𝑑 − 𝜇𝑝𝑑𝑒)
) . 

From the condition for the derivative 𝑔𝑦 ′(𝑡𝑝𝑒𝑎𝑘) = 0, we get for the time to peak 

𝑡𝑝𝑒𝑎𝑘 ≈
1

𝜇𝑝𝑑𝑒 − 𝛽𝑑
ln(

𝜇𝑝𝑑𝑒

𝛽𝑑

(𝜇𝑟ℎ − 𝛽𝑑)(𝜇𝑡𝑟 − 𝛽𝑑)

(𝜇𝑟ℎ − 𝜇𝑝𝑑𝑒)(𝜇𝑡𝑟 − 𝜇𝑝𝑑𝑒)
) . 

 

(10) 

 

The peak amplitude 𝑔𝑦,𝑝𝑒𝑎𝑘 = 𝑔𝑦(𝑡𝑝𝑒𝑎𝑘) is  

𝑔𝑦,𝑝𝑒𝑎𝑘 ≈
𝜇𝑝𝑑𝑒

𝛽𝑑 − 𝜇𝑝𝑑𝑒
((
𝜇𝑝𝑑𝑒

𝛽𝑑
)

𝜇𝑝𝑑𝑒

�̃�𝑑−𝜇𝑝𝑑𝑒
− (

𝛽𝑑
𝜇𝑝𝑑𝑒

)

�̃�𝑑
𝜇𝑝𝑑𝑒−�̃�𝑑

) . 

 

 

(11) 

 

Contrary to the time to peak, to compute the peak amplitude we can neglect the contributions 

from 𝜇𝑟ℎ and 𝜇𝑡𝑟. 

 

Dynamics of saturating flash responses during the saturation phase  

For maximum-amplitude (saturating) responses with 𝑦 ≫ 1 and �̃�∗ ≫ 1, we have 𝐻(𝑦) ≈

𝑛𝑐ℎ�̂�(𝑦)𝑒
𝑦

𝑛𝑐ℎ and 

𝑑

𝑑𝑡
𝑦

�̃�∗
≪ 1. With maximal cyclase activation, 𝛼𝑚𝑎𝑥 = �̂�𝑚𝑎𝑥𝛽𝑑𝑐𝑐𝑔,𝑑, we find from 

Eq. 1 that during saturation 
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𝑦(𝑡) ≈ 𝑛𝑐ℎln(
�̃�∗(𝑡)

�̂�𝑚𝑎𝑥𝛽𝑑𝑛𝑐ℎ
). 

 

(12) 

 

From this expression, we can obtain the GMP concentration as a function of the number of 

activated PDEs from: 

𝑐𝑐𝑔(𝑡) ≈
𝛼𝑚𝑎𝑥

𝛽𝑠𝑢𝑏𝑃∗(𝑡)
. 

 

(13) 
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RESULTS 

The signal transduction cascade of the vertebrate photoreceptor consists of an activation phase 

governed by excitation of rhodopsin, transducin, and cGMP phosphodiesterase-6 (PDE). 

Activated PDE increases the rate of hydrolysis of cGMP, which leads to a decline in the cGMP 

concentration, channel closure, and a reduction in Na+ and Ca2+ current entering the outer 

segment. Current recovery depends upon the deactivation of all of the activation steps.  

We recently introduced a novel method of analysis of the photoreceptor response, where 

we used equations for the log transform of the cGMP concentration, 𝑦 = −𝑛𝑐ℎln𝑐�̂�𝑔 (Eq. 1), with 

the current given by 𝐼 = 𝑒−𝑦. We further introduce the more common current 𝑖̂ = 1 − 𝐼 = 1 −

𝑒−𝑦 which is zero in darkness. In Fig. 1, we compare the dim flash responses of rods (Figs. 1A 

and 1B) and cones (Figs. 1C and 1D) with and without the GCAP proteins (black) to simulations 

of y from Eqns. 1 – 3 (red), obtained with parameters from Table 2 which were derived in 

Reingruber et al. (2020), except for a slight modification in the values of the collecting areas to 

provide a better fit to the peak amplitudes. All the model parameters are defined in Table 1.  

 We now extend the analysis of our model and show (see Methods) that, for dim flashes, 

we can solve the model equations analytically to derive an expression for y(t) for the entire 

current response, 𝑦(𝑡) = 𝑅0
∗𝜉𝑔𝑦(𝑡), where 𝑔𝑦(𝑡) is given by Eq. 9. The results of these 

calculations with parameters from Table 2 are shown as green curves in Fig. 1. In the following, 

we will use our analytic formulas to study in detail the kinetics of the dim flash responses in rods 

and cones in order to reveal how underlying biophysical processes and parameters determine the 

waveform and amplitude of flash responses. This analysis will help us extract biophysical 
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parameters from experimental recordings and provide a better understanding of the transduction 

cascade.  

 

Waveform of dim-flash responses 

The analytical results 𝑦(𝑡) = 𝑅0
∗𝜉𝑔𝑦(𝑡) provide the important demonstration that not only the 

initial phase, but the entire dim-flash response is linear with the flash intensity ϕ. We can then 

define the waveform of a dim-flash response as �̂�(𝑡) =  
𝑦(𝑡)

𝑦𝑝𝑒𝑎𝑘
 , which is independent of the flash 

intensity. With the analytic result �̂�𝑦(𝑡) =  
𝑔𝑦(𝑡)

𝑔𝑦,𝑝𝑒𝑎𝑘
, we have 𝑦(𝑡) = 𝑦𝑝𝑒𝑎𝑘�̂�(𝑡), where 𝑦𝑝𝑒𝑎𝑘 =

𝑅0
∗𝜉𝑔𝑦,𝑝𝑒𝑎𝑘 is the amplitude of the response. Because the waveform is independent of the flash 

intensity, we can average over multiple waveforms to reduce experimental noise. In Fig. 2 we 

use the normalized rod and cone data from Fig. 1 (thin continuous lines) to compute the averaged 

waveform (thick continuous lines), which we compare with the analytic results �̂�𝑦(𝑡) computed 

with Eq. 9 and parameters from Table 2 (green lines). The waveform is much faster in a cone 

compared to a rod due to more rapid rates of response decay. The difference in the waveform 

between WT and GCAPs-/- is the result of Ca2+ feedback to the cyclase, which changes the value 

of 𝛽𝑑 defined in Eq. 7. The discrepancy between model and data, especially for rods, is more 

pronounced during the rising phase, where the computed waveform rises faster than the data. 

Because the response also rises faster in GCAPs-/- rods where Ca2+ feedback is absent, 

the discrepancy between model and data is unlikely to result from our assumptions about Ca2+. 

Instead, we think that the main reason for the discrepancy is our neglect of fast and intermediate 

processes in our model, for example multiple steps of phosphorylation of rhodopsin, which 
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would further slow down the initial rise (see also Discussion and the blue curve in Fig. 3B for 

large 𝜇𝑡𝑟).  

 This analysis shows that the waveform depends on �̂�𝑦(t), which in turn depends only on 

the dynamical parameters 𝜇𝑟ℎ, 𝜇𝑡𝑟, 𝜇𝑝𝑑𝑒 and 𝛽𝑑 (see Methods, Eq. 9). We come to the surprising 

conclusion that the waveform of the photoreceptor response is determined exclusively by the 

deactivation rates µrh, µtr and µpde, together with the effective cGMP turnover rate 𝛽𝑑, which 

additionally depends on Ca2+ feedback to the cyclase (see Eq. 7). In the following we simplify 

the notation and we generally refer to the parameters µrh, µtr, µpde and 𝛽𝑑 as deactivation 

parameters or deactivation rates, although it is clear that 𝛽𝑑 is conceptually different from a 

deactivation rate like µrh. The activation parameters βsub and kact only scale the waveform by 

means of the gain ξ. We can therefore separate our analysis into two parts: (1), analysis of the 

rising and recovery phase of the waveform to extract information about the deactivation 

parameters; and (2), analysis of the peak amplitude 𝑦𝑝𝑒𝑎𝑘 = 𝑅0
∗𝜉𝑔𝑦,𝑝𝑒𝑎𝑘  to additionally infer 

information about the gain 𝜉 and rates of activation. Whereas the peak amplitude 𝑦𝑝𝑒𝑎𝑘  depends 

on activation and deactivation parameters, the peak time is a property of the waveform and 

depends only on deactivation parameters (see Eq. 10).   

 

Rising phase of dim-flash responses 

Our analytic result for 𝑔𝑦(𝑡) in Eq. 9 describes the dim-flash response as a sum of exponentials. 

To examine whether a simpler polynomial approximation of the waveform exists during the 

rising phase, we have expanded  �̂�𝑦(𝑡) =  
𝑔𝑦(𝑡)

𝑔𝑦,𝑝𝑒𝑎𝑘
  for small values of the time t in a Taylor series 
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using Eq. 9. Note that the following analysis does not require us to have an explicit analytic 

expression for 𝑔𝑦,𝑝𝑒𝑎𝑘 . The Taylor series expansion is alternating, �̂�𝑦(𝑡) = 𝑎𝑡
3 − 𝑏𝑡4 + 𝑐𝑡5 −

𝑑𝑡6 + . . . with the leading-order coefficient 𝑎 =
1

6

𝜇𝑟ℎ𝜇𝑝𝑑𝑒𝜇𝑡𝑟

g𝑦,𝑝𝑒𝑎𝑘
. Expressions for the higher order 

coefficients are lengthy, and we omit them; they can be computed with software like Maple or 

Mathematica.  

 In Fig. 3A we show the expansion for a WT rod; for GCAPS-/- rods and for the cones, the 

analysis is similar. The Taylor expansion reveals that the leading order term is proportional to t3, 

which reflects the three processes in Eq. 1 that contribute to PDE activation. In general, if 𝑛 first-

order processes contribute to PDE activation, the leading order asymptotic is ∼ 𝑡𝑛 (Baylor et al., 

1974). For example, by assuming that the intermediate step by which a T* is transformed into a 

P* is very fast, corresponding to the limit 𝜇𝑡𝑟 → ∞, the leading-order asymptotic changes to the 

quadratic polynomial �̂�𝑦(𝑡)  =
1

2

𝜇𝑟ℎ𝜇𝑝𝑑𝑒

g𝑦,𝑝𝑒𝑎𝑘
𝑡2. Since the waveform at short times depends on the 

number of intermediate processes that contribute to PDE activation, the larger this number, the 

longer the delay in the initial rise of the response. Thus, an analysis of the short-time waveform 

gives information about the effective number of intermediate processes that contribute to the 

early phase of PDE activation. That �̂�𝑦(𝑡) for WT rod rises too fast in comparison to the data 

(Fig. 3B, red vs black curves) may be an indication that additional intermediate steps should be 

included (such as steps in rhodopsin phosphorylation) to delay the initial rise. We do not 

introduce such steps, because the kinetics and even number of phosphorylation steps required to 

extinguish R* activity are presently unknown, and the purpose of this work is to provide a 

comprehensive analysis by focusing on basic transduction processes rather than to obtain the best 

possible fit.  
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We next asked whether the leading-order term of the Taylor expansion can be used to fit 

the rising phase of the waveform up to larger times of the order the inflection time of the 

waveform. Fig. 3A and Fig. 3B for the limit 𝜇𝑡𝑟 → ∞ show that the leading-order expression is a 

valid approximation only during a very short initial time period and fails at later times. We 

therefore conclude that the leading-order expansion is not suitable to describe the rising phase up 

to the inflection point. Nevertheless, many studies have shown that the quadratic approximation 

𝑦(𝑡) =  
1

2
𝑅0
∗𝐴(𝑡 − 𝑡𝑒𝑓𝑓)

2
gives a good fit to the rising phase of the light response up to this point 

(Pugh & Lamb, 1993). In this equation 𝑡𝑒𝑓𝑓  is an effective time delay that accounts for fast 

intermediate processes, and 𝐴 is known as the amplification constant (Pugh & Lamb, 1993). We 

also find that the rising phase of the waveform data can be well fit by a quadratic function of the 

form �̂�(𝑡) =
1

2
�̂�(𝑡 − 𝑡𝑒𝑓𝑓)

2
 (Fig. 3B green curves). This same equation also gives a good fit to 

�̂�𝑦(𝑡) (Fig. 3B), which confirms that model and data are consistent.  

Why does our leading-order expression proportional to t3 fail to fit the rising phase, 

whereas a lower order quadratic polynomial is well suited? The reason is that cancellations in the 

Taylor series due to the alternating summands produce an effective behavior of the response at 

later times that is very different from the leading order term. Whereas the leading-order behavior 

with many intermediate steps can be proportional to 𝑡𝑛, where n can be large, the effective 

behavior at later times might well be approximated by a polynomial of much lower order, e.g. by 

a quadratic function. The difficulty is that we cannot derive this effective polynomial starting 

from Eq. 9, and the polynomial fit has therefore no clear theoretical basis and must be considered 

as only empirical.  
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Because the amplification constant �̂� was obtained by fitting of the waveform, its value 

can depend only on the deactivation parameters µrh, µtr, µpde, and 𝛽𝑑. Unfortunately, since we 

cannot mathematically derive the effective polynomial, we do not have an analytic formula for 

�̂�. It therefore remains unclear how �̂� relates to the underlying deactivation parameters. Since the 

leading-order expansion with large 𝜇𝑡𝑟 is also a quadratic polynomial, �̂�𝑦(𝑡) =
1

2

𝜇𝑟ℎ𝜇𝑝𝑑𝑒

g𝑦,𝑝𝑒𝑎𝑘
𝑡2, we 

verified that this expression is not related to the quadratic fitting function (Fig. 3B dashed blue 

curve), and therefore it cannot be used to estimate �̂� =
𝜇𝑟ℎ𝜇𝑝𝑑𝑒

g𝑦,𝑝𝑒𝑎𝑘
 . We also note that the assumption 

that 𝜇𝑡𝑟 is very large, corresponding to a model where R* directly activates P* (Lamb & Pugh, 

1992; Pugh & Lamb, 1993), strongly increases the discrepancy between data and model during 

the rising phase (Fig. 3B blue vs red curve). 

 The amplification constant A defined by Lamb and Pugh is obtained by fitting the log-

transform y(𝑡) with the quadratic fitting function  
1

2
𝑅0
∗𝐴(𝑡 − 𝑡𝑒𝑓𝑓)

2
(Pugh & Lamb, 1993). In 

contrast, our amplification constant �̂� is obtained by fitting the waveform �̂�(𝑡) with this fitting 

function. With 𝑦(𝑡) = 𝑦𝑝𝑒𝑎𝑘  �̂�(𝑡) ≈ 𝑦𝑝𝑒𝑎𝑘
1

2
�̂�(𝑡 − 𝑡𝑒𝑓𝑓)

2
 = 
1

2
𝑅0
∗ 𝑦𝑝𝑒𝑎𝑘

𝑅0
∗  �̂�(𝑡 − 𝑡𝑒𝑓𝑓)

2
 we obtain 

the formula 𝐴 =
𝑦𝑝𝑒𝑎𝑘

𝑅0
∗ �̂�, which relates the value of A to that of �̂�. With the dim-flash expression 

𝑦𝑝𝑒𝑎𝑘 = 𝑅0
∗𝜉𝑔𝑦,𝑝𝑒𝑎𝑘  we further get 𝐴 = 𝜉𝑔𝑦,𝑝𝑒𝑎𝑘�̂� = 𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏

𝐴𝑔𝑦,𝑝𝑒𝑎𝑘  

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
. With the fitted 

values for �̂� from Fig 3, with 𝜉 from Table 2, and with 𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.16 extracted from a 

numerical solution of Eq. 1, we compute for rods that 𝐴 = 𝜉𝑔𝑦,𝑝𝑒𝑎𝑘�̂�  7𝑠
−2 (fit of data) and 

𝐴  9.7𝑠−2 (fit of �̂�𝑦), values that are within the wide range that can be found in the literature 

(Nikonov et al., 2006; Chen et al., 2010b; Majumder et al., 2013; Woodruff et al., 2014; Vinberg 
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et al., 2015; Ingram et al., 2016). For a Gnat1-/- cone we estimate �̂� ≈ 2047𝑠−2 by fitting the 

waveform data in Fig 2B. With 𝜉 from Table 2 and 𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.26 (extracted from a numerical 

solution of Eq. 11), we compute 𝐴 = 𝜉𝑔𝑦,𝑝𝑒𝑎𝑘�̂�  0.95𝑠
−2, less than for rods and similar to 

previous estimates (Nikonov et al., 2006;Ingram et al., 2019). 

 The value of A can also be computed by extracting 
𝑦𝑝𝑒𝑎𝑘

𝑅0
∗  from the data (see also Fig. 5), 

and by using this value together with the fitted value for �̂� to compute A=
𝑦𝑝𝑒𝑎𝑘

𝑅0
∗ �̂�; or, 

alternatively, from the frequently used procedure of fitting individual dim-flash responses y(𝑡) 

(as in Pugh & Lamb, 1993). All of these methods are equivalent and necessarily give similar 

results for A (not shown) because, for dim flashes, 𝑦(𝑡) = 𝑦𝑝𝑒𝑎𝑘  �̂�(𝑡) and 𝑦𝑝𝑒𝑎𝑘 = 𝑅0
∗𝜉𝑔𝑦,𝑝𝑒𝑎𝑘 . 

It is however advantageous to use �̂� for the computation of A, because the recording noise can be 

reduced by averaging over multiple waveforms of individual responses.  

In a previous analysis, Pugh and Lamb (1993) derived the expression 𝐴 = 𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏  

and inferred that 𝐴 depends only on activation parameters. To derive their formula, they 

considered that the intermediate steps of transducin activation proceed very rapidly, 

corresponding to the limit 𝜇𝑡𝑟 → ∞, and they further neglected all deactivation processes, 

corresponding to the limits 𝜇𝑟ℎ → 0,  𝜇𝑝𝑑𝑒 → 0 and 𝛽𝑑 → 0. With these approximations, the rise 

of the waveform is given by the first order term �̂�𝑦(𝑡) =
1

2

𝜇𝑟ℎ𝜇𝑝𝑑𝑒

g𝑦,𝑝𝑒𝑎𝑘
𝑡2 (blue dashed curve in Fig 

3B) such that �̂� =
𝜇𝑟ℎ𝜇𝑝𝑑𝑒

g𝑦,𝑝𝑒𝑎𝑘
. The corresponding expression for the log-normal response is y(𝑡) =

𝑅0
∗𝜉𝑔𝑦,𝑝𝑒𝑎𝑘�̂�𝑦(𝑡) =  

1

2
𝑅0
∗  𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏𝑡

2 . Hence, in the limit 𝜇𝑡𝑟 → ∞ with vanishing 

deactivation rates, the rise of the response is described by a quadratic function with amplification 

constant 𝐴 = 𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏, just as Pugh and Lamb obtained. This result for A is a special case of 
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our general formula 𝐴 = 𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏
𝐴𝑔𝑦,𝑝𝑒𝑎𝑘  

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
 for 

𝐴𝑔𝑦,𝑝𝑒𝑎𝑘  

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
= 1, which results from the first 

order expression �̂� =
𝜇𝑟ℎ𝜇𝑝𝑑𝑒

g𝑦,𝑝𝑒𝑎𝑘
.  

The amplification constant 𝐴 = 𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏  faithfully characterizes the response for the 

case 𝜇𝑡𝑟 → ∞ but only under two conditions. First, the deactivation rates must all be zero, in 

which case the response rises indefinitely as y(𝑡) =
1

2
𝑅0
∗  𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏𝑡

2. The value 𝐴 =

𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏 therefore corresponds to the maximal amplification that this system would achieve 

if all deactivation processes are switched off. In this case, A necessarily depends only on 

activation rates. Second, during some very early phase of the response where the waveform can 

be approximated by the first order term of its Taylor expansion (Fig. 3A and 3B), the response 

rises with maximal amplification. The exact extent of this early phase depends on the 

deactivation rates. It is certainly not appropriate to fit the data up to the inflection point of the 

rising phase without considering deactivation processes, since the inflection point is a clear 

manifestation of the impact of the deactivation rates: without deactivation, this point would not 

exist and the response would rise indefinitely. If the data are fitted up to the inflection point, 

deactivation rates will necessarily affect the value of the amplification constant, which is 

quantified by our formula  
𝐴𝑔𝑦,𝑝𝑒𝑎𝑘  

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
.  

Our formula 𝐴 = 𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏
𝐴𝑔𝑦,𝑝𝑒𝑎𝑘  

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
 is valid for general 𝜇𝑡𝑟, and the latter affects the 

value of �̂�𝑔𝑦,𝑝𝑒𝑎𝑘 . By further considering the possibility that T* deactivation can occur also 

without activation of  P*, in which case the values of 𝑘𝑡𝑟  and 𝜇𝑡𝑟 would be different, our formula 

would generalize to 𝐴 = 𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏𝑘𝑡𝑟
𝐴𝑔𝑦,𝑝𝑒𝑎𝑘  

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 𝜇𝑡𝑟
. 
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In summary, we conclude that fitting the rising phase of the waveform with a quadratic 

expression is empirical but provides no precise information about the underlying parameters 

because we do not have an analytic expression for �̂�. To estimate precise values for the 

deactivation rates from a waveform analysis, we must use Eq. 9. We return to the relationship 

between amplification and activation/inactivation rates in the Discussion. 

 

Recovery phase of dim-flash responses 

Both the rising and recovery phase of the waveform are governed by the same sum of 

exponentials given in Eq. 9. During the initial rising phase when time is small, all exponentials 

contribute to the waveform. Around peak time, the contributions from at least two exponentials 

are relevant, because a single exponential cannot generate a peak in the waveform. Finally, at 

larger times during the recovery phase, only the exponentials with the smallest rate constants 

(and slowest decay) contribute significantly to the waveform. For the values of parameters from 

Table 2, we have that 𝜇𝑟ℎ and 𝜇𝑡𝑟 are much larger than 𝜇𝑝𝑑𝑒 and 𝛽𝑑, where we can assume 𝛽𝑑 =

𝛽𝑑 for GCAPs-/- and 𝛽𝑑 ≈ 3.8𝛽𝑑 for WT photoreceptors (see Eq. 7). We conclude that the 

recovery phase of dim-flash responses in both rods and cones is governed primarily by the decay 

of light-activated 𝜇𝑝𝑑𝑒 and the rate 𝛽𝑑 (note that 𝛽𝑑 depends on the dark turnover rate and degree 

of the cyclase activation). Moreover, from Table 2 we can compute for a WT rod that 𝛽𝑑 ≈

15.6𝑠−1, and since this value is much larger than 𝜇𝑝𝑑𝑒 = 5𝑠
−1, it follows that the recovery of 

WT rod flash response is well approximated by a single exponential with decay rate 𝜇𝑝𝑑𝑒, as 

previous experiments have indicated (Krispel et al., 2006; Tsang et al., 2006; Chen et al., 
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2010a). Similarly, for a GCAPs-/- cone with 𝛽𝑑 = 11𝑠
−1 and 𝜇𝑝𝑑𝑒 = 37.8𝑠

−1, we conclude that 

the recovery is governed by a single exponential with rate 𝛽𝑑.  

 To verify these conclusions, we fitted the recovery phase of the averaged waveform 

derived from the WT rod and the Gnat1-/-;GCAPs-/- cone from Fig 1 (black), with a single 

exponential (red) to estimate the decay rate 𝜇𝑟𝑒𝑐  (Fig. 4A-B). From the fitting of the averaged 

waveform, we obtained 𝜇𝑟𝑒𝑐 = 4.9𝑠
−1 for the WT rod and 𝜇𝑟𝑒𝑐 = 11.9

−1 for the 

Gnat1-/-;GCAPs-/- cone, which are both similar to the values in Table 2 that were obtained by 

fitting entire responses in Reingruber et al. (2020). By fitting the recovery of the three individual 

traces that were used to generate the averaged waveform, we get 𝜇𝑟𝑒𝑐 = 4.9 ± 0.8𝑠
−1 and 

𝜇𝑟𝑒𝑐 = 12.4 ± 1.2𝑠
−1 (mean ± S.E.). In contrast, for a GCAPs-/- rod the parameters 𝛽𝑑 = 4.1𝑠

−1 

and 𝜇𝑝𝑑𝑒 = 5𝑠
−1 have very similar values, with the consequence that the recovery depends upon 

a sum of two exponentials. That is also true for a WT cone where 𝛽𝑑 ≈ 41.8𝑠
−1 is similar to 

𝜇𝑝𝑑𝑒 = 37.8𝑠
−1.  

 To illustrate these findings, we compare the recovery between a WT and GCAPs-/- rod 

(Fig. 4C-D). We use Eq. 9 to extract the different exponential contributions to the waveform 

related to rhodopsin decay, transducin decay, PDE decay and the cyclase,  �̂�𝑦 = �̂�𝑦,𝑟ℎ + �̂�𝑦,𝑡𝑟 +

�̂�𝑦,𝑝𝑑𝑒 + �̂�𝑦,𝛽 (Fig. 4C-D). Whereas the recovery of a WT rod (Fig. 4C, black curve) is 

dominated by a single exponential related to PDE decay (Fig. 4C, red curve), the recovery of a 

GCAPs-/- rod (Fig. 4D, black curve) is the sum of two exponentials with decay rates 𝜇𝑝𝑑𝑒 (Fig. 

4D, red curve) and 𝛽𝑑 (Fig. 4D, blue curve).  
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Peak amplitude, gain and sensitivity of dim-flash responses 

The waveform analysis provides information about the dynamical parameters µrh, µtr, µpde, and 

𝛽𝑑. The activation parameters βsub and kact can be extracted from the gain ξ. Since 𝑦𝑝𝑒𝑎𝑘 =

𝑅0
∗𝜉𝑔𝑦,𝑝𝑒𝑎𝑘, we can learn about ξ from the peak amplitude of the responses. The values 𝑦𝑝𝑒𝑎𝑘 

can be extracted from the data, and if the collecting area 𝜅 is known, the expected number of 

activated rhodopsin molecules can be computed as 𝑅0
∗ = 𝜅𝜙𝛥𝑡. To complete this calculation, 

however, we need to estimate 𝑔𝑦,𝑝𝑒𝑎𝑘 . 

 Because we cannot extract 𝑔𝑦,𝑝𝑒𝑎𝑘 directly from the data, we need additional information 

about the dynamical parameters in order to compute 𝑔𝑦,𝑝𝑒𝑎𝑘  either from Eq. 9 or Eq. 11, or from 

a simulation obtained with Eq. 1. If the waveform around peak time is governed by 𝜇𝑝𝑑𝑒 and 𝛽𝑑, 

we can use Eq. 11 to compute 𝑔𝑦,𝑝𝑒𝑎𝑘  as a function of  
𝜇𝑝𝑑𝑒

�̃�𝑑
. Because the value of 𝑔𝑦,𝑝𝑒𝑎𝑘  

changes only slowly as a function of the dynamical parameters, acceptable values for 𝑔𝑦,𝑝𝑒𝑎𝑘 can 

be computed even if the dynamical parameters are not known precisely. With Eq. 11 and 

parameters from Table 2, we obtain 𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.19 (rod WT), 𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.40 (rod GCAPs-/-), 

𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.34 (cone  Gnat1-/-), 𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.60 (cone Gnat1-/-;GCAPs-/-). For comparison, from 

a numerical simulation of Eq. 1, we find 𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.16 (rod WT), 𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.39 (rod 

GCAPs-/-), 𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.26 (cone  Gnat1-/-), 𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.55 (cone Gnat1-/-;GCAPs-/-). Because 

the values of 𝑔𝑦,𝑝𝑒𝑎𝑘  are similar between rods and cones, the large difference in the response 

amplitude between rods and cones is primarily generated by the difference in the gain 𝜉, which 

is of the order 0.45/0.0018  250 (see Table 2). 
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 In Fig. 5, we plot 
𝑦𝑝𝑒𝑎𝑘

𝑔𝑦,𝑝𝑒𝑎𝑘
 against 𝑅0

∗ for rods and cones, with 𝑔𝑦,𝑝𝑒𝑎𝑘  computed from Eq. 1 

and the parameters in Table 2. Because 𝜉 is the same for WT and GCAPs-/- photoreceptors, we 

can combine their data to estimate 𝜉. For a rod we obtain 𝜉 = 0.42 (Fig. 5A), and for cone we 

get 𝜉 = 0.0019 (Fig. 5B), which are both close to the values in Table 2 obtained by collective 

fitting of all of the responses. The gain is closely connected to the flash sensitivity. If we define 

the flash sensitivity 𝑆𝑓 of a dark-adapted photoreceptor as the derivative of the normalized peak-

response amplitude with respect to the number of photoisomerizations 𝑅0
∗, then for dim flashes 

with 𝑖̂𝑝𝑒𝑎𝑘 ≈ 𝑦𝑝𝑒𝑎𝑘 we have 𝑆𝑓 ≈ 𝜉𝑔𝑦,𝑝𝑒𝑎𝑘. With the approximation 𝑔𝑦,𝑝𝑒𝑎𝑘,𝑟𝑜𝑑 ≈ 𝑔𝑦,𝑝𝑒𝑎𝑘,𝑐𝑜𝑛𝑒, 

the sensitivity ratio between rods and cones is given simply the ratio of the gain, 
𝑆𝑓,𝑟𝑜𝑑

𝑆𝑓,𝑐𝑜𝑛𝑒
≈

𝜉𝑟𝑜𝑑

𝜉𝑐𝑜𝑛𝑒
. 

Hence to first estimation, the gain difference between rods and cones can be obtained from the 

ratio of the flash sensitivities, which can be extracted from the data. This conclusion is more 

important than it may seem, because it implies that the sensitivity of the photoreceptor is 

determined by the ratio 
𝑛𝑐ℎ𝛽𝑠𝑢𝑏𝑘𝑎𝑐𝑡

𝜇𝑝𝑑𝑒 𝜇𝑟ℎ
. Assuming that the channel cooperativity 𝑛𝑐ℎ is the same for 

rods and cones, the difference in sensitivity of the two kinds of photoreceptors can then be seen 

to depend only on the properties of the three proteins rhodopsin, transducin and PDE, which are 

all present as different isoforms in rods and cones (see Ingram et al., 2016). 

 

Dynamics of saturating flash responses 

So far, we have focused on dim-flash responses where we made use of our analytic result in Eq. 

9.  We do not use our model to fit brighter-light and saturating flash responses, because the 

model does not incorporate adaptation processes. It is nevertheless insightful to discover what 
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the model predicts for saturating flashes. To study the responses to bright flashes we start from 

Eq. 1. Since for saturating flashes the normalized current 𝑖 ̂is close to one and almost constant 

during the saturation phase, the current does not reveal much information about the dynamics of 

PDE activity and cGMP concentration during this phase. We therefore focus on the dynamics of 

the log-transform y(t). 

 In Fig. 6 we compare the time course of y(t) computed from Eq. 1 for saturating-flash 

responses for WT and GCAPs-/- rods (Fig. 6A), and Gnat1-/- (effectively WT) and 

Gnat1-/-;GCAPs-/- cones (Fig. 6B). Whereas for dim flashes the responses are different between 

WT and GCAPs-/- photoreceptors due to the cyclase, the kinetics during the saturation period 

become similar because the cyclase is maximally activated and constant and therefore does not 

affect the time dependency of the response. From Eq. 13, we find that the cGMP dynamics 

during saturation are determined by the PDE dynamics such that the product of the cGMP 

concentration and the number of activated PDEs is approximately constant with time. The 

magnitude of cyclase activation modulates the level of cGMP synthesis and thereby affects the 

extent by which the cGMP concentration is depleted by activated PDE (cGMP becomes less 

depleted in a WT photoreceptor due to higher cyclase activity). The level of cyclase activation 

affects the maximum of y that is attained during saturation. However, the shape of the responses, 

which can be found by normalizing the response to the maximum, is governed by PDE dynamics 

which are the same in both photoreceptors. This is the reason why in Figs. 6A and 6B we can 

adjust the flash intensity to superimpose responses for WT and GCAPs-/- photoreceptors during 

the saturation phase.   

 Eq. 13 predicts that during the saturation phase, the cGMP concentration adapts to PDE 

activation such that the hydrolysis rate matches the synthesis rate, 𝛽𝑠𝑢𝑏𝑃
∗(𝑡)𝑐𝑐𝑔(𝑡) ≈ 𝑚𝑎𝑥. 
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More generally, the ratio of the synthesis to hydrolysis rate during a flash response evolves 

according to  

𝑟 =
𝛼

𝛽𝑑𝑐𝑐𝑔 + 𝛽𝑠𝑢𝑏𝑃∗𝑐𝑐𝑔
=

�̂�

�̂� +
�̂�𝑐𝑔
𝑛𝑐ℎ𝛽𝑑

𝑑𝑦
𝑑𝑡

=
�̂�

�̂� −
1
𝛽𝑑

𝑑𝑐�̂�𝑔
𝑑𝑡

.
 

 

(14) 

 

At peak time we have 
𝑑𝑦

𝑑𝑡
= 0 and 𝑟 = 1. In Figs. 6C and 6D, we show 𝑟 from Eq. 14 for the two 

strongest flashes from Figs. 6A and 6B. At the beginning, 𝑟 quickly decreases due an increase in 

cGMP hydrolysis rate driven by PDE activation. This decrease in r produces rapid cGMP 

depletion, which in turn decreases the hydrolysis rate so that 𝑟 starts to increase again even for 

GCAPs-/- photoreceptors in the absence of cyclase feedback. At the time-to-peak of the response, 

the synthesis and hydrolysis of cGMP are the same, and 𝑟 = 1. The value of  𝑟 stays close to one 

during the saturation phase (Figs. 6C and 6D), which can be inferred from Eq. 14 because 

|
𝑐�̂�𝑔

𝑛𝑐ℎ𝛽𝑑

𝑑𝑦

𝑑𝑡
| ≪ 1 when �̂�𝑐𝑔 is small. Finally, during the recovery phase, 𝑟 increases because the 

cyclase rate is greater than the PDE rate, and r returns to its equilibrium value as the response 

decays to baseline. 

 Figs. 6A and 6B show that during saturation, 𝑦(𝑡) decreases almost linearly as a function 

of time. To explain this quasi-linearity, we assume that PDE recovery is governed by 𝜇𝑝𝑑𝑒 such 

that 𝑔𝑝(𝑡) ≈ 𝜂𝑒
−𝜇𝑝𝑑𝑒𝑡 (Eq. 5). With �̃�∗(𝑡) ≈ 𝑅0

∗𝜉𝜂𝑒−𝜇𝑝𝑑𝑒𝑡 = �̃�𝑚𝑎𝑥
∗ 𝑒−𝜇𝑝𝑑𝑒𝑡 we obtain from Eq. 

12 during saturation 

𝑦(𝑡)

𝑛𝑐ℎ
≈ ln(

�̃�𝑚𝑎𝑥
∗

�̂�𝑚𝑎𝑥𝛽𝑑𝑛𝑐ℎ
) − 𝜇𝑝𝑑𝑒𝑡 =  ln(

𝑅0
∗𝜉𝜂

�̂�𝑚𝑎𝑥𝛽𝑑𝑛𝑐ℎ
) − 𝜇𝑝𝑑𝑒𝑡. 

 

(15) 
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Eq. 15 reveals that 𝑦(𝑡)/𝑛𝑐ℎ decreases linearly with time with a slope given by 𝜇𝑝𝑑𝑒. 

Unfortunately, it is difficult to exploit Eq. 15 to estimate 𝜇𝑝𝑑𝑒 by fitting the decay of 𝑦(𝑡), 

because we cannot reliably compute 𝑦(𝑡) from the data when the current is close to 1 as a result 

of noise and the singularity of the logarithm at zero. Instead, to extract 𝜇𝑝𝑑𝑒 we can use 

information from multiple flash responses to measure the time 𝑡𝐷 when the recovering current 

crosses a fixed threshold 𝑖̂𝐷, corresponding to the fixed value 𝑦𝐷 = −ln(1 − 𝑖�̂�). With Eq. 15 we 

find that 𝑡𝐷 satisfies −
𝑦𝐷

𝑛𝑐ℎ
+ ln (

𝜉𝜂

�̂�𝑚𝑎𝑥𝛽𝑑𝑛𝑐ℎ
) + ln𝑅0

∗ − 𝜇𝑝𝑑𝑒𝑡𝐷 ≈ 0. Since the first two terms in 

this expression are constants, one can extract 𝜇𝑝𝑑𝑒 by fitting the slope of 𝑡𝐷 as a function of ln𝑅0
∗, 

which is called a Pepperberg plot after the late David Pepperberg (Pepperberg et al., 1992). This 

analysis shows that the dominant time constant in this model is given by the PDE deactivation 

rate, 𝜏𝐷 =  𝜇𝑝𝑑𝑒
−1, and that a Pepperberg analysis can in principle be performed with both WT 

and GCAPs-/- responses.  
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DISCUSSION 

The signal transduction pathway of the vertebrate rod and cone photoreceptor consists of a series 

of biochemical and biophysical processes that transform the absorption of a photon into a change 

in membrane current. Despite many sophisticated mathematical models, a precise conceptual 

understanding of how all these interconnected processes work together to generate the response 

remains challenging. To obtain such an understanding, we derived an analytic solution for the 

entire dim-flash response based on a representative model that comprises the most important 

transduction processes. We applied this solution to dissect the flash response and to investigate 

its characteristic phases: the activation phase where the current rises, the intermediate peak or 

saturation phase, and the recovery phase where the photoreceptor returns to its initial state. Our 

novel analysis provides a detailed characterization of these phases.  

Our analytic result 𝑦(𝑡) = 𝑅0
∗𝜉𝑔𝑦(𝑡) shows that the entire log-transform of the dim-flash 

response is linear with the number of photoisomerizations 𝑅0
∗ generated by the flash. Since for 

dim flashes we have 𝑖(̂t) = 1 − 𝑒−y(t)   y(t), to a first approximation the current is also linear 

with 𝑅0
∗.  The analytic function 𝑔𝑦(𝑡) (Eq. 9) depends entirely on the deactivation parameters 

𝜇𝑟ℎ, 𝜇𝑡𝑟, 𝜇𝑝𝑑𝑒 and 𝛽𝑑, where 𝛽𝑑 can be seen as an effective dark cGMP turnover rate that also 

depends on Ca2+-feedback to the cyclase (Eq. 7). The activation parameters βsub and kact affect 

the response by means of the gain 𝜉 =
𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏

𝜇𝑟ℎ𝜇𝑝𝑑𝑒
 (Eq. 2). We used this analytic result to separate 

the response into the waveform �̂�(𝑡) = g𝑦(𝑡)/𝑔𝑦,𝑝𝑒𝑎𝑘, which is independent of the flash 

intensity and is normalized to amplitude one (Fig. 2); and the amplitude 𝑦𝑝𝑒𝑎𝑘 = 𝑅0
∗𝜉𝑔𝑦,𝑝𝑒𝑎𝑘, 

such that 𝑦(𝑡) = 𝑦𝑝𝑒𝑎𝑘�̂�(𝑡). It follows that the dim-flash waveform �̂�(𝑡) depends entirely on the 
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deactivation parameters 𝜇𝑟ℎ, 𝜇𝑡𝑟, 𝜇𝑝𝑑𝑒 and 𝛽𝑑, whereas the activation parameters βsub and kact 

only affect the response amplitude 𝑦𝑝𝑒𝑎𝑘 . 

In a previous attempt to analyze the rising phase of dim flashes, Pugh and Lamb (1993) 

found that the quadratic expression 𝑦(𝑡) =
1

2
𝑅0
∗𝐴(𝑡 − 𝑡𝑒𝑓𝑓)

2
 gives a reasonable fit to the rising 

phase of the log-transform of the current. They called the parameter A the amplification constant. 

By neglecting deactivation processes, Pugh and Lamb derived the formula 𝐴 = 𝑛𝑐ℎ𝛽𝑠𝑢𝑏𝑘𝑎𝑐𝑡 . 

This formula relates the fitted value of A entirely to the activation rates and the channel 

cooperativity. This equation for A has since been widely used to evaluate the initial activation 

process and to extract values for the rates βsub and kact (see for example Pugh & Lamb, 2000; 

Kawamura & Tachibanaki, 2008; Invergo et al., 2014; Astakhova et al., 2015; Lamb et al., 

2018).  

From our analysis of the rising phase, we have derived the new formula 𝐴 =
𝑦𝑝𝑒𝑎𝑘

𝑅0
∗ �̂�, 

where the amplification constant �̂� can be obtained by fitting the rising phase of the waveform 

�̂�(𝑡) with the quadratic fitting function 
1

2
�̂�(𝑡 − 𝑡𝑒𝑓𝑓)

2
 (Fig 3B). With our analytic result 𝑦𝑝𝑒𝑎𝑘 =

𝑅0
∗𝜉𝑔𝑦,𝑝𝑒𝑎𝑘, we obtain 𝐴 = 𝜉𝑔𝑦,𝑝𝑒𝑎𝑘 �̂� = 𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏

𝐴𝑔𝑦,𝑝𝑒𝑎𝑘  

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
, where 

𝐴𝑔𝑦,𝑝𝑒𝑎𝑘  

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
 depends only on 

the deactivation parameters. Our analysis thus reveals that the amplification constant A of Pugh 

and Lamb depends on both activation and deactivation parameters, and the impact of the 

deactivation parameters is quantified by 
𝐴𝑔𝑦,𝑝𝑒𝑎𝑘  

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
.  For example, for a WT mouse rod with the 

fitted value �̂� = 97s-2 (Fig 3B), 𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.16 (from a numerical solution of Eq. 11), 𝜇𝑟ℎ =

28𝑠−1 and 𝜇𝑝𝑑𝑒 = 5𝑠
−1 (from Table 2), we estimate 

𝐴𝑔𝑦,𝑝𝑒𝑎𝑘 

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
  0.11. For the Gnat1-/- cone with 
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�̂� =2047s-2 (by fitting the data in Fig. 2B, not shown) and 𝑔𝑦,𝑝𝑒𝑎𝑘 = 0.26, we find  
𝐴𝑔𝑦,𝑝𝑒𝑎𝑘 

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
  

0.2. Hence, by assuming that 𝑛𝑐ℎ 2.5, we conclude that the incorrect formula 𝐴 = 𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏  

would underestimate 𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏  in a mouse rod by a factor of around 9, and in a mouse cone by a 

factor of around 5. A similar underestimation by factors of around 4 and 1.6 have been inferred 

for a carp cone and a frog rod from simulations where the deactivation processes have been 

switched off (Astakhova et al., 2015).  

The results of Pugh and Lamb (1993) were derived from a first-order analysis of model 

equations, which is unaffected by deactivation processes. As suggested by the frog result from 

(Astakhova et al., 2015), deactivation processes might have only a reduced impact in amphibian 

rods, which were used for the initial analysis of Pugh and Lamb (1993). Nevertheless, based on 

the observation that the rising phase of many rod and cone photoreceptors can be well 

approximated by the quadratic fitting function 𝑦(𝑡) =
1

2
𝑅0
∗𝐴(𝑡 − 𝑡𝑒𝑓𝑓)

2
, Pugh and Lamb 

generalized their result without performing a mathematical validation (Pugh & Lamb, 1993, 

2000).  

We derived an analytic solution for the dim-flash response that provided the basis for our 

analysis, and which revealed that the contribution of deactivation processes to the rising phase 

cannot be neglected. Moreover, we find that the fitting function 𝑦(𝑡) =
1

2
𝑅0
∗𝐴(𝑡 − 𝑡𝑒𝑓𝑓)

2
 has to 

be considered as empirical because it is not derived from an analysis of the underlying model 

equations. Although our formula 𝐴 =
𝑦𝑝𝑒𝑎𝑘

𝑅0
∗ �̂�  shows that the amplification constant defined by 

Pugh and Lamb depends on activation and deactivation parameters, we do not have an analytic 

expression for �̂�. It is therefore unclear how to extract deactivation rates from the fitted value of 
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�̂�. To estimate such values, one has to use Eq. 9 for a fitting procedure. Alternatively, in more 

complex models where no such analytic result is available, deactivation rates have to be 

estimated from the underlying model equations with numerical fitting procedures (see e.g. 

Hamer et al., 2005; Invergo et al., 2014).   

The formula 𝐴 = 𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏  predicts that Ca2+-feedback does not affect the rising phase 

of dim-flash responses, which seems to be consistent with experimental data showing that the 

initial rise of the response is not much different between WT and GCAP-/- photoreceptors (Burns 

et al., 2002). In contrast, in our model Ca2+-feedback to the cyclase affects the rising phase of the 

waveform via the effective parameter 𝛽𝑑 (Eq. 7), and also affects the fitted value of the 

amplification constant �̂�. Since the time to peak is larger in a GCAPs-/- photoreceptors, the 

amplification constant �̂� is necessarily smaller in a GCAP-/- photoreceptor. For example, by 

fitting the rod GCAPs-/- data from Fig. 2A, we find �̂� ≈42s-2 (not shown), contrary to �̂� ≈97s-2 

for a WT rod (Fig. 3). Since however the response amplitude 𝑦𝑝𝑒𝑎𝑘is larger in a 

GCAPs-/- photoreceptor, the value of the amplification constant 𝐴 =
𝑦𝑝𝑒𝑎𝑘

𝑅0
∗ �̂� =

𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏
𝐴𝑔𝑦,𝑝𝑒𝑎𝑘  

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
 remains largely unchanged between WT and GCAPs-/- photoreceptors. For 

example, for a WT rod we have �̂�𝑔𝑦,𝑝𝑒𝑎𝑘 ≈ 15.5𝑠
−2, and for a GCAPs-/- rod �̂�𝑔𝑦,𝑝𝑒𝑎𝑘 ≈

16.4𝑠−2. We thus find that the experimental result that the initial rise of the response is not much 

different between WT and GCAP-/- photoreceptors does not imply that Ca2+-feedback does not 

affect the rising phase of dim-flash responses. We show that the initial rise of the response 

remains almost unchanged because Ca2+-feedback affects both response amplitude and response 

dynamics. Lamb and Pugh derived their formula 𝐴 = 𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏 by arguing that the Ca2+ 

dynamics is slow and therefore does not affect the initial rising phase. In contrast, we assume 
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that Ca2+-dynamics is determined by the current dynamics, in which case Ca2+ feedback 

gradually modulates the response. By performing simulations with an additional equation for the 

Ca2+concentration, we checked that our assumption is justified to model the rising phase of dim-

flash responses where the rise of the current is sufficiently slow. For strong flashes, where the 

current rises very fast, the initial Ca2+ dynamics is slightly delayed with respect to the current.  

Because activation rates affect the gain 𝜉 (Eq. 2), analysis of the gain is a more effective 

way to extract information about activation parameters. We show that the gain can be estimated 

either from an analysis of the rising phase with the formula 𝜉 = A/(�̂�𝑔𝑦,𝑝𝑒𝑎𝑘), or by fitting 

entire flash responses as shown in Reingruber et al. (2020), or from an analysis of the response 

amplitude (Fig. 5). For example, for a WT rod, with the gain and deactivation parameters from 

Table 2 together with the assumption 𝛽𝑠𝑢𝑏~0.02𝑠
−1, we find 𝑘𝑎𝑐𝑡 = 𝜉

𝜇𝑟ℎ𝜇𝑝𝑑𝑒

𝑛𝑐ℎ𝛽𝑠𝑢𝑏
 ≈ 1260𝑠−1. 

With the amplification constant A=7.1s-2 (estimated from Fig 3) together with the formula 𝐴 =

𝑛𝑐ℎ𝑘𝑎𝑐𝑡𝛽𝑠𝑢𝑏
𝐴𝑔𝑦,𝑝𝑒𝑎𝑘  

𝜇𝑟ℎ𝜇𝑝𝑑𝑒 
, we obtain 𝑘𝑎𝑐𝑡 =

A

𝑛𝑐ℎ𝛽𝑠𝑢𝑏
 
1

0.11
≈ 1290𝑠−1, which is consistent with the 

value estimated from the gain. In contrast, the Pugh and Lamb formula predicts a value 𝑘𝑎𝑐𝑡 =

𝐴

𝑛𝑐ℎ𝛽𝑠𝑢𝑏
≈ 142𝑠−1. Because our estimation of the transducin activation rate is similar to the 

values of Heck and Hofmann (2001) and Lamb and Kraft (2020), and because we have used a 

conventional model of single-transducin activation for PDE, our calculations indicate that a high 

transducin activation rate cannot be used as unambiguous evidence for a dimeric transducin 

activation of PDE (Lamb & Kraft, 2020). 

The recovery phase of the current is frequently fitted with a single exponential to extract 

the recovery rate constant 𝜇𝑟𝑒𝑐  (or its inverse 𝜏rec) In WT rods this value is usually identified 
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with the PDE deactivation rate µpde (Krispel et al., 2006; Tsang et al., 2006; Chen et al., 2010a). 

We have shown, however, that a more accurate procedure is to fit the recovery of the log-

transform of the current, which is more directly governed by exponential decays (Eq. 9). 

Moreover, because the recovery of the response depends on a sum of exponentials (Eq. 9), 

careful analysis is needed to interpret the fitted value for the recovery rate correctly. We show 

that fitting the recovery phase with a single exponential is justified only for WT rod and 

GCAPs-/- cone responses, where the fitted recovery rates correspond to 𝜇𝑝𝑑𝑒  (rod) and 𝛽𝑑 (cone). 

In contrast, for WT cone and GCAPs-/- rod responses (Fig. 4C-D), the recovery phase is 

governed by a sum of two exponentials, and in this circumstance it is not appropriate to extract 

parameters by fitting the recovery phase with a single exponential decay function. For example, 

when Gross et al. (2012b) determined the widely accepted value 𝛽𝑑 = 4.1𝑠
−1, they claimed that 

PDE decay does not affect the recovery of GCAPs-/- rod responses. Although the latter is not 

correct, their estimation for 𝛽𝑑 seems still to be justified because it was apparently derived from 

GCAPs-/- RGS9-ox rod responses with overexpressed GAP proteins, where PDE decay is accelerated 

to a value 𝜇𝑝𝑑𝑒 12.5𝑠
−1.  

Finally, we used the log-transform of the current to analyze response dynamics during 

saturation. Whereas the current reaches a maximal value and is almost constant during the 

saturation period, the log-transform of the current is not constant and can be used to study 

dynamics during saturation (Fig. 6). Although our model does not include mechanisms of 

adaptation and cannot be used to fit responses to brighter light intensities, the model predictions 

for saturating flashes are nevertheless interesting because they provide insight into the dynamics 

during the saturation period when cyclase is maximally activated.  
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We find that during saturation, response dynamics are determined by a close interplay 

between PDE activation and cGMP depletion, such that the product of GMP concentration and 

the number of activated PDEs is approximately constant with time (Eq. 13). The extent of 

cyclase activation modulates the minimal level of the cGMP concentration that is attained, as a 

result of hydrolysis by activated PDE; but cyclase activity does not otherwise affect the 

dynamics of the response. This finding might have important implications for adaptation, 

because it suggests that modulation of PDE deactivation is a powerful means to control the 

cGMP concentration at high light intensities when the cyclase rate is at a maximal value.  

Our results for saturating flashes further provide a mathematical explanation for 

Pepperberg plots (Pepperberg et al., 1992). Eq. 15 predicts that the dominant time constant for a 

WT rod will be determined by the PDE deactivation rate, 𝜏𝐷 = 𝜇𝑝𝑑𝑒
−1, which agrees with 

experimental observations (Krispel et al., 2006; Tsang et al., 2006; Chen et al., 2010a). If PDE 

activation were super-linear due to the necessity of binding of two transducins such that 

�̃�𝑚𝑎𝑥
∗  ~𝑅0

∗𝑒𝜌𝑅0
∗
 (Lamb & Kraft, 2020), Eq. 15 predicts 𝜏𝐷 = 

1+𝜌𝑅0
∗

𝜇𝑝𝑑𝑒
 , which agrees with the 

formula from Lamb and Kraft (2020). However, more precise analysis of a model that 

additionally incorporates adaptation processes is needed to clarify whether the observed 

increases of the dominant time constant with brighter flash intensity are a sign of dimeric PDE 

activation (Lamb & Kraft, 2020), or of some other process (Martemyanov et al., 2008; Burns & 

Pugh, 2010). 

 Whereas our model faithfully reproduces cone data, the discrepancy between model and 

data is larger for rods, especially during the initial phase where the simulations rise faster than the 

data (Fig. 2A and Fig. 3B). Fig. 2A shows that the initial rise of the simulated waveform is faster 
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in a GCAPs-/- rod where Ca2+ feedback is absent, which suggests that the main reason for the 

discrepancy between data and simulations is not related to our assumptions about Ca2+ feedback. 

A possible reason for this difference could be due to the neglect of multiple phosphorylation steps, 

which are likely to have a larger impact on rods than cones. Multiple phosphorylations are known 

to be important for the rod single-photon response (Field & Rieke, 2002; Hamer et al., 2003; 

Reingruber & Holcman, 2008a) and are therefore likely also relevant for dim-flash responses. On 

the assumption that the intermediate step involving transducin activation proceeds very rapidly, 

corresponding to a high rate 𝜇𝑡𝑟, the discrepancy between data and model increases because a 

faster intermediate step accelerates the initial rise of the simulated response (see Fig. 3B). The 

inclusion of multiple phosphorylation steps would have the opposite effect and would slow down 

the initial rise of the response, which would lead to a better agreement between data and model.  

 With our parsimonious model, we are the first to provide a comprehensive mathematical 

analysis for the whole of the dim-flash response. Our analysis dissects the response dynamics to 

identify how parameters or parameter combinations govern various phases of the response. This 

analysis provides a more precise conceptual understanding of how transduction processes 

determine the dynamics of the photocurrent. We hope that this new insight will lead to the design 

of new experiments to test these findings in more detail. We hope that this work will serve as a 

template to derive more refined analytic expressions with more complex models and will help to 

revitalize the analytic analysis of phototransduction models that was pioneered by Lamb and Pugh  

(Lamb & Pugh, 1992; Pugh & Lamb, 1993). In addition, our approach may also be useful in 

understanding other G-protein signaling cascades, for example in olfaction (see for example 

Reisert & Reingruber, 2019).  
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Table 1. Parameter definitions and descriptions. 

Parameter Description 

 (m2) Collecting area  

nch CNG channel cooperativity  

βd (s-1) Rate constant of cGMP hydrolysis in darkness  

rh (s-1) Rate of deactivation of an activated visual pigment 

pde (s-1) Rate of deactivation of a light-activated PDE  

tr (s-1) Rate of deactivation of activated transducin  

 �̂�𝛼 Sensitivity of the cyclase activity on the Ca2+ concentration 

scaled by the dark Ca2+ concentration  

  
Gain 𝜉 =  

𝑛𝑐ℎ𝛽𝑠𝑢𝑏𝑘𝑎𝑐𝑡 

𝜇𝑝𝑑𝑒 𝜇𝑟ℎ
 

kact (s-1) Rate of transducin activation by an activated visual pigment 

βsub (s-1) Rate constant of cGMP hydrolysis by a light-activated PDE  
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Table 2. Parameter values for the rod and cone models. 

Parameter Rod  Cone  

 (m2) 0.28 (WT)   

0.42 (GCAPs-/-) 

0.013 

nch 2.5 2.5 

  0.45 0.0018 

βd (s-1) 4.1 11.0 

pde (s-1) 5 37.8 

rh  (s-1) 28 70.7 

tr (s-1) 23.8 70.7 

 𝐾𝛼 0.87 0.84 
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FIGURE LEGENDS 

Figure 1. Log-transform of dim-flash responses. Experimental current recordings from mouse 

rods and cones have been normalized to their corresponding steady-state current in darkness Id, 

with 𝐼 =
𝐼

𝐼𝑑
  (such that 𝐼 = 1 in darkness), and then the log-transform of these normalized 

currents was computed according to 𝑦(𝑡) = −𝑙𝑛𝐼(𝑡) (black curves). The experimental data is 

compared to simulations of y(t) (red curves) and the analytic results 𝑦(𝑡) = 𝑅0
∗𝜉𝑔𝑦(𝑡) computed 

with Eq. 1 and Eq. 9 and parameters from Table 2. The expected number of pigment 

isomerizations 𝑅0
∗ = 𝜅𝜙𝛥𝑡 are (1.8, 4.3, 10.3) for (A), (0.6, 1.6, 2.7) for (B), and (86, 220, 620) 

for (C-D). Flash durations are 10ms in (A), 20ms in (B) and 5ms in (C, D). (A) The rod WT data 

is computed with mean responses of 7 WT rods. (B) The rod GCAPs-/- data is computed with 

mean responses of 5 rods from Chen et al. (2010c).  (C) The Cone Gnat1-/- (equivalent to WT or 

control, see text) data is obtained with responses from 3 cones.  (D) The cone 

Gnat1-/-;GCAPs-/- (equivalent to cone GCAPs-/-, see text) shows mean responses from 3 cones. 

 

Figure 2. Waveform of dim-flash responses. The rod and cone waveforms �̂�(t) =  
𝑦(𝑡)

𝑦𝑝𝑒𝑎𝑘
 from 

Fig. 1 (thin continuous lines) were used to compute an averaged waveform (thick continuous 

lines). The averaged waveform is compared to the analytic result �̂�(𝑡) = �̂�𝑦(𝑡) computed with 

Eq. 9 and parameters from Table 2 (green lines). (A) Waveforms for rod WT (black curves) and 

GCAPs-/- data (red curves) together with the corresponding analytic results (green curves). (B) 

Waveforms for cone WT (black curves) and GCAPs-/- data (red curves) together with the 

corresponding analytic results (green curves). 
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Figure 3. Rising phase of the waveform of a WT rod. (A) The curves show the first four terms of 

the Taylor series expansion of �̂�𝑦(𝑡) computed with Eq. 9 and WT rod parameters from Table 2. 

The leading-order term is 
1

6

𝜇𝑟ℎ𝜇𝑝𝑑𝑒𝜇𝑡𝑟

�̂�𝑦,𝑝𝑒𝑎𝑘
𝑡3. (B) The red curve shows the data for the averaged WT 

rod waveform from Fig. 2A. The green curves show quadratic fits to data and �̂�𝑦(𝑡) performed 

with the fitting function 
1

2
�̂�(𝑡 − 𝑡𝑒𝑓𝑓)

2
. The fitted values for the waveform amplification 

constant are �̂� ≈ 97𝑠−2(data) and �̂� ≈ 135𝑠−2 (�̂�𝑦). The blue continuous curve displays �̂�𝑦(𝑡) 

when the parameter 𝜇𝑡𝑟 is assumed to be very large. The leading order term of the Taylor 

expansion of �̂�𝑦(𝑡) for large 𝜇𝑡𝑟 is 
1

2

𝜇𝑟ℎ𝜇𝑝𝑑𝑒

�̂�𝑦,𝑝𝑒𝑎𝑘
𝑡2 (blue dashed curve).  

 

Figure 4. Recovery phase of the waveform. (A-B) The recovery phase of the averaged waveform 

data for WT rod and Gnat1-/-;GCAPs-/- cone from Fig. 2 (black curves) were fitted with a single 

exponential function to extract the recovery rates constants 𝜇𝑟𝑒𝑐  (red curves). The fitted values 

are 𝜇𝑟𝑒𝑐 = 4.9𝑠
−1 for WT rod, and 𝜇𝑟𝑒𝑐 = 11.9

−1 for Gnat1-/-;GCAPs-/- cone.  (C-D) The curves 

show the individual single exponentials related to rhodopsin decay, transducin decay, PDE decay 

and the cyclase rate constant  that contribute to the waveform �̂�𝑦 = �̂�𝑦,𝑟ℎ + �̂�𝑦,𝑡𝑟 + �̂�𝑦,𝑝𝑑𝑒 +

�̂�𝑦,𝛽 computed with Eq. 9 for a WT rod (C) and a GCAPs-/- rod (D) . 

 

Figure 5. Estimation of the gain 𝜉 from the peak amplitudes of dim-flash responses. (A) The 

peak amplitudes 𝑦𝑝𝑒𝑎𝑘 of the log-normal data for rods shown in Fig. 1 A-B together with 𝑔𝑦,𝑝𝑒𝑎𝑘  
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computed with Eq. 1 and parameters from Table 2 are used to calculate 
𝑦𝑝𝑒𝑎𝑘

𝑔𝑦,𝑝𝑒𝑎𝑘
 for WT (blue 

diamonds) and GCAPs-/- rod (red diamonds), and then plotted against the number of 

isomerizations 𝑅0
∗ specified in Fig. 1. The black curve is a linear fit to the combined datapoints 

with slope 𝜉 = 0.42. (B) Same procedure as in (A) but for cones. The linear fit gives 𝜉 =

0.0019.  

 

Figure 6. Simulations of saturating flash responses for rods and cones. The number of 

isomerizations 𝑅0
∗ = 𝜅𝜙𝛥𝑡 that were used for the simulations are: (A) WT rod 

(40,140,600,1200,10000), GCAPs-/- rod (15,50,250,500,4500); (B) Gnat1-/- cone 

103x(4.55,1.95,45.5,19.5,455), Gnat1-/-;GCAPs-/- cone 103x(1.95,9.75,19.5,78,195). (A) 

Comparison of the dynamics of the log-normal y(t) computed with Eq. 1 for saturating flashes 

for WT (black) and GCAPs-/- rods (red). Flash intensities for WT and GCAPs-/- rods are not the 

same but were chosen to obtain similar peak amplitudes in order to facilitate the comparison of 

the kinetics. Parameters are from Table 2. (B) Same procedure as in (A) but for cones. (C) The 

time course of the ratio r of the rod cGMP synthesis to hydrolysis rate (Eq. 14) for the two 

strongest flashes in (A) is depicted. (D)  Same procedure as in (C) but for cone.  
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